101
|
Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010; 6:e1000902. [PMID: 20485566 PMCID: PMC2869315 DOI: 10.1371/journal.ppat.1000902] [Citation(s) in RCA: 469] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 04/08/2010] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium. Enteropathogenic E. coli (EPEC) and Enterohemorrhagic E. coli (EHEC) are important causes of diarrheal disease and other serious complications worldwide. Despite many studies addressing the pathogenic strategies used by these microbes, how the host protects itself from these pathogens is poorly understood. A critical question we address here is whether the thick mucus layer that overlies the intestinal surface plays a role in host protection. Since EPEC and EHEC do not infect mice efficiently, we used a related mouse pathogen called Citrobacter rodentium to infect and compare responses between wildtype mice and Muc2-deficient mice, which are defective in mucus production. We show that Muc2-deficient mice are extremely susceptible to C. rodentium infection-induced mortality and disease. Muc2-deficient mice were also colonized faster and had higher pathogen burdens throughout the experiment. Resident (non-pathogenic) bacteria were found to interact with C. rodentium and host tissues in Muc2-deficient mice, indicating Muc2 regulates all forms of intestinal microbiota at the gut surface. Deficiency in mucus production also contributed to increased leakiness of the gut, which allowed microbes to enter mucosal tissues. Our study shows that Muc2-dependent mucus production is critical for effective management of both pathogenic and non-pathogenic bacteria during infection by an EPEC/EHEC-like pathogen.
Collapse
Affiliation(s)
- Kirk S. B. Bergstrom
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Vanessa Kissoon-Singh
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Deanna L. Gibson
- Department of Biology and Physical Geography, Irving K. Barber School of Arts and Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Caixia Ma
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Marinieve Montero
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Ho Pan Sham
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Natasha Ryz
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Tina Huang
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Anna Velcich
- Department of Oncology, Albert Einstein Cancer Center/Montefiore Medical Center, Bronx, New York, United States of America
| | - B. Brett Finlay
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kris Chadee
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (KC); (BAV)
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
- * E-mail: (KC); (BAV)
| |
Collapse
|
102
|
Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 2010; 53:741-8. [PMID: 20012858 DOI: 10.1007/s00125-009-1626-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Increased exposure to enteric microbes as a result of intestinal barrier disruption is thought to contribute to the development of several intestinal inflammatory diseases; however, it less clear whether such exposure modulates the development of extra-intestinal inflammatory and autoimmune diseases. The goal of this study was to examine the potential role of pathogenic enteric microbes and intestinal barrier dysfunction in the pathogenesis of type 1 diabetes. METHODS Using NOD mice, we assessed: (1) intrinsic barrier function in mice at different ages by measuring serum levels of FITC-labelled dextran; and (2) the impact on insulitis development of infection by strains of an enteric bacterial pathogen (Citrobacter rodentium) either capable (wild-type) or incapable (lacking Escherichia coli secreted protein F virulence factor owing to deletion of the gene [DeltaespF]) of causing intestinal epithelial barrier disruption. RESULTS Here we demonstrate that prediabetic (12-week-old) NOD mice display increased intestinal permeability compared with non-obese diabetes-resistant and C57BL/6 mice. We also found that young (4-week-old) NOD mice infected with wild-type C. rodentium exhibited accelerated development of insulitis in concert with infection-induced barrier disruption. In contrast, insulitis development was not altered in NOD mice infected with the non-barrier-disrupting DeltaespF strain. Moreover, C. rodentium-infected NOD mice demonstrated increased activation and proliferation of pancreatic-draining lymph node T cells, including diabetogenic CD8(+) T cells, compared with uninfected NOD mice. CONCLUSIONS/INTERPRETATION This is the first demonstration that a loss of intestinal barrier integrity caused by an enteric bacterial pathogen results in the activation of diabetogenic CD8(+) T cells and modulates insulitis.
Collapse
Affiliation(s)
- A S Lee
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
103
|
Shames SR, Deng W, Guttman JA, de Hoog CL, Li Y, Hardwidge PR, Sham HP, Vallance BA, Foster LJ, Finlay BB. The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling. Cell Microbiol 2010; 12:1322-39. [PMID: 20374249 DOI: 10.1111/j.1462-5822.2010.01470.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC respectively) are diarrhoeal pathogens that cause the formation of attaching and effacing (A/E) lesions on infected host cells. These pathogens encode a type III secretion system (T3SS) used to inject effector proteins directly into host cells, an essential requirement for virulence. In this study, we identified a function for the type III secreted effector EspZ. Infection with EPEC DeltaespZ caused increased cytotoxicity in HeLa and MDCK cells compared with wild-type EPEC, and expressing espZ in cells abrogated this effect. Using yeast two-hybrid, proteomics, immunofluorescence and co-immunoprecipitation, it was demonstrated that EspZ interacts with the host protein CD98, which contributes to protection against EPEC-mediated cytotoxicity. EspZ enhanced phosphorylation of focal adhesion kinase (FAK) and AKT during infection with EPEC, but CD98 only appeared to facilitate FAK phosphorylation. This study provides evidence that EspZ and CD98 promote host cell survival mechanisms involving FAK during A/E pathogen infection.
Collapse
Affiliation(s)
- Stephanie R Shames
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Subversion of Rho family small GTPases, which control actin dynamics, is a common infection strategy used by bacterial pathogens. In particular, Salmonella enterica serovar Typhimurium, Shigella flexneri, enteropathogenic Escherichia coli (EPEC), and enterohemorrhagic Escherichia coli (EHEC) translocate type III secretion system (T3SS) effector proteins to modulate the Rho GTPases RhoA, Cdc42, and Rac1, which trigger formation of stress fibers, filopodia, and lamellipodia/ruffles, respectively. The Salmonella effector SopE is a guanine nucleotide exchange factor (GEF) that activates Rac1 and Cdc42, which induce "the trigger mechanism of cell entry." Based on a conserved Trp-xxx-Glu motif, the T3SS effector proteins IpgB1 and IpgB2 of Shigella, SifA and SifB of Salmonella, and Map of EPEC and EHEC were grouped together into a WxxxE family; recent studies identified the T3SS EPEC and EHEC effectors EspM and EspT as new family members. Recent structural and functional studies have shown that representatives of the WxxxE effectors share with SopE a 3-D fold and GEF activity. In this minireview, we summarize contemporary findings related to the SopE and WxxxE GEFs in the context of their role in subverting general host cell signaling pathways and infection.
Collapse
|
105
|
Shen-Tu G, Schauer DB, Jones NL, Sherman PM. Detergent-resistant microdomains mediate activation of host cell signaling in response to attaching-effacing bacteria. J Transl Med 2010; 90:266-81. [PMID: 19997063 DOI: 10.1038/labinvest.2009.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes outbreaks of bloody diarrhea and the hemolytic-uremic syndrome. EHEC intimately adheres to epithelial cells, effaces microvilli and induces attaching-effacing (AE) lesions. Detergent-resistant microdomains (lipid rafts) serve as membrane platforms for the recruitment of signaling complexes to mediate host responses to infection. The aim of this study was to define the role of lipid rafts in activating signal transduction pathways in response to AE bacterial pathogens. Epithelial cell monolayers were infected with EHEC (MOI 100:1, 3 h, 37 degrees C) and lipid rafts isolated by buoyant density ultracentrifugation. Phosphoinositide 3-kinase (PI3K) localization to lipid rafts was confirmed using PI3K and anti-caveolin-1 antibodies. Mice with cholesterol storage disease Niemann-Pick, type C were used as in vivo models to confirm the role of lipid rafts in mediating signaling response to AE organisms. In contrast to uninfected cells, PI3K was recruited to lipid rafts in response to EHEC infection. Metabolically active bacteria and cells with intact cholesterol-rich microdomains were necessary for the recruitment of second messengers to lipid rafts. Recruitment of PI3K to lipid rafts was independent of the intimin (eaeA) gene, type III secretion system, and production of Shiga-like toxins. Colonization of NPC(-/-) colonic mucosa by Citrobacter rodentium and AE lesion formation were both delayed, compared with wild-type mice infected with the murine-specific AE bacterial pathogen. C. rodentium-infected NPC(-/-) mice had reduced colonic epithelial hyperplasia (64+/-8.251 vs 112+/-2.958 microm; P<0.05) and decreased secretion of IFN-gamma (17.6+/-17.6 vs 71+/-26.3 pg/ml, P<0.001). Lipid rafts mediate host cell signal transduction responses to AE bacterial infections both in vitro and in vivo. These findings advance the current understanding of microbial-eukaryotic cell interactions in response to enteric pathogens that hijack signaling responses mediated through lipid rafts.
Collapse
Affiliation(s)
- Grace Shen-Tu
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
106
|
Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 2009; 8:26-38. [DOI: 10.1038/nrmicro2265] [Citation(s) in RCA: 719] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
107
|
Li Q, Zhang Q, Wang C, Liu X, Qu L, Gu L, Li N, Li J. Altered distribution of tight junction proteins after intestinal ischaemia/reperfusion injury in rats. J Cell Mol Med 2009; 13:4061-76. [PMID: 19929946 PMCID: PMC4516553 DOI: 10.1111/j.1582-4934.2009.00975.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tight junction (TJ) disruptions have been demonstrated both in vitro and more recently in vivo in infection. However, the molecular basis for changes of TJ during ischaemia-reperfusion (I/R) injury is poorly understood. In the present study, intestinal damage was induced by I/R in an animal model. As assessed by TUNEL and propidium iodide uptake, we showed that I/R injury induced apoptosis as well as necrosis in rat colon, and the frequency of apoptotic and necrotic cells reached the maximum at 5 hrs of reperfusion. Immunofluorescence microscopy revealed that claudins 1, 3 and 5 are strongly expressed in the surface epithelial cells of the colon; however, labelling of all three proteins was present diffusely within cells and no longer focused at the lateral cell boundaries after I/R. Using Western blot analysis, we found that distribution of TJ proteins in membrane microdomains of TJ was markedly affected in I/R injury rats. Occludin, ZO-1, claudin-1 and claudin-3 were completely displaced from TX-100 insoluble fractions to TX-100 soluble fractions, and claudin-5 was partly displaced. The distribution of lipid raft marker protein caveolin-1 was also changed after I/R. I/R injury results in the disruption of TJs, which characterized by relocalization of the claudins 1, 3 and 5 and an increase in intestinal permeability using molecular tracer measurement. I/R injury altered distribution of TJ proteins in vivo that was associated with functional TJ deficiencies.
Collapse
Affiliation(s)
- Qiurong Li
- Institute of General Surgery, Jinling Hospital, Nanjing, China.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Simovitch M, Sason H, Cohen S, Zahavi EE, Melamed-Book N, Weiss A, Aroeti B, Rosenshine I. EspM inhibits pedestal formation by enterohaemorrhagic Escherichia coli and enteropathogenic E. coli and disrupts the architecture of a polarized epithelial monolayer. Cell Microbiol 2009; 12:489-505. [PMID: 19912240 DOI: 10.1111/j.1462-5822.2009.01410.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enterohaemorrhagic Escherichia coli and enteropathogenic E. coli are enteropathogens characterized by their ability to induce the host cell to form actin-rich structures, termed pedestals. A type III secretion system, through which the pathogens deliver effector proteins into infected host cells, is essential for their virulence and pedestal formation. Enterohaemorrhagic E. coli encodes two similar effectors, EspM1 and EspM2, which activate the RhoA signalling pathway and induce the formation of stress fibres upon infection of host cells. We confirm these observations and in addition show that EspM inhibits the formation of actin pedestals. Moreover, we show that translocation of EspM into polarized epithelial cells induces dramatic changes in the tight junction localization and in the morphology and architecture of infected polarized monolayers. These changes are manifested by altered localization of the tight junctions and 'bulging out' morphology of the cells. Surprisingly, despite the dramatic changes in their architecture, the cells remain alive and the epithelial monolayer maintains a normal barrier function. Taken together, our results show that the EspM effectors inhibit pedestal formation and induce tight junction mislocalization as well as dramatic changes in the architecture of the polarized monolayer.
Collapse
Affiliation(s)
- Michal Simovitch
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Enteropathogenic Escherichia coli changes distribution of occludin and ZO-1 in tight junction membrane microdomains in vivo. Microb Pathog 2009; 48:28-34. [PMID: 19833191 DOI: 10.1016/j.micpath.2009.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 09/25/2009] [Accepted: 10/06/2009] [Indexed: 02/08/2023]
Abstract
Diarrhea is a disease caused by enteropathogenic Escherichia coli (EPEC) infection, which caused the deaths of several hundred thousand children each year. However, the molecular mechanisms underlying EPEC infection in vivo are not fully understood. In the present study, we used the C57BL/6J mouse as an in vivo model of EPEC infection and investigated the effect of EPEC on tight junction (TJ) structure and barrier function. TJ ultrastructure was studied by transmission electron microscopy and a small molecule tracer biotin was used to examine the paracellular permeability of the colon. The distribution of TJ proteins occludin and ZO-1 in the epithelium was investigated by immunofluorescence microscopy. Our results demonstrated that TJ structure was disrupted following EPEC infection. And the morphological changes of TJ were accompanied by increased paracellular permeability which led to impairment of TJ barrier function. Immunofluorescency analysis revealed that occludin and ZO-1 were translocated from villous membrane to the cytoplasm in intestinal epithelial cells during EPEC invasion. Moreover, wild-type EPEC and the mutant EPEC strain, DeltaespF, had similar effects on barrier function and TJ protein localization at 5 days postinfection. Our findings demonstrate that EPEC infection in vivo led to disruption of tight junction barrier function. These results may provide insights into the molecular mechanism of the pathogenesis of EPEC infection.
Collapse
|
110
|
Conlin VS, Wu X, Nguyen C, Dai C, Vallance BA, Buchan AMJ, Boyer L, Jacobson K. Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2009; 297:G735-50. [PMID: 19661153 DOI: 10.1152/ajpgi.90551.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Attaching and effacing bacterial pathogens attach to the apical surface of epithelial cells and disrupt epithelial barrier function, increasing permeability and allowing luminal contents access to the underlying milieu. Previous in vitro studies demonstrated that the neuropeptide vasoactive intestinal peptide (VIP) regulates epithelial paracellular permeability, and the high concentrations and close proximity of VIP-containing nerve fibers to intestinal epithelial cells would support such a function in vivo. The aim of this study was to examine whether VIP treatment modulated Citrobacter rodentium-induced disruption of intestinal barrier integrity and to identify potential mechanisms of action. Administration of VIP had no effect on bacterial attachment although histopathological scoring demonstrated a VIP-induced amelioration of colitis-induced epithelial damage compared with controls. VIP treatment prevented the infection-induced increase in mannitol flux a measure of paracellular permeability, resulting in levels similar to control mice, and immunohistochemical studies demonstrated that VIP prevented the translocation of tight junction proteins: zonula occludens-1, occludin, and claudin-3. Enteropathogenic Escherichia coli (EPEC) infection of Caco-2 monolayers confirmed a protective role for VIP on epithelial barrier function. VIP prevented EPEC-induced increase in long myosin light chain kinase (MLCK) expression and myosin light chain phosphorylation (p-MLC). Furthermore, MLCK inhibition significantly attenuated bacterial-induced epithelial damage both in vivo and in vitro. In conclusion, our results indicate that VIP protects the colonic epithelial barrier by minimizing bacterial-induced redistribution of tight junction proteins in part through actions on MLCK and MLC phosphorylation.
Collapse
Affiliation(s)
- V S Conlin
- Division of Gastroenterology, Child and Family Research Institute, BC Children's Hospital, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Lapointe TK, O'Connor PM, Buret AG. The role of epithelial malfunction in the pathogenesis of enteropathogenic E. coli-induced diarrhea. J Transl Med 2009; 89:964-70. [PMID: 19620958 DOI: 10.1038/labinvest.2009.69] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The homeostatic balance of the gastrointestinal tract relies on a single layer of epithelial cells, which assumes both digestive and protective functions. Enteric pathogens, including enteropathogenic Escherichia coli (EPEC), have evolved numerous mechanisms to disrupt basic intestinal epithelial functions, promoting the development of gastrointestinal disorders. Despite its non-invasive nature, EPEC inflicts severe damage to the intestinal mucosa, including the dysregulation of water and solute transport and the disruption of epithelial barrier structure and function. Despite the high prevalence and morbidity of disease caused by EPEC infections, the etiology of its pathogenesis remains incompletely understood. This review integrates the newest findings on EPEC-epithelial interactions with established mechanisms of disease in an attempt to give a comprehensive understanding of the cellular processes whereby this common pathogen may cause diarrheal illness.
Collapse
Affiliation(s)
- Tamia K Lapointe
- Department of Biological Sciences and Inflammation Research Network, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
112
|
Johnson AM, Kaushik RS, Hardwidge PR. Disruption of transepithelial resistance by enterotoxigenic Escherichia coli. Vet Microbiol 2009; 141:115-9. [PMID: 19733985 DOI: 10.1016/j.vetmic.2009.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 08/05/2009] [Accepted: 08/07/2009] [Indexed: 01/30/2023]
Abstract
Transepithelial resistance and tight junction protein localization in porcine intestinal epithelial cells were evaluated as a function of infection with porcine enterotoxigenic Escherichia coli isolates differing in adhesin and enterotoxin profiles. Robust heat-labile enterotoxin-independent reduction of host transepithelial resistance was observed in the absence of tight junction protein mislocalization.
Collapse
Affiliation(s)
- Amber M Johnson
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | | | | |
Collapse
|
113
|
The RNA binding protein CsrA is a pleiotropic regulator of the locus of enterocyte effacement pathogenicity island of enteropathogenic Escherichia coli. Infect Immun 2009; 77:3552-68. [PMID: 19581394 DOI: 10.1128/iai.00418-09] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The attaching and effacing (A/E) pathogen enteropathogenic Escherichia coli (EPEC) forms characteristic actin-filled membranous protrusions upon infection of host cells termed pedestals. Here we examine the role of the RNA binding protein CsrA in the expression of virulence genes and proteins that are necessary for pedestal formation. The csrA mutant was defective in forming actin pedestals on epithelial cells and in disrupting transepithelial resistance across polarized epithelial cells. Consistent with reduced pedestal formation, secretion of the translocators EspA, EspB, and EspD and the effector Tir was substantially reduced in the csrA mutant. Purified CsrA specifically bound to the sepL espADB mRNA leader, and the corresponding transcript levels were reduced in the csrA mutant. In contrast, Tir synthesis was unaffected in the csrA mutant. Reduced secretion of Tir appeared to be in part due to decreased synthesis of EscD, an inner membrane architectural protein of the type III secretion system (TTSS) and EscF, a protein that forms the protruding needle complex of the TTSS. These effects were not mediated through the locus of enterocyte effacement (LEE) transcriptional regulator GrlA or Ler. In contrast to the csrA mutant, multicopy expression of csrA repressed transcription from LEE1, grlRA, LEE2, LEE5, escD, and LEE4, an effect mediated by GrlA and Ler. Consistent with its role in other organisms, CsrA also regulated flagellar motility and glycogen levels. Our findings suggest that CsrA governs virulence factor expression in an A/E pathogen by regulating mRNAs encoding translocators, effectors, or transcription factors.
Collapse
|
114
|
Decreased expression of colonic Slc26a3 and carbonic anhydrase iv as a cause of fatal infectious diarrhea in mice. Infect Immun 2009; 77:3639-50. [PMID: 19546193 DOI: 10.1128/iai.00225-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrobacter rodentium causes epithelial hyperplasia and colitis and is used as a model for enteropathogenic and enterohemorrhagic Escherichia coli infections. Little or no mortality develops in most inbred strains of mice, but C3H and FVB/N mice exhibit fatal outcomes of infection. Here we test the hypothesis that decreased intestinal transport activity during C. rodentium infection results in fatality in C3H/HeOu and FVB/N mice. Susceptible strains were compared to resistant C57BL/6 mice and to inbred strains SWR and SJL of Swiss origin, which have not been previously characterized for outcomes of C. rodentium infection. Mortality in susceptible strains C3H/HeOu and FVB/N was associated with significant fluid loss in feces, a remarkable downregulation of Slc26a3 and carbonic anhydrase IV (CAIV) message and protein expression, retention of chloride in stool, and hypochloremia, suggesting defects in intestinal chloride absorption. SWR, SJL, and C57BL/6 mice were resistant and survived the infection. Fluid therapy fully prevented mortality in C3H/HeOu and FVB/N mice without affecting clinical disease. Common pathogenic mechanisms, such as decreased levels of expression of Slc26a3 and CAIV, affect intestinal ion transport in C. rodentium-infected FVB and C3H mice, resulting in profound electrolyte loss, dehydration, and mortality. Intestinal chloride absorption pathways are likely a potential target for the treatment of infectious diarrhea.
Collapse
|
115
|
Abstract
Enteropathogenic E. coli (EPEC) are a leading cause of infantile diarrhea in developing countries, resulting in millions of deaths each year. EPEC secrete virulence factors, also called effectors, directly into host intestinal epithelial cells via type three secretion systems. Secreted effectors then affect host signaling pathways to induce several phenotypes, which ultimately lead to disease. Among the over 20 secreted effectors is E. coli secreted protein F (EspF), a 206 amino acid protein believed to be central to EPEC pathogenesis, as it disrupts tight junction structure and function. Although the mechanism by which this occurs is unknown, EspF has recently been found to contain several protein-protein interaction domains that may be involved. We have shown EspF to interact with the endocytic regulators sorting nexin 9 (SNX9) and N-WASP via non-exclusive binding sites. These interactions induce actin polymerization in vitro, and interaction with SNX9 alters its endocytic activity, as EspF induces the formation of tubular vesicles in a manner dependent upon its interaction with SNX9. EspF, therefore, appears to hijack endocytic regulation via SNX9 and possibly N-WASP interaction, to affect an as yet unidentified pathogenic phenotype.
Collapse
Affiliation(s)
- Andrew W. Weflen
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern, Dallas, Texas, USA
| | - Gail A. Hecht
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
116
|
Contribution of the pst-phoU operon to cell adherence by atypical enteropathogenic Escherichia coli and virulence of Citrobacter rodentium. Infect Immun 2009; 77:1936-44. [PMID: 19255191 DOI: 10.1128/iai.01246-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of enteropathogenic Escherichia coli (EPEC) generally employ the adhesins bundle-forming pili (Bfp) and intimin to colonize the intestine. Atypical EPEC strains possess intimin but are negative for Bfp and, yet, are able to cause disease. To identify alternative adhesins to Bfp in atypical EPEC, we constructed a transposon mutant library of atypical EPEC strain E128012 (serotype O114:H2) using TnphoA. Six mutants that had lost the ability to adhere to HEp-2 cells were identified, and in all six mutants TnphoA had inserted into the pstSCAB-phoU (Pst) operon. To determine if the Pst operon is required for adherence, we used site-directed mutagenesis to construct a pstCA mutant of E128012. The resultant mutant showed a reduced ability to adhere to HEp-2 cells and T84 intestinal epithelial cells, which was restored by trans-complementation with intact pstCA. To determine if pst contributes to bacterial colonization in vivo, a pstCA mutation was made in the EPEC-like murine pathogen, Citrobacter rodentium. C57BL/6 mice infected perorally with the pstCA mutant of C. rodentium excreted significantly lower numbers of C. rodentium than those given the wild-type strain. Moreover, colonic hyperplasia and diarrhea, which are features of infections with C. rodentium, were not observed in mice infected with the pstCA mutant but did occur in mice given the trans-complemented mutant. As mutations in pst genes generally lead to constitutive expression of the Pho regulon, our findings suggested that the Pho regulon may contribute to the reduced virulence of the pstCA mutants. To investigate this, we inactivated phoB in the pstCA mutants of EPEC E128012 and C. rodentium and found that the phoB mutation restored the adherent phenotype of both mutant strains. These results demonstrate that Pst contributes to the virulence of atypical EPEC and C. rodentium, probably by causing increased expression of an unidentified, Pho-regulated adhesin.
Collapse
|
117
|
Nagaosa K, Nakashima C, Kishimoto A, Nakanishi Y. Immune response to bacteria in seminiferous epithelium. Reproduction 2009; 137:879-88. [PMID: 19225044 DOI: 10.1530/rep-08-0460] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The luminal part of the seminiferous epithelium, a tissue compartment protected by the blood-testis barrier, has been considered a site of immune privilege. However, there are reports describing the production of anti-microbial peptides and the expression of Toll-like receptors in cells present in the seminiferous epithelium, evoking the possibility that this tissue compartment is immunologically active at least with regard to the innate immune response. To test this, we injected Escherichia coli into seminiferous tubules of live mice and examined the fate of bacteria, the production of chemokines and inflammatory cytokines, and the infiltration of neutrophils. The bacteria actively propagated and reached a maximal level in a day, but started to decrease after 5 days and completely disappeared in 2 months. The expression of macrophage inflammatory protein-2 and tumor necrosis factor-alpha became evident in macrophages present in the interstitial compartment of testes as early as 1-3 h after the inoculation of bacteria. Neutrophils first accumulated in the interstitial space at 9-12 h and entered the tubules after a day. On the other hand, impairment of spermatogenesis was observed a day after bacteria injection and seemed unrecoverable even after the bacteria were eliminated. By contrast, bacteria injected into the interstitial compartment were more rapidly cleared with no damage in the seminiferous epithelium. These results suggest the existence of immunity against invading microbes in the seminiferous epithelium although its effectiveness in maintaining tissue homeostasis remains equivocal.
Collapse
Affiliation(s)
- Kaz Nagaosa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | |
Collapse
|
118
|
Britton RA, Versalovic J. Probiotics and gastrointestinal infections. Interdiscip Perspect Infect Dis 2009; 2008:290769. [PMID: 19277100 PMCID: PMC2648624 DOI: 10.1155/2008/290769] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/27/2008] [Indexed: 01/24/2023] Open
Abstract
Gastrointestinal infections are a major cause of morbidity and mortality worldwide, particularly in developing countries. The use of probiotics to prevent and treat a variety of diarrheal diseases has gained favor in recent years. Examples where probiotics have positively impacted gastroenteritis will be highlighted. However, the overall efficacy of these treatments and the mechanisms by which probiotics ameliorate gastrointestinal infections are mostly unknown. We will discuss possible mechanisms by which probiotics could have a beneficial impact by enhancing the prevention or treatment of diarrheal diseases.
Collapse
Affiliation(s)
- Robert A. Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - James Versalovic
- Departments of Pathology, Baylor College of Medicine and Texas Children's Hospital, 6621 Fannin Street, MC 1-2261, Houston, TX 77030, USA
| |
Collapse
|
119
|
The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol 2009; 12:101-9. [PMID: 19144561 PMCID: PMC2697328 DOI: 10.1016/j.mib.2008.11.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 11/24/2022]
Abstract
Diarrhoeal disease caused by enteropathogenic E. coli (EPEC) is dependent on a delivery system that injects numerous bacterial ‘effector’ proteins directly into host cells. The best-described EPEC effectors are encoded together on the locus of enterocyte effacement (LEE) pathogenicity island and display high levels of multifunctionality and cooperativity within the host cell. More recently, effectors encoded outside the LEE (non-LEE effectors) have been discovered and their functions are beginning to be uncovered. The recent completion of the EPEC genome sequence suggests its effector repertoire consists of at least 21 effector proteins. Here, we describe the genomic location of effectors and discuss recent advances made on effector cellular function as well as their role in the infection process.
Collapse
|
120
|
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) employs a type III secretion system (T3SS) to export translocator and effector proteins required for mucosal colonization. The T3SS is encoded in a pathogenicity island called the locus of enterocyte effacement (LEE) that is organized in five major operons, LEE1 to LEE5. LEE4 encodes a regulator of secretion (SepL), translocators (EspA, D and B), two chaperones (CesD2 and L0017), a T3SS component (EscF) and an effector protein (EspF). It was originally proposed that the esp transcript is transcribed from a promoter located at the end of sepL but other authors suggested that this transcript is the result of a post-transcriptional processing event. In this study, we established that the espADB mRNA is generated by post-transcriptional processing at the end of the sepL coding sequence. RNase E is the endonuclease involved in the cleavage, but the interaction of this enzyme with other proteins through its C-terminal half is dispensable. A putative transcription termination event in the cesD2 coding region would generate the 3' end of the transcript. Similar to what has been described for other processed transcripts, the cleavage of LEE4 seems a mechanism to differentially regulate SepL and Esp protein production.
Collapse
Affiliation(s)
- Patricia B. Lodato
- Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, Maryland 21201
| | - James B. Kaper
- Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, Maryland 21201
| |
Collapse
|
121
|
Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:832-41. [PMID: 19059200 DOI: 10.1016/j.bbamem.2008.10.028] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 10/01/2008] [Accepted: 10/29/2008] [Indexed: 12/17/2022]
Abstract
The epithelial barrier is a critical border that segregates luminal material from entering tissues. Essential components of this epithelial fence are physical intercellular structures termed tight junctions. These junctions use a variety of transmembrane proteins coupled with cytoplasmic adaptors, and the actin cytoskeleton, to attach adjacent cells together thereby forming intercellular seals. Breaching of this barrier has profound effects on human health and disease, as barrier deficiencies have been linked with the onset of inflammation, diarrhea generation and pathogenic effects. Although tight junctions efficiently restrict most microbes from penetrating into deeper tissues and contain the microbiota, some pathogens have developed specific strategies to alter or disrupt these structures as part of their pathogenesis, resulting in either pathogen penetration, or other consequences such as diarrhea. Understanding the strategies that microorganisms use to commandeer the functions of tight junctions is an active area of research in microbial pathogenesis. In this review we highlight and overview the tactics bacteria and viruses use to alter tight junctions during disease. Additionally, these studies have identified novel tight junction protein functions by using pathogens and their virulence factors as tools to study the cell biology of junctional structures.
Collapse
Affiliation(s)
- Julian A Guttman
- Simon Fraser University, Department of Biological Sciences, Shrum Science Centre, Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
122
|
Sason H, Milgrom M, Weiss AM, Melamed-Book N, Balla T, Grinstein S, Backert S, Rosenshine I, Aroeti B. Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection. Mol Biol Cell 2008; 20:544-55. [PMID: 18987340 DOI: 10.1091/mbc.e08-05-0516] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] are phosphoinositides (PIs) present in small amounts in the inner leaflet of the plasma membrane (PM) lipid bilayer of host target cells. They are thought to modulate the activity of proteins involved in enteropathogenic Escherichia coli (EPEC) infection. However, the role of PI(4,5)P(2) and PI(3,4,5)P(3) in EPEC pathogenesis remains obscure. Here we show that EPEC induces a transient PI(4,5)P(2) accumulation at bacterial infection sites. Simultaneous actin accumulation, likely involved in the construction of the actin-rich pedestal, is also observed at these sites. Acute PI(4,5)P(2) depletion partially diminishes EPEC adherence to the cell surface and actin pedestal formation. These findings are consistent with a bimodal role, whereby PI(4,5)P(2) contributes to EPEC association with the cell surface and to the maximal induction of actin pedestals. Finally, we show that EPEC induces PI(3,4,5)P(3) clustering at bacterial infection sites, in a translocated intimin receptor (Tir)-dependent manner. Tir phosphorylated on tyrosine 454, but not on tyrosine 474, forms complexes with an active phosphatidylinositol 3-kinase (PI3K), suggesting that PI3K recruited by Tir prompts the production of PI(3,4,5)P(3) beneath EPEC attachment sites. The functional significance of this event may be related to the ability of EPEC to modulate cell death and innate immunity.
Collapse
Affiliation(s)
- Hagit Sason
- Department of Cell and Animal Biology, Confocal Unit, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
The type 4 pili of enterohemorrhagic Escherichia coli O157:H7 are multipurpose structures with pathogenic attributes. J Bacteriol 2008; 191:411-21. [PMID: 18952791 DOI: 10.1128/jb.01306-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 produces long bundles of polar type 4 pili (T4P) called HCP (for hemorrhagic coli pili) that form physical bridges between bacteria associating with human and animal epithelial cells. Here, we sought to further investigate whether HCP possessed other pathogenicity attributes associated with T4P production. Comparative studies performed with wild-type EHEC EDL933 and an isogenic hcpA mutant revealed that HCP play different roles in the biology of this organism. We found that in addition to promoting bacterial attachment to host cells, HCP mediate (i) invasion of epithelial cells, (ii) hemagglutination of rabbit erythrocytes, (iii) interbacterial connections conducive to biofilm formation, (iv) specific binding to host extracellular matrix proteins laminin and fibronectin but not collagen, and (v) twitching motility. Nonadherent laboratory E. coli strain HB101 complemented with hcpABC genes on plasmid pJX22, which specifies for HCP overproduction in EDL933, became hyperadherent and invasive and produced a thick biofilm, suggesting that the presence of HCP confers HB101(pJX22) new attributes otherwise not exhibited by HB101. Analogous to other bacteria in which T4P are involved in the pathogenesis of several infectious diseases, our data strongly suggest that HCP display multiple functions that may contribute to EHEC colonization of different hosts and to virulence, survival, and transmission of this food-borne pathogen.
Collapse
|
124
|
Donato KA, Zareie M, Jassem AN, Jandu N, Alingary N, Carusone SC, Johnson-Henry KC, Sherman PM. Escherichia albertii and Hafnia alvei are candidate enteric pathogens with divergent effects on intercellular tight junctions. Microb Pathog 2008; 45:377-85. [PMID: 18930803 DOI: 10.1016/j.micpath.2008.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/27/2008] [Accepted: 09/12/2008] [Indexed: 11/24/2022]
Abstract
Attaching-effacing lesion-inducing Escherichia albertii and the related, but non-attaching-effacing organism, Hafnia alvei, are both implicated as enteric pathogens in humans. However, effects of these bacteria on epithelial cells are not well-characterized. Related enteropathogens, including enterohemorrhagic Escherichia coli O157:H7, decrease epithelial barrier function by disrupting intercellular tight junctions in polarized epithelia. Therefore, this study assessed epithelial barrier function and tight junction protein distribution in polarized epithelia following bacterial infections. Polarized epithelial (MDCK-I and T84) cells grown on filter supports were infected apically with E. coli O157:H7, E. albertii, and H. alvei for 16h at 37 degrees C. All strains decreased transepithelial electrical resistance and increased permeability to a dextran probe in a host cell-dependent manner. Immunofluorescence microscopy showed that both E. coli O157:H7 and E. albertii, but not H. alvei, caused a redistribution of the tight junction protein zona occludens-1. In contrast to E. coli O157:H7, E. albertii and H. alvei did not redistribute claudin-1. Western blotting of whole cell protein extracts demonstrated that each bacterium caused differential changes in tight junction protein expression, dependent on the host cell. These findings demonstrate that E. albertii and H. alvei are candidate enteric pathogens that have both strain-specific and host epithelial cell-dependent effects.
Collapse
Affiliation(s)
- Kevin A Donato
- Cell Biology Program, Research Institute, Hospital for Sick Children, University of Toronto, Room 8409, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Guttman JA, Finlay BB. Subcellular alterations that lead to diarrhea during bacterial pathogenesis. Trends Microbiol 2008; 16:535-42. [PMID: 18819802 DOI: 10.1016/j.tim.2008.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/20/2008] [Accepted: 08/27/2008] [Indexed: 12/23/2022]
Abstract
Pathogenic microorganisms routinely exploit host cellular functions for their benefit. These alterations often enhance the survival and/or dissemination of the pathogen. However, these effects on the host can be quite debilitating. Consequently, an in-depth understanding of the molecular mechanisms employed by pathogens to manipulate their hosts is crucial. One of the common host phenotypes elicited by enteric pathogens is the generation of diarrhea. Here, we overview the current advances in understanding strategies used by bacterial pathogens to cause diarrheal diseases and discuss how the coordination of various subcellular events can influence disease progression.
Collapse
Affiliation(s)
- Julian A Guttman
- Simon Fraser University, Department of Biological Sciences, Shrum Science Centre, Room B8276, Burnaby, BC V5A 1S6, Canada.
| | | |
Collapse
|
126
|
Responses of cattle to gastrointestinal colonization by Escherichia coli O157:H7. Infect Immun 2008; 76:5366-72. [PMID: 18765741 DOI: 10.1128/iai.01223-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent research has established that the terminal rectum is the predominant colonization site of enterohemorrhagic Escherichia coli O157:H7 in cattle. The main aim of the present work was to investigate pathological changes and associated immune responses at this site in animals colonized with E. coli O157:H7. Tissue and gastrointestinal samples from a total of 22 weaned Holstein-cross calves challenged with E. coli O157:H7 were analyzed for bacterial colonization and pathology. Five unexposed age-matched calves were used as comparative negative controls. E. coli O157:H7 bacteria induced histopathological alterations of the rectal mucosa with enterocyte remodeling. This was often associated with removal of the colonized epithelial layer. Immunogold labeling and transmission electron microscopy (TEM) showed E. coli O157 bacteria on pedestals, as part of attaching and effacing lesions. These pathological changes induced a local infiltration of neutrophils that was quantified as larger in infected animals. Rectal mucosal immunoglobulin A responses were detected against the E. coli O157:H7 antigen. This work presents evidence that E. coli O157:H7 is not a commensal bacteria in the bovine host and that the mucosal damage produced by E. coli O157:H7 colonization of the terminal rectum induces a quantifiable innate immune response and production of specific mucosal antibodies.
Collapse
|
127
|
EspF Interacts with nucleation-promoting factors to recruit junctional proteins into pedestals for pedestal maturation and disruption of paracellular permeability. Infect Immun 2008; 76:3854-68. [PMID: 18559425 DOI: 10.1128/iai.00072-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pathogenic bacteria subvert normal host cell processes by delivering effector proteins which mimic eukaryotic functions directly into target cells. EspF is a multifunctional protein injected into host cells by attaching and effacing pathogens, but its mechanism of action is not understood completely. In silico analyses of EspF revealed two key motifs: proline-rich domains and PDZ domain binding motifs. Such functional domains may allow EspF to act as an actin nucleation-promoting factor by mimicking host proteins. In agreement with these predictions, we found that EspF from rabbit enteropathogenic Escherichia coli (E22) participates in the regulation of actin polymerization by binding to a complex of proteins at the tight junctions (TJ). EspF bound to actin and profilin throughout the course of infection. However, after 2 h of infection, EspF also bound to the neural Wiskott-Aldrich syndrome protein and to the Arp2/3, zonula occludens-1 (ZO-1), and ZO-2 proteins. Moreover, EspF caused occludin, claudin, ZO-1, and ZO-2 redistribution and loss of transepithelial electrical resistance, suggesting that actin sequestration by EspF may cause local actin depolymerization leading to EspF-induced TJ disruption. Furthermore, EspF caused recruitment of these TJ proteins into the pedestals. An E22 strain lacking EspF did not cause TJ disruption and pedestals were smaller than those induced by the wild-type strain. Additionally, the pedestals were located mainly in the TJ. The overexpression of EspF caused bigger pedestals located along the length of the cells. Thus, actin sequestration by EspF allows the recruitment of junctional proteins into the pedestals, leading to the maturation of actin pedestals and the disruption of paracellular permeability.
Collapse
|
128
|
Lebeis SL, Sherman MA, Kalman D. Protective and destructive innate immune responses to enteropathogenic Escherichia coli and related A/E pathogens. Future Microbiol 2008; 3:315-28. [DOI: 10.2217/17460913.3.3.315] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli (O157:H7) and Citrobacter rodentium are classified as attaching and effacing (A/E) pathogens based on their ability to adhere to intestinal epithelium, destroy microvilli and induce pedestal formation at the site of infection. A/E bacterial infections also cause acute diarrheal episodes and intestinal inflammation. The use of model systems has led to an understanding of the innate immune response to A/E pathogens. The innate immune system plays a protective role, initiating a productive antibody response, directly killing bacteria and inducing repair mechanisms following tissue damage caused by infection. However, hyperactivation of the innate immune system can have negative consequences, including exacerbated tissue destruction following neutrophil infiltration. Here we review how innate immune cell types, including neutrophils, macrophages and dendritic cells, orchestrate both protective and destructive responses. Such information is crucial for the development of therapeutics that can mitigate destructive inflammatory responses while accentuating those that are protective.
Collapse
Affiliation(s)
- Sarah L Lebeis
- Microbiology & Molecular Genetics Graduate Program, Emory University School of Medicine, 615 Michael Street, Whitehead Research Building #155, Atlanta, GA 30322, USA and, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, 615 Michael Street, Whitehead Research Building #144, Atlanta, GA 30322, USA
| | - Melanie A Sherman
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, 615 Michael Street, Whitehead Research Building #144, Atlanta, GA 30322, USA
| | - Daniel Kalman
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, 615 Michael Street, Whitehead Research Building #144, Atlanta, GA 30322, USA
| |
Collapse
|
129
|
Flynn AN, Buret AG. Tight junctional disruption and apoptosis in an in vitro model of Citrobacter rodentium infection. Microb Pathog 2008; 45:98-104. [PMID: 18504087 DOI: 10.1016/j.micpath.2007.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/27/2007] [Accepted: 12/14/2007] [Indexed: 12/12/2022]
Abstract
The murine model of Citrobacter rodentium infection has been used to complement in vitro studies of enteropathogenic Escherichia coli (EPEC) infections of human intestinal epithelial cells (IECs). However, the differences in epithelial cell responses between these two models are not fully understood. We used an in vitro model of C. rodentium infection to examine important, yet incompletely understood, cellular responses of murine IECs to this pathogen. C. rodentium attached to CMT-93 cells and disrupted their tight junctional expression of claudins-4 and -5. This was associated with a loss of barrier function that required live bacteria and was partially prevented by the inhibition of Rho kinase. Furthermore, C. rodentium caused an upregulation of IEC apoptosis that was associated with the cytoplasmic accumulation of apoptosis-inducing factor, but not with the activation of caspase-3. These studies demonstrate for the first time that C. rodentium affects murine IECs in ways that may be similar, but distinct, to the effects of EPEC on human IECs.
Collapse
Affiliation(s)
- Andrew N Flynn
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
130
|
Woo H, Okamoto S, Guiney D, Gunn JS, Fierer J. A model of Salmonella colitis with features of diarrhea in SLC11A1 wild-type mice. PLoS One 2008; 3:e1603. [PMID: 18270590 PMCID: PMC2225501 DOI: 10.1371/journal.pone.0001603] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 01/14/2008] [Indexed: 11/23/2022] Open
Abstract
Background Mice do not get diarrhea when orally infected with S. enterica, but pre-treatment with oral aminoglycosides makes them susceptible to Salmonella colitis. However, genetically susceptible ItyS mice (Nramp1G169D allele) die from systemic infection before they develop diarrhea, so a new model is needed to study the pathogenesis of diarrhea. We pretreated ItyR mice (Nramp1G169) with oral kanamycin prior to infecting them with virulent S. Typhimurium strain 14028s in order to study Salmonella-induced diarrhea. We used both a visual scoring system and the measurement of fecal water content to measure diarrhea. BALB/c.D2Nramp1 congenic started losing weight 5 days post-infection and they began to die from colitis 10–14 days after infection. A SPI-1 (invA) mutant caused cecal, but not colonic inflammation and did not cause diarrhea. A phoP- mutant did not cause manifestations of diarrhea in either normal or NADPH-deficient (gp91phox) mice. However, strain 14028s caused severe colitis and diarrhea in gp91phox-deficient mice on an ItyR background. pmr A and F mutants, which are less virulent in orally infected BALB/c mice, were fully virulent in this model of colitis. Conclusions S. enterica must be able to invade the colonic epithelium and to persist in the colon in order to cause colitis with manifestations of diarrhea. The NADPH oxidase is not required for diarrhea in Salmonella colitis. Furthermore, a Salmonella phoP mutant can be cleared from the colon by non-oxidative host defenses.
Collapse
Affiliation(s)
- Heungjeong Woo
- Department of Infectious Diseases, Veterans Affairs (VA) Healthcare, San Diego, California, United States of America
| | | | | | | | | |
Collapse
|
131
|
Macutkiewicz C, Carlson G, Clark E, Dobrindt U, Roberts I, Warhurst G. Characterisation of Escherichia coli strains involved in transcytosis across gut epithelial cells exposed to metabolic and inflammatory stress. Microbes Infect 2008; 10:424-31. [PMID: 18403240 DOI: 10.1016/j.micinf.2008.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 01/03/2008] [Accepted: 01/03/2008] [Indexed: 12/13/2022]
Abstract
Translocation of normally non-pathogenic bacteria across the gut may drive inflammatory responses associated with sepsis and inflammatory bowel disease. Recent evidence suggests translocation may not be purely passive, but occurs via novel transcellular pathways activated in enterocytes by inflammatory and metabolic stress. The specificity of this pathway with respect to different E. coli strains and other bacterial species, and possible molecular determinants of the "translocating" phenotype have been investigated. Translocation of E. coli strains and other bacteria was studied across Caco-2 monolayers exposed to different forms of cellular stress. All bacteria, apart from the pathogen Shigella sonnei, exhibited low levels of translocation in untreated monolayers. However, following enterocyte stress, translocation of E. coli strains C25 and HBTEC-1 was markedly stimulated, accompanied by increased internalisation into enterocytes. C25 and HBTEC-1 were typed to ECOR group A and group D respectively. Pathoarray analysis showed both strains had profiles quite different to those predicted for typical ExPEC isolates, lacking many of the genes associated with pathogenicity, although they contained several ORFs in common with ExPEC isolates. These data suggest translocating E. coli strains associated with infections are not opportunistic ExPEC strains but may comprise a separate group of E. coli strains.
Collapse
Affiliation(s)
- Christian Macutkiewicz
- Infection, Injury and Inflammation Research Group, Salford Royal NHS Foundation Trust, Hope Hospital, Salford M6 8HD, UK
| | | | | | | | | | | |
Collapse
|
132
|
Wu X, Vallance BA, Boyer L, Bergstrom KSB, Walker J, Madsen K, O'Kusky JR, Buchan AM, Jacobson K. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am J Physiol Gastrointest Liver Physiol 2008; 294:G295-306. [PMID: 18032474 DOI: 10.1152/ajpgi.00173.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Saccharomyces boulardii has received increasing attention as a probiotic effective in the prevention and treatment of infectious and inflammatory bowel diseases. The aim of this study was to examine the ameliorating effects of S. boulardii on Citrobacter rodentium colitis in vivo and identify potential mechanisms of action. C57BL/6 mice received 2.5 x 10(8) C. rodentium by gavage on day 0, followed by S. boulardii (25 mg; 5 x 10(8) live cells) gavaged twice daily from day 2 to day 9. Animal weights were monitored until death on day 10. Colons were removed and assessed for epithelial barrier function, histology, and myeloperoxidase activity. Bacterial epithelial attachment and type III secreted proteins translocated intimin receptor Tir (the receptor for bacterial intimin) and EspB (a translocation apparatus protein) required for bacterial virulence were assayed. In infected mice, S. boulardii treatment significantly attenuated weight loss, ameliorated crypt hyperplasia (234.7 +/- 7.2 vs. 297.8 +/- 17.6 microm) and histological damage score (0.67 +/- 0.67 vs. 4.75 +/- 0.75), reduced myeloperoxidase activity (2.1 +/- 0.4 vs. 4.7 +/- 0.9 U/mg), and attenuated increased mannitol flux (17.2 +/- 5.0 vs. 31.2 +/- 8.2 nm.cm(-2).h(-1)). The ameliorating effects of S. boulardii were associated with significantly reduced numbers of mucosal adherent C. rodentium, a marked reduction in Tir protein secretion and translocation into mouse colonocytes, and a striking reduction in EspB expression and secretion. We conclude that S. boulardii maintained colonic epithelial barrier integrity and ameliorated inflammatory sequelae associated with C. rodentium infection by attenuating C. rodentium adherence to host epithelial cells through putative actions on the type III secretion system.
Collapse
Affiliation(s)
- X Wu
- Div. of Gastroenterology, BC Children's Hospital, 4480 Oak St., Rm. K4-181, Vancouver, BC, Canada V6H 3V4
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
PURPOSE OF REVIEW There have been considerable advances in our understanding of the molecular pathogenesis of enteropathogenic Escherichia coli and enterohemorrhagic E. coli infection. Given the difficulty of infecting laboratory mice with these diarrhea-causing pathogens, a growing number of studies have found the murine bacterial pathogen Citrobacter rodentium to provide a robust, relevant in-vivo model system. RECENT FINDINGS All inbred strains and outbred stocks of laboratory mice studied to date have been found to be susceptible to C. rodentium infection. The natural course of disease ranges from subclinical epithelial hyperplasia in the colon, to clinical diarrhea and colitis, to fatal infection, depending on the age, genetic background, and health status of the host. Infection is self-limiting, leading to disease resolution and protective immunity. Here we review recent discoveries related to bacterial virulence determinants, epithelial hyperplasia, innate and adaptive immune responses, and mechanisms of diarrhea. SUMMARY Infection of laboratory mice with C. rodentium provides a useful in-vivo model for studying the pathogenesis of infectious gastroenteritis and acute diarrheal illness, and for preclinical evaluation of candidate preventive and therapeutic agents.
Collapse
|
134
|
Shoaf-Sweeney KD, Hutkins RW. Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 55:101-61. [PMID: 18772103 DOI: 10.1016/s1043-4526(08)00402-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For many pathogenic bacteria, infections are initiated only after the organism has first adhered to the host cell surface. If adherence can be inhibited, then the subsequent infection can also be inhibited. This approach forms the basis of anti-adherence strategies, which have been devised to prevent a variety of bacterial infections. In this chapter, the molecular basis by which respiratory, urinary, and gastrointestinal tract pathogens adhere to host cells will be described. The five general types of anti-adherence agents will also be reviewed. The most well-studied are the receptor analogs, which include oligosaccharides produced synthetically or derived from natural sources, including milk, berries, and other plants. Their ability to inhibit pathogen adherence may lead to development of novel, food-grade anti-infective agents that are inexpensive and safe.
Collapse
Affiliation(s)
- Kari D Shoaf-Sweeney
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
135
|
Abstract
Type III secretion systems (T3SSs) are complex bacterial structures that provide gram-negative pathogens with a unique virulence mechanism enabling them to inject bacterial effector proteins directly into the host cell cytoplasm, bypassing the extracellular milieu. Although the effector proteins vary among different T3SS pathogens, common pathogenic mechanisms emerge, including interference with the host cell cytoskeleton to promote attachment and invasion, interference with cellular trafficking processes, cytotoxicity and barrier dysfunction, and immune system subversion. The activity of the T3SSs correlates closely with infection progression and outcome, both in animal models and in human infection. Therefore, to facilitate patient care and improve outcomes, it is important to understand the T3SS-mediated virulence processes and to target T3SSs in therapeutic and prophylactic development efforts.
Collapse
|
136
|
Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen. Infect Immun 2007; 76:796-811. [PMID: 17984203 DOI: 10.1128/iai.00093-07] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The attaching and effacing (A/E) bacterial pathogens enteropathogenic Escherichia coli and enterohemorrhagic E. coli and the related mouse pathogen Citrobacter rodentium colonize their hosts' intestines by infecting the apical surfaces of enterocytes, subverting their function, and they ultimately cause diarrhea. Surprisingly, little is known about the interactions of these organisms with goblet cells, which are specialized epithelial cells that secrete the protective molecules Muc2 and trefoil factor 3 (Tff3) into the intestinal lumen. C. rodentium infection leads to dramatic goblet cell depletion within the infected colon, yet it is not clear whether C. rodentium infects goblet cells or if this pathology is pathogen or host mediated. As determined by immunostaining and PCR, both the number of goblet cells and the expression of genes encoding Muc2 and Tff3 were significantly reduced by day 10 postinfection. While electron microscopy and immunostaining revealed that C. rodentium directly infected a fraction of colonic goblet cells, C. rodentium localization did not correlate with goblet cell depletion. To assess the role of the host immune system in these changes, Rag1 knockout (KO) (T- and B-cell-deficient) mice were infected with C. rodentium. Rag1 KO mice did not exhibit the reduction in the number of goblet cells or in mediator (Muc2 and Tff3) expression observed in infected immunocompetent mice. However, reconstitution of Rag1 KO mice with T and B lymphocytes from C57BL/6 mice restored the goblet cell depletion phenotype during C. rodentium infection. In conclusion, these studies demonstrated that while colonic goblet cells can be subject to direct infection and potential subversion by A/E pathogens in vivo, it is the host immune system that primarily modulates the function of these cells during infection.
Collapse
|
137
|
Gibson DL, Ma C, Rosenberger CM, Bergstrom KSB, Valdez Y, Huang JT, Khan MA, Vallance BA. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell Microbiol 2007; 10:388-403. [PMID: 17910742 DOI: 10.1111/j.1462-5822.2007.01052.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammatory bowel diseases and infectious gastroenteritis likely occur when the integrity of intestinal barriers is disrupted allowing luminal bacterial products to cross into the intestinal mucosa, stimulating immune cells and triggering inflammation. While specific Toll-like receptors (TLR) are involved in the generation of inflammatory responses against enteric bacteria, their contributions to the maintenance of intestinal mucosal integrity are less clear. These studies investigated the role of TLR2 in a model of murine colitis induced by the bacterial pathogen Citrobacter rodentium. C. rodentium supernatants specifically activated TLR2 in vitro while infected TLR2-/- mice suffered a lethal colitis coincident with colonic mucosal ulcerations, bleeding and increased cell death but not increased pathogen burden. TLR2-/- mice suffered impaired epithelial barrier function mediated via zonula occludens (ZO)-1 in naïve mice and claudin-3 in infected mice, suggesting this could underlie their susceptibility. TLR2 deficiency was also associated with impaired production of IL-6 by bone marrow-derived macrophages and infected colons cultured ex vivo. As IL-6 has antiapoptotic and epithelial repair capabilities, its reduced expression could contribute to the impaired mucosal integrity. These studies report for the first time that TLR2 plays a critical role in maintaining intestinal mucosal integrity during infection by a bacterial pathogen.
Collapse
Affiliation(s)
- Deanna L Gibson
- Division of Gastroenterology, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Guttman JA, Kazemi P, Lin AE, Vogl AW, Finlay BB. Desmosomes are unaltered during infections by attaching and effacing pathogens. Anat Rec (Hoboken) 2007; 290:199-205. [PMID: 17441212 DOI: 10.1002/ar.20414] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human attaching and effacing (A/E) intestinal pathogens enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and the murine A/E pathogen Citrobacter rodentium cause serious diarrhea in their hosts. These bacteria alter numerous host cell components, including organelles, the host cell cytoskeleton, and tight junctions during the infectious process. One of the proteins that contribute to the intermediate filament network in host cells, cytokeratin-18, is extensively altered during EPEC infections. Based on this, we tested the hypothesis that desmosomes, the only intercellular junctions that interact with intermediate filaments, are also influenced by A/E pathogen infections. We found that the desmosomal transmembrane proteins desmoglein and desmocollin, as well as the desmosome plaque protein desmoplakin, all remain unchanged during EPEC infection in vitro. This evidence is corroborated by the unaltered localization of desmoglein and desmoplakin in vivo in mice infected with C. rodentium for 7 days. Electron microscopic analysis of 7-day C. rodentium-infected murine colonocytes also show no observable differences in the desmosomes when compared to uninfected controls. Our data suggest that, unlike tight junctions, the desmosome protein levels and localization, as well as desmosome morphology, are unaltered during A/E pathogenesis.
Collapse
Affiliation(s)
- Julian A Guttman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
139
|
Nagaosa K, Kishimoto A, Kizu R, Nakagawa A, Shiratsuchi A, Nakanishi Y. Perturbation of spermatogenesis by androgen antagonists directly injected into seminiferous tubules of live mice. Reproduction 2007; 133:21-7. [PMID: 17244729 DOI: 10.1530/rep-06-0236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Natural and artificial substances present in the environment can affect our health. Testicular toxicants in particular are troublesome, because they disturb gonadal function of males. Translocation of substances into the seminiferous epithelium where sperm production proceeds is restricted due to the blood–testis barrier, but this permeability barrier temporarily disappears under physiological and sub-physiological conditions. This means that any substance could enter the seminiferous epithelium and disturb sperm production. To reduce the risk posed by such toxins, it is important to accurately determine which substances possess the toxicity. However, existing assay systems are not satisfactory in terms of both accuracy and sensitivity. Here, we report the establishment of such a system. We injected the androgen antagonists, flutamide and vinclozolin, directly into seminiferous tubules of live mice, which had been treated with busulfan for a temporal arrest of spermatogenesis, and the testes were histologically examined to see the effect of the injected materials on spermatogenesis that was in the process of recovery. The injection of either substance brought about a severe impairment of spermatogenesis at an amount over a million times smaller than that used in the previous assay systems where animals are administered with test substances outside of the testis. In contrast, these androgen antagonists at the same doses showed lesser effects when intratubularly or intraperitoneally administered into mice that had not been pretreated with busulfan. We propose that the method adopted in this study is a novel assay system to identify potential testicular toxicants.
Collapse
Affiliation(s)
- Kaz Nagaosa
- Graduate School of Natural Science and Technology and Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
140
|
Brooks TA, Ocheltree SM, Seelbach MJ, Charles RA, Nametz N, Egleton RD, Davis TP. Biphasic cytoarchitecture and functional changes in the BBB induced by chronic inflammatory pain. Brain Res 2006; 1120:172-82. [PMID: 17007822 PMCID: PMC3893032 DOI: 10.1016/j.brainres.2006.08.085] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic system which maintains brain homeostasis and limits CNS penetration via interactions of transmembrane and intracellular proteins. Inflammatory pain (IP) is a condition underlying several diseases with known BBB perturbations, including stroke, Parkinson's, multiple sclerosis and Alzheimer's. Exploring the underlying pathology of chronic IP, we demonstrated alterations in BBB paracellular permeability with correlating changes in tight junction (TJ) proteins: occludin and claudin-5. The present study examines the IP-induced molecular changes leading to a loss in functional BBB integrity. IP was induced by injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the right hindpaw of female Sprague-Dawley rats. Inflammation and hyperalgesia were confirmed, and BBB paracellular permeability was assessed by in situ brain perfusion of [14C]sucrose (paracellular diffusion marker). The permeability of the BBB was significantly increased at 24 and 72 h post-CFA. Analysis of the TJ proteins, which control the paracellular pathway, demonstrated decreased claudin-5 expression at 24 h, and an increase at 48 and 72 h post-injection. Occludin expression was significantly decreased 72 h post-CFA. Expression of junction adhesion molecule-1 (JAM-1) increased 48 h and decreased by 72 h post-CFA. Confocal microscopy demonstrated continuous expression of both occludin and JAM-1, each co-localizing with ZO-1. The increased claudin-5 expression was not limited to the junction. These results provide evidence that chronic IP causes dramatic alterations in specific cytoarchitectural proteins and demonstrate alterations in molecular properties during CFA, resulting in significant changes in BBB paracellular permeability.
Collapse
Affiliation(s)
- Tracy A. Brooks
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Avenue Tucson, AZ 85724-5050, USA
| | - Scott M. Ocheltree
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Avenue Tucson, AZ 85724-5050, USA
| | - Melissa J. Seelbach
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Avenue Tucson, AZ 85724-5050, USA
| | - Rachael A. Charles
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Avenue Tucson, AZ 85724-5050, USA
| | - Nicole Nametz
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Avenue Tucson, AZ 85724-5050, USA
| | - Richard D. Egleton
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Avenue Tucson, AZ 85724-5050, USA
| | - Thomas P. Davis
- Department of Medical Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Avenue Tucson, AZ 85724-5050, USA
| |
Collapse
|
141
|
Nougayrède JP, Foster GH, Donnenberg MS. Enteropathogenic Escherichia coli effector EspF interacts with host protein Abcf2. Cell Microbiol 2006; 9:680-93. [PMID: 17064289 DOI: 10.1111/j.1462-5822.2006.00820.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major causative agent of infant diarrhoea in developing countries. The EspF effector protein is injected from EPEC into host cells via a type III secretion system and is involved in the disruption of host intestinal barrier function. In addition, EspF is sorted to mitochondria and has a role in initiating the mitochondrial death pathway. To clarify the manner in which EspF affects host cells, we sought to identify eukaryotic EspF-binding proteins using affinity purification. Abcf2, a protein of unknown function and member of the ABC-transporter family, bound EspF in this assay. An interaction between EspF and Abcf2 was confirmed in a yeast two-hybrid system, by colocalization and by co-immunoprecipitation from EPEC-infected cells. Levels of Abcf2 were decreased in cells infected with EPEC in an EspF dose-dependent manner. Knock-down of Abcf2 expression by RNA interference increased EspF-induced caspase 9 and caspase 3 cleavage. In addition, Abcf2-knocked down cells showed increased caspase 3 cleavage upon treatment with the apoptosis inducing agent staurosporine. These results indicate that EspF induces or facilitates host cell death by targeting and interfering with the putative protective function of Abcf2.
Collapse
Affiliation(s)
- Jean-Philippe Nougayrède
- University of Maryland Baltimore, School of Medicine, Division of Infectious Diseases, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
142
|
Guttman JA, Samji FN, Li Y, Vogl AW, Finlay BB. Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infect Immun 2006; 74:6075-84. [PMID: 16954399 PMCID: PMC1695516 DOI: 10.1128/iai.00721-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is widely accepted that tight junctions are altered during infections by attaching and effacing (A/E) pathogens. These disruptions have been demonstrated both in vitro and more recently in vivo. For in vivo experiments, the murine model of A/E infection with Citrobacter rodentium is the animal model of choice. In addition to effects on tight junctions, these bacteria also colonize the colon at high levels, efface colonocyte microvilli, and cause hyperplasia and inflammation. Although we have recently demonstrated that tight junctions are disrupted by C. rodentium, the issue of direct effects of bacteria on epithelial cell junctions versus the indirect effects of inflammation still remains to be clarified. Here, we demonstrate that during the C. rodentium infections, inflammation plays no discernible role in the alteration of tight junctions. The distribution of the tight junction proteins, claudin-1, -3, and -5, are unaffected in inflamed colon, and junctions appear morphologically unaltered when viewed by electron microscopy. Additionally, tracer molecules are not capable of penetrating the inflamed colonic epithelium of infected mice that have cleared the bacteria. Finally, infected colonocytes from mice exposed to C. rodentium for 14 days, which have high levels of bacterial attachment to colonocytes as well as inflammation, have characteristic, altered claudin localization whereas cells adjacent to infected colonocytes retain their normal claudin distribution. We conclude that inflammation plays no discernible role in tight junction alteration during A/E pathogenesis and that tight junction disruption in vivo appears dependent only on the direct intimate attachment of the pathogenic bacteria to the cells.
Collapse
Affiliation(s)
- Julian A Guttman
- The University of British Columbia, Michael Smith Laboratories, and Department of Cellular and Physiological Sciences, 301-2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
143
|
Guttman JA, Samji FN, Li Y, Deng W, Lin A, Finlay BB. Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell Microbiol 2006; 9:131-41. [PMID: 16889624 DOI: 10.1111/j.1462-5822.2006.00773.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Attaching and effacing (A/E) pathogens such as enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) cause serious global health problems. These bacteria colonize the gastrointestinal system, attach to intestinal epithelial cells, efface (collapse) infected cell microvilli and cause overt diarrhoea that may ultimately result in death of the host. Although pathogenically induced diarrhoea is a significant global health issue, the molecular mechanisms that underlie this disease remain largely unknown. A natural murine infection model, employing the A/E pathogen Citrobacter rodentium, has been helpful in studying the diseases in vivo. C. rodentium colonize the colon at high levels, attach to colonocytes, efface microvilli and cause hyperplasia and inflammation in infected mice. As the disease progresses, the mice develop a diarrhoea-like phenotype. Aquaporin (AQP) water channels have been proposed to play a role in the normal dehydration of faecal contents. Here we examine whether C. rodentium infection may alter AQP localization in colonocytes. We demonstrate that during infection, AQP2 and AQP3 are mislocalized from their normal location along cell membranes to the cell cytoplasm. The change in localization of these proteins correlates with the diarrhoea-like phenotype present in infected mice. Mice that recover from the infection at 28-35 days post inoculum regain their normal membrane AQP localization. The altered localization of AQPs is partially dependent on the bacterial type III effector proteins EspF and EspG. We conclude that altered AQP localization may be a contributing factor to diarrhoea during bacterial infection.
Collapse
Affiliation(s)
- Julian A Guttman
- The University of British Columbia, Michael Smith Laboratories, 301-2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | | | |
Collapse
|
144
|
Ma C, Wickham ME, Guttman JA, Deng W, Walker J, Madsen KL, Jacobson K, Vogl WA, Finlay BB, Vallance BA. Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cell Microbiol 2006; 8:1669-86. [PMID: 16759225 DOI: 10.1111/j.1462-5822.2006.00741.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli are non-invasive attaching/effacing (A/E) bacterial pathogens that infect their host's intestinal epithelium, causing severe diarrhoeal disease. These bacteria utilize a type III secretion apparatus to deliver effector molecules into host cells, subverting cellular function. Mitochondrial associated protein (Map) is a multifunctional effector protein that targets host cell mitochondria and contributes to infection-induced epithelial barrier dysfunction in vitro. Unfortunately, the relevance of these actions to the pathogenesis of EPEC-induced disease is uncertain. Using Citrobacter rodentium, a mouse-adapted A/E bacterium, we found that Map colocalized with host cell mitochondria, and that in vivo infection led to a disruption of mitochondrial morphology in infected colonocytes as assessed by electron microscopy. Histochemical staining for the mitochondrial enzyme succinate dehydrogenase also revealed a significant loss of mitochondrial respiratory function in the infected intestinal epithelium; however, both pathologies were attenuated in mice infected with a Deltamap strain. C. rodentium Map was also implicated in the disruption of epithelial barrier function both in vitro and in vivo. These studies thus advance our understanding of how A/E pathogens subvert host cell functions and cause disease, demonstrating that Map contributes to the functional disruption of the intestinal epithelium during enteric infection by C. rodentium.
Collapse
Affiliation(s)
- Caixia Ma
- Division of Gastroenterology, BC's Children's Hospital, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|