101
|
Wang ZZ, Xu HC, Zhou HX, Zhang CK, Li BM, He JH, Ni PS, Yu XM, Liu YQ, Li FH. Long-term detraining reverses the improvement of lifelong exercise on skeletal muscle ferroptosis and inflammation in aging rats: fiber-type dependence of the Keap1/Nrf2 pathway. Biogerontology 2023; 24:753-769. [PMID: 37289374 DOI: 10.1007/s10522-023-10042-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
We investigated the effects of lifelong aerobic exercise and 8 months of detraining after 10 months of aerobic training on circulation, skeletal muscle oxidative stress, and inflammation in aging rats. Sprague-Dawley rats were randomly assigned to the control (CON), detraining (DET), and lifelong aerobic training (LAT) groups. The DET and LAT groups began aerobic treadmill exercise at the age of 8 months and stopped training at the 18th and 26th month, respectively; all rats were sacrificed when aged 26 months. Compared with CON, LAT remarkably decreased serum and aged skeletal muscle 4-hydroxynonenal (4-HNE) and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. Superoxide dismutase 2(SOD2) levels were higher in the LAT group than in the CON group in skeletal muscle. However, DET remarkably decreased SOD2 protein expression and content in the skeletal muscle and increased malondialdehyde (MDA) level compared with LAT. Compared with LAT, DET remarkably downregulated adiponectin and upregulated tumor necrosis factor alpha (TNF-α) expression, while phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and 70-kDa ribosomal protein S6 kinase (P70S6K) protein expression decreased, and that of FoxO1 and muscle atrophy F-box (MAFbX) proteins increased in the quadriceps femoris. Adiponectin and TNF-α expression in the soleus muscle did not change between groups, whereas that of AKT, mammalian target of rapamycin (mTOR), and P70S6K was lower in the soleus in the DET group than in that in the LAT group. Compared with that in the LAT group, sestrin1 (SES1) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression in the DET group was lower, whereas Keap1 mRNA expression was remarkably upregulated in the quadriceps femoris. Interestingly, the protein and mRNA levels of SES1, Nrf2, and Keap1 in soleus muscle did not differ between groups. LAT remarkably upregulated ferritin heavy polypeptide 1(FTH), glutathione peroxidase 4(GPX4), and solute carrier family 7member 11 (SLC7A11) protein expression in the quadriceps femoris and soleus muscles, compared with CON. However, compared with LAT, DET downregulated FTH, GPX4, and SLC7A11 protein expression in the quadriceps femoris and soleus muscles. Long-term detraining during the aging phase reverses the improvement effect of lifelong exercise on oxidative stress, inflammation, ferroptosis, and muscle atrophy in aging skeletal muscle. The quadriceps femoris is more evident than the soleus, which may be related to the different changes in the Keap1/Nrf2 pathway in different skeletal muscles.
Collapse
Affiliation(s)
- Zhuang-Zhi Wang
- School of Sport Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hai-Chen Xu
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Huan-Xia Zhou
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Chen-Kai Zhang
- School of Sport Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bo-Ming Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jia-Han He
- School of Sport Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Pin-Shi Ni
- School of Sport Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiao-Ming Yu
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yun-Qing Liu
- Changzhou Sports Hospital, Changzhou, 213022, China
| | - Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, 210023, China.
- School of Sport Sciences, Zhaoqing University, Zhaoqing, 222023, China.
| |
Collapse
|
102
|
Fang Y, Medina D, Stockwell R, McFadden S, Quinn K, Peck MR, Bartke A, Hascup KN, Hascup ER. Sexual dimorphic metabolic and cognitive responses of C57BL/6 mice to Fisetin or Dasatinib and quercetin cocktail oral treatment. GeroScience 2023; 45:2835-2850. [PMID: 37296266 PMCID: PMC10643448 DOI: 10.1007/s11357-023-00843-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Senolytic treatment in aged mice clears senescent cell burden leading to functional improvements. However, less is known regarding the effects of these compounds when administered prior to significant senescent cell accumulation. From 4-13 months of age, C57BL/6 male and female mice received monthly oral dosing of either 100 mg/kg Fisetin or a 5 mg/kg Dasatinib (D) plus 50 mg/kg Quercetin (Q) cocktail. During treatment, several aspects of healthy aging were assayed including glucose metabolism using an insulin and glucose tolerance test, cognitive performance using Morris water maze and novel object recognition, and energy metabolism using indirect calorimetry. Afterwards, mice were euthanized for plasma, tissue specific markers of senescence-associated secretory phenotype (SASP), and white adipose tissue accumulation (WAT). Sexually dimorphic treatment effects were observed. Fisetin treated male mice had reduced SASP, enhanced glucose and energy metabolism, improved cognitive performance, and increased mRNA expression of adiponectin receptor 1 and glucose transporter 4. D + Q treatment had minimal effects in male C57BL/6 mice, but was detrimental to females causing increased SASP expression along with accumulation of WAT depots. Reduced energy metabolism and cognitive performance were also noted. Fisetin treatment had no effect in female C57BL/6 mice potentially due to a slower rate of biological aging. In summary, the senolytic treatment in young adulthood, has beneficial, negligible, or detrimental effects in C57BL/6 mice dependent upon sex and treatment. These observations should serve as a note of caution in this rapidly evolving and expanding field of investigation. Male and female C57BL/6 mice were treated with once monthly oral doses of either Dasatinib (D) + Quercetin (Q) or Fisetin from 4-13 months of age. Males treated with Fisetin had reduced SASP markers (blue spheres) as well as improved metabolism (red flame) and cognition. Females treated with D + Q had increased adiposity and SASP markers (red spheres) along with decreased metabolism (blue flame) and cognitive performance. No effects were observed in females treated with Fisetin or males treated with D + Q.
Collapse
Affiliation(s)
- Yimin Fang
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - David Medina
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Robert Stockwell
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Sam McFadden
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kathleen Quinn
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Mackenzie R Peck
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kevin N Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Erin R Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
103
|
Menghuan L, Yang Y, Qianhe M, Na Z, Shicheng C, Bo C, XueJie YI. Advances in research of biological functions of Isthmin-1. J Cell Commun Signal 2023; 17:507-521. [PMID: 36995541 PMCID: PMC10409700 DOI: 10.1007/s12079-023-00732-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Isthmin-1 (ISM1) was initially thought to be a brain secretory factor, but with the development of technical means of research and the refinement of animal models, numerous studies have shown that this molecule is expressed in multiple tissues, suggesting that it may have multiple biological functions. As a factor that regulates growth and development, ISM1 is expressed in different animals with spatial and temporal variability and can coordinate the normal development of multiple organs. Recent studies have found that under the dependence of a non-insulin pathway, ISM1 can lower blood glucose, inhibit insulin-regulated lipid synthesis, promote protein synthesis, and affect the body's glucolipid and protein metabolism. In addition, ISM1 plays an important role in cancer development by promoting apoptosis and anti-angiogenesis, and by regulating multiple inflammatory pathways to influence the body's immune response. The purpose of this paper is to summarize relevant research results from recent years and to describe the key features of the biological functions of ISM1. We aimed to provide a theoretical basis for the study of ISM1 related diseases, and potential therapeutic strategies. The main biological functions of ISM1. Current studies on the biological functions of ISM1 focus on growth and development, metabolism, and anticancer treatment. During embryonic development, ISM1 is dynamically expressed in the zebrafish, African clawed frog, chick, mouse, and human, is associated with craniofacial malformations, abnormal heart localization, and hematopoietic dysfunction. ISM1 plays an important role in regulating glucose metabolism, lipid metabolism, and protein metabolism in the body. ISM1 affects cancer development by regulating cellular autophagy, angiogenesis, and the immune microenvironment.
Collapse
Affiliation(s)
- Li Menghuan
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Yang Yang
- School of Sports and Human Sciences, Shanghai Sport University, Shanghai, 200438, China
| | - Ma Qianhe
- School of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Zhang Na
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Cao Shicheng
- Department of Sports Medicine, China Medical University, Shenyang, China
| | - Chang Bo
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China.
| | - Y I XueJie
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, No.36 Qiangsong East Road, Sujiatun District, Shenyang, 110115, Liaoning Province, China.
| |
Collapse
|
104
|
Nerstedt A, Smith U. The impact of cellular senescence in human adipose tissue. J Cell Commun Signal 2023; 17:563-573. [PMID: 37195383 PMCID: PMC10409694 DOI: 10.1007/s12079-023-00769-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023] Open
Abstract
In the last decades the prevalence of obesity has increased dramatically, and the worldwide epidemic of obesity and related metabolic diseases has contributed to an increased interest for the adipose tissue (AT), the primary site for storage of lipids, as a metabolically dynamic and endocrine organ. Subcutaneous AT is the depot with the largest capacity to store excess energy and when its limit for storage is reached hypertrophic obesity, local inflammation, insulin resistance and ultimately type 2 diabetes (T2D) will develop. Hypertrophic AT is also associated with a dysfunctional adipogenesis, depending on the inability to recruit and differentiate new mature adipose cells. Lately, cellular senescence (CS), an aging mechanism defined as an irreversible growth arrest that occurs in response to various cellular stressors, such as telomere shortening, DNA damage and oxidative stress, has gained a lot of attention as a regulator of metabolic tissues and aging-associated conditions. The abundance of senescent cells increases not only with aging but also in hypertrophic obesity independent of age. Senescent AT is characterized by dysfunctional cells, increased inflammation, decreased insulin sensitivity and lipid storage. AT resident cells, such as progenitor cells (APC), non-proliferating mature cells and microvascular endothelial cells are affected with an increased senescence burden. Dysfunctional APC have both an impaired adipogenic and proliferative capacity. Interestingly, human mature adipose cells from obese hyperinsulinemic individuals have been shown to re-enter the cell cycle and senesce, which indicates an increased endoreplication. CS was also found to be more pronounced in mature cells from T2D individuals, compared to matched non-diabetic individuals, with decreased insulin sensitivity and adipogenic capacity. Factors associated with cellular senescence in human adipose tissue.
Collapse
Affiliation(s)
- Annika Nerstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, SE-413 45, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, SE-413 45, Gothenburg, Sweden.
| |
Collapse
|
105
|
Wang H, Lu J, Stevens T, Roberts A, Mandel J, Avula R, Ma B, Wu Y, Wang J, Land CV, Finkel T, Vockley JE, Airik M, Airik R, Muzumdar R, Gong Z, Torbenson MS, Prochownik EV. Premature aging and reduced cancer incidence associated with near-complete body-wide Myc inactivation. Cell Rep 2023; 42:112830. [PMID: 37481724 PMCID: PMC10591215 DOI: 10.1016/j.celrep.2023.112830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
MYC proto-oncogene dysregulation alters metabolism, translation, and other functions in ways that support tumor induction and maintenance. Although Myc+/- mice are healthier and longer-lived than control mice, the long-term ramifications of more complete Myc loss remain unknown. We now describe the chronic consequences of body-wide Myc inactivation initiated postnatally. "MycKO" mice acquire numerous features of premature aging, including altered body composition and habitus, metabolic dysfunction, hepatic steatosis, and dysregulation of gene sets involved in functions that normally deteriorate with aging. Yet, MycKO mice have extended lifespans that correlate with a 3- to 4-fold lower lifetime cancer incidence. Aging tissues from normal mice and humans also downregulate Myc and gradually alter many of the same Myc target gene sets seen in MycKO mice. Normal aging and its associated cancer predisposition are thus highly linked via Myc.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alexander Roberts
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jordan Mandel
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Raghunandan Avula
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Bingwei Ma
- Tongji University School of Medicine, Shanghai, China
| | - Yijen Wu
- Department of Developmental Biology, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Jinglin Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Central South University, Xiangya School of Medicine, Changsha, Hunan 410013, P.R. China
| | - Clinton Van't Land
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Toren Finkel
- Division of Cardiology, The Department of Internal Medicine and the UPMC Aging Institute, Pittsburgh, PA 15224, USA
| | - Jerry E Vockley
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Merlin Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rannar Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Radhika Muzumdar
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zhenwei Gong
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Michel S Torbenson
- Division of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, MN 55905, USA
| | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15261, USA; Hillman Cancer Center of UPMC, Pittsburgh, PA 15232, USA; Pittsburgh Liver Research Center, UPMC, Pittsburgh, PA 15261, USA.
| |
Collapse
|
106
|
Lluch A, Latorre J, Serena-Maione A, Espadas I, Caballano-Infantes E, Moreno-Navarrete JM, Oliveras-Cañellas N, Ricart W, Malagón MM, Martin-Montalvo A, Birchmeier W, Szymanski W, Graumann J, Gómez-Serrano M, Sommariva E, Fernández-Real JM, Ortega FJ. Impaired Plakophilin-2 in obesity breaks cell cycle dynamics to breed adipocyte senescence. Nat Commun 2023; 14:5106. [PMID: 37607954 PMCID: PMC10444784 DOI: 10.1038/s41467-023-40596-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Plakophilin-2 (PKP2) is a key component of desmosomes, which, when defective, is known to promote the fibro-fatty infiltration of heart muscle. Less attention has been given to its role in adipose tissue. We report here that levels of PKP2 steadily increase during fat cell differentiation, and are compromised if adipocytes are exposed to a pro-inflammatory milieu. Accordingly, expression of PKP2 in subcutaneous adipose tissue diminishes in patients with obesity, and normalizes upon mild-to-intense weight loss. We further show defective PKP2 in adipocytes to break cell cycle dynamics and yield premature senescence, a key rheostat for stress-induced adipose tissue dysfunction. Conversely, restoring PKP2 in inflamed adipocytes rewires E2F signaling towards the re-activation of cell cycle and decreased senescence. Our findings connect the expression of PKP2 in fat cells to the physiopathology of obesity, as well as uncover a previously unknown defect in cell cycle and adipocyte senescence due to impaired PKP2.
Collapse
Affiliation(s)
- Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Angela Serena-Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Isabel Espadas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | - Estefanía Caballano-Infantes
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José M Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María M Malagón
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, Cordoba, Spain
| | - Alejandro Martin-Montalvo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | | | - Witold Szymanski
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - José M Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Francisco J Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
107
|
Prochownik EV, Wang H. Lessons in aging from Myc knockout mouse models. Front Cell Dev Biol 2023; 11:1244321. [PMID: 37621775 PMCID: PMC10446843 DOI: 10.3389/fcell.2023.1244321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Despite MYC being among the most intensively studied oncogenes, its role in normal development has not been determined as Myc-/- mice do not survival beyond mid-gestation. Myc ± mice live longer than their wild-type counterparts and are slower to accumulate many age-related phenotypes. However, Myc haplo-insufficiency likely conceals other important phenotypes as many high-affinity Myc targets genes continue to be regulated normally. By delaying Myc inactivation until after birth it has recently been possible to study the consequences of its near-complete total body loss and thus to infer its normal function. Against expectation, these "MycKO" mice lived significantly longer than control wild-type mice but manifested a marked premature aging phenotype. This seemingly paradoxical behavior was potentially explained by a >3-fold lower lifetime incidence of cancer, normally the most common cause of death in mice and often Myc-driven. Myc loss accelerated the accumulation of numerous "Aging Hallmarks", including the loss of mitochondrial and ribosomal structural and functional integrity, the generation of reactive oxygen species, the acquisition of genotoxic damage, the detrimental rewiring of metabolism and the onset of senescence. In both mice and humans, normal aging in many tissues was accompaniued by the downregulation of Myc and the loss of Myc target gene regulation. Unlike most mouse models of premature aging, which are based on monogenic disorders of DNA damage recognition and repair, the MycKO mouse model directly impacts most Aging Hallmarks and may therefore more faithfully replicate the normal aging process of both mice and humans. It further establishes that the strong association between aging and cancer can be genetically separated and is maintained by a single gene.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- The Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA, United States
- The Hillman Cancer Center of UPMC, Pittsburgh, PA, United States
- The Pittsburgh Liver Research Center, UPMC, Pittsburgh, PA, United States
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
108
|
Wang T, Li Y, Zhu Y, Liu Z, Huang L, Zhao H, Zhou Z, Wu Q. Anti-aging mechanism of different age donor-matched adipose-derived stem cells. Stem Cell Res Ther 2023; 14:192. [PMID: 37533129 PMCID: PMC10394785 DOI: 10.1186/s13287-023-03415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) have anti-aging and anti-obesity effects in aged animals, but the underlying molecular mechanism remains unknown. METHODS In the present study, we evaluated the in vivo transplantation effects of different age donor-matched ASCs on natural aging and leptin knockout mice (ob-/ob- mice). The multi-omics expression profiles of young and aged mouse donor-derived ASCs were also analyzed. RESULTS The results revealed that ASCs from young donors induced weight and abdominal fat loss for older recipients but not for young or ob-/ob-mice. The young and aged mouse donor ASCs displayed significant phenotypic differences, contributing to the distinguished weight loss and anti-aging effects in aged mice. CONCLUSIONS Our data suggest an underlying molecular mechanism by which young-donor ASCs reduce immune cells and inflammation in aged mice via secreted immune factors. These findings point to a general anti-aging mechanism of stem cells, which may provide new insights into age-related disturbances of stem cell plasticity in healthy aging and age-related diseases.
Collapse
Affiliation(s)
- Tao Wang
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yingyu Li
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yu Zhu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zebiao Liu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Li Huang
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qiong Wu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
109
|
Zoico E, Saatchi T, Nori N, Mazzali G, Rizzatti V, Pizzi E, Fantin F, Giani A, Urbani S, Zamboni M. Senescent adipocytes as potential effectors of muscle cells dysfunction: An in vitro model. Exp Gerontol 2023; 179:112233. [PMID: 37321332 DOI: 10.1016/j.exger.2023.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Recently, there has been a growing body of evidence showing a negative effect of the white adipose tissue (WAT) dysfunction on the skeletal muscle function and quality. However, little is known about the effects of senescent adipocytes on muscle cells. Therefore, to explore potential mechanisms involved in age-related loss of muscle mass and function, we performed an in vitro experiment using conditioned medium obtained from cultures of mature and aged 3 T3-L1 adipocytes, as well as from cultures of dysfunctional adipocytes exposed to oxidative stress or high insulin doses, to treat C2C12 myocytes. The results from morphological measures indicated a significant decrease in diameter and fusion index of myotubes after treatment with medium of aged or stressed adipocytes. Aged and stressed adipocytes presented different morphological characteristics as well as a different gene expression profile of proinflammatory cytokines and ROS production. In myocytes treated with different adipocytes' conditioned media, we demonstrated a significant reduction of gene expression of myogenic differentiation markers as well as a significant increase of genes involved in atrophy. Finally, a significant reduction in protein synthesis as well as a significant increase of myostatin was found in muscle cells treated with medium of aged or stressed adipocytes compared to controls. In conclusion, these preliminary results suggest that aged adipocytes could influence negatively trophism, function and regenerative capacity of myocytes by a paracrine network of signaling.
Collapse
Affiliation(s)
- Elena Zoico
- Department of Medicine, Geriatric Section, University of Verona, Verona, Italy
| | - Tanaz Saatchi
- Department of Medicine, Geriatric Section, University of Verona, Verona, Italy.
| | - Nicole Nori
- Department of Medicine, Geriatric Section, University of Verona, Verona, Italy
| | - Gloria Mazzali
- Department of Medicine, Geriatric Section, University of Verona, Verona, Italy
| | - Vanni Rizzatti
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| | - Eleonora Pizzi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| | - Francesco Fantin
- Department of Medicine, Geriatric Section, University of Verona, Verona, Italy
| | - Anna Giani
- Department of Medicine, Geriatric Section, University of Verona, Verona, Italy
| | - Silvia Urbani
- Department of Medicine, Geriatric Section, University of Verona, Verona, Italy
| | - Mauro Zamboni
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
110
|
Han HS, Ahn E, Park ES, Huh T, Choi S, Kwon Y, Choi BH, Lee J, Choi YH, Jeong YL, Lee GB, Kim M, Seong JK, Shin HM, Kim HR, Moon MH, Kim JK, Hwang GS, Koo SH. Impaired BCAA catabolism in adipose tissues promotes age-associated metabolic derangement. NATURE AGING 2023; 3:982-1000. [PMID: 37488415 DOI: 10.1038/s43587-023-00460-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Adipose tissues are central in controlling metabolic homeostasis and failure in their preservation is associated with age-related metabolic disorders. The exact role of mature adipocytes in this phenomenon remains elusive. Here we describe the role of adipose branched-chain amino acid (BCAA) catabolism in this process. We found that adipocyte-specific Crtc2 knockout protected mice from age-associated metabolic decline. Multiomics analysis revealed that BCAA catabolism was impaired in aged visceral adipose tissues, leading to the activation of mechanistic target of rapamycin complex (mTORC1) signaling and the resultant cellular senescence, which was restored by Crtc2 knockout in adipocytes. Using single-cell RNA sequencing analysis, we found that age-associated decline in adipogenic potential of visceral adipose tissues was reinstated by Crtc2 knockout, via the reduction of BCAA-mTORC1 senescence-associated secretory phenotype axis. Collectively, we propose that perturbation of BCAA catabolism by CRTC2 is critical in instigating age-associated remodeling of adipose tissue and the resultant metabolic decline in vivo.
Collapse
Affiliation(s)
- Hye-Sook Han
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | | | - Tom Huh
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Seri Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yongmin Kwon
- Division of Life Sciences, Korea University, Seoul, Korea
| | | | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, Korea
| | | | - Gwang Bin Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Minji Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Hang-Rae Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | | | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, Korea.
- Department of Life Sciences, POSTECH, Pohang, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea.
- College of Pharmacy, Chung-Ang University, Seoul, Korea.
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
111
|
de Lange P, Lombardi A, Silvestri E, Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A, Moreno M. Physiological Approaches Targeting Cellular and Mitochondrial Pathways Underlying Adipose Organ Senescence. Int J Mol Sci 2023; 24:11676. [PMID: 37511435 PMCID: PMC10380998 DOI: 10.3390/ijms241411676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Stefania Iervolino
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Giuseppe Petito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
112
|
Sparks L, Whytock K, Divoux A, Sun Y, Pino M, Yu G, Smith S, Walsh M. A single nuclei atlas of aging human abdominal subcutaneous white adipose tissue. RESEARCH SQUARE 2023:rs.3.rs-3097605. [PMID: 37503028 PMCID: PMC10371078 DOI: 10.21203/rs.3.rs-3097605/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
White adipose tissue (WAT) is a robust energy storage and endocrine organ critical for maintaining metabolic health as we age. Our aim was to identify cell-specific transcriptional aberrations that occur in WAT with aging. We leveraged full-length snRNA-Seq to characterize the cellular landscape of human subcutaneous WAT in a prospective cohort of 10 Younger (≤ 30 years) and 10 Older individuals (≥ 65 years) balanced for sex and body mass index (BMI). We highlight that aging WAT is associated with adipocyte hypertrophy, increased proportions of resident macrophages (M2), an upregulated innate immune response and senescence profiles in specific adipocyte populations, highlighting CXCL14 as a biomarker of this process. We also identify novel markers of pre-adipocytes and track their expression levels through pre-adipocyte differentiation. We propose that aging WAT is associated with low-grade inflammation that is managed by a foundation of innate immunity to preserve the metabolic health of the WAT.
Collapse
Affiliation(s)
| | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai
| | - Maria Pino
- Translational Research Institute, AdventHealth
| | - Gongxin Yu
- Translational Research Institute, AdventHealth
| | | | | |
Collapse
|
113
|
Boccara E, Golan S, Beeri MS. The association between regional adiposity, cognitive function, and dementia-related brain changes: a systematic review. Front Med (Lausanne) 2023; 10:1160426. [PMID: 37457589 PMCID: PMC10349176 DOI: 10.3389/fmed.2023.1160426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Background Adiposity has been previously associated with cognitive impairment and Alzheimer's disease and related disorders (ADRD). Body mass index (BMI) is the most common measure of global adiposity, but inconsistent results were found since it is a global measurement. BMI does not represent regional fat distribution which differs between sexes, race, and age. Regional fat distribution may contribute differently to cognitive decline and Alzheimer's disease (AD)-related brain changes. Fat-specific targeted therapies could lead to personalized improvement of cognition. The goal of this systematic review is to explore whether regional fat depots, rather than central obesity, should be used to understand the mechanism underlying the association between adiposity and brain. Methods This systematic review included 33 studies in the English language, conducted in humans aged 18 years and over with assessment of regional adiposity, cognitive function, dementia, and brain measures. We included only studies that have assessed regional adiposity using imaging technics and excluded studies that were review articles, abstract only or letters to editor. Studies on children and adolescents, animal studies, and studies of patients with gastrointestinal diseases were excluded. PubMed, PsychInfo and web of science were used as electronic databases for literature search until November 2022. Results Based on the currently available literature, the findings suggest that different regional fat depots are likely associated with increased risk of cognitive impairment, brain changes and dementia, especially AD. However, different regional fat depots can have different cognitive outcomes and affect the brain differently. Visceral adipose tissue (VAT) was the most studied regional fat, along with liver fat through non-alcoholic fatty liver disease (NAFLD). Pancreatic fat was the least studied regional fat. Conclusion Regional adiposity, which is modifiable, may explain discrepancies in associations of global adiposity, brain, and cognition. Specific regional fat depots lead to abnormal secretion of adipose factors which in turn may penetrate the blood brain barrier leading to brain damage and to cognitive decline.
Collapse
Affiliation(s)
- Ethel Boccara
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Sapir Golan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
114
|
Prescher H, Froimson JR, Hanson SE. Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering (Basel) 2023; 10:742. [PMID: 37370673 PMCID: PMC10295516 DOI: 10.3390/bioengineering10060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Adipose tissue is composed of a collection of cells with valuable structural and regenerative function. Taken as an autologous graft, these cells can be used to address soft tissue defects and irregularities, while also providing a reparative effect on the surrounding tissues. Adipose-derived stem or stromal cells are primarily responsible for this regenerative effect through direct differentiation into native cells and via secretion of numerous growth factors and cytokines that stimulate angiogenesis and disrupt pro-inflammatory pathways. Separating adipose tissue into its component parts, i.e., cells, scaffolds and proteins, has provided new regenerative therapies for skin and soft tissue pathology, including that resulting from radiation. Recent studies in both animal models and clinical trials have demonstrated the ability of autologous fat grafting to reverse radiation induced skin fibrosis. An improved understanding of the complex pathologic mechanism of RIF has allowed researchers to harness the specific function of the ASCs to engineer enriched fat graft constructs to improve the therapeutic effect of AFG.
Collapse
Affiliation(s)
| | | | - Summer E. Hanson
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| |
Collapse
|
115
|
Mondal SA, Mann SN, van der Linden C, Sathiaseelan R, Kamal M, Das S, Bubak MP, Logan S, Miller BF, Stout MB. Metabolic benefits of 17α-estradiol in liver are partially mediated by ERβ in male mice. Sci Rep 2023; 13:9841. [PMID: 37330610 PMCID: PMC10276872 DOI: 10.1038/s41598-023-37007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor β (ERβ)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERβ-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERβKO mice. ERβ ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor β1 (TGF-β1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERβ partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERβ in HSCs to attenuate pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Carl van der Linden
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Sreemathi Logan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
116
|
Wang ZZ, Li FH, Ni PS, Sun L, Zhang CK, Li BM, He JH, Yu XM, Liu YQ. Age-related changes in adipose tissue metabolomics and inflammation, cardiolipin metabolism, and ferroptosis markers in female aged rat model. Biochem Biophys Res Commun 2023; 671:292-300. [PMID: 37320861 DOI: 10.1016/j.bbrc.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Aging adipose tissue exhibits elevated inflammation and oxidative stress that are major sources of age-related metabolic dysfunction. However, the exact metabolic changes associated with inflammation and oxidative stress are unclear. To address this topic, we assessed variation in metabolic phenotypes of adipose tissue from 18 months adult sedentary (ASED), 26 months old sedentary (OSED), and 8 months young sedentary (YSED). The results of metabolomic analysis showed that ASED and OSED group had higher palmitic acid, elaidic acid, 1-heptadecanol, and α-tocopherol levels than YSED, but lower sarcosine levels. Furthermore, stearic acid was specifically elevated in ASED compared with YSED. Cholesterol was upregulated specifically in the OSED group compared with YSED, whereas linoleic acid was downregulated. In addition, ASED and OSED had more inflammatory cytokines, lower antioxidant capacity, and higher expression of ferroptosis-related genes than YSED. Moreover, mitochondrial dysfunction associated with abnormal cardiolipin synthesis was more pronounced in the OSED group. In conclusion, both ASED and OSED can affect the FA metabolism and increase oxidative stress in adipose tissue, leading to inflammation. In particular, linoleic acid content specifically decreases in OSED, which associated with abnormal cardiolipin synthesis and mitochondrial dysfunction in adipose tissue.
Collapse
Affiliation(s)
- Zhuang-Zhi Wang
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China.
| | - Pin-Shi Ni
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Lei Sun
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Chen-Kai Zhang
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Bo-Ming Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Jia-Han He
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Ming Yu
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai, China.
| | | |
Collapse
|
117
|
Pellegrino D, Casas-Recasens S, Faner R, Palange P, Agusti A. When GETomics meets aging and exercise in COPD. Respir Med 2023:107294. [PMID: 37295536 DOI: 10.1016/j.rmed.2023.107294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The term GETomics has been recently proposed to illustrate that human health and disease are actually the final outcome of many dynamic, interacting and cumulative gene (G) - environment (E) interactions that occur through the lifetime (T) of the individual. According to this new paradigm, the final outcome of any GxE interactions depends on both the age of the individual at which such GxE interaction occurs as well as on the previous, cumulative history of previous GxE interactions through the induction of epigenetic changes and immune memory (both lasting overtime). Following this conceptual approach, our understanding of the pathogenesis of chronic obstructive pulmonary disease (COPD) has changed dramatically. Traditionally believed to be a self-inflicted disease induced by tobacco smoking occurring in older men and characterized by an accelerated decline of lung function with age, now we understand that there are many other risk factors associated with COPD, that it occurs also in females and young individuals, that there are different lung function trajectories through life, and that COPD is not always characterized by accelerated lung function decline. In this paper we discuss how a GETomics approach to COPD may open new perspectives to better understand its relationship with exercise limitation and the ageing process.
Collapse
Affiliation(s)
- D Pellegrino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy; Respiratory and Critical Care Unit, Policlinico Umberto I Hospital of Rome, Italy
| | - S Casas-Recasens
- Institut d'investigacions biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Spain
| | - R Faner
- Institut d'investigacions biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Spain; Cathedra Salut Respiratoria, University of Barcelona, Spain
| | - P Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy; Respiratory and Critical Care Unit, Policlinico Umberto I Hospital of Rome, Italy
| | - A Agusti
- Institut d'investigacions biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Spain; Cathedra Salut Respiratoria, University of Barcelona, Spain; Respiratory Institute, Clinic Barcelona, Spain.
| |
Collapse
|
118
|
Kwon I, Talib NF, Zhu J, Yang HI, Kim KS. Effects of aging-induced obesity on the transcriptional expression of adipogenesis and thermogenic activity in the gonadal white adipose, brown adipose, and skeletal muscle tissues. Phys Act Nutr 2023; 27:39-49. [PMID: 37583071 PMCID: PMC10440178 DOI: 10.20463/pan.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Aging is closely associated with chronic metabolic diseases, such as obesity, which lead to increased adiposity, skeletal muscle wasting, and imbalanced cellular energy metabolism. However, transcriptional profiles representing energy imbalances in aging-induced obesity are not fully understood. Thus, this study aimed to investigate the candidate genes predominantly regulated in aging-related obesity in spontaneously aged mice. METHODS Male C57BL/6J mice were divided into three age groups according to age: 2- (young), 12- (middle-aged), and 24- (old) months. Body weight and body composition parameters were measured in all mice. Gonadal white adipose tissue (gWAT), brown adipose tissue (BAT), and skeletal muscle (SM) were dissected and weighed. The target tissues were assessed using biochemical and histological assays. RESULTS Aging-induced obesity increased adipose mass and decreased SM weight through processes of adipocyte hypertrophy; however, recruitment of modulating adipogenesis-inducing transcription factors did not occur. Among adipokines, leptin level was greatly increased in the gWAT during aging. Interestingly, the β2-adrenergic receptor had a higher affinity than the β3-adrenergic receptor in aging-induced obesity. For the thermogenic regulation through β-adrenergic receptors (β-ARs), a declined uncoupling protein-1 (UCP-1) in the BAT was relevant to aging-induced obesity. CONCLUSION Aging-induced obesity increases leptin levels in adipocytes and decreases UCP-1 in BAT through β-ARs, according to transcriptional gene profiling. WAT browning increases energy expenditure due to exercise training adaptations. Further research is needed to discover more effective methods, such as exercise, against aging-induced obesity.
Collapse
Affiliation(s)
- Insu Kwon
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Nurul Fatihah Talib
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - JunShu Zhu
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-In Yang
- Division of Rheumatology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
119
|
Abstract
The obesity epidemic in aging populations poses significant public health concerns for greater morbidity and mortality risk. Age-related increased adiposity is multifactorial and often associated with reduced lean body mass. The criteria used to define obesity by body mass index in younger adults may not appropriately reflect age-related body composition changes. No consensus has been reached on the definition of sarcopenic obesity in older adults. Lifestyle interventions are generally recommended as initial therapy; however, these approaches have limitations in older adults. Similar benefits in older compared with younger adults are reported with pharmacotherapy, however, large randomized clinical trials in geriatric populations are lacking.
Collapse
Affiliation(s)
- Noemi Malandrino
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University School of Medicine, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD 21287, USA
| | - Salman Z Bhat
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University School of Medicine, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD 21287, USA
| | - Maha Alfaraidhy
- The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Rajvarun S Grewal
- California Health Sciences University - College of Osteopathic Medicine (CHSU-COM), 2500 Alluvial Avenue, Clovis, CA 93611, USA
| | - Rita Rastogi Kalyani
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University School of Medicine, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD 21287, USA; Center on Aging and Health, The Johns Hopkins University, 2024 East Monument Street, Baltimore, MD 21205, USA.
| |
Collapse
|
120
|
Nehme J, Altulea A, Gheorghe T, Demaria M. The effects of macronutrients metabolism on cellular and organismal aging. Biomed J 2023; 46:100585. [PMID: 36801257 PMCID: PMC10209809 DOI: 10.1016/j.bj.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Evidence supports the notion that metabolic pathways are major regulators of organismal aging, and that metabolic perturbations can extend health- and lifespan. For this reason, dietary interventions and compounds perturbing metabolism are currently explored as anti-aging strategies. A common target for metabolic interventions delaying aging is cellular senescence, a state of stable growth arrest that is accompanied by various structural and functional changes including the activation of a pro-inflammatory secretome. Here, we summarize the current knowledge on the molecular and cellular events associated with carbohydrate, lipid and protein metabolism, and define how macronutrients can regulate induction or prevention of cellular senescence. We discuss how various dietary interventions can achieve prevention of disease and extension of healthy longevity by partially modulating senescence-associated phenotypes. We also emphasize the importance of developing personalized nutritional interventions that take into account the current health and age status of the individual.
Collapse
Affiliation(s)
- Jamil Nehme
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Abdullah Altulea
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Teodora Gheorghe
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Marco Demaria
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands.
| |
Collapse
|
121
|
Kalgudde Gopal S, Dai R, Stefanska AM, Ansari M, Zhao J, Ramesh P, Bagnoli JW, Correa-Gallegos D, Lin Y, Christ S, Angelidis I, Lupperger V, Marr C, Davies LC, Enard W, Machens HG, Schiller HB, Jiang D, Rinkevich Y. Wound infiltrating adipocytes are not myofibroblasts. Nat Commun 2023; 14:3020. [PMID: 37230982 DOI: 10.1038/s41467-023-38591-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
The origins of wound myofibroblasts and scar tissue remains unclear, but it is assumed to involve conversion of adipocytes into myofibroblasts. Here, we directly explore the potential plasticity of adipocytes and fibroblasts after skin injury. Using genetic lineage tracing and live imaging in explants and in wounded animals, we observe that injury induces a transient migratory state in adipocytes with vastly distinct cell migration patterns and behaviours from fibroblasts. Furthermore, migratory adipocytes, do not contribute to scar formation and remain non-fibrogenic in vitro, in vivo and upon transplantation into wounds in animals. Using single-cell and bulk transcriptomics we confirm that wound adipocytes do not convert into fibrogenic myofibroblasts. In summary, the injury-induced migratory adipocytes remain lineage-restricted and do not converge or reprogram into a fibrosing phenotype. These findings broadly impact basic and translational strategies in the regenerative medicine field, including clinical interventions for wound repair, diabetes, and fibrotic pathologies.
Collapse
Affiliation(s)
- Shruthi Kalgudde Gopal
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Munich, Germany
- Institute of Lung Health and Immunity, Helmholtz Center Munich, Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Munich, Germany
| | - Ania Maria Stefanska
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Munich, Germany
| | - Meshal Ansari
- Institute of Lung Health and Immunity, Helmholtz Center Munich, Munich, Germany
- Institute of AI for Health, Helmholtz Center Munich, Munich, Germany
| | - Jiakuan Zhao
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Munich, Germany
| | - Pushkar Ramesh
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Munich, Germany
| | - Johannes W Bagnoli
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilian University Munich, Munich, Germany
| | | | - Yue Lin
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Munich, Germany
| | - Simon Christ
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Munich, Germany
| | - Ilias Angelidis
- Institute of Lung Health and Immunity, Helmholtz Center Munich, Munich, Germany
| | - Valerio Lupperger
- Institute of AI for Health, Helmholtz Center Munich, Munich, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Center Munich, Munich, Germany
| | - Lindsay C Davies
- Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilian University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Herbert B Schiller
- Institute of Lung Health and Immunity, Helmholtz Center Munich, Munich, Germany.
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Munich, Germany.
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
122
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
123
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
124
|
Jakubek YA, Reiner AP, Honigberg MC. Risk factors for clonal hematopoiesis of indeterminate potential and mosaic chromosomal alterations. Transl Res 2023; 255:171-180. [PMID: 36414227 PMCID: PMC10135440 DOI: 10.1016/j.trsl.2022.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) of the autosomes, X, and Y chromosomes are aging-related somatic mutations detectable in peripheral blood. The presence of these acquired mutations predisposes otherwise healthy adults to increased risk of several chronic aging-related conditions including hematologic cancers, atherosclerotic cardiovascular diseases, other inflammatory conditions, and mortality. While the public health impact and disease associations of these blood-derived somatic mutations continue to expand, the inherited, behavioral/lifestyle, environmental risk factors and comorbid conditions that influence their occurrence and progression have been less well characterized. Age is the strongest risk factor for all types of CHIP and mCAs. CHIP and mCAs are generally more common in individuals of European than non-European ancestry. Evidence for a genetic predisposition has been strongest for mosaic loss of Y chromosome in men. Genome-wide association studies have recently begun to identify common and rare germline genetic variants associated with CHIP and mCAs. These loci include genes involving cell cycle regulation, cell proliferation/survival, hematopoietic progenitor cell regulation, DNA damage repair, and telomere maintenance. Some loci, such as TERT, ATM, TP53, CHEK2, and TCL1A, have overlapping associations with different types of CHIP, mCAs, and cancer predisposition. Various environmental or co-morbid contexts associated with presence or expansion of specific CHIP or mCA mutations are beginning to be elucidated, such as cigarette smoking, diet, cancer chemotherapy, particulate matter, and premature menopause. Further characterization of the germline genetic and environmental correlates of CHIP/mCAs may inform our ability to modify their progression and ultimately reduce the risk and burden of chronic diseases associated with these clonal somatic phenomena.
Collapse
Affiliation(s)
- Yasminka A Jakubek
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Center Research Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Michael C Honigberg
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
125
|
Sawaki D, Zhang Y, Mohamadi A, Pini M, Mezdari Z, Lipskaia L, Naushad S, Lamendour L, Altintas DM, Breau M, Liang H, Halfaoui M, Delmont T, Surenaud M, Rousseau D, Yoshimitsu T, Louache F, Adnot S, Henegar C, Gual P, Czibik G, Derumeaux G. Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction. JCI Insight 2023; 8:145811. [PMID: 37092554 DOI: 10.1172/jci.insight.145811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2023] [Indexed: 04/25/2023] Open
Abstract
Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN-/- mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.
Collapse
Affiliation(s)
- Daigo Sawaki
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Yanyan Zhang
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Amel Mohamadi
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Maria Pini
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Zaineb Mezdari
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | | | - Suzain Naushad
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | | | | | - Marielle Breau
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Hao Liang
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | | | - Thaïs Delmont
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Mathieu Surenaud
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- AP-HP Vaccine Research Institute, Créteil, France
| | | | - Takehiko Yoshimitsu
- Laboratory of Synthetic Organic and Medicinal Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Fawzia Louache
- Université Paris-Saclay, Inserm UMR-S-MD1197, Hôpital Paul Brousse, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Serge Adnot
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- AP-HP, Department of Physiology, Henri Mondor Hospital, FHU SENEC, Créteil, France
| | | | - Philippe Gual
- Université Côte d'Azur, INSERM U1065, C3M, Nice, France
| | - Gabor Czibik
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Geneviève Derumeaux
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- AP-HP, Department of Physiology, Henri Mondor Hospital, FHU SENEC, Créteil, France
| |
Collapse
|
126
|
Piccoli GB, Cederholm T, Avesani CM, Bakker SJL, Bellizzi V, Cuerda C, Cupisti A, Sabatino A, Schneider S, Torreggiani M, Fouque D, Carrero JJ, Barazzoni R. Nutritional status and the risk of malnutrition in older adults with chronic kidney disease - implications for low protein intake and nutritional care: A critical review endorsed by ERN-ERA and ESPEN. Clin Nutr 2023; 42:443-457. [PMID: 36857954 DOI: 10.1016/j.clnu.2023.01.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Increased life expectancy is posing unprecedented challenges to healthcare systems worldwide. These include a sharp increase in the prevalence of chronic kidney disease (CKD) and of impaired nutritional status with malnutrition-protein-energy wasting (PEW) that portends worse clinical outcomes, including reduced survival. In older adults with CKD, a nutritional dilemma occurs when indications from geriatric nutritional guidelines to maintain the protein intake above 1.0 g/kg/day to prevent malnutrition need to be adapted to the indications from nephrology guidelines, to reduce protein intake in order to prevent or slow CKD progression and improve metabolic abnormalities. To address these issues, the European Society for Clinical Nutrition and Metabolism (ESPEN) and the European Renal Nutrition group of the European Renal Association (ERN-ERA) have prepared this conjoint critical review paper, whose objective is to summarize key concepts related to prevention and treatment of both CKD progression and impaired nutritional status using dietary approaches, and to provide guidance on how to define optimal protein and energy intake in older adults with differing severity of CKD. Overall, the authors support careful assessment to identify the most urgent clinical challenge and the consequent treatment priority. The presence of malnutrition-protein-energy wasting (PEW) suggests the need to avoid or postpone protein restriction, particularly in the presence of stable kidney function and considering the patient's preferences and quality of life. CKD progression and advanced CKD stage support prioritization of protein restriction in the presence of a good nutritional status. Individual risk-benefit assessment and appropriate nutritional monitoring should guide the decision-making process. Higher awareness of the challenges of nutritional care in older adult patients with CKD is needed to improve care and outcomes. Research is advocated to support evidence-based recommendations, which we still lack for this increasingly large patient subgroup.
Collapse
Affiliation(s)
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Uppsala University. Theme Inflammation & Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Carla Maria Avesani
- Department of Clinical Science, Technology and Intervention, Division of Renal Medicine and Baxter Novum, Karolinska Institute, Stockholm, Sweden
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincenzo Bellizzi
- Nephrology and Dialysis Division - Department of Medical Sciences, Hospital "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Alice Sabatino
- UO Nefrologia, Azienda Ospedaliera- Universitaria Parma, Parma, Italy
| | - Stephane Schneider
- Gastroenterology and Nutrition, Nice University Hospital, Université Côte d'Azur, Nice, France
| | - Massimo Torreggiani
- Néphrologie et dialyse, Centre Hospitalier Le Mans, Avenue Rubillard, 72037, Le Mans, France
| | - Denis Fouque
- Renal Department, Lyon SUD Hospital, Hospices Civils de Lyon, Université de Lyon, Pierre Benite, France
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden; Division of Nephrology, Department of Clinical Sciences, Karolinska Institute, Danderyd Hospital, Stockholm, Sweden
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
127
|
Mondal SA, Mann SN, van der Linden C, Sathiaseelan R, Kamal M, Das S, Bubak MP, Logan S, Miller BF, Stout MB. Metabolic benefits of 17α-estradiol in liver are partially mediated by ERβ in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534216. [PMID: 36993459 PMCID: PMC10055366 DOI: 10.1101/2023.03.25.534216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor β (ERβ)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERβ-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERβKO mice. ERβ ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor β1 (TGF-β1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERβ partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERβ in HSCs to attenuate pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shivani N. Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Carl van der Linden
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Matthew P. Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
128
|
Muzyka I, Revenko O, Kovalchuk I, Savytska M, Bekesevych A, Kasko R, Zayachkivska O. What is the role of brown adipose tissue in metabolic health: lessons learned and future perspectives in the long COVID? Inflammopharmacology 2023; 31:585-595. [PMID: 36964859 PMCID: PMC10039328 DOI: 10.1007/s10787-023-01188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Metabolic physiology plays a key role in maintaining our health and resilience. Metabolic disorders can lead to serious illnesses, including obesity. The pathogenesis of the new long COVID syndrome in individuals with long-term recovery after SARS-Co-2 infection is still incomplete. Thus there is growing attention in the study of adipose tissue activities, especially brown adipose tissue (BAT) and associated resilience which plays a crucial role in different types of obesity as potential targets for pharmacologic and nutritional interventions in the context of obesity and long COVID. The number of studies examining mechanisms underlying BAT has grown rapidly in the last 10 years despite of role of BAT in individuals with COVID-19 and long COVID is modest. Therefore, this review aims to sum up data examining BAT activities, its resilience in health, obesity, and the possible link to long COVID. The search was conducted on studies published in English mostly between 2004 and 2022 in adult humans and animal models. Database searches were conducted using PubMed, Scopus, and Google Scholar for key terms including adipose tissue, BAT, adipokines, obesity, VPF/VEGF, and pathogenesis. From the initial search through the database were identified relevant articles that met inclusion and exclusion criteria and our data regarding adipose tissues were presented in this review. It will discuss adiposity tissue activities. Current literature suggests that there are BAT integral effects to whitening and browning fat phenomena which reflect the homeostatic metabolic adaptive ability for environmental demand or survival/adaptive mechanisms. We also review neural and vascular impacts in BAT that play a role in resilience and obesity. Finally, we discuss the role of BAT in the context of long COVID in basic research and clinical research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oksana Zayachkivska
- Lviv National Medical University, Lviv, Ukraine.
- School of Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill/Long Beach, CA, 90755, USA.
| |
Collapse
|
129
|
Kawarasaki S, Sawazaki H, Iijima H, Takahashi H, Nomura W, Inoue K, Kawada T, Goto T. Combined treatment with teneligliptin and canagliflozin additively suppresses high-fat diet-induced body weight gain in mice with modulation of lipid metabolism-related gene expression. Eur J Pharmacol 2023; 947:175682. [PMID: 36965744 DOI: 10.1016/j.ejphar.2023.175682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
In the treatment of type 2 diabetes mellitus (T2DM), comprehensive management of multiple risk factors, such as blood glucose, body weight, and lipids, is important to prevent disease progression. Although the combination of dipeptidyl peptidase-4 (DPP-4) inhibitor and sodium-glucose co-transporter 2 (SGLT2) inhibitor is often used clinically, the effects of this combination, other than glucose metabolism, have yet to be thoroughly investigated. In this study, we evaluated the effects of combined treatment with a DPP-4 inhibitor, teneligliptin, and an SGLT2 inhibitor, canagliflozin, on the body weight and lipid metabolism in high-fat diet (HFD)-induced obese mice. We found that monotherapy with teneligliptin or canagliflozin showed suppressive effects on high-fat diet-induced body weight gain and reduced inguinal white adipose tissue (iWAT) mass, and combined treatment additively reduced body weight gain and iWAT mass. Teneligliptin significantly increased oxygen consumption during the light phase, and this effect was preserved in the combined treatment. The combined treatment did not alter the mRNA expression levels of thermogenesis-related genes in adipose tissue but showed the tendency to additively induce mRNA of fatty acid oxidation-related genes in brown adipose tissue and tended to additively decrease mRNA of fatty acid synthesis-related genes in iWAT and liver tissues. These results suggest that combined treatment with teneligliptin and canagliflozin additively suppresses HFD-induced body weight gain with increasing oxygen consumption and modulating the expression of lipid metabolism-related genes. This combination therapy may provide effective body weight management for patients with T2DM and obesity.
Collapse
Affiliation(s)
- Satoko Kawarasaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Honami Sawazaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Hiroaki Iijima
- Medical Affairs Department, Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan
| | - Kazuo Inoue
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan.
| |
Collapse
|
130
|
Muzyka I, Revenko O, Kovalchuk I, Savytska M, Bekesevych A, Zayachkivska O. What is the role of brown adipose tissue in metabolic health: lessons learned and future perspectives in the long COVID? Inflammopharmacology 2023:10.1007/s10787-023-01195-z. [PMID: 36943540 PMCID: PMC10028755 DOI: 10.1007/s10787-023-01195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Metabolic physiology plays a key role in maintaining our health and resilience. Metabolic disorders can lead to serious illnesses, including obesity. The pathogenesis of the new long COVID syndrome in individuals with long-term recovery after SARS-Co-2 infection is still incomplete. Thus there is growing attention in the study of adipose tissue activities, especially brown adipose tissue (BAT) and associated resilience which plays a crucial role in different types of obesity as potential targets for pharmacologic and nutritional interventions in the context of obesity and long COVID. The number of studies examining mechanisms underlying BAT has grown rapidly in the last 10 years despite of role of BAT in individuals with COVID-19 and long COVID is modest. Therefore, this review aims to sum up data examining BAT activities, its resilience in health, obesity, and the possible link to long COVID. The search was conducted on studies published in English mostly between 2004 and 2022 in adult humans and animal models. Database searches were conducted using PubMed, Scopus, and Google Scholar for key terms including adipose tissue, BAT, adipokinins, obesity, VPF/VEGF, and pathogenesis. From the initial search through the database were identified relevant articles that met inclusion and exclusion criteria and our data regarding adipose tissues were presented in this review. It will discuss adiposity tissue activities. Current literature suggests that there are BAT integral effects to whitening and browning fat phenomenons which reflect the homeostatic metabolic adaptive ability for environmental demand or survival/adaptive mechanisms. We also review neural and vascular impacts in BAT that play a role in resilience and obesity. Finally, we discuss the role of BAT in the context of long COVID in basic research and clinical research.
Collapse
Affiliation(s)
| | | | | | | | | | - Oksana Zayachkivska
- Lviv National Medical University, Lviv, Ukraine.
- School of Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill/Long Beach, CA, 90755, USA.
| |
Collapse
|
131
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
132
|
Zhu M, Peng L, Huo S, Peng D, Gou J, Shi W, Tao J, Jiang T, Jiang Y, Wang Q, Huang B, Men L, Li S, Lv J, Lin L. STAT3 signaling promotes cardiac injury by upregulating NCOA4-mediated ferritinophagy and ferroptosis in high-fat-diet fed mice. Free Radic Biol Med 2023; 201:111-125. [PMID: 36940731 DOI: 10.1016/j.freeradbiomed.2023.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/22/2023]
Abstract
High-fat diet (HFD) intake provokes obesity and cardiac anomalies. Recent studies have found that ferroptosis plays a role in HFD-induced cardiac injury, but the underlying mechanism is largely unclear. Ferritinophagy is an important part of ferroptosis that is regulated by nuclear receptor coactivator 4 (NCOA4). However, the relationship between ferritinophagy and HFD-induced cardiac damage has not been explored. In this study, we found that oleic acid/palmitic acid (OA/PA) increased the level of ferroptotic events including iron and ROS accumulation, upregulation of PTGS2 mRNA and protein levels, reduced SOD and GSH levels, and significant mitochondrial damage in H9C2 cells, which could be reversed by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Intriguingly, we found that the autophagy inhibitor 3-methyladenine mitigated OA/PA-induced ferritin downregulation, iron overload and ferroptosis. OA/PA increased the protein level of NCOA4. Knockdown of NCOA4 by SiRNA partly reversed the reduction in ferritin, mitigated iron overload and lipid peroxidation, and subsequently alleviated OA/PA-induced cell death, indicating that NCOA4-mediated ferritinophagy was required for OA/PA-induced ferroptosis. Furthermore, we demonstrated that NCOA4 was regulated by IL-6/STAT3 signaling. Inhibition or knockdown of STAT3 effectively reduced NCOA4 levels to protect H9C2 cells from ferritinophagy-mediated ferroptosis, whereas STAT3 overexpression by plasmid appeared to increase NCOA4 expression and contribute to classical ferroptotic events. Consistently, phosphorylated STAT3 upregulation, ferritinophagy activation, and ferroptosis induction also occurred in HFD-fed mice and were responsible for HFD-induced cardiac injury. In addition, we found evidence that piperlongumine, a natural compound, effectively reduced phosphorylated STAT3 levels to protect cardiomyocytes from ferritinophagy-mediated ferroptosis both in vitro and in vivo. Based on these findings, we concluded that ferritinophagy-mediated ferroptosis was one of the critical mechanisms contributing to HFD-induced cardiac injury. The STAT3/NCOA4/FTH1 axis might be a novel therapeutic target for the treatment of HFD-induced cardiac injury.
Collapse
Affiliation(s)
- Mengying Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Gou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Tao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Division of Geriatrics, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
133
|
Lino CA, de Oliveira-Silva T, Lunardon G, Balbino-Silva C, Lima VM, Huang ZP, Donato J, Takano APC, Barreto-Chaves ML, Wang DZ, Diniz GP. Ablation of miRNA-22 protects against obesity-induced adipocyte senescence and ameliorates metabolic disorders in middle-aged mice. Mech Ageing Dev 2023; 210:111775. [PMID: 36641038 DOI: 10.1016/j.mad.2023.111775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
High-fat diet (HFD) promotes obesity-related metabolic complications by activating cellular senescence in white adipose tissue (WAT). Growing evidence supports the importance of microRNA-22 (miR-22) in metabolic disorders and cellular senescence. Recently, we showed that miR-22 deletion attenuates obesity-related metabolic abnormalities. However, whether miR-22 mediates HFD-induced cellular senescence of WAT remains unknown. Here, we uncovered that obese mice displayed increased pri-miR-22 levels and cellular senescence in WAT. However, miR-22 ablation protected mice against HFD-induced WAT senescence. In addition, in vitro studies showed that miR-22 deletion prevented preadipocyte senescence in response to Doxorubicin (Doxo). Loss-of-function studies in vitro and in vivo revealed that miR-22 increases H2ax mRNA and γH2ax levels in preadipocytes and WAT without inducing DNA damage. Intriguingly, miR-22 ablation prevented HFD-induced increase in γH2ax levels and DNA damage in WAT. Similarly, miR-22 deletion prevented Doxo-induced increase in γH2ax levels in preadipocytes. Adipose miR-22 levels were enhanced in middle-aged mice fed a HFD than those found in young mice. Furthermore, miR-22 deletion attenuated fat mass gain and glucose imbalance induced by HFD in middle-aged mice. Overall, our findings indicate that miR-22 is a key regulator of obesity-induced WAT senescence and metabolic disorders in middle-aged mice.
Collapse
Affiliation(s)
- Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila Balbino-Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa M Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Zhan-Peng Huang
- Center for Translational Medicine, The First Affiliated Hospital, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Paula C Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
134
|
Majeed Y, Madani AY, Altamimi AI, Courjaret R, Vakayil M, Fountain SJ, Machaca K, Mazloum NA. STAT1- and NFAT-independent amplification of purinoceptor function integrates cellular senescence with interleukin-6 production in preadipocytes. Br J Pharmacol 2023; 180:609-627. [PMID: 36321760 DOI: 10.1111/bph.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND PURPOSE Senescent preadipocytes promote adipose tissue dysfunction by secreting pro-inflammatory factors, although little is known about the mechanisms regulating their production. We investigated if up-regulated purinoceptor function sensitizes senescent preadipocytes to cognate agonists and how such sensitization regulates inflammation. EXPERIMENTAL APPROACH Etoposide was used to trigger senescence in 3T3-L1 preadipocytes. CRISPR/Cas9 technology or pharmacology allowed studies of transcription factor function. Fura-2 imaging was used for calcium measurements. Interleukin-6 levels were quantified using quantitative PCR and ELISA. Specific agonists and antagonists supported studies of purinoceptor coupling to interleukin-6 production. Experiments in MS1 VEGF angiosarcoma cells and adipose tissue samples from obese mice complemented preadipocyte experiments. KEY RESULTS DNA damage-induced senescence up-regulated purinoceptor expression levels in preadipocytes and MS1 VEGF angiosarcoma cells. ATP-evoked Ca2+ release was potentiated in senescent preadipocytes. ATP enhanced interleukin-6 production, an effect mimicked by ADP but not UTP, in a calcium-independent manner. Senescence-associated up-regulation and activation of the adenosine A3 receptor also enhanced interleukin-6 production. However, nucleotide hydrolysis was not essential because exposure to ATPγS also enhanced interleukin-6 secretion. Pharmacological experiments suggested coupling of P2X ion channels and P2Y12 -P2Y13 receptors to downstream interleukin-6 production. Interleukin-6 signalling exacerbated inflammation during senescence and compromised adipogenesis. CONCLUSIONS AND IMPLICATIONS We report a previously uncharacterized link between cellular senescence and purinergic signalling in preadipocytes and endothelial cancer cells, raising the possibility that up-regulated purinoceptors play key modulatory roles in senescence-associated conditions like obesity and cancer. There is potential for exploitation of specific purinoceptor antagonists as therapeutics in inflammatory disorders.
Collapse
Affiliation(s)
- Yasser Majeed
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Aisha Y Madani
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Ahmed I Altamimi
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Muneera Vakayil
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Samuel J Fountain
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| |
Collapse
|
135
|
Lin ZC, Hsu CY, Hwang E, Wang PW, Fang JY. The role of cytokines/chemokines in an aging skin immune microenvironment. Mech Ageing Dev 2023; 210:111761. [PMID: 36496171 DOI: 10.1016/j.mad.2022.111761] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Reversing or slowing down the skin aging process is one of the most intriguing areas of focus across the social and scientific communities around the world. While aging is considered a universal and inevitable natural process of physiological decline, the aging of the skin is the most apparent visual representation of an individual's health. Aging skin may be objectively defined by epidermal thinning; increased transepidermal water loss; decreased cutaneous barrier function; loss of elasticity, laxity, and textured appearance; and gradual deterioration of the epidermal immune environment. As the largest structure of the immune system and of the body as a whole, the skin is the most vulnerable barrier of defense against the environment. The skin reflects an individual's exposures, lifestyle habits, and overall health. From an immunological perspective, cytokines and chemokines act as a central character in the communicating of the immunity in skin aging. These cell signaling proteins serve as the intercellular communication link. This review aims to elucidate how cell-cell crosstalk through cytokines and chemokines, and the interplay between host cells, infiltrating immune cells, and exogenous factors contribute to the overall aging skin.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
136
|
Piórkowska K, Sroka J, Żukowski K, Zygmunt K, Ropka-Molik K, Tyra M. The Effect of BSCL2 Gene on Fat Deposition Traits in Pigs. Animals (Basel) 2023; 13:ani13040641. [PMID: 36830428 PMCID: PMC9951708 DOI: 10.3390/ani13040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BSCL2 encodes seipin, a transmembrane endoplasmic reticulum protein associated with lipodystrophy and severe metabolic complications, including diabetes and hepatic steatosis. In pigs, BSCL2 expression increases during adipocyte differentiation. In the present study, we identified significant gene variants associated with fat deposition (FD)-related processes based on subcutaneous fat tissue RNA-seq data. In the association study, to prove our hypothesis, three Polish pig breeds were included: Złotnicka White (ZW, n = 72), Polish Landrace (PL, n = 201), and Polish Large White (PLW, n = 169). Based on variant calling analysis and χ2 tests, BSCL2 mutations showing significantly different genotype/allele distribution between high- and low-fat pigs were selected for a comprehensive association study. Four interesting BSCL2 variants (rs346079334, rs341493267, rs330154033, and rs81333153) belonging to downstream and missense mutations were investigated. Our study showed a significant decrease in minor allele frequency for two BSCL2 variants (rs346079334 and rs341493267) in PL pigs in 2020-2021. In ZW, BSCL2 mutations significantly affected loin and ham fats, meat redness, and growth performance traits, such as feed conversion and daily feed intake. Similar observations were noted for PLW and PL, where BSCL2 mutations influenced fat depositions and meat traits, such as loin eye area, loin mass and fat, carcass yield, and growth performance traits. Based on the observation in pigs, our study supports the theory that BSCL2 expressed in subcutaneous fat is involved in the FD process.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
- Correspondence: ; Tel.: +48-666081316
| | - Julia Sroka
- Department of Biotechnology and Horticulture, University of Agricultural in Kraków, 29-go Listopada 54, 31-425 Kraków, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Karolina Zygmunt
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Mirosław Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| |
Collapse
|
137
|
Ruggiero AD, Davis MA, Davis AT, DeStephanis D, Williams AG, Vemuri R, Fanning KM, Sherrill C, Cline JM, Caudell DL, Kavanagh K. Delayed effects of radiation in adipose tissue reflect progenitor damage and not cellular senescence. GeroScience 2023; 45:507-521. [PMID: 36136223 PMCID: PMC9886706 DOI: 10.1007/s11357-022-00660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/08/2022] [Indexed: 02/03/2023] Open
Abstract
The pathogenesis of many age-related diseases is linked to cellular senescence, a state of inflammation-inducing, irreversible cell cycle arrest. The consequences and mechanisms of age-associated cellular senescence are often studied using in vivo models of radiation exposure. However, it is unknown whether radiation induces persistent senescence, like that observed in ageing. We performed analogous studies in mice and monkeys, where young mice and rhesus macaques received sub-lethal doses of ionizing radiation and were observed for ~ 15% of their expected lifespan. Assessments of 8-hydroxy-2' -deoxyguanosine (8-OHdG), senescence-associated beta-galactosidase (SAβ-gal), and p16Ink4a and p21 were performed on mitotic and post-mitotic tissues - liver and adipose tissue - 6 months and 3 years post-exposure for the mice and monkeys, respectively. No elevations in 8-OHdG, SA-βgal staining, or p16 Ink4a or p21 gene or protein expression were found in mouse and monkey liver or adipose tissue compared to control animals. Despite no evidence of senescence, progenitor cell dysfunction persisted after radiation exposure, as indicated by lower in situ CD34+ adipose cells (p = 0.03), and deficient adipose stromal vascular cell proliferation (p < 0.05) and differentiation (p = 0.04) ex vivo. Our investigation cautions that employing radiation to study senescence-related processes should be limited to the acute post-exposure period and that stem cell damage likely underpins the dysfunction associated with delayed effects of radiation.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Matthew A Davis
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ashley T Davis
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Darla DeStephanis
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Abigail G Williams
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Katherine M Fanning
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - David L Caudell
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA.
- College of Health and Medicine, University of Tasmania, Hobart, Australia.
| |
Collapse
|
138
|
Conover CA, Bale LK. Senescence induces proteolytically-active PAPP-A secretion and association with extracellular vesicles in human pre-adipocytes. Exp Gerontol 2023; 172:112070. [PMID: 36549546 PMCID: PMC9868105 DOI: 10.1016/j.exger.2022.112070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Senescence is a cellular response to various stressors characterized by irreversible cell cycle arrest, resistance to apoptosis and expression of a senescence-associated secretory phenotype (SASP). Interestingly, studies where senescent cells were deleted in mice produced beneficial effects similar to those where the zinc metalloproteinase, PAPP-A, was deleted in mice. In this study, we investigated the effect of senescence on PAPP-A secretion and activity in primary cultures of adult human pre-adipocytes. Cultured pre-adipocytes were isolated from subcutaneous (Sub) and omental (Om) fat. Senescence was induced with low dose etoposide. PAPP-A protein was measured by an ultrasensitive PAPP-A ELISA. PAPP-A proteolytic activity was measured by a specific substrate cleavage assay. Senescence significantly increased PAPP-A levels in both Sub and Om conditioned medium (CM) 8- to 15-fold over non-senescent CM. Proteolytic activity reflected PAPP-A protein with 12- to 18-fold greater activity in senescent CM versus non-senescent CM. Furthermore, PAPP-A was found at high levels on the surface of extracellular vesicles secreted by senescent pre-adipocytes and was proteolytically active. In conclusion, we identified enzymatically active PAPP-A as a component of human pre-adipocyte SASP. This recognition warrants further investigation of PAPP-A as a new biomarker for senescence and a potential therapeutic target to control of the spread of senescence in adipose tissue.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA.
| | - Laurie K Bale
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
139
|
Role of bile acid receptor FXR in development and function of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159257. [PMID: 36402299 DOI: 10.1016/j.bbalip.2022.159257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Bile acids act as signalling molecules that contribute to maintenance of energy homeostasis in mice and humans. Activation of G-protein-coupled bile acid receptor TGR5 induces energy expenditure in brown adipose tissue (BAT). However, a role for the nuclear bile acid receptor Farnesoid X receptor (FXR) in BAT has remained ambiguous. We aimed to study the potential role of FXR in BAT development and functioning. Here we demonstrate low yet detectable expression of the α1/2 isoforms of FXR in murine BAT that markedly decreases upon cold exposure. Moderate adipose tissue-specific FXR overexpression in mice induces pronounced BAT whitening, presenting with large intracellular lipid droplets and extracellular collagen deposition. Expression of thermogenic marker genes including the target of Tgr5, Dio2, was significantly lower in BAT of chow-fed aP2-hFXR mice compared to wild-type controls. Transcriptomic analysis revealed marked up-regulation of extracellular matrix formation and down-regulation of mitochondrial functions in BAT from aP2-hFXR mice. In addition, markers of cell type lineages deriving from the dermomyotome, such as myocytes, as well as markers of cellular senescence were strongly induced. The response to cold and β3-adrenergic receptor agonism was blunted in these mice, yet resolved BAT whitening. Newborn cholestatic Cyp2c70-/- mice with a human-like bile acid profile also showed distinct BAT whitening and upregulation of myocyte-specific genes, while thermogenic markers were down-regulated. Ucp1 expression inversely correlated with plasma bile acid levels. Therefore, bile acid signalling via FXR has a role in BAT function already early in tissue development. Functionally, FXR activation appears to oppose TGR5-mediated thermogenesis.
Collapse
|
140
|
Qiu R, Wang S, Lin D, He Y, Huang S, Wu B, Li H, Wang M, Zheng F. Mice harboring a R133L heterozygous mutation in LMNA exhibited ectopic lipid accumulation, aging, and mitochondrial dysfunction in adipose tissue. FASEB J 2023; 37:e22730. [PMID: 36583724 DOI: 10.1096/fj.202201252rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
The LMNA gene encodes for the nuclear envelope proteins lamin A and C (lamin A/C). A novel R133L heterozygous mutation in the LMNA gene causes atypical progeria syndrome (APS). However, the underlying mechanism remains unclear. Here, we used transgenic mice (LmnaR133L/+ mice) that expressed a heterozygous LMNA R133L mutation and 3T3-L1 cell lines with stable overexpression of LMNA R133L (by lentiviral transduction) as in vivo and in vitro models to investigate the mechanisms of LMNA R133L mutations that mediate the APS phenotype. We found that a heterozygous R133L mutation in LMNA induced most of the metabolic disturbances seen in patients with this mutation, including ectopic lipid accumulation, limited subcutaneous adipose tissue (SAT) expansion, and insulin resistance. Mitochondrial dysfunction and senescence promote ectopic lipid accumulation and insulin resistance. In addition, the FLAG-mediated pull-down capture followed by mass spectrometry assay showed that p160 Myb-binding protein (P160 MBP; Mybbp1 a $$ a $$ ), the critical transcriptional repressor of PGC-1α, was bound to lamin A/C. Increased Mybbp1 a $$ a $$ levels in tissues and greater Mybbp1 a $$ a $$ -lamin A/C binding in nuclear inhibit PGC-1α activity and promotes mitochondrial dysfunction. Our findings confirm that the novel R133L heterozygous mutation in the LMNA gene caused APS are associated with marked mitochondrial respiratory chain impairment, which were induced by decreased PGC-1α levels correlating with increased Mybbp1a levels in nuclear, and a senescence phenotype of the subcutaneous fat.
Collapse
Affiliation(s)
- Ruojun Qiu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dingyi Lin
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yingzi He
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shaohan Huang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Wu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Fenping Zheng
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
141
|
Song J, Farris D, Ariza P, Moorjani S, Varghese M, Blin M, Chen J, Tyrrell D, Zhang M, Singer K, Salmon M, Goldstein DR. Age-associated adipose tissue inflammation promotes monocyte chemotaxis and enhances atherosclerosis. Aging Cell 2023; 22:e13783. [PMID: 36683460 PMCID: PMC9924943 DOI: 10.1111/acel.13783] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Although aging enhances atherosclerosis, we do not know if this occurs via alterations in circulating immune cells, lipid metabolism, vasculature, or adipose tissue. Here, we examined whether aging exerts a direct pro-atherogenic effect on adipose tissue in mice. After demonstrating that aging augmented the inflammatory profile of visceral but not subcutaneous adipose tissue, we transplanted visceral fat from young or aged mice onto the right carotid artery of Ldlr-/- recipients. Aged fat transplants not only increased atherosclerotic plaque size with increased macrophage numbers in the adjacent carotid artery, but also in distal vascular territories, indicating that aging of the adipose tissue enhances atherosclerosis via secreted factors. By depleting macrophages from the visceral fat, we identified that adipose tissue macrophages are major contributors of the secreted factors. To identify these inflammatory factors, we found that aged fat transplants secreted increased levels of the inflammatory mediators TNFα, CXCL2, and CCL2, which synergized to promote monocyte chemotaxis. Importantly, the combined blockade of these inflammatory mediators impeded the ability of aged fat transplants to enhance atherosclerosis. In conclusion, our study reveals that aging enhances atherosclerosis via increased inflammation of visceral fat. Our study suggests that future therapies targeting the visceral fat may reduce atherosclerosis disease burden in the expanding older population.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Diana Farris
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Paola Ariza
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Smriti Moorjani
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Mita Varghese
- Department of Pediatrics, Division of EndocrinologyUniversity of MichiganAnn ArborMichiganUSA
| | - Muriel Blin
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Judy Chen
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel Tyrrell
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Min Zhang
- Department of BiostatisticsUniversity of MichiganAnn ArborMichiganUSA
| | - Kanakadurga Singer
- Department of Pediatrics, Division of EndocrinologyUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan Salmon
- Department of Cardiac SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel R. Goldstein
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
142
|
Abstract
Rather than serving as a mere onlooker, adipose tissue is a complex endocrine organ and active participant in disease initiation and progression. Disruptions of biological processes operating within adipose can disturb healthy systemic physiology, the sequelae of which include metabolic disorders such as obesity and type 2 diabetes. A burgeoning interest in the field of adipose research has allowed for the elucidation of regulatory networks underlying both adipose tissue function and dysfunction. Despite this progress, few diseases are treated by targeting maladaptation in the adipose, an oft-overlooked organ. In this review, we elaborate on the distinct subtypes of adipocytes, their developmental origins and secretory roles, and the dynamic interplay at work within the tissue itself. Central to this discussion is the relationship between adipose and disease states, including obesity, cachexia, and infectious diseases, as we aim to leverage our wealth of knowledge for the development of novel and targeted therapeutics.
Collapse
Affiliation(s)
- Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; .,Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
143
|
Arabi T, Shafqat A, Sabbah BN, Ashraf N, Shah H, Abdulkader H, Razak A, Sabbah AN, Arabi Z. Obesity-related kidney disease: Beyond hypertension and insulin-resistance. Front Endocrinol (Lausanne) 2023; 13:1095211. [PMID: 36726470 PMCID: PMC9884830 DOI: 10.3389/fendo.2022.1095211] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease (CKD) causes considerable morbidity, mortality, and health expenditures worldwide. Obesity is a significant risk factor for CKD development, partially explained by the high prevalence of diabetes mellitus and hypertension in obese patients. However, adipocytes also possess potent endocrine functions, secreting a myriad of cytokines and adipokines that contribute to insulin resistance and induce a chronic low-grade inflammatory state thereby damaging the kidney. CKD development itself is associated with various metabolic alterations that exacerbate adipose tissue dysfunction and insulin resistance. This adipose-renal axis is a major focus of current research, given the rising incidence of CKD and obesity. Cellular senescence is a biologic hallmark of aging, and age is another significant risk factor for obesity and CKD. An elevated senescent cell burden in adipose tissue predicts renal dysfunction in animal models, and senotherapies may alleviate these phenotypes. In this review, we discuss the direct mechanisms by which adipose tissue contributes to CKD development, emphasizing the potential clinical importance of such pathways in augmenting the care of CKD.
Collapse
Affiliation(s)
- Tarek Arabi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Nader Ashraf
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hassan Shah
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Adhil Razak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Ziad Arabi
- Division of Nephrology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
144
|
García-Pérez R, Ramirez JM, Ripoll-Cladellas A, Chazarra-Gil R, Oliveros W, Soldatkina O, Bosio M, Rognon PJ, Capella-Gutierrez S, Calvo M, Reverter F, Guigó R, Aguet F, Ferreira PG, Ardlie KG, Melé M. The landscape of expression and alternative splicing variation across human traits. CELL GENOMICS 2023; 3:100244. [PMID: 36777183 PMCID: PMC9903719 DOI: 10.1016/j.xgen.2022.100244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.
Collapse
Affiliation(s)
- Raquel García-Pérez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Jose Miguel Ramirez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Aida Ripoll-Cladellas
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Ruben Chazarra-Gil
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Winona Oliveros
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Oleksandra Soldatkina
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Mattia Bosio
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Paul Joris Rognon
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
- Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Catalonia 08005, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia 08034, Spain
| | - Salvador Capella-Gutierrez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Miquel Calvo
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Ferran Reverter
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalonia 08003, Spain
| | | | - Pedro G. Ferreira
- Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s), R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | | | - Marta Melé
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| |
Collapse
|
145
|
Regular Exercise in Drosophila Prevents Age-Related Cardiac Dysfunction Caused by High Fat and Heart-Specific Knockdown of skd. Int J Mol Sci 2023; 24:ijms24021216. [PMID: 36674733 PMCID: PMC9865808 DOI: 10.3390/ijms24021216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Skuld (skd) is a subunit of the Mediator complex subunit complex. In the heart, skd controls systemic obesity, is involved in systemic energy metabolism, and is closely linked to cardiac function and aging. However, it is unclear whether the effect of cardiac skd on cardiac energy metabolism affects cardiac function. We found that cardiac-specific knockdown of skd showed impaired cardiac function, metabolic impairment, and premature aging. Drosophila was subjected to an exercise and high-fat diet (HFD) intervention to explore the effects of exercise on cardiac skd expression and cardiac function in HFD Drosophila. We found that Hand-Gal4>skd RNAi (KC) Drosophila had impaired cardiac function, metabolic impairment, and premature aging. Regular exercise significantly improved cardiac function and metabolism and delayed aging in HFD KC Drosophila. Thus, our study found that the effect of skd on cardiac energy metabolism in the heart affected cardiac function. Exercise may counteract age-related cardiac dysfunction and metabolic disturbances caused by HFD and heart-specific knockdown of skd. Skd may be a potential therapeutic target for heart disease.
Collapse
|
146
|
Obesity triggers tumoral senescence and renders poorly immunogenic malignancies amenable to senolysis. Proc Natl Acad Sci U S A 2023; 120:e2209973120. [PMID: 36574648 PMCID: PMC9910606 DOI: 10.1073/pnas.2209973120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Obesity is a major risk factor for cancer. Conventional thought suggests that elevated adiposity predisposes to heightened inflammatory stress and potentiates tumor growth, yet underlying mechanisms remain ill-defined. Here, we show that tumors from patients with a body mass index >35 carry a high burden of senescent cells. In mouse syngeneic tumor models, we correlated a pronounced accretion of senescent cancer cells with poorly immunogenic tumors when mice were subjected to diet-induced obesity (DIO). Highly immunogenic tumors showed lesser senescence burden suggesting immune-mediated elimination of senescent cancer cells, likely targeted as a consequence of their senescence-associated secretory phenotype. Treatment with the senolytic BH3 mimetic small molecule inhibitor ABT-263 selectively stalled tumor growth in mice with DIO to rates comparable to regular diet-fed mice. Thus, consideration of body adiposity in the selection of cancer therapy may be a critical determinant for disease outcome in poorly immunogenic malignancies.
Collapse
|
147
|
Brícola RS, Cordeiro AV, Crisol BM, Braga RR, de Melo DG, Rocha MB, Gaspar RC, Nakandakari SCBR, Silva VRR, Anaruma CP, Katashima CK, Canciglieri RDS, Munõz VR, Pavan ICB, Pinto AP, Simabuco FM, Silva ASRD, Moura LP, Pauli JR, Cintra DE, Ropelle ER. Aging reduces ABHD5 protein content in the adipose tissue of mice: The reversal effect of exercise. Cell Biochem Funct 2023; 41:128-137. [PMID: 36515301 DOI: 10.1002/cbf.3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022]
Abstract
Dysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-β hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown. Here we combined the experimental mouse model with transcriptomic analyzes by using murine and human databases to explore the role of ABHD5 in the adipose tissue during aging and in response to exercise. Transcriptomic data revealed a downregulation of Abhd5 messenger RNA levels in the subcutaneous white adipose tissue (scWAT) over time in individuals from 20 to 69 years old. Aged mice displayed dramatic reduction of ABHD5 protein content and lipolytic-related proteins in the scWAT. Interestingly, 4 weeks of high-intensity interval training increased ABHD5 protein level and restored the lipolytic pathway in the scWAT of aged mice. Altogether, our findings demonstrated that aging affects ABHD5 content in the adipose tissue of mice and humans. Conversely, exercise increases ABHD5 activity, recovering the lipolytic activity in aged mice.
Collapse
Affiliation(s)
- Rafael S Brícola
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - André V Cordeiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Barbara M Crisol
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Renata R Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Diego G de Melo
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Matheus B Rocha
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Rafael C Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Susana C B R Nakandakari
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Vagner R R Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Chadi P Anaruma
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Carlos K Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Raphael D S Canciglieri
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Vitor R Munõz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Isadora C B Pavan
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Ana P Pinto
- Ribeirão Preto Medical School, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando M Simabuco
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Ribeirão Preto Medical School, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leandro P Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.,Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
148
|
Cai Z, He B. Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism 2023; 138:155328. [PMID: 36202221 DOI: 10.1016/j.metabol.2022.155328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Aging is a complex biological process characterized by a progressive loss of physiological integrity and increased vulnerability to age-related diseases. Adipose tissue plays central roles in the maintenance of whole-body metabolism homeostasis and has recently attracted significant attention as a biological driver of aging and age-related diseases. Here, we review the most recent advances in our understanding of the molecular and cellular mechanisms underlying age-related decline in adipose tissue function. In particular, we focus on the complex inter-relationship between metabolism, immune, and sympathetic nervous system within adipose tissue during aging. Moreover, we discuss the rejuvenation strategies to delay aging and extend lifespan, including senescent cell ablation (senolytics), dietary intervention, physical exercise, and heterochronic parabiosis. Understanding the pathological mechanisms that underlie adipose tissue aging will be critical for the development of new intervention strategies to slow or reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Zhaohua Cai
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
149
|
Chronic docosahexaenoic acid supplementation improves metabolic plasticity in subcutaneous adipose tissue of aged obese female mice. J Nutr Biochem 2023; 111:109153. [PMID: 36150680 DOI: 10.1016/j.jnutbio.2022.109153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to characterize the potential beneficial effects of chronic docosahexaenoic acid (DHA) supplementation on restoring subcutaneous white adipose tissue (scWAT) plasticity in obese aged female mice. Two-month-old female C57BL/6J mice received a control (CT) or a high fat diet (HFD) for 4 months. Then, 6-month-old diet-induced obese (DIO) mice were distributed into the DIO and the DIOMEG group (fed with a DHA-enriched HFD) up to 18 months. In scWAT, the DHA-enriched diet reduced the mean adipocyte size and reversed the upregulation of lipogenic genes induced by the HFD, reaching values even lower than those observed in CT animals. DIO mice exhibited an up-regulation of lipolytic and fatty oxidation gene expressions that was reversed in DHA-supplemented mice except for Cpt1a mRNA levels, which were higher in DIOMEG as compared to CT mice. DHA restored the increase of proinflammatory genes observed in scWAT of DIO mice. While no changes were observed in total macrophage F4/80+/CD11b+ content, the DHA treatment switched scWAT macrophages profile by reducing the M1 marker Cd11c and increasing the M2 marker CD206. These events occurred alongside with a stimulation of beige adipocyte specific genes, the restoration of UCP1 and pAKT/AKT ratio, and a recovery of the HFD-induced Fgf21 upregulation. In summary, DHA supplementation induced a metabolic remodeling of scWAT to a healthier phenotype in aged obese mice by modulating genes controlling lipid accumulation in adipocytes, reducing the inflammatory status, and inducing beige adipocyte markers in obese aged mice.
Collapse
|
150
|
The Senolytic Drug Fisetin Attenuates Bone Degeneration in the Zmpste24 -/- Progeria Mouse Model. J Osteoporos 2023; 2023:5572754. [PMID: 36875869 PMCID: PMC9977556 DOI: 10.1155/2023/5572754] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/26/2022] [Accepted: 01/21/2023] [Indexed: 03/07/2023] Open
Abstract
Aging leads to several geriatric conditions including osteoporosis (OP) and associated frailty syndrome. Treatments for these conditions are limited and none target fundamental drivers of pathology, and thus identifying strategies to delay progressive loss of tissue homeostasis and functional reserve will significantly improve quality of life in elderly individuals. A fundamental property of aging is the accumulation of senescent cells. Senescence is a cell state defined by loss of proliferative capacity, resistance to apoptosis, and the release of a proinflammatory and anti-regenerative senescence-associated secretory phenotype (SASP). The accumulation of senescent cells and SASP factors is thought to significantly contribute to systemic aging. Senolytics-compounds which selectively target and kill senescent cells-have been characterized to target and inhibit anti-apoptotic pathways that are upregulated during senescence, which can elicit apoptosis in senescent cells and relieve SASP production. Senescent cells have been linked to several age-related pathologies including bone density loss and osteoarthritis in mice. Previous studies in murine models of OP have demonstrated that targeting senescent cells pharmacologically with senolytic drugs can reduce symptomology of the disease. Here, we demonstrate the efficacy of senolytic drugs (dasatinib, quercetin, and fisetin) to improve age-associated degeneration in bone using the Zmpste24-/- (Z24-/-) progeria murine system for Hutchinson-Gilford progeria syndrome (HGPS). We found that the combination of dasatinib plus quercetin could not significantly mitigate trabecular bone loss although fisetin administration could reduce bone density loss in the accelerated aging Z24-/- model. Furthermore, the overt bone density loss observed in the Z24-/- model reported herein highlights the Z24 model as a translational model to recapitulate alterations in bone density associated with advanced age. Consistent with the "geroscience hypothesis," these data demonstrate the utility of targeting a fundamental driver of systemic aging (senescent cell accumulation) to alleviate a common condition with age, bone deterioration.
Collapse
|