101
|
Sun Y, Zang H, Splettstößer T, Kumar A, Xu X, Kuzyakov Y, Pausch J. Plant intraspecific competition and growth stage alter carbon and nitrogen mineralization in the rhizosphere. PLANT, CELL & ENVIRONMENT 2021; 44:1231-1242. [PMID: 33175402 DOI: 10.1111/pce.13945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Plant roots interact with rhizosphere microorganisms to accelerate soil organic matter (SOM) mineralization for nutrient acquisition. Root-mediated changes in SOM mineralization largely depend on root-derived carbon (root-C) input and soil nutrient status. Hence, intraspecific competition over plant development and spatiotemporal variability in the root-C input and nutrients uptake may modify SOM mineralization. To investigate the effect of intraspecific competition on SOM mineralization at three growth stages (heading, flowering, and ripening), we grew maize (C4 plant) under three planting densities on a C3 soil and determined in situ soil C- and N-mineralization by 13 C-natural abundance and 15 N-pool dilution approaches. From heading to ripening, soil C- and N-mineralization rates exhibit similar unimodal trends and were tightly coupled. The C-to-N-mineralization ratio (0.6 to 2.6) increased with N availability, indicating that an increase in N-mineralization with N depletion was driven by microorganisms mining N-rich SOM. With the intraspecific competition, plants increased specific root lengths as an efficient strategy to compete for resources. Root morphologic traits rather than root biomass per se were positively related to C- and N-mineralization. Overall, plant phenology and intraspecific competition controlled the intensity and mechanisms of soil C- and N- mineralization by the adaptation of root traits and nutrient mining.
Collapse
Affiliation(s)
- Yue Sun
- Department of Agroecology, BayCEER, University of Bayreuth, Bayreuth, Germany
- Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
| | - Huadong Zang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Thomas Splettstößer
- Department of Soil Science of Temperate and Boreal Ecosystems, University of Göttingen, Göttingen, Germany
| | - Amit Kumar
- Chair of Ecosystem Functioning and Services, Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China
| | - Yakov Kuzyakov
- Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
- Department of Soil Science of Temperate and Boreal Ecosystems, University of Göttingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Johanna Pausch
- Department of Agroecology, BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
102
|
Cope OL, Lindroth RL, Helm A, Keefover-Ring K, Kruger EL. Trait plasticity and trade-offs shape intra-specific variation in competitive response in a foundation tree species. THE NEW PHYTOLOGIST 2021; 230:710-719. [PMID: 33378548 DOI: 10.1111/nph.17166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The ability to tolerate neighboring plants (i.e. degree of competitive response) is a key determinant of plant success in high-competition environments. Plant genotypes adjust their functional trait expression under high levels of competition, which may help explain intra-specific variation in competitive response. However, the relationships between traits and competitive response are not well understood, especially in trees. In this study, we investigated among-genotype associations between tree trait plasticity and competitive response. We manipulated competition intensity in experimental stands of trembling aspen (Populus tremuloides) to address the covariance between competition-induced changes in functional trait expression and aspects of competitive ability at the genotype level. Genotypic variation in the direction and magnitude of functional trait responses, especially those of crown foliar mass, phytochemistry, and leaf physiology, was associated with genotypic variation in competitive response. Traits exhibited distinct plastic responses to competition, with varying degrees of genotypic variation and covariance with other trait responses. The combination of genotypic diversity and covariance among functional traits led to tree responses to competition that were coordinated among traits yet variable among genotypes. Such relationships between tree traits and competitive success have the potential to shape stand-level trait distributions over space and time.
Collapse
Affiliation(s)
- Olivia L Cope
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew Helm
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Eric L Kruger
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
103
|
Fort H, Grigera TS. A method for predicting species trajectories tested with trees in barro colorado tropical forest. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
104
|
Trinder CJ, Brooker RW, Davidson H, Robinson D. Directly quantifying multiple interacting influences on plant competition. PLANT, CELL & ENVIRONMENT 2021; 44:1268-1277. [PMID: 33176015 DOI: 10.1111/pce.13944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
When plants compete what influences that interaction? To answer this we measured belowground competition directly, as the simultaneous capture of soil ammonium and nitrate by co-existing herbaceous perennials, Dactylis glomerata and Plantago lanceolata, under the influence of: species identity; N uptake and biomass of focal and neighbour plants; location (benign lowland versus harsher upland site); N availability (low or high N fertilizer); N ion, ammonium or nitrate production (mineralisation) rate, and competition type (intra- or interspecific), as direct effects or pairwise interactions in linear models. We also measured biomass as an indirect proxy for competition. Only three factors influenced both competitive N uptake and biomass production: focal species identity, N ion and the interaction between N ion and neighbour N uptake. Location had little effect on N uptake but a strong influence on biomass production. N uptake increased linearly with biomass only in isolated plants. Our results support the view that measuring resource capture or biomass production tells you different things about how competitors interact with one another and their environment, and that biomass is a longer-term integrative proxy for the outcomes of multiple separate interactions-such as competition for N-occurring between plants.
Collapse
Affiliation(s)
- Clare J Trinder
- School of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Rob W Brooker
- Ecological Sciences, The James Hutton Institute, Aberdeen, UK
| | - Hazel Davidson
- School of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - David Robinson
- School of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
105
|
Martyn TE, Stouffer DB, Godoy O, Bartomeus I, Pastore AI, Mayfield MM. Identifying "Useful" Fitness Models: Balancing the Benefits of Added Complexity with Realistic Data Requirements in Models of Individual Plant Fitness. Am Nat 2021; 197:415-433. [PMID: 33755538 DOI: 10.1086/713082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractDirect species interactions are commonly included in individual fitness models used for coexistence and local diversity modeling. Though widely considered important for such models, direct interactions alone are often insufficient for accurately predicting fitness, coexistence, or diversity outcomes. Incorporating higher-order interactions (HOIs) can lead to more accurate individual fitness models but also adds many model terms, which can quickly result in model overfitting. We explore approaches for balancing the trade-off between tractability and model accuracy that occurs when HOIs are added to individual fitness models. To do this, we compare models parameterized with data from annual plant communities in Australia and Spain, varying in the extent of information included about the focal and neighbor species. The best-performing models for both data sets were those that grouped neighbors based on origin status and life form, a grouping approach that reduced the number of model parameters substantially while retaining important ecological information about direct interactions and HOIs. Results suggest that the specific identity of focal or neighbor species is not necessary for building well-performing fitness models that include HOIs. In fact, grouping neighbors by even basic functional information seems sufficient to maximize model accuracy, an important outcome for the practical use of HOI-inclusive fitness models.
Collapse
|
106
|
Luskin MS, Johnson DJ, Ickes K, Yao TL, Davies SJ. Wildlife disturbances as a source of conspecific negative density-dependent mortality in tropical trees. Proc Biol Sci 2021; 288:20210001. [PMID: 33653133 DOI: 10.1098/rspb.2021.0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large vertebrates are rarely considered important drivers of conspecific negative density-dependent mortality (CNDD) in plants because they are generalist consumers. However, disturbances like trampling and nesting also cause plant mortality, and their impact on plant diversity depends on the spatial overlap between wildlife habitat preferences and plant species composition. We studied the impact of native wildlife on a hyperdiverse tree community in Malaysia. Pigs (Sus scrofa) are abnormally abundant at the site due to food subsidies in nearby farmland and they construct birthing nests using hundreds of tree saplings. We tagged 34 950 tree saplings in a 25 ha plot during an initial census and assessed the source mortality by recovering tree tags from pig nests (n = 1672 pig-induced deaths). At the stand scale, pigs nested in flat dry habitats, and at the local neighbourhood scale, they nested within clumps of saplings, both of which are intuitive for safe and efficient nest building. At the stand scale, flat dry habitats contained higher sapling densities and higher proportions of common species, so pig nesting increased the weighted average species evenness across habitats. At the neighbourhood scale, pig-induced sapling mortality was associated with higher heterospecific and especially conspecific sapling densities. Tree species have clumped distributions due to dispersal limitation and habitat filtering, so pig disturbances in sapling clumps indirectly caused CNDD. As a result, Pielou species evenness in 400 m2 quadrats increased 105% more in areas with pig-induced deaths than areas without disturbances. Wildlife induced CNDD and this supported tree species evenness, but they also drove a 62% decline in sapling densities from 1996 to 2010, which is unsustainable. We suspect pig nesting is an important feature shaping tree composition throughout the region.
Collapse
Affiliation(s)
- Matthew Scott Luskin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA.,Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Daniel J Johnson
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Kalan Ickes
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Tze Leong Yao
- Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| |
Collapse
|
107
|
Lamont BB, Witkowski ETF. Plant functional types determine how close postfire seedlings are from their parents in a species-rich shrubland. ANNALS OF BOTANY 2021; 127:381-395. [PMID: 33038222 PMCID: PMC7872127 DOI: 10.1093/aob/mcaa180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Fine-scale spatial patterns of the seedlings of co-occurring species reveal the relative success of reproduction and dispersal and may help interpret coexistence patterns of adult plants. To understand whether postfire community dynamics are controlled by mathematical, biological or environmental factors, we documented seedling-adult (putative parent) distances for a range of co-occurring species. We hypothesized that nearest-seedling-to-adult distances should be a function of the distance between the closest conspecific seedlings, closest inter-adult distances and seedling-to-parent ratios, and also that these should scale up in a consistent way from all individuals, to within and between species and finally between functional types (FTs). METHODS We assessed seedling-adult, seedling-seedling and adult-adult distances for 19 co-occurring shrub species 10 months after fire in a species-rich shrubland in south-western Australia. Species were categorized into 2 × 2 FTs: those that are killed by fire [non-(re)sprouters] vs. those that survive (resprouters) in nine taxonomically matched pairs, and those that disperse their seeds prefire (geosporous) vs. those that disperse their seeds postfire (serotinous). KEY RESULTS For the total data set and means for all species, seedling-adult distance was essentially a mathematical phenomenon, and correlated positively with seedling-seedling distance and adult-adult distance, and inversely with seedlings per adult. Among the four FTs, seedling-adult distance was shortest for geosporous non-sprouters and widest for serotinous resprouters. Why adults that produce few seedlings (resprouters) should be further away from them defies a simple mathematical or biological explanation at present. Ecologically, however, it is adaptive: the closest seedling was usually under the (now incinerated) parent crown of non-sprouters whereas those of resprouters were on average four times further away. CONCLUSIONS Our study highlights the value of recognizing four reproductive syndromes within fire-prone vegetation, and shows how these are characterized by marked differences in their seedling-adult spatial relations that serve to enhance biodiversity of the community.
Collapse
Affiliation(s)
- Byron B Lamont
- Ecology Section, School of Life and Molecular Sciences, Curtin University, Perth, WA, Australia
| | - Ed T F Witkowski
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, PO Wits, Johannesburg, South Africa
| |
Collapse
|
108
|
Conspecific and heterospecific grass litter effects on seedling emergence and growth in ragwort (Jacobaea vulgaris). PLoS One 2021; 16:e0246459. [PMID: 33529241 PMCID: PMC7853490 DOI: 10.1371/journal.pone.0246459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022] Open
Abstract
Jacobaea vulgaris Gaertn. or common ragwort is a widespread noxious grassland weed that is subject to different regulation measures worldwide. Seedling emergence and growth are the most crucial stages for most plants during their life cycle. Therefore, heterospecific grass or conspecific ragwort litter as well as soil-mediated effects may be of relevance for ragwort control. Our study examines the effects of conspecific and heterospecific litter as well as ragwort conditioned soil on seedling emergence and growth. We conducted pot experiments to estimate the influence of soil conditioning (with, without ragwort), litter type (grass, ragwort, grass-ragwort-mix) and amount (200 g/m², 400 g/m²) on J. vulgaris recruitment. As response parameters, we assessed seedling number, biomass, height and number of seedling leaves. We found that 200 g/m² grass litter led to higher seedling numbers, while litter composed of J. vulgaris reduced seedling emergence. Litter amounts of 400 g/m² had negative effects on the number of seedlings regardless of the litter type. Results for biomass, plant height and leaf number showed opposing patterns to seedling numbers. Seedlings in pots treated with high litter amounts and seedlings in ragwort litter became heavier, grew higher and had more leaves. Significant effects of the soil conditioned by ragwort on seedling emergence and growth were negligible. The study confirms that the amount and composition of litter strongly affect seedling emergence and growth of J. vulgaris. Moreover, while conspecific litter and high litter amounts negatively affected early seedling development in ragwort, those seedlings that survived accumulated more biomass and got taller than seedlings grown in heterospecific or less dense litter. Therefore, ragwort litter has negative effects in ragwort germination, but positive effects in ragwort growth. Thus, leaving ragwort litter on pastures will not reduce ragwort establishment and growth and cannot be used as management tool.
Collapse
|
109
|
Roth-Monzón AJ, Belk MC, Zúñiga-Vega JJ, Johnson JB. What Drives Life-History Variation in the Livebearing Fish Poeciliopsis prolifica? An Assessment of Multiple Putative Selective Agents. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.608046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Life-history traits are directly linked to fitness, and therefore, can be highly adaptive. Livebearers have been used as models for understanding the evolution of life histories due to their wide diversity in these traits. Several different selective pressures, including population density, predation, and resource levels, can shape life-history traits. However, these selective pressures are usually considered independently in livebearers and we lack a clear understanding of how they interact in shaping life-history evolution. Furthermore, selective pressures such as interspecific competition are rarely considered as drivers of life-history evolution in poeciliids. Here we test the simultaneous effects of several potential selective pressures on life-history traits in the livebearing fish Poeciliopsis prolifica. We employ a multi-model inference approach. We focus on four known agents of selection: resource availability, stream velocity, population density, and interspecific competition, and their effect on four life-history traits: reproductive allocation, superfetation, number of embryos, and individual embryo size. We found that models with population density and interspecific competition alone were strongly supported in our data and, hence, indicated that these two factors are the most important selective agents for most life-history traits, except for embryo size. When population density and interspecific competition increase there is an increase in each of the three life-history traits (reproductive allocation, superfetation, and number of embryos). For individual embryo size, we found that all single-agent models were equivalent and it was unclear which selective agent best explained variation. We also found that models that included population density and interspecific competition as direct effects were better supported than those that included them as indirect effects through their influence on resource availability. Our study underscores the importance of interspecific competitive interactions on shaping life-history traits and suggests that these interactions should be considered in future life-history studies.
Collapse
|
110
|
Pękalski A, Wang H. Plant coexistence without asymmetry in competitor–colonizer abilities or spatial heterogeneity in resource distribution. Ecosphere 2021. [DOI: 10.1002/ecs2.3353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Andrzej Pękalski
- Institute of Theoretical Physics University of Wrocław pl. M. Borna 9 Wrocław50‐204Poland
| | - Hsiao‐Hsuan Wang
- Ecological Systems Laboratory Department of Ecology and Conservation Biology Texas A&M University College Station Texas77843USA
| |
Collapse
|
111
|
Song X, Lim JY, Yang J, Luskin MS. When do Janzen-Connell effects matter? A phylogenetic meta-analysis of conspecific negative distance and density dependence experiments. Ecol Lett 2020; 24:608-620. [PMID: 33382527 DOI: 10.1111/ele.13665] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
The Janzen-Connell (J-C) hypothesis suggests that specialised natural enemies cause distance- or density-dependent mortality among host plants and is regarded as an important mechanism for species coexistence. However, there remains debate about whether this phenomenon is widespread and how variation is structured across taxa and life stages. We performed the largest meta-analysis of experimental studies conducted under natural settings to date. We found little evidence of distance-dependent or density-dependent mortality when grouping all types of manipulations. Our analysis also reveals very large variation in response among species, with 38.5% of species even showing positive responses to manipulations. However, we found a strong signal of distance-dependent mortality among seedlings but not seed experiments, which we attribute to (a) seedlings sharing susceptible tissues with adults (leaves, wood, roots), (b) seedling enemies having worse dispersal than seed enemies and (c) seedlings having fewer physical and chemical defences than seeds. Both density- and distance-dependent mortality showed large variation within genera and families, suggesting that J-C effects are not strongly phylogenetically conserved. There were no clear trends with latitude, rainfall or study duration. We conclude that J-C effects may not be as pervasive as widely thought. Understanding the variation in J-C effects provides opportunities for new discoveries that will refine our understanding of J-C effects and its role in species coexistence.
Collapse
Affiliation(s)
- Xiaoyang Song
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| | - Jun Ying Lim
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jie Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| | - Matthew Scott Luskin
- School of Biological Sciences, University of Queensland, Brisbane, Qld., 4072, Australia
| |
Collapse
|
112
|
Barraquand F, Picoche C, Detto M, Hartig F. Inferring species interactions using Granger causality and convergent cross mapping. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00482-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
113
|
Fausch KD, Nakano S, Kitano S, Kanno Y, Kim S. Interspecific social dominance networks reveal mechanisms promoting coexistence in sympatric charr in Hokkaido, Japan. J Anim Ecol 2020; 90:515-527. [PMID: 33159688 DOI: 10.1111/1365-2656.13384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022]
Abstract
Coexistence of species requires equalizing mechanisms that minimize fitness differences, which are balanced by stabilizing mechanisms that enhance negative intraspecific interactions versus interspecific ones. Here, we develop a simple theoretical framework that allows measuring the relative strength of intraspecific versus interspecific competition in dominance hierarchies. We use it to evaluate mechanisms promoting coexistence between two congeneric charr that compete for foraging positions, which strongly influence density-dependent growth and survival. Agonistic interactions (n = 761) among 71 Dolly Varden Salvelinus malma and whitespotted charr Salvelinus leucomaenis were measured by snorkelling in two pools in the sympatric zone of a Hokkaido stream during two summers. Interspecific dominance hierarchies, analysed using three methods, were closely correlated with fish length but the species treated each other equally. Ranks for the most dominant fish in each pool, determined directly by knockout experiments, were also virtually identical to ranks by length. Similarly, exponential random graph modelling of the social networks provided no evidence that either species was dominant over the other. Instead, larger fish were more likely to win contests, especially over fish of the next lower ranks. These results demonstrated that the two species were nearly ecological equivalents in accessing key resources in this sympatric zone. Nearly identical growth and stable densities over 4 years further supported this inference, although Dolly Varden were a minority (29% of the assemblage), a sign of some fitness difference. Detailed foraging observations coupled with two concurrent studies revealed an effective stabilizing mechanism. Dolly Varden shifted to feeding directly from the benthos when drifting invertebrates declined, a behaviour enhanced by morphological character displacement, thereby partitioning food resources and enhancing intraspecific competition while avoiding agonistic encounters with whitespotted charr. The plurality of evidence indicates that fitness differences between these ecologically equivalent species are small in this local assemblage, and balanced by resource partitioning, a modest stabilizing mechanism that promotes coexistence. The theoretical framework presented here is a useful tool to evaluate the strength of interspecific versus intraspecific competition, which combined with information on trade-offs in ecological performance can contribute to a mechanistic understanding of species coexistence.
Collapse
Affiliation(s)
- Kurt D Fausch
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Shigeru Nakano
- Tomakomai Forest Research Station, Hokkaido University Forests, Tomakomai, Hokkaido, Japan.,Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Satoshi Kitano
- Nagano Environmental Conservation Research Institute, Kitago, Nagano, Japan
| | - Yoichiro Kanno
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Seoghyun Kim
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
114
|
Raath-Krüger MJ, Schöb C, McGeoch MA, le Roux PC. Interspecific facilitation mediates the outcome of intraspecific interactions across an elevational gradient. Ecology 2020; 102:e03200. [PMID: 32970842 DOI: 10.1002/ecy.3200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2020] [Indexed: 11/09/2022]
Abstract
Where interspecific facilitation favors the establishment of high densities of a beneficiary species, strong intraspecific competition may subsequently impede beneficiary performance. Consequently, the negative influence of intraspecific competition between beneficiary individuals could potentially outweigh the positive influence of interspecific facilitation when, for example, higher densities of a beneficiary are negated by the negative effect of crowding on beneficiary reproduction. The aim of this study was, therefore, to examine the impact of an interspecific interaction on the outcome of intraspecific interactions within the context of plant-plant facilitation. We used the cushion-forming Azorella selago and a commonly co-occurring dominant perennial grass species, Agrostis magellanica, on sub-Antarctic Marion Island as a model system. We assessed the impact of an interspecific interaction (between A. selago and A. magellanica) on the outcome of intraspecific interactions (between A. magellanica individuals), by testing if the impact of A. magellanica density on A. magellanica performance is mediated by its interaction with A. selago. We observed evidence for competition among A. magellanica conspecifics, with a decreasing proportion of A. magellanica individuals being reproductive under higher conspecific density. This negative intraspecific effect was greater on A. selago than on the adjacent substrate, suggesting that the facilitative effect of A. selago changes the intensity of intraspecific interactions between A. magellanica individuals. However, experimentally reducing A. magellanica density did not affect the species' performance. We also observed that the effect of A. selago on A. magellanica was positive, and despite the negative effect of intraspecific density on the proportion of reproductive A. magellanica individuals, the net reproductive effort of A. magellanica (i.e., the density of reproductive individuals) was significantly greater on A. selago than on the adjacent substrate. These results highlight that, in abiotically severe environments, the positive effects of interspecific facilitation by a benefactor species may outweigh the negative effects of intraspecific competition among beneficiaries. More broadly, these results suggest that both positive inter- and intraspecific biotic interactions may be key to consider when examining spatial and temporal variation in species' performance.
Collapse
Affiliation(s)
- Morgan J Raath-Krüger
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Pretoria, 0002, South Africa.,Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| | - Christian Schöb
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Melodie A McGeoch
- Department of Ecology, Environment and Evolution, School of Natural Sciences, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Peter C le Roux
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Pretoria, 0002, South Africa
| |
Collapse
|
115
|
Hülsmann L, Chisholm RA, Hartig F. Is Variation in Conspecific Negative Density Dependence Driving Tree Diversity Patterns at Large Scales? Trends Ecol Evol 2020; 36:151-163. [PMID: 33589047 DOI: 10.1016/j.tree.2020.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Half a century ago, Janzen and Connell hypothesized that the high tree species diversity in tropical forests is maintained by specialized natural enemies. Along with other mechanisms, these can cause conspecific negative density dependence (CNDD) and thus maintain species diversity. Numerous studies have measured proxies of CNDD worldwide, but doubt about its relative importance remains. We find ample evidence for CNDD in local populations, but methodological limitations make it difficult to assess if CNDD scales up to control community diversity and thereby local and global biodiversity patterns. A combination of more robust statistical methods, new study designs, and eco-evolutionary models are needed to provide a more definite evaluation of the importance of CNDD for geographic variation in plant species diversity.
Collapse
Affiliation(s)
- Lisa Hülsmann
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Ryan A Chisholm
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
116
|
Steinmetz B, Kalyuzhny M, Shnerb NM. Intraspecific variability in fluctuating environments: mechanisms of impact on species diversity. Ecology 2020; 101:e03174. [PMID: 32860217 DOI: 10.1002/ecy.3174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/19/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
Recent studies have found considerable trait variations within species. The effect of such intraspecific trait variability (ITV) on the stability, coexistence, and diversity of ecological communities received considerable attention and in many models it was shown to impede coexistence and decrease species diversity. Here we present a numerical study of the effect of genetically inherited ITV on species persistence and diversity in a temporally fluctuating environment. Two mechanisms are identified. First, ITV buffers populations against varying environmental conditions (portfolio effect) and reduces variation in abundances. Second, the interplay between ITV and environmental variations tends to increase the mean fitness of diverse populations. The first mechanism promotes persistence and tends to increase species richness, while the second reduces the chance of a rare species population (which is usually homogeneous) to invade, thus decreasing species richness. We show that for large communities the portfolio effect is dominant, leading to ITV promoting species persistence and richness.
Collapse
Affiliation(s)
- Bnaya Steinmetz
- Department of Physics, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Michael Kalyuzhny
- Department of Ecology, Evolution, and Behavior, Institute of Life Sciences, Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
117
|
Armitage DW, Jones SE. Coexistence barriers confine the poleward range of a globally distributed plant. Ecol Lett 2020; 23:1838-1848. [PMID: 33022085 DOI: 10.1111/ele.13612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/17/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
In the study of factors shaping species' poleward range boundaries, climatic constraints are often assigned greater importance than biotic interactions such as competition. However, theory suggests competition can truncate a species' fundamental niche in harsh environments. We test this by challenging a mechanistic niche model - containing explicit competition terms - to predict the poleward range boundaries of two globally distributed, ecologically similar aquatic plant species. Mechanistic competition models accurately predicted the northern range limits of our study species, outperforming competition-free mechanistic models and matching the predictive ability of statistical niche models fit to occurrence records. Using the framework of modern coexistence theory, we found that relative nonlinearity in competitors' responses to temperature fluctuations maintains their coexistence boundary, highlighting the importance of this fluctuation-dependent mechanism. Our results support a more nuanced, interactive role of climate and competition in determining range boundaries, and illustrate a practical, process-based approach to understanding the determinants of range limits.
Collapse
Affiliation(s)
- David W Armitage
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
118
|
Huang X, Liu Y, Wang N, Li L, Hu A, Wang Z, Chang S, Chen X, Hou F. Growth Indicators of Main Species Predict Aboveground Biomass of Population and Community on a Typical Steppe. PLANTS 2020; 9:plants9101314. [PMID: 33028041 PMCID: PMC7600926 DOI: 10.3390/plants9101314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
The objective was to explore a fast, accurate, non-destructive, and less disturbance method for predicting the aboveground biomass (AGB) of the typical steppe, by using plant height and canopy diameter of the dominant species, Stipa bungeana, Artemisia capillaris, and Lespedeza davurica, data were observed from 165 quadrats during the peak plant growing season, and the product of plant height (PH) and canopy diameter (PC) were calculated for each species. AGB of population were predicted for the same species and other species through using 2/3 of the measured data, and the optimal predictive equation was linear in terms of determination coefficient. The other 1/3 of the data, which was measured from no grazing paddocks or rotational grazing paddocks, was substituted into the predictive equations for validation. Results showed that PC of one dominant species could be used to predict AGB of the same species or other species well. The predicted and measured values were significantly correlative, and most of the predictive accuracy was above 80%, and not affected by managements of grassland, including rotational grazing or no grazing. A combination of 3 to 6 representative species was used to predict AGB of the community, and the predictive equations with PC of six species as an independent variable were the most optimal because explaining 83.5% variation of AGB. The predictive methods cost 1/15, 1/9, and 1/51 of time, labor, and capital as much as the destructive sample method (quadrat sampling method), respectively, and thus improved the efficiency of field study and protecting the fragile study areas, especially the long-term study sites in grassland.
Collapse
Affiliation(s)
- Xiaojuan Huang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (X.H.); (Y.L.); (N.W.); (L.L.); (A.H.); (Z.W.); (S.C.); (X.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Yongjie Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (X.H.); (Y.L.); (N.W.); (L.L.); (A.H.); (Z.W.); (S.C.); (X.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Niya Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (X.H.); (Y.L.); (N.W.); (L.L.); (A.H.); (Z.W.); (S.C.); (X.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Lan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (X.H.); (Y.L.); (N.W.); (L.L.); (A.H.); (Z.W.); (S.C.); (X.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - An Hu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (X.H.); (Y.L.); (N.W.); (L.L.); (A.H.); (Z.W.); (S.C.); (X.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Zhen Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (X.H.); (Y.L.); (N.W.); (L.L.); (A.H.); (Z.W.); (S.C.); (X.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (X.H.); (Y.L.); (N.W.); (L.L.); (A.H.); (Z.W.); (S.C.); (X.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Xianjiang Chen
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (X.H.); (Y.L.); (N.W.); (L.L.); (A.H.); (Z.W.); (S.C.); (X.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (X.H.); (Y.L.); (N.W.); (L.L.); (A.H.); (Z.W.); (S.C.); (X.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
- Correspondence:
| |
Collapse
|
119
|
Zhang Z, Liu Y, Brunel C, van Kleunen M. Soil-microorganism-mediated invasional meltdown in plants. Nat Ecol Evol 2020; 4:1612-1621. [DOI: 10.1038/s41559-020-01311-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
|
120
|
Perea AJ, Garrido JL, Fedriani JM, Rey PJ, Alcántara JM. Pathogen life-cycle leaves footprint on the spatial distribution of recruitment of their host plants. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
121
|
Stein C, Mangan SA. Soil biota increase the likelihood for coexistence among competing plant species. Ecology 2020; 101:e03147. [PMID: 33460105 DOI: 10.1002/ecy.3147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 01/28/2023]
Abstract
Theory predicts that stable species coexistence will occur when population growth rates of competitively dominant species are suppressed when at high conspecific density. Although there is now compelling evidence that plant communities exhibit negative density dependence, the relative importance of the underlying processes leading to these patterns is rarely tested. We coupled reciprocal greenhouse and field experiments with community dynamics modeling to untangle the relative importance of soil biota from competition as stabilizing forces to coexistence. We found that (1) plant-soil biotic interactions compared to competitive interactions were stronger stabilizing forces, (2) only the strength of plant-soil biotic interactions was dependent on plant evolutionary history, and (3) the variation in the strength of plant-soil biotic interactions was correlated with relative abundance patterns in an opposite way than was the variation in the strength of competitive interactions. Collectively, our results demonstrate the fundamental role soil biota have in maintaining plant community diversity.
Collapse
Affiliation(s)
- Claudia Stein
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, 7061 Senator's Drive, Montgomery, Alabama, 36117, USA.,Tyson Research Center, Washington University in St. Louis, 6750 Tyson Valley Rd, Eureka, Missouri, 63025, USA
| | - Scott A Mangan
- Tyson Research Center, Washington University in St. Louis, 6750 Tyson Valley Rd, Eureka, Missouri, 63025, USA.,Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, 72467, USA
| |
Collapse
|
122
|
Thompson PL, Guzman LM, De Meester L, Horváth Z, Ptacnik R, Vanschoenwinkel B, Viana DS, Chase JM. A process-based metacommunity framework linking local and regional scale community ecology. Ecol Lett 2020; 23:1314-1329. [PMID: 32672410 PMCID: PMC7496463 DOI: 10.1111/ele.13568] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 01/12/2023]
Abstract
The metacommunity concept has the potential to integrate local and regional dynamics within a general community ecology framework. To this end, the concept must move beyond the discrete archetypes that have largely defined it (e.g. neutral vs. species sorting) and better incorporate local scale species interactions and coexistence mechanisms. Here, we present a fundamental reconception of the framework that explicitly links local coexistence theory to the spatial processes inherent to metacommunity theory, allowing for a continuous range of competitive community dynamics. These dynamics emerge from the three underlying processes that shape ecological communities: (1) density-independent responses to abiotic conditions, (2) density-dependent biotic interactions and (3) dispersal. Stochasticity is incorporated in the demographic realisation of each of these processes. We formalise this framework using a simulation model that explores a wide range of competitive metacommunity dynamics by varying the strength of the underlying processes. Using this model and framework, we show how existing theories, including the traditional metacommunity archetypes, are linked by this common set of processes. We then use the model to generate new hypotheses about how the three processes combine to interactively shape diversity, functioning and stability within metacommunities.
Collapse
Affiliation(s)
- Patrick L. Thompson
- Department of Zoology & Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Laura Melissa Guzman
- Department of Zoology & Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BiologySimon Fraser UniversityBurnabyCanada
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLeuvenBelgium
- Leibniz Institut für Gewasserökologie und Binnenfischerei (IGB)BerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Zsófia Horváth
- Laboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLeuvenBelgium
- WasserCluster Lunz ‐ Biologische StationLunz am SeeAustria
- Balaton Limnological InstituteCentre for Ecological ResearchTihanyHungary
| | - Robert Ptacnik
- WasserCluster Lunz ‐ Biologische StationLunz am SeeAustria
| | - Bram Vanschoenwinkel
- Department of BiologyVrije Universiteit BrusselBiologyBelgium
- Centre for Environmental ManagementUniversity of the Free StateBloemfonteinSouth Africa
| | - Duarte S. Viana
- German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityRitterstraße 26Leipzig04109Germany
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
- Department of Computer SciencesMartin Luther UniversityHalle‐WittenbergLeipzigGermany
| |
Collapse
|
123
|
Doudová J, Douda J. Along with intraspecific functional trait variation, individual performance is key to resolving community assembly processes. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jana Doudová
- Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Jan Douda
- Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| |
Collapse
|
124
|
Ghedini G, Malerba ME, Marshall DJ. How to estimate community energy flux? A comparison of approaches reveals that size-abundance trade-offs alter the scaling of community energy flux. Proc Biol Sci 2020; 287:20200995. [PMID: 32811317 DOI: 10.1098/rspb.2020.0995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Size and metabolism are highly correlated, so that community energy flux might be predicted from size distributions alone. However, the accuracy of predictions based on interspecific energy-size relationships relative to approaches not based on size distributions is unknown. We compare six approaches to predict energy flux in phytoplankton communities across succession: assuming a constant energy use among species (per cell or unit biomass), using energy-size interspecific scaling relationships and species-specific rates (both with or without accounting for density effects). Except for the per cell approach, all others explained some variation in energy flux but their accuracy varied considerably. Surprisingly, the best approach overall was based on mean biomass-specific rates, followed by the most complex (species-specific rates with density). We show that biomass-specific rates alone predict community energy flux because the allometric scaling of energy use with size measured for species in isolation does not reflect the isometric scaling of these species in communities. We also find energy equivalence throughout succession, even when communities are not at carrying capacity. Finally, we discuss that species assembly can alter energy-size relationships, and that metabolic suppression in response to density might drive the allometry of community energy flux as biomass accumulates.
Collapse
Affiliation(s)
- Giulia Ghedini
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Martino E Malerba
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| |
Collapse
|
125
|
Shen Z, Li Y, Chen Z, Xi N, Luo W, He Q, Liu S, Lin W, Zhu X, Fang S, Wang Y, Li B, Chu C. Species Identity and Initial Size Rather Than Neighborhood Interactions Influence Survival in a Response-Surface Examination of Competition. FRONTIERS IN PLANT SCIENCE 2020; 11:1212. [PMID: 32903341 PMCID: PMC7434863 DOI: 10.3389/fpls.2020.01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
To measure intraspecific and interspecific interaction coefficients among tree species is the key to explore the underlying mechanisms for species coexistence and biodiversity maintenance in forests. Through the response surface experimental design, we established a long-term field experiment by planting 27,300 seedlings of four tree species (Erythrophleum fordii, Pinus massoniana, Castanopsis fissa, and Castanopsis carlesii) in 504 plots in different species combinations (six pairwise combinations of four species), abundance proportions (five abundance proportions of two species, i.e. A: B = 1:0, 3:1, 1:1, 1:3, 0:1), and stand densities (25, 36, 64, and 100 seedlings per plot). In this initial report, we aimed to quantify the relative importance of biotic and abiotic factors on seedling survival at the early stage of growth, which is a critical period for seedling establishment. We found that plot-level seedling survival rate was determined by species combination and their abundance proportion rather than stand density. At the individual level, individual survival probability was mainly explained by species identity, initial seedling size, and soil conditions rather than neighborhood competition. Our study highlights that the seedling intrinsic properties may be the key factors in determining seedling survival rate, while neighborhood effects were not yet prominent at the seedling life stage.
Collapse
|
126
|
Furniss TJ, Larson AJ, Kane VR, Lutz JA. Wildfire and drought moderate the spatial elements of tree mortality. Ecosphere 2020. [DOI: 10.1002/ecs2.3214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tucker J. Furniss
- Wildland Resources Department and Ecology Center Utah State University Logan Utah84322USA
| | - Andrew J. Larson
- Wilderness Institute and Department of Forest Management University of Montana Missoula Montana59812USA
| | - Van R. Kane
- School of Environmental and Forest Sciences University of Washington Seattle Washington98195USA
| | - James A. Lutz
- Wildland Resources Department and Ecology Center Utah State University Logan Utah84322USA
| |
Collapse
|
127
|
Ferenc V, Sheppard CS. The stronger, the better – trait hierarchy is driving alien species interaction. OIKOS 2020. [DOI: 10.1111/oik.07338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Viktoria Ferenc
- Inst. of Landscape and Plant Ecology, Univ. of Hohenheim DE‐70593 Stuttgart Germany
| | | |
Collapse
|
128
|
Mumbanza FM, Bauters M, Kearsley E, Boeckx P, Lubini CA, Verbeeck H. Liana communities exhibit different species composition, diversity and community structure across forest types in the Congo Basin. Biotropica 2020. [DOI: 10.1111/btp.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Francis M. Mumbanza
- Department of Environment, Computational and Applied Vegetation Ecology CAVElab Ghent University Gent Belgium
- Laboratoire de Systémique, Biodiversité, Conservation de la Nature et Savoirs Endogènes Département des Sciences de l'Environnement Université de Kinshasa Kinshasa Congo
| | - Marijn Bauters
- Department of Environment, Computational and Applied Vegetation Ecology CAVElab Ghent University Gent Belgium
- Isotope Bioscience Laboratory ISOFYS Department of Green Chemistry and Technology Ghent University Gent Belgium
| | - Elizabeth Kearsley
- Department of Environment, Computational and Applied Vegetation Ecology CAVElab Ghent University Gent Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory ISOFYS Department of Green Chemistry and Technology Ghent University Gent Belgium
| | - Constantin A. Lubini
- Laboratoire de Systémique, Biodiversité, Conservation de la Nature et Savoirs Endogènes Département des Sciences de l'Environnement Université de Kinshasa Kinshasa Congo
| | - Hans Verbeeck
- Department of Environment, Computational and Applied Vegetation Ecology CAVElab Ghent University Gent Belgium
| |
Collapse
|
129
|
Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Commun Biol 2020; 3:317. [PMID: 32561898 PMCID: PMC7305120 DOI: 10.1038/s42003-020-1041-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/28/2020] [Indexed: 12/05/2022] Open
Abstract
Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16–60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume–soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration. Xu et al. examine the effect of leguminous trees on neighbor diversity across 11 plots in tropical forests around the world, and find that in high soil nitrogen conditions, most legume species have higher neighbor diversity than non-legumes, and vice versa where soil nitrogen is low. Their results have practical implications for the utilization of legumes in forest restoration.
Collapse
|
130
|
Aubier TG. Positive density dependence acting on mortality can help maintain species-rich communities. eLife 2020; 9:e57788. [PMID: 32553104 PMCID: PMC7302881 DOI: 10.7554/elife.57788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Conspecific negative density dependence is ubiquitous and has long been recognized as an important factor favoring the coexistence of competing species at local scale. By contrast, a positive density-dependent growth rate is thought to favor species exclusion by inhibiting the growth of less competitive species. Yet, such conspecific positive density dependence often reduces extrinsic mortality (e.g. reduced predation), which favors species exclusion in the first place. Here, using a combination of analytical derivations and numerical simulations, I show that this form of positive density dependence can favor the existence of equilibrium points characterized by species coexistence. Those equilibria are not globally stable, but allow the maintenance of species-rich communities in multispecies simulations. Therefore, conspecific positive density dependence does not necessarily favor species exclusion. On the contrary, some forms of conspecific positive density dependence may even help maintain species richness in natural communities. These results should stimulate further investigations into the precise mechanisms underlying density dependence.
Collapse
Affiliation(s)
- Thomas G Aubier
- Department of Evolutionary Biology and Environmental Studies, University of ZurichZurichSwitzerland
| |
Collapse
|
131
|
Godwin CM, Chang F, Cardinale BJ. An empiricist's guide to modern coexistence theory for competitive communities. OIKOS 2020. [DOI: 10.1111/oik.06957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Casey M. Godwin
- School for Environment and Sustainability, Univ. of Michigan 440 Church Street Ann Arbor MI USA
- Cooperative Institute for Great Lakes Research, Univ. of Michigan 440 Church Street Ann Arbor MI USA
| | - Feng‐Hsun Chang
- School for Environment and Sustainability, Univ. of Michigan 440 Church Street Ann Arbor MI USA
| | - Bradley J. Cardinale
- School for Environment and Sustainability, Univ. of Michigan 440 Church Street Ann Arbor MI USA
- Cooperative Institute for Great Lakes Research, Univ. of Michigan 440 Church Street Ann Arbor MI USA
| |
Collapse
|
132
|
Zhang R, Tielbörger K. Density-dependence tips the change of plant-plant interactions under environmental stress. Nat Commun 2020; 11:2532. [PMID: 32439842 PMCID: PMC7242385 DOI: 10.1038/s41467-020-16286-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
Facilitation studies typically compare plants under differential stress levels with and without neighbors, while the density of neighbors has rarely been addressed. However, recent empirical studies indicate that facilitation may be density-dependent too and peak at intermediate neighbor densities. Here, we propose a conceptual model to incorporate density-dependence into theory about changes of plant-plant interactions under stress. To test our predictions, we combine an individual-based model incorporating both facilitative response and effect, with an experiment using salt stress and Arabidopsis thaliana. Theoretical and experimental results are strikingly consistent: (1) the intensity of facilitation peaks at intermediate density, and this peak shifts to higher densities with increasing stress; (2) this shift further modifies the balance between facilitation and competition such that the stress-gradient hypothesis applies only at high densities. Our model suggests that density-dependence must be considered for predicting plant-plant interactions under environmental change.
Collapse
Affiliation(s)
- Ruichang Zhang
- Plant Ecology Group, University of Tübingen, Auf der Morgenstelle 5, D-72076, Tübingen, Germany.
| | - Katja Tielbörger
- Plant Ecology Group, University of Tübingen, Auf der Morgenstelle 5, D-72076, Tübingen, Germany
| |
Collapse
|
133
|
Christie K, Strauss SY. Frequency-dependent fitness and reproductive dynamics contribute to habitat segregation in sympatric jewelflowers. Proc Biol Sci 2020; 287:20200559. [PMID: 32396796 DOI: 10.1098/rspb.2020.0559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coexistence results from a complex suite of past and contemporary processes including biogeographic history, adaptation, ecological interactions and reproductive dynamics. Here we explore drivers of local micro-parapatry in which two closely related and reproductively isolated Streptanthus species (jewelflower, Brassicaceae) inhabit continuous or adjacent habitat patches and occur within seed dispersal range, yet rarely overlap in fine-scale distribution. We find some evidence for abiotic niche partitioning and local adaptation, however differential survival across habitats cannot fully explain the scarcity of coexistence. Competition may also reduce the fitness of individuals migrating into occupied habitats, yet its effects are insufficient to drive competitive exclusion. Experimental migrants suffered reduced seed production and seed viability at sites occupied by heterospecifics, and we infer that heterospecific pollen transfer by shared pollinators contributes to wasted gametes when the two congeners come into contact. A minority disadvantage may reduce effective colonization of patches already occupied by heterospecifics, even when habitat patches are environmentally suitable. Differential adaptation and resource competition have often been evoked as primary drivers of habitat segregation in plants, yet negative reproductive interactions-including reproductive interference and decreased fecundity among low-frequency migrants-may also contribute to non-overlapping distributions of related species along local tension zones.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Evolution and Ecology, and Center for Population Biology, University of California Davis, One Shields Avenue, Davis CA 95616-5270, USA
| | - Sharon Y Strauss
- Department of Evolution and Ecology, and Center for Population Biology, University of California Davis, One Shields Avenue, Davis CA 95616-5270, USA
| |
Collapse
|
134
|
Spaak JW, De Laender F. Intuitive and broadly applicable definitions of niche and fitness differences. Ecol Lett 2020; 23:1117-1128. [DOI: 10.1111/ele.13511] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jurg W. Spaak
- University of Namur Institute of Life‐Earth‐Environment Namur Center for Complex Systems Namur Rue de Bruxelles 61 Belgium
| | - Frederik De Laender
- University of Namur Institute of Life‐Earth‐Environment Namur Center for Complex Systems Namur Rue de Bruxelles 61 Belgium
| |
Collapse
|
135
|
CAM plant expansion favored indirectly by asymmetric climate warming and increased rainfall variability. Oecologia 2020; 193:1-13. [PMID: 32076818 DOI: 10.1007/s00442-020-04624-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
Recent observational evidence suggests that nighttime temperatures are increasing faster than daytime temperatures, while in some regions precipitation events are becoming less frequent and more intense. The combined ecological impacts of these climatic changes on crassulacean acid metabolism (CAM) plants and their interactions with other functional groups (i.e., grass communities) remain poorly understood. Here we developed a growth chamber experiment to investigate how two CAM-grass communities in desert ecosystems of the southwestern United States and northern Mexico respond to asymmetric warming and increasing rainfall variability. Grasses generally showed competitive advantages over CAM plants with increasing rainfall variability under ambient temperature conditions. In contrast, asymmetric warming caused mortality of both grass species (Bouteloua eriopoda and Bouteloua curtipendula) in both rainfall treatments due to enhanced drought stress. Grass mortality indirectly favored CAM plants even though the biomass of both CAM species Cylindropuntia imbricata and Opuntia phaeacantha significantly decreased. The stem's volume-to-surface ratio of C. imbricata was significantly higher in mixture than in monoculture under ambient temperature (both P < 0.0014); however, the difference became insignificant under asymmetric warming (both P > 0.1625), suggesting that warming weakens the negative effects of interspecific competition on CAM plant growth. Our findings suggest that while the increase in intra-annual rainfall variability enhances grass productivity, asymmetric warming may lead to grass mortality, thereby indirectly favoring the expansion of co-existing CAM plants. This study provides novel experimental evidence showing how the ongoing changes in global warming and rainfall variability affect CAM-grass growth and interactions in dryland ecosystems.
Collapse
|
136
|
Rinella MJ, Strong DJ, Vermeire LT. Omitted variable bias in studies of plant interactions. Ecology 2020; 101:e03020. [PMID: 32083313 DOI: 10.1002/ecy.3020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 11/11/2022]
Abstract
Models of plant-plant interactions underpin our understanding of species coexistence, invasive plant impacts, and plant community responses to climate change. In recent studies, models of competitive interactions failed predictive tests, thereby casting doubt on results of many past studies. We believe these model failures owe at least partly to heterogeneity in unmodeled factors (e.g., nutrients, soil pathogens) that affect both target plants and neighboring competitors. Such heterogeneity is ubiquitous, and models that do not account for it will suffer omitted variable bias. We used instrumental variables analysis to test for and correct omitted variable bias in studies that followed common protocols for measuring plant competition. In an observational study, omitted variables caused competition to seem like mutualism. In a quasi-experiment that partially controlled competitor abundances with seeding, omitted variables caused competition to seem about 35% weaker than it really was, even though the experiment occurred in an abandoned agricultural field where environmental heterogeneity was expected to be relatively low. Despite decades of research, consistently accurate estimates of competitive interactions remain elusive. The most foolproof way around this problem is true experiments that avoid omitted variable bias by completely controlling competitor abundances, but such experiments are rare.
Collapse
Affiliation(s)
- Matthew J Rinella
- USDA Agricultural Research Service, 243 Fort Keogh Road, Miles City, Montana, 59301, USA
| | - Dustin J Strong
- USDA Agricultural Research Service, 243 Fort Keogh Road, Miles City, Montana, 59301, USA
| | - Lance T Vermeire
- USDA Agricultural Research Service, 243 Fort Keogh Road, Miles City, Montana, 59301, USA
| |
Collapse
|
137
|
Zhang Z, Shan L, Li Y, Wang Y. Belowground interactions differ between sympatric desert shrubs under water stress. Ecol Evol 2020; 10:1444-1453. [PMID: 32076526 PMCID: PMC7029086 DOI: 10.1002/ece3.5999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 11/11/2022] Open
Abstract
Understanding the relationships among species is central to ecological research; however, many knowledge gaps remain regarding how desert plant species interact. In the present study, we assessed the effect of rainfall on the belowground interactions and root morphology of two desert shrubs, Reaumuria soongorica (Tamaricaceae) and Salsola passerina (Chenopodiaceae), from three communities with similar landforms and soil environments. The roots of both R. soongorica and S. passerina were deeper when grown together than grown singly. Interestingly, the belowground biomass of R. soongorica was higher, but the belowground biomass of S. passerina was lower when grown together than when grown alone. This suggests that S. passerina benefitted from the association with R. soongorica. When grown together under conditions of low rainfall, the roots of R. soongorica were deeper than those of S. passerina, which suggests that R. soongorica is more robust than S. passerina when subjected to periods of decreased rainfall. We concluded that the symbiotic relationship between these two shrub species can lead to deeper roots and that the plants are affected by rainfall availability. Combined with the output results of climate change models, we speculated that the distribution area of these two species will expand to the west, which has important implications on how the interactions of other desert species may change in response to climate variability.
Collapse
Affiliation(s)
- Zhengzhong Zhang
- College of ForestryGansu Agricultural UniversityLanzhouGansuChina
| | - Lishan Shan
- College of ForestryGansu Agricultural UniversityLanzhouGansuChina
| | - Yi Li
- College of ForestryGansu Agricultural UniversityLanzhouGansuChina
| | - Yang Wang
- College of ForestryGansu Agricultural UniversityLanzhouGansuChina
| |
Collapse
|
138
|
Klinerová T, Dostál P. Nutrient-demanding species face less negative competition and plant-soil feedback effects in a nutrient-rich environment. THE NEW PHYTOLOGIST 2020; 225:1343-1354. [PMID: 31569272 DOI: 10.1111/nph.16227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Plant-soil feedbacks (PSFs) and plant-plant competition influence performance and abundance of plants. To what extent the two biotic interactions are interrelated and thus affect plant performance in combination rather than in isolation remains poorly explored. It is also unclear how the abiotic context, such as resource availability, modifies individual and joint effects of PSFs and of plant-plant competition. Using a garden experiment, we assessed the strengths of PSFs, competition, and their combined effects explored under low and high nutrient levels, and related them to abundance of 46 plant species and their ecological optima with respect to soil nutrients. We found that PSFs reduced but did not eliminate differences in competitive ability of plant species. Isolated and combined effects of the biotic interactions poorly predicted local or regional abundance of species. They were rather related to species' ecological optima, as nutrient-demanding plants experienced less negative biotic effects but only in a nutrient-rich environment. Our study demonstrates that soil biota can mitigate differences in competitive ability among species. It remains to be tested whether such an equalizing effect can maintain coexistence under high nutrient availability, in which nutrient-demanding species may disproportionately benefit from less negative competition and PSF effects.
Collapse
Affiliation(s)
- Tereza Klinerová
- Institute of Botany of the Czech Academy of Sciences, Průhonice,, CZ 252 43, Czech Republic
| | - Petr Dostál
- Institute of Botany of the Czech Academy of Sciences, Průhonice,, CZ 252 43, Czech Republic
| |
Collapse
|
139
|
Foxx AJ, Fort F. Root and shoot competition lead to contrasting competitive outcomes under water stress: A systematic review and meta-analysis. PLoS One 2019; 14:e0220674. [PMID: 31825953 PMCID: PMC6905553 DOI: 10.1371/journal.pone.0220674] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Competition is a critical process that shapes plant communities and interacts with environmental constraints. There are surprising knowledge gaps related to mechanisms that belie competitive processes, though important to natural communities and agricultural systems: the contribution of different plant parts on competitive outcomes and the effect of environmental constraints on these outcomes. OBJECTIVE Studies that partition competition into root-only and shoot-only interactions assess whether plant parts impose different competitive intensities using physical partitions and serve as an important way to fill knowledge gaps. Given predicted drought escalation due to climate change, we focused a systematic review-including a meta-analysis on the effects of water supply and competitive outcomes. METHODS We searched ISI Web of Science for peer-reviewed studies and found 2042 results. From which eleven suitable studies, five of which had extractable information of 80 effect sizes on 10 species to test these effects. We used a meta-analysis to compare the log response ratios (lnRR) on biomass for responses to competition between roots, shoots, and full plants at two water levels. RESULTS Water availability treatment and competition treatment (root-only, shoot-only, and full plant competition) significantly interacted to affect plant growth responses (p < 0.0001). Root-only and full plant competition are more intense in low water availability (-1.2 and -0.9 mean lnRR, respectively) conditions than shoot-only competition (-0.2 mean lnRR). However, shoot-only competition in high water availability was the most intense (- 0.78 mean lnRR) compared to root-only and full competition (-0.5 and 0.61 mean lnRR, respectively) showing the opposite pattern to low water availability. These results also show that the intensity of full competition is similar to root-only competition and that low water availability intensifies root competition while weakening shoot competition. CONCLUSIONS The outcome that competition is most intense between roots at low water availability emphasizes the importance of root competition and these patterns of competition may shift in a changing climate, creating further urgency for further studies to fil knowledge gaps addressing issues of drought on plant interactions and communities.
Collapse
Affiliation(s)
- Alicia J. Foxx
- Plant Biology and Conservation; Northwestern University, Evanston, Illinois, United States of America
- Plant Science and Conservation, The Chicago Botanic Garden, Glencoe, Illinois, United States of America
| | - Florian Fort
- CEFE, Montpellier SupAgro, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry, Montpellier, France
| |
Collapse
|
140
|
Mahaut L, Fort F, Violle C, Freschet GT. Multiple facets of diversity effects on plant productivity: Species richness, functional diversity, species identity and intraspecific competition. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13473] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lucie Mahaut
- Centre d'Ecologie Fonctionnelle et Evolutive Univ Montpellier CNRS EPHE, IRD Univ Paul Valéry Montpellier 3 Montpellier France
| | - Florian Fort
- Centre d'Ecologie Fonctionnelle et Evolutive Montpellier SupAgro CNRS Univ Montpellier Univ Paul Valéry Montpellier 3 EPHE IRD Montpellier France
| | - Cyrille Violle
- Centre d'Ecologie Fonctionnelle et Evolutive CNRS EPHE, IRD Univ Montpellier Univ Paul Valéry Montpellier 3 Montpellier France
| | - Grégoire T. Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive CNRS EPHE, IRD Univ Montpellier Univ Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
141
|
Křivan V, Revilla TA. Plant coexistence mediated by adaptive foraging preferences of exploiters or mutualists. J Theor Biol 2019; 480:112-128. [PMID: 31401058 DOI: 10.1016/j.jtbi.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 11/19/2022]
Abstract
Coexistence of plants depends on their competition for common resources and indirect interactions mediated by shared exploiters or mutualists. These interactions are driven either by changes in animal abundance (density-mediated interactions, e.g., apparent competition), or by changes in animal preferences for plants (behaviorally-mediated interactions). This article studies effects of behaviorally-mediated interactions on two plant population dynamics and animal preference dynamics when animal densities are fixed. Animals can be either adaptive exploiters or adaptive mutualists (e.g., herbivores or pollinators) that maximize their fitness. Analysis of the model shows that adaptive animal preferences for plants can lead to multiple outcomes of plant coexistence with different levels of specialization or generalism for the mediator animal species. In particular, exploiter generalism promotes plant coexistence even when inter-specific competition is too strong to make plant coexistence possible without exploiters, and mutualist specialization promotes plant coexistence at alternative stable states when plant inter-specific competition is weak. Introducing a new concept of generalized isoclines allows us to fully analyze the model with respect to the strength of competitive interactions between plants (weak or strong), and the type of interaction between plants and animals (exploitation or mutualism).
Collapse
Affiliation(s)
- Vlastimil Křivan
- Department of Mathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice 370 05, Czech Republic.
| | - Tomás A Revilla
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice 370 05, Czech Republic; Department of Mathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
142
|
Bergamo PJ, Susin Streher N, Traveset A, Wolowski M, Sazima M. Pollination outcomes reveal negative density-dependence coupled with interspecific facilitation among plants. Ecol Lett 2019; 23:129-139. [PMID: 31650660 DOI: 10.1111/ele.13415] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/07/2019] [Accepted: 10/03/2019] [Indexed: 01/27/2023]
Abstract
Pollination is thought to be under positive density-dependence, destabilising plant coexistence by conferring fitness disadvantages to rare species. Such disadvantage is exacerbated by interspecific competition but can be mitigated by facilitation and intraspecific competition. However, pollinator scarcity should enhance intraspecific plant competition and impose disadvantage on common over rare species (negative density-dependence, NDD). We assessed pollination proxies (visitation rate, pollen receipt, pollen tubes) in a generalised plant community and related them to conspecific and heterospecific density, expecting NDD and interspecific facilitation due to the natural pollinator scarcity. Contrary to usual expectations, all proxies indicated strong intraspecific competition for common plants. Moreover interspecific facilitation prevailed and was stronger for rare than for common plants. Both NDD and interspecific facilitation were modulated by specialisation, floral display and pollinator group. The combination of intraspecific competition and interspecific facilitation fosters plant coexistence, suggesting that pollination can be a niche axis maintaining plant diversity.
Collapse
Affiliation(s)
- Pedro J Bergamo
- Graduate Program in Ecology, University of Campinas, Monteiro Lobato St., 255, Campinas, PO Box 13083-862, Brazil.,Mediterranean Institute for Advanced Studies, CSIC-UIB, Miquel Marqués St., 21, Esporles, Mallorca, PO Box 07190, Spain
| | - Nathália Susin Streher
- Graduate Program in Plant Biology, University of Campinas, Monteiro Lobato St., 255, Campinas, PO Box 13083-862, Brazil
| | - Anna Traveset
- Mediterranean Institute for Advanced Studies, CSIC-UIB, Miquel Marqués St., 21, Esporles, Mallorca, PO Box 07190, Spain
| | - Marina Wolowski
- Institute of Natural Sciences, Federal University of Alfenas, Gabriel Monteiro da Silva St., 700, Alfenas, PO Box 37130-000, Brazil
| | - Marlies Sazima
- Department of Plant Biology, Institute of Biology, University of Campinas, Monteiro Lobato St., 255, Campinas, PO Box 13083-862, Brazil
| |
Collapse
|
143
|
Detto M, Visser MD, Wright SJ, Pacala SW. Bias in the detection of negative density dependence in plant communities. Ecol Lett 2019; 22:1923-1939. [PMID: 31523913 DOI: 10.1111/ele.13372] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
Regression dilution is a statistical inference bias that causes underestimation of the strength of dependency between two variables when the predictors are error-prone proxies (EPPs). EPPs are widely used in plant community studies focused on negative density-dependence (NDD) to quantify competitive interactions. Because of the nature of the bias, conspecific NDD is often overestimated in recruitment analyses, and in some cases, can be erroneously detected when absent. In contrast, for survival analyses, EPPs typically cause NDD to be underestimated, but underestimation is more severe for abundant species and for heterospecific effects, thereby generating spurious negative relationships between the strength of NDD and the abundances of con- and heterospecifics. This can explain why many studies observed rare species to suffer more severely from conspecific NDD, and heterospecific effects to be disproportionally smaller than conspecific effects. In general, such species-dependent bias is often related to traits associated with likely mechanisms of NDD, which creates false patterns and complicates the ecological interpretation of the analyses. Classic examples taken from literature and simulations demonstrate that this bias has been pervasive, which calls into question the emerging paradigm that intraspecific competition has been demonstrated by direct field measurements to be generally stronger than interspecific competition.
Collapse
Affiliation(s)
- Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Smithsonian Tropical Research Institute, Balboa, Panama
| | - Marco D Visser
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
144
|
McPeek MA, Siepielski AM. Disentangling ecologically equivalent from neutral species: The mechanisms of population regulation matter. J Anim Ecol 2019; 88:1755-1765. [PMID: 31330057 DOI: 10.1111/1365-2656.13072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022]
Abstract
The neutral theory of biodiversity explored the structure of a community of ecologically equivalent species. Such species are expected to display community drift dynamics analogous to neutral alleles undergoing genetic drift. While entire communities of species are not ecologically equivalent, recent field experiments have documented the existence of guilds of such neutral species embedded in real food webs. What demographic outcomes of the interactions within and between species in these guilds are expected to produce ecological drift versus coexistence remains unclear. To address this issue, and guide empirical testing, we consider models of a guild of ecologically equivalent competitors feeding on a single resource to explore when community drift should manifest. We show that community drift dynamics only emerge when the density-dependent effects of each species on itself are identical to its density-dependent effects on every other guild member. In contrast, if each guild member directly limits itself more than it limits the abundance of other guild members, all species in the guild are coexisting, even though they all are ecologically equivalent with respect to their interactions with species outside the guild (i.e. resources, predators, mutualists). Hence, considering only interspecific ecological differences generating density dependence, and not fully accounting for the preponderance of mechanisms causing intraspecific density dependence, will provide an incomplete picture for segregating between neutrality and coexistence. We also identify critical experiments necessary to disentangle guilds of ecologically equivalent species from those experiencing ecological drift, as well as provide an overview of ways of incorporating a mechanistic basis into studies of species coexistence and neutrality. Identifying these characteristics, and the mechanistic basis underlying community structure, is not merely an exercise in clarifying the semantics of coexistence and neutral theories, but rather reflects key differences that must exist among community members in order to determine how and why communities are structured.
Collapse
Affiliation(s)
- Mark A McPeek
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
145
|
Broekman MJE, Muller-Landau HC, Visser MD, Jongejans E, Wright SJ, de Kroon H. Signs of stabilisation and stable coexistence. Ecol Lett 2019; 22:1957-1975. [PMID: 31328414 DOI: 10.1111/ele.13349] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023]
Abstract
Many empirical studies motivated by an interest in stable coexistence have quantified negative density dependence, negative frequency dependence, or negative plant-soil feedback, but the links between these empirical results and ecological theory are not straightforward. Here, we relate these analyses to theoretical conditions for stabilisation and stable coexistence in classical competition models. By stabilisation, we mean an excess of intraspecific competition relative to interspecific competition that inherently slows or even prevents competitive exclusion. We show that most, though not all, tests demonstrating negative density dependence, negative frequency dependence, and negative plant-soil feedback constitute sufficient conditions for stabilisation of two-species interactions if applied to data for per capita population growth rates of pairs of species, but none are necessary or sufficient conditions for stable coexistence of two species. Potential inferences are even more limited when communities involve more than two species, and when performance is measured at a single life stage or vital rate. We then discuss two approaches that enable stronger tests for stable coexistence-invasibility experiments and model parameterisation. The model parameterisation approach can be applied to typical density-dependence, frequency-dependence, and plant-soil feedback data sets, and generally enables better links with mechanisms and greater insights, as demonstrated by recent studies.
Collapse
Affiliation(s)
- Maarten J E Broekman
- Department of Plant Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Helene C Muller-Landau
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancón, Panamá
| | - Marco D Visser
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Eelke Jongejans
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - S J Wright
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancón, Panamá
| | - Hans de Kroon
- Department of Plant Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
146
|
Ousterhout BH, Serrano M, Bried JT, Siepielski AM. A framework for linking competitor ecological differences to coexistence. J Anim Ecol 2019; 88:1534-1548. [DOI: 10.1111/1365-2656.13048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/27/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mabel Serrano
- Department of Biological Sciences University of Arkansas Fayetteville Arkansas
| | - Jason T. Bried
- Department of Biological Sciences University of Arkansas Fayetteville Arkansas
| | - Adam M. Siepielski
- Department of Biological Sciences University of Arkansas Fayetteville Arkansas
| |
Collapse
|
147
|
Zepeda V, Martorell C. Fluctuation‐independent niche differentiation and relative non‐linearity drive coexistence in a species‐rich grassland. Ecology 2019; 100:e02726. [DOI: 10.1002/ecy.2726] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/31/2019] [Accepted: 02/21/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Verónica Zepeda
- Facultad de Ciencias Departamento de Ecología y Recursos Naturales Universidad Nacional Autónoma de México Circuito Exterior S/N, Ciudad Universitaria Mexico City 04510 Mexico
- Posgrado en Ciencias Biológicas Unidad de Posgrado Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria Mexico City C.P. 04510 Mexico
| | - Carlos Martorell
- Facultad de Ciencias Departamento de Ecología y Recursos Naturales Universidad Nacional Autónoma de México Circuito Exterior S/N, Ciudad Universitaria Mexico City 04510 Mexico
| |
Collapse
|
148
|
Walczyk AM, Hersch-Green EI. Impacts of soil nitrogen and phosphorus levels on cytotype performance of the circumboreal herb Chamerion angustifolium: implications for polyploid establishment. AMERICAN JOURNAL OF BOTANY 2019; 106:906-921. [PMID: 31283844 DOI: 10.1002/ajb2.1321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Although polyploidy commonly occurs in angiosperms, not all polyploidization events lead to successful lineages, and environmental conditions could influence cytotype dynamics and polyploid success. Low soil nitrogen and/or phosphorus concentrations often limit ecosystem primary productivity, and changes in these nutrients might differentially favor some cytotypes over others, thereby influencing polyploid establishment. METHODS We grew diploid, established tetraploid, and neotetraploid Chamerion angustifolium (fireweed) in a greenhouse under low and high soil nitrogen and phosphorus conditions and different competition treatments and measured plant performance (height, biomass, flower production, and root bud production) and insect damage responses. By comparing neotetraploids to established tetraploids, we were able to examine traits and responses that might directly arise from polyploidization before they are modified by natural selection and/or genetic drift. RESULTS We found that (1) neopolyploids were the least likely to survive and flower and experienced the most herbivore damage, regardless of nutrient conditions; (2) both neo- and established tetraploids had greater biomass and root bud production under nutrient-enriched conditions, whereas diploid biomass and root bud production was not significantly affected by nutrients; and (3) intra-cytotype competition more negatively affected diploids and established tetraploids than it did neotetraploids. CONCLUSIONS Following polyploidization, biomass and clonal growth might be more immediately affected by environmental nutrient availabilities than plant survival, flowering, and/or responses to herbivory, which could influence competitive dynamics. Specifically, polyploids might have competitive and colonizing advantages over diploids under nutrient-enriched conditions favoring their establishment, although establishment may also depend upon the density and occurrences of other related cytotypes in a population.
Collapse
Affiliation(s)
- Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| |
Collapse
|
149
|
Cordero RD, Jackson DA. Species‐pair associations, null models, and tests of mechanisms structuring ecological communities. Ecosphere 2019. [DOI: 10.1002/ecs2.2797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ruben D. Cordero
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Donald A. Jackson
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| |
Collapse
|
150
|
Aspergillus flavus NRRL 35739, a Poor Biocontrol Agent, May Have Increased Relative Expression of Stress Response Genes. J Fungi (Basel) 2019; 5:jof5020053. [PMID: 31226781 PMCID: PMC6616650 DOI: 10.3390/jof5020053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Biocontrol of the mycotoxin aflatoxin utilizes non-aflatoxigenic strains of Aspergillus flavus, which have variable success rates as biocontrol agents. One non-aflatoxigenic strain, NRRL 35739, is a notably poor biocontrol agent. Its growth in artificial cultures and on peanut kernels was found to be slower than that of two aflatoxigenic strains, and NRRL 35739 exhibited less sporulation when grown on peanuts. The non-aflatoxigenic strain did not greatly prevent aflatoxin accumulation. Comparison of the transcriptomes of aflatoxigenic and non-aflatoxigenic A. flavus strains AF36, AF70, NRRL 3357, NRRL 35739, and WRRL 1519 indicated that strain NRRL 35739 had increased relative expression of six heat shock and stress response proteins, with the genes having relative read counts in NRRL 35739 that were 25 to 410 times more than in the other four strains. These preliminary findings tracked with current thought that aflatoxin biocontrol efficacy is related to the ability of a non-aflatoxigenic strain to out-compete aflatoxigenic ones. The slower growth of NRRL 35739 might be due to lower stress tolerance or overexpression of stress response(s). Further study of NRRL 35739 is needed to refine our understanding of the genetic basis of competitiveness among A. flavus strains.
Collapse
|