101
|
Abstract
Background Panax ginseng is one of the most valuable medicinal plants in Korea. However, deciphering its full genome sequence information for crop improvement has been hampered due to its complex genomic, genetic, and growth characteristics. Many efforts have been made in the past decade to overcome these limitations and understand the genome structure and the evolutionary history of P. ginseng. Methods This review aims to discuss the current status of genomic studies on P. ginseng and related species, and the experimental clues suggesting phylogenetic classification and evolutionary history of the genus Panax. Conclusion The development of sequencing technologies made genome sequencing of the large P. ginseng genome possible, providing fundamental information to deciphering the evolutionary history of P. ginseng and related species. P. ginseng went through two rounds of whole genome duplication events after diverging from the closest family Apiaceae, which was unveiled from complete whole genome sequences. Further in-depth comparative genome analysis with other related species and genera will uncover the evolutionary history as well as important morphological and ecological characteristics of Panax species.
Collapse
|
102
|
Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF. Protective Effect of Natural Products against Huntington's Disease: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. ACS Chem Neurosci 2021; 12:391-418. [PMID: 33475334 DOI: 10.1021/acschemneuro.0c00824] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of characteristic psychiatric disturbances and cognitive and motor dysfunction. To the best of our knowledge, there is no treatment available to completely mitigate the progression of HD. Among various therapeutic approaches, exhaustive literature reports have confirmed the medicinal benefits of natural products in HD experimental models. Building on this information, this review presents a brief overview of the neuroprotective mechanism(s) of natural products against in vitro/in vivo models of HD. Relevant studies were identified from several scientific databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. After screening through literature from 2005 to the present, a total of 14 medicinal plant species and 30 naturally isolated compounds investigated against HD based on either in vitro or in vivo models were included in the present review. Behavioral outcomes in the HD in vivo model showed that natural compounds significantly attenuated 3-nitropropionic acid (3-NP) induced memory loss and motor incoordination. The biochemical alteration has been markedly alleviated with reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and increased mitochondrial energy production. Interestingly, following treatment with certain natural products, 3-NP-induced damage in the striatum was ameliorated, as seen histologically. Overall, natural products afforded varying degrees of neuroprotection in preclinical studies of HD via antioxidant and anti-inflammatory properties, preservation of mitochondrial function, inhibition of apoptosis, and induction of autophagy.
Collapse
Affiliation(s)
- Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
103
|
Kouipou Toghueo RM, Youmbi DY, Boyom FF. Endophytes from Panax species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
104
|
Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2020; 12:494-518. [PMID: 33331377 DOI: 10.1039/d0fo01896a] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C. A. Meyer (P. ginseng) has a long history of medicinal use and can treat a variety of diseases. P. ginseng contains a variety of active ingredients, such as saponins, polypeptides, volatile oils, and polysaccharides. Among them, saponins have always been considered as the main components responsible for its pharmacological activities. However, more and more studies have shown that polysaccharides play an indispensable role in the medicinal value of ginseng. Modern biological and medical studies have found that ginseng polysaccharides have complex structural characteristics and diverse biological activities, such as immune regulation, anti-tumor, antioxidant, hypoglycemic, and anti-radiation functions, among others. Additionally, the structural characteristics of ginseng polysaccharides are closely related to their activity. In this review, the research background, extraction, purification, structural characteristics, and biological activities of ginseng polysaccharides from different parts of P. ginseng (roots, flowers stems and leaves, and berries) under different growth conditions (artificially cultivated ginseng, mountain ginseng, and wild ginseng) are summarized. The structural characteristics of purified polysaccharides were reviewed. Meanwhile, their biological activities were introduced, and some possible mechanisms were listed. Furthermore, the structure-activity relationship of polysaccharides was discussed. Some research perspectives for the study of ginseng polysaccharides were also provided.
Collapse
Affiliation(s)
- Mingkun Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
105
|
Um Y, Eo HJ, Kim HJ, Kim K, Jeon KS, Jeong JB. Wild simulated ginseng activates mouse macrophage, RAW264.7 cells through TRL2/4-dependent activation of MAPK, NF-κB and PI3K/AKT pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113218. [PMID: 32755650 DOI: 10.1016/j.jep.2020.113218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng Meyer) is a very well-known traditional herbal medicine that has long been used to enhance the body's immunity. Because it is a type of ginseng, it is believed that wild simulated ginseng (WSG) also has immune-enhancing activity. However, study on the immune-enhancing activity of WSG is quite insufficient compared to ginseng. AIM OF THE STUDY In this study, we evaluated immune-enhancing activity of WSG through macrophage activation to provide a scientific basis for the immune enhancing activity of WSG. MATERIALS AND METHODS The effect of WSG on viability of RAW264.7 cells was evaluated by MTT assay. The NO level was measured by Griess reagent. The expression levels of mRNA or protein in WSG-treated RAW264.7 cells were analyzed by RT-PCR and Western blot, respectively. RESULTS WSG increased the production of immunomodulators such as NO, iNOS, COX-2, IL-1β, IL-6 and TNF-α and activated phagocytosis in mouse macrophages RAW264.7 cells. Inhibition of TLR2 and TLR4 reduced the production of immunomodulators induced by WSG. WSG activated MAPK, NF-κB and PI3K/AKT signaling pathways, and inhibition of such signaling activation blocked WSG-mediated production of immunomodulators. In addition, activation of MAPK, NF-κB and PI3K/AKT signaling pathways by WSG was reversed by TLR2 or TLR4 inhibition. CONCLUSION Based on the results of this study, WSG is thought to activate macrophages through the production of immunomodulators and phagocytosis activation through TLR2/4-dependent MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, it is thought that WSG have the potential to be used as an agent for enhancing immunity.
Collapse
Affiliation(s)
- Yurry Um
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Hyun Jun Kim
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Kiyoon Kim
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Kwon Seok Jeon
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
106
|
Soeda Y, Takashima A. New Insights Into Drug Discovery Targeting Tau Protein. Front Mol Neurosci 2020; 13:590896. [PMID: 33343298 PMCID: PMC7744460 DOI: 10.3389/fnmol.2020.590896] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Microtubule-associated protein tau is characterized by the fact that it is an intrinsically disordered protein due to its lack of a stable conformation and high flexibility. Intracellular inclusions of fibrillar forms of tau with a β-sheet structure accumulate in the brain of patients with Alzheimer's disease and other tauopathies. Accordingly, detachment of tau from microtubules and transition of tau from a disordered state to an abnormally aggregated state are essential events preceding the onset of tau-related diseases. Many reports have shown that this transition is caused by post-translational modifications, including hyperphosphorylation and acetylation. The misfolded tau is self-assembled and forms a tau oligomer before the appearance of tau inclusions. Animal and pathological studies using human samples have demonstrated that tau oligomer formation contributes to neuronal loss. During the progression of tauopathies, tau seeds are released from cells and incorporated into other cells, leading to the propagation of pathological tau aggregation. Accumulating evidence suggests several potential approaches for blocking tau-mediated toxicity: (1) direct inhibition of pathological tau aggregation and (2) inhibition of tau post-translational modifications that occur prior to pathological tau aggregation, (3) inhibition of tau propagation and (4) stabilization of microtubules. In addition to traditional low-molecular-weight compounds, newer drug discovery approaches such as the development of medium-molecular-weight drugs (peptide- or oligonucleotide-based drugs) and high-molecular-weight drugs (antibody-based drugs) provide alternative pathways to preventing the formation of abnormal tau. Of particular interest are recent studies suggesting that tau droplet formation by liquid-liquid phase separation may be the initial step in aberrant tau aggregation, as well results that implicate roles for tau in dendritic and nuclear functions. Here, we review the mechanisms through which drugs can target tau and consider recent clinical trials for the treatment of tauopathies. In addition, we discuss the utility of these newer strategies and propose future directions for research on tau-targeted therapeutics.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
107
|
Qiang B, Miao J, Phillips N, Wei K, Gao Y. Recent Advances in the Tissue Culture of American Ginseng (Panax quinquefolius). Chem Biodivers 2020; 17:e2000366. [PMID: 32734631 DOI: 10.1002/cbdv.202000366] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
The in vitro tissue culture of medicinal plants is considered as a potential source for plant-derived bioactive secondary metabolites. The in vitro tissue culture of American ginseng has wide commercial applications in pharmaceutical, nutraceutical, food, and cosmetic fields with regard to the production of bioactive compounds such as ginsenosides and polysaccharides. This review highlights the recent progress made on different types of tissue culture practices with American ginseng, including callus culture, somatic embryo culture, cell suspension culture, hairy root culture, and adventitious root culture. The tissue culture conditions for inducing ginseng callus, somatic embryos, cell suspension, hairy roots, and adventitious roots were analyzed. In addition, the optimized conditions for increasing the production of ginsenosides and polysaccharides were discussed. This review provides references for the use of modern biotechnology to improve the production of bioactive compounds from American ginseng, as well as references for the development and sustainable utilization of American ginseng resources.
Collapse
Affiliation(s)
- Baobao Qiang
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Tennessee, 37132, USA.,Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, P. R. China
| | - Jianhua Miao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, P. R. China.,Guangxi University of Traditional Medicine, Nanning, 530001, P. R. China
| | - Nate Phillips
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Tennessee, 37132, USA
| | - Kunhua Wei
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, P. R. China.,Guangxi University of Traditional Medicine, Nanning, 530001, P. R. China
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Tennessee, 37132, USA
| |
Collapse
|
108
|
Kwon Y, Shin J, Nam K, An JS, Yang S, Hong S, Bae M, Moon K, Cho Y, Woo J, Park K, Kim K, Shin J, Kim B, Kim Y, Oh D. Rhizolutin, a Novel 7/10/6‐Tricyclic Dilactone, Dissociates Misfolded Protein Aggregates and Reduces Apoptosis/Inflammation Associated with Alzheimer's Disease. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yun Kwon
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences Yonsei University 85 Songdogwahak-ro, Yeonsu-gu Incheon 21983 Republic of Korea
| | - Kwangho Nam
- Department of Chemistry and Biochemistry University of Texas at Arlington Arlington TX 76019 USA
| | - Joon Soo An
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Seung‐Hoon Yang
- Department of Medical Biotechnology Dongguk University 32 Dongguk-ro, Ilsandong-gu, Goyang Gyeonggi-do 10326 Republic of Korea
| | - Seong‐Heon Hong
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Munhyung Bae
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Kyuho Moon
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center Korea Institute of Science and Technology (KIST) 5 Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center Korea Institute of Science and Technology (KIST) 5 Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research Center Korea Institute of Science and Technology (KIST) 679 Saimdang-ro, Gangneung-si Gangwon-do 25451 Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences Yonsei University 85 Songdogwahak-ro, Yeonsu-gu Incheon 21983 Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Byung‐Yong Kim
- Microbiome Research Centre ChunLab, Inc. 2477, JW Tower 6F, Nambusunhwan-ro Seocho-gu Seoul 06725 Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences Yonsei University 85 Songdogwahak-ro, Yeonsu-gu Incheon 21983 Republic of Korea
| | - Dong‐Chan Oh
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
109
|
Kwon Y, Shin J, Nam K, An JS, Yang SH, Hong SH, Bae M, Moon K, Cho Y, Woo J, Park K, Kim K, Shin J, Kim BY, Kim Y, Oh DC. Rhizolutin, a Novel 7/10/6-Tricyclic Dilactone, Dissociates Misfolded Protein Aggregates and Reduces Apoptosis/Inflammation Associated with Alzheimer's Disease. Angew Chem Int Ed Engl 2020; 59:22994-22998. [PMID: 32844539 DOI: 10.1002/anie.202009294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/20/2020] [Indexed: 01/18/2023]
Abstract
Rhizolutin (1) was discovered as a natural product of ginseng-rhizospheric Streptomyces sp. WON17. Its structure features an unprecedented 7/10/6-tricyclic dilactone carbon skeleton composed of dimethylcyclodecatriene flanked by a 7-membered and a 6-membered lactone ring based on spectroscopic analysis. During an unbiased screening of natural product libraries, this novel compound was found to dissociate amyloid-β (Aβ) plaques and tau tangles, which are key pathological hallmarks of Alzheimer's disease (AD). Rhizolutin treatment of APP/PS1 double transgenic mice with AD significantly dissociated hippocampal plaques. In vitro, rhizolutin substantially decreased Aβ-induced apoptosis and inflammation in neuronal and glial cells. Our findings introduce a unique chemical entity that targets Aβ and tau concurrently by mimicking misfolded protein clearance mechanisms of immunotherapy, which is prominently investigated in clinical trials.
Collapse
Affiliation(s)
- Yun Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Seong-Heon Hong
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyuho Moon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung-si, Gangwon-do, 25451, Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byung-Yong Kim
- Microbiome Research Centre, ChunLab, Inc., 2477, JW Tower 6F, Nambusunhwan-ro, Seocho-gu, Seoul, 06725, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
110
|
Enhanced Intestinal Immune Response in Mice after Oral Administration of Korea Red Ginseng-Derived Polysaccharide. Polymers (Basel) 2020; 12:polym12102186. [PMID: 32987851 PMCID: PMC7600159 DOI: 10.3390/polym12102186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: The immunostimulatory role of the polysaccharide fraction (KRG-P) of Korea red ginseng (KRG) was studied in cells. However, its immunomodulatory activity is unknown. Therefore, we investigated the chemical properties of KRG-P and its intestinal immune responses in vitro and in vivo. (2) Methods: KRG-P monosaccharide composition and molecular weight were determined using high-performance liquid and size-exclusion chromatography systems. Immunoglobulin A (IgA) and α-defensin-1 transcript levels were measured using a SYBR Green qRT-PCR; defensin-1, Granulocyte-macrophage colony-stimulating factor (GM-CSF), and IgA protein levels were determined using Western blotting and ELISA kits. (3) Results: The molecular weight of KRG-P was estimated to be 106 kDa, and it contained neutral sugar (74.3%), uronic acid (24.6%), and proteins (1%). In vitro studies of intestinal immunomodulatory activity of KRG-P indicated that GM-CSF and IgA levels increased in Peyer’s patch cells to higher levels than those obtained with KRG and induced bone marrow cell proliferation. In in vivo study, oral KRG-P administration to mice upregulated the expression of α-defensin-1 and IgA in the small intestinal tissue and that of secreted IgA in the feces. (4) Conclusions: KRG-P contributed to the modulation of intestinal immunity and maintenance of intestinal homeostasis against intestinal infection.
Collapse
|
111
|
Kang IS, Agidigbi TS, Kwon YM, Kim DG, Kim RI, In G, Lee MH, Kim C. Effect of Co-Administration of Panax ginseng and Brassica oleracea on Postmenopausal Osteoporosis in Ovariectomized Mice. Nutrients 2020; 12:nu12082415. [PMID: 32806557 PMCID: PMC7468818 DOI: 10.3390/nu12082415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Postmenopausal osteoporosis is a common disorder resulting from increased osteoclastic activity. To determine the effect of Panax ginseng on postmenopausal osteoporosis, ovariectomized (OVX) mice were treated with 500 mg/kg/day P. ginseng extract (Pg) alone or in combination with hot water extract of Brassica oleracea (Bo) daily for 10 weeks, and the effect of the treatments on OVX-induced bone loss was examined. Bone weight, bone mineral density (BMD), osteoclast (OC) formation, OC marker expression, and biochemical parameters in blood were determined. OVX significantly increased body weight and decreased bone weight compared with those in the Sham group (p < 0.01). Pg or Bo alone did not affect OVX-induced bone loss, but a combination of Pg and Bo (Pg:Bo) recovered bone weight. The bones of OVX mice showed lower BMD than that of Sham mice, and the Pg:Bo = 3:1 restored the decreased BMD. Single treatment with Pg or Bo did not alter OC formation; however, the Pg:Bo = 3:1 inhibited OC formation. In addition, Pg and Bo lowered the OVX-induced elevation in blood glucose level. Thus, we suggest that Pg in combination with proper materials, such as Bo, might be a potential candidate treatment with minimal side effects protect against postmenopausal osteoporosis.
Collapse
Affiliation(s)
- In Soon Kang
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Taiwo Samuel Agidigbi
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Young Min Kwon
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Dong-Gyu Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Rang Ie Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Gyo In
- Laboratory of Fundamental Research, Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34128, Korea; (G.I.); (M.-H.L.)
| | - Mi-Hyang Lee
- Laboratory of Fundamental Research, Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34128, Korea; (G.I.); (M.-H.L.)
| | - Chaekyun Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
- Correspondence: ; Tel.: +82-32-860-9874; Fax: +82-32-885-8302
| |
Collapse
|
112
|
Immune Activity of Polysaccharide Fractions Isolated from Korean Red Ginseng. Molecules 2020; 25:molecules25163569. [PMID: 32781524 PMCID: PMC7464961 DOI: 10.3390/molecules25163569] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Korean red ginseng (KRG)’s pharmacological efficacy and popular immunomodulatory effects have already been proven in many studies; however, the component of KRG that is effective in immune activity has not been studied before. Therefore, this study extracted and separated KRG for an immune activity comparison. In the water fraction obtained by extracting KRG powder with water, a red ginseng neutral polysaccharide (RGNP) fraction and a red ginseng acidic polysaccharide (RGAP) fraction were obtained. Each fraction was orally administered for 10 days to mice with reduced immunity, and the number of IgM antibody-forming cells (AFCs) in splenocytes was measured to compare the immune activity of the water fractions. The results showed that the RGAP fraction has the greatest number of AFCs. To set the optimal dose of the RGAP fraction, which had the highest immune activity, the AFCs, macrophage activity, and splenocyte subtype in the mice were analyzed. As a result, the number of AFCs was significantly increased in the RGAP fraction compared to RGNP. The intraperitoneal macrophage phagocytosis activity and the number of T cells, B cells, and macrophages in the spleen increased significantly. It can, therefore, be confirmed that immune activity increases by a fraction containing higher RGAP content, and we hypothesize that RGAP activates immune activity.
Collapse
|
113
|
Anticancer Effect of Mountain Ginseng on Human Breast Cancer: Comparison with Farm-Cultivated Ginseng. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2584783. [PMID: 32774407 PMCID: PMC7399781 DOI: 10.1155/2020/2584783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Mountain ginseng has been used generally as a pharmacopuncture for cancer therapy in clinical practice in Northeast Asia. Nonetheless, there have been few scientific reports for the anticancer action of mountain ginseng. In this study, we investigated whether mountain ginseng extract (MGE) could inhibit the growth of breast cancer in in vitro and in vivo models. MGE showed stronger cytotoxicity than farm-cultivated ginseng extract (FGE) through promoting ROS generation. Also MGE dose-dependently brought about mitochondrial dysfunction in MCF-7 cells. In addition, MGE induced apoptosis through enhancing the activities of caspase-3/7 by regulation of expression of Bcl-2, Bax, cytochrome c, and cleaved caspase-3 in the MCF-7 cells. Consistent with the in vitro results, MGE significantly reduced tumor weights compared with FGE in mice transplanted with MCF-7 cells, and it regulated the expression of apoptosis-related proteins, such as Bcl-2, Bax, cytochrome c, cleaved caspase-3, and cleaved PARP, in the tumor tissues. Additionally, MGE included higher total ginsenoside contents than FGE. In conclusion, MGE, which is richer in ginsenosides, exerts a stronger anticancer action than FGE in breast cancer. The anticancer action of MGE may be closely correlated with caspase-mediated apoptosis through upregulating ROS generation. Therefore, these findings may be helpful for a clinical understanding of the anticancer mechanism of MGE for breast cancer patients.
Collapse
|
114
|
Oizumi H, Miyazaki S, Tabuchi M, Endo T, Omiya Y, Mizoguchi K. Kamikihito Enhances Cognitive Functions and Reward-Related Behaviors of Aged C57BL/6J Mice in an Automated Behavioral Assay System. Front Pharmacol 2020; 11:1037. [PMID: 32765263 PMCID: PMC7379479 DOI: 10.3389/fphar.2020.01037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
The cognitive and psychological domains of frailty in the elderly have drawn increasing attention given the aging of society. However, therapeutics to treat minor deficits in cognition and mental state in the elderly remain an unmet need. Kamikihito (KKT), a traditional Japanese Kampo medicine indicated for neuroses, anxiety, and insomnia, is effective for treating cognitive dysfunction and depressive-like behaviors in animal models, suggesting that it may have therapeutic potential for treating cognitive and/or mental frailty. In this study, we first validated the known anxiolytic effects of KKT in a conventional maze test. We then introduced an automated behavioral assay system, IntelliCage, to evaluate the therapeutic potential of KKT for age-related and diverse central functions by performing sequential behavioral tasks in young and aged mice to assess basal activities, cognitive functions, perseveration, and hedonic-related behaviors. Although young mice treated with KKT did not exhibit changes in diurnal variation, KKT-administered aged mice exhibited an accelerated decline in voluntary activity during the early part of the light period, implying that KKT may promote sleep onset in aged mice. Neither place learning acquisition for gaining rewards nor subsequent behavioral flexibility performance was altered by KKT in the young group, whereas the aged KKT group exhibited significantly enhanced performance in both phases of learning relative to age-matched controls. Conversely, perseverative nose-pokes (NPs) to gain rewards observed during place learning, indicative of compulsivity, were attenuated by KKT in both age groups. Regarding hedonic processing, aged mice exhibited a decreased preference for sweet solutions compared to young mice, which was effectively reversed by KKT treatment. Furthermore, KKT elevated high-effort choices for high-value reward in an effort-based decision-making paradigm in both age groups, implying augmentation of motivational behaviors by KKT. Collectively, KKT exerted various beneficial effects in cognitive and emotional domains, several of which were more evident in aged mice than in young mice, suggesting the potential of KKT for treating cognitive and mental frailty.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Shinji Miyazaki
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Masahiro Tabuchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | |
Collapse
|
115
|
Liu J, Li T, Wang J, Zhao C, Geng C, Meng Q, Du G, Yin J. Different absorption and metabolism of ginsenosides after the administration of total ginsenosides and decoction of Panax ginseng. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8788. [PMID: 32196768 DOI: 10.1002/rcm.8788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Panax ginseng C.A. Meyer (PG), which contains polysaccharides and ginsenosides as the major bioactive components, has been used to promote health and treat diseases for thousands of years in China. Total ginsenosides were extracted from a decoction of Panax ginseng (GD), which included both ginsenosides and polysaccharides, and dissolved in water to obtain a total ginsenosides aqueous solution (TGAS). To study their absorption and metabolism, the pharmacokinetics (PK) and metabolites of ginsenosides in vivo were investigated after the administration of GD and TGAS. METHODS Rat and mice plasma samples were collected after the administration of GD and TGAS. Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used with the UNIFI platform to identify metabolites in the plasma sample. The pharmacokinetic parameters were calculated using a noncompartmental method in the Drug and Statistics software package. RESULTS Thirty ginsenoside metabolites were identified in mice plasma, of which only seven were found in the rat plasma after the administration of GD. The PK of ginsenosides Rb1 , Rc, and Rd were also determined after the oral administration of GD and TGAS and showed significant differences in the pharmacokinetic parameters. CONCLUSIONS There was no difference in the biotransformation pathways after the oral administration of GD and TGAS, indicating that there was no influence of polysaccharides on the biotransformation of ginsenosides in vivo. However, the pharmacokinetic parameters were different after the administration of GD and TGAS, possibly because of the polysaccharides in GD. This study should be of significance in exploring the basis of PG bioactivities and lays the foundation for the further development of new drugs using PG.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Ting Li
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
- Department of Pharmaceutics, Changzhi Medical College, Changzhi, China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Chunfang Zhao
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Cong Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qin Meng
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jianyuan Yin
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
116
|
Lee R, Lee NE, Choi SH, Nam SM, Kim HC, Rhim H, Cho IH, Hwang SH, Nah SY. Effects of gintonin-enriched fraction on hippocampal gene expressions. Integr Med Res 2020; 10:100475. [PMID: 33134079 PMCID: PMC7588706 DOI: 10.1016/j.imr.2020.100475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background Recently, gintonin and gintonin-enriched fraction (GEF) have been isolated from ginseng, a herbal medicine. Gintonin induces [Ca2+]i transition in cultured hippocampal neurons and stimulates acetylcholine release through LPA receptor activation. Oral administration of GEF is linked to hippocampus-dependent cognitive enhancement and other neuroprotective effects; however, effects of its long-term administration on hippocampal gene expression remains unknown. Here, we used next-generation sequence (NGS) analysis to examine changes in hippocampal gene expressions after long-term oral administration of GEF. Methods C57BL/6 mice were divided into three groups: control group, GEF50 (GEF 50 mg/kg, p.o.), and GEF100 (GEF 100 mg/kg, p.o.). After 22 days, total RNA was extracted from mouse hippocampal tissues. NGS was used for gene expression profiling; quantitative-real-time PCR and western blot were performed to quantify the changes in specific genes and to confirm the protein expression levels in treatment groups. Results NGS analysis screened a total of 23,282 genes, analyzing 11-related categories. We focused on the neurogenesis category, which includes four genes for candidate markers: choline acetyltransferase (ChAT) gene, β3-adrenergic receptor (Adrb3) gene, and corticotrophin-releasing hormone (Crh) gene, and tryptophan 2,3-dioxygenase (Tdo2) gene. Real-time PCR showed a marked overexpression of ChAT, Adrb3, and Crh genes, while reduced expression of Tdo2. Western blot analysis also confirmed increased ChAT and decreased Tdo2 protein levels. Conclusion We found that GEF affects mouse hippocampal gene expressions, associated with memory, cognitive, anti-stress and anti-anxiety functions, and neurodegeneration at differential degree, that might explain the genetic bases of GEF-mediated neuroprotective effects.
Collapse
Affiliation(s)
- Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuro Psychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
117
|
Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7829842. [PMID: 32685100 PMCID: PMC7350179 DOI: 10.1155/2020/7829842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/18/2022]
Abstract
Tau, a microtubule-associated protein expressed in mature neurons, interacts with tubulin to promote the assembly and stabilization of microtubules. However, abnormally hyperphosphorylated tau dissociates from microtubules and self-aggregates. Tau aggregates, including paired helical filaments and neurofibrillary tangles, promote neuronal dysfunction and death and are the defining neuropathological feature of tauopathies. Therefore, suppressing tau aggregation or stimulating the dissociation of tau aggregates has been proposed as an effective strategy for treating neurodegenerative diseases associated with tau pathology such as Alzheimer's disease (AD) and frontotemporal dementia. Interestingly, ginsenosides extracted from Panax ginseng reduced the hippocampal and cortical expression of phosphorylated tau in a rat model of AD. However, no studies have been conducted into the effect of red ginseng (RG) and its components on tau pathology. Here, we evaluated the effect of Korean red ginseng extract (KRGE) and its components on the aggregation and disassociation of tau. Using the thioflavin T assay, we monitored the change in fluorescence produced by the aggregation or disassociation of tau K18, an aggregation-prone fragment of tau441 containing the microtubule-binding domain. Our analysis revealed that KRGE not only inhibited tau aggregation but also promoted the dissociation of tau aggregates. In addition, the KRGE fractions, such as saponin, nonsaponin, and nonsaponin fraction with rich polysaccharide, also inhibited tau aggregation and promoted the dissociation of tau aggregates. Our observations suggest that RG could be a potential therapeutic agent for the treatment of neurodegenerative diseases associated with tauopathy.
Collapse
|
118
|
Changes of Ginsenoside Composition in the Creation of Black Ginseng Leaf. Molecules 2020; 25:molecules25122809. [PMID: 32570758 PMCID: PMC7355439 DOI: 10.3390/molecules25122809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022] Open
Abstract
Ginseng is an increasingly popular ingredient in supplements for healthcare products and traditional medicine. Heat-processed ginsengs, such as red ginseng or black ginseng, are regarded as more valuable for medicinal use when compared to white ginseng due to some unique less polar ginsenosides that are produced during heat-treatment. Although ginseng leaf contains abundant ginsenosides, attention has mostly focused on ginseng root; relatively few publications have focused on ginseng leaf. Raw ginseng leaf was steamed nine times to make black ginseng leaf using a process that is similar to that used to produce black ginseng root. Sixteen ginsenosides were analyzed during each steaming while using high-performance liquid chromatography (HPLC). The contents of ginsenosides Rd and Re decreased and the less polar ginsenosides (F2, Rg3, Rk2, Rk3, Rh3, Rh4, and protopanaxatriol) enriched during steam treatment. After nine cycles of steaming, the contents of the less polar ginsenosides F2, Rg3, and Rk2 increased by 12.9-fold, 8.6-fold, and 2.6-fold, respectively. Further, we found that the polar protopanaxadiol (PPD) -type ginsenosides are more likely to be converted from ginsenoside Rg3 to ginsenosides Rk1 and Rg5 via dehydration from Rg3, and from ginsenoside Rh2 to ginsenosides Rk2 and Rh3 through losing an H2O molecule than to be completely degraded to the aglycones PPD during the heat process. This study suggests that ginseng leaves can be used to produce less polar ginsenosides through heat processes, such as steaming.
Collapse
|
119
|
Park JJ, An J, Lee JD, Kim HY, Im JE, Lee E, Ha J, Cho CH, Seo DW, Kim KB. Effects of anti-wrinkle and skin-whitening fermented black ginseng on human subjects and underlying mechanism of action. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:423-437. [PMID: 32546107 DOI: 10.1080/15287394.2020.1776454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study was to determine the effects of anti-wrinkle and skin-whitening of fermented black ginseng (FBG) in human subjects and to examine underlying biochemical mechanisms of action. A clinical study was performed to evaluate efficacy and safety using a 1% FBG cream formulation. Twenty-three subjects were recruited and instructed to apply control or FBG creams each on half of their face twice daily for 8 weeks. After 8 weeks FBG cream significantly reduced appearance of eye wrinkles compared to prior to exposure and control cream. Skin color was significantly brightened using FBG cream in comparison with control cream. To determine the mechanism of actions involved in anti-wrinkle and skin-whitening effects various concentrations of FBG were applied to human fibroblast CCD-986sk and mouse melanoma B16F1 cells. Collagen synthesis in CCD-986sk cells was improved significantly at 1, 3, 10, or 30 µg/ml of FBG. At 30 µg/ml, FBG significantly inhibited (73%) collagenase, and matrix metalloproteinase-1 (MMP-1) compared to control. Tyrosinase activity and DOPA (3,4-dihydroxy-L-phenylalanine) oxidation were significantly decreased at all tested concentrations. Melanin production in B16F1 cells was concentration-dependently reduced 15% to 60% by all concentrations of FBG. These results suggested that a 1% FBG cream exerted anti-wrinkle and skin-whitening effects.
Collapse
Affiliation(s)
- Jin Ju Park
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Junmin An
- Ginseng by Pharm. Co., Ltd ., Wonju, Gangwon, Republic of Korea
| | - Jung Dae Lee
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Hyang Yeon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Jueng Eun Im
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Eunyoung Lee
- Skin Research Institute , Gyeonggi, Republic of Korea
| | - Jaehyoun Ha
- Skin Research Institute , Gyeonggi, Republic of Korea
| | - Chang Hui Cho
- Skin Research Institute , Gyeonggi, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| |
Collapse
|
120
|
Park JJ, An J, Lee JD, Kim HY, Im JE, Lee E, Ha J, Cho CH, Seo DW, Kim KB. Effects of anti-wrinkle and skin-whitening fermented black ginseng on human subjects and underlying mechanism of action. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:470-484. [PMID: 32564709 DOI: 10.1080/15287394.2020.1777492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study was to determine the effects of anti-wrinkle and skin-whitening of fermented black ginseng (FBG) in human subjects and to examine underlying biochemical mechanisms of action. A clinical study was performed to evaluate efficacy and safety using a 1% FBG cream formulation. Twenty-three subjects were recruited and instructed to apply control or FBG creams each on half of their face twice daily for 8 weeks. After 8 weeks, FBG cream significantly reduced the appearance of eye wrinkles compared to prior to exposure and control cream. Skin color was significantly brightened using FBG cream in comparison with a control cream. To determine the mechanism of actions involved in anti-wrinkle and skin-whitening effects various concentrations of FBG were applied to human fibroblast CCD-986sk and mouse melanoma B16F1 cells. Collagen synthesis in CCD-986sk cells was improved significantly at 1, 3, 10, or 30 µg/ml of FBG. At 30 µg/ml, FBG significantly inhibited (73%) collagenase, and matrix metalloproteinase-1 (MMP-1) compared to control. Tyrosinase activity and DOPA (3,4-dihydroxy-L-phenylalanine) oxidation were significantly decreased at all tested concentrations. Melanin production in B16F1 cells was concentration-dependently reduced from 15% to 60% by all concentrations of FBG. These results suggested that a 1% FBG cream exerted anti-wrinkle and skin-whitening effects.
Collapse
Affiliation(s)
- Jin Ju Park
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Junmin An
- Central Research Institute, Ginseng by Pharm. Co., Ltd , Wonju, Gangwon, Republic of Korea
| | - Jung Dae Lee
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Hyang Yeon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Jueng Eun Im
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Eunyoung Lee
- Skin Research Institute, IEC Korea , Suwon-si, Gyeongg, Republic of Korea
| | - Jaehyoun Ha
- Skin Research Institute, IEC Korea , Suwon-si, Gyeongg, Republic of Korea
| | - Chang Hui Cho
- Skin Research Institute, IEC Korea , Suwon-si, Gyeongg, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| |
Collapse
|
121
|
Zhang H, Abid S, Ahn JC, Mathiyalagan R, Kim YJ, Yang DC, Wang Y. Characteristics of Panax ginseng Cultivars in Korea and China. Molecules 2020; 25:E2635. [PMID: 32517049 PMCID: PMC7321059 DOI: 10.3390/molecules25112635] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Ginseng (Panax ginseng Meyer) is one of the most important medicinal herbs in Asia. Its pharmacological activity comes from ginsenosides, and its roots are produced commercially for traditional and Oriental medicine. Though 17 Panax species are available around the world, there was a need to develop cultivars adapted to different climatic conditions and resistant to various diseases while still producing high-quality, high-yield roots. Thus, 12 and 9 commercial P. ginseng cultivars have been registered in South Korea and China, respectively. Those varieties show superiority to local landraces. For example, Chunpoong is more highly resistant to rusty rot disease than the local Jakyungjong landrace and has a good root shape; it is highly cultivated to produce red ginseng. The Chinese cultivar Jilin Huangguo Renshen has higher ginsenoside content than its local landraces. This review provides information about P. ginseng cultivars and offers directions for future research, such as intra- and interspecific hybridization.
Collapse
Affiliation(s)
- Hao Zhang
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China;
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Suleman Abid
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Yu-Jin Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Yingping Wang
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
122
|
Lim SW, Luo K, Quan Y, Cui S, Shin YJ, Ko EJ, Chung BH, Yang CW. The safety, immunological benefits, and efficacy of ginseng in organ transplantation. J Ginseng Res 2020; 44:399-404. [PMID: 32372861 PMCID: PMC7195583 DOI: 10.1016/j.jgr.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
Korean ginseng (Panax ginseng) is associated with a variety of therapeutic effects, including antioxidative, anti-inflammatory, vasorelaxative, antiallergic, antidiabetic, and anticancer effects. Accordingly, the use of ginseng has reached an all-time high among members of the general public. However, the safety and efficacy of ginseng in transplant recipients receiving immunosuppressant drugs have still not been elucidated. Transplantation is the most challenging and complex of surgical procedures and may require causation for the use of ginseng. In this regard, we have previously examined the safety, immunological benefits, and protective mechanisms of ginseng with respect to calcineurin inhibitor-based immunosuppression, which is the most widely used regimen in organ transplantation. Using an experimental model of calcineurin inhibitor-induced organ injury, we found that ginseng does not affect drug levels in the peripheral blood and tissue, favorably regulates immune response, and protects against calcineurin inhibitor-induced nephrotoxicity and pancreatic islet injury. On the basis of our experimental studies and a review of the related literature, we propose that ginseng may provide benefits in organ transplant recipients administered calcineurin inhibitors. Through the present review, we aimed to briefly discuss our current understanding of the therapeutic benefits of ginseng related to transplant patient survival.
Collapse
Affiliation(s)
- Sun Woo Lim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang Luo
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yi Quan
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng Cui
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Jin Shin
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Ko
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
123
|
Analysis of the Rule of TCM Compatibility in TCM Prescriptions Containing Ginseng Radix ET Rhizoma in Ancient Books for Xiaoke Bing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9472304. [PMID: 32308724 PMCID: PMC7140142 DOI: 10.1155/2020/9472304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/17/2020] [Indexed: 11/17/2022]
Abstract
Background TCM considers that diabetes belongs to the scope of Xiaoke Bing. Compound prescriptions are characteristics of TCM. For a certain medicine, its compatibility with different medicines can exert different efficacies in different prescriptions. Using the TCM compound prescriptions containing Ginseng Radix ET Rhizoma in ancient books for Xiaoke Bing as an example, this study introduces new methods to investigate the rule of TCM compatibility. Methods Frequency analysis was accomplished by programs written in Perl. The R, Cytoscape, and DpClus software were used to carry out the association rules analysis, the construction of the TCM interconnection network, and the graph clustering analysis, respectively. Results Frequency analysis ranked the frequencies of medicine, medicinal flavors, properties, and meridian attributions, and it was found that some of them are significantly higher than others. Six association rules were obtained. The TCM interconnection network showed that there are close medicine associations among prescriptions, and we got 17 categories of closely related prescriptions from the network. Conclusions Ginseng Radix ET Rhizoma was widely used in treating Xiaoke Bing. Our results are consistent with the understanding of Xiaoke Bing in TCM; hence, it is demonstrated that the methods are effective for exploring the rule of TCM usage in prescriptions. This analysis could provide references for the treatment of diabetes.
Collapse
|
124
|
Han MJ, Kim DH. Effects of Red and Fermented Ginseng and Ginsenosides on Allergic Disorders. Biomolecules 2020; 10:E634. [PMID: 32326081 PMCID: PMC7226199 DOI: 10.3390/biom10040634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 01/08/2023] Open
Abstract
Both white ginseng (WG, dried root of Panax sp.) and red ginseng (RG, steamed and dried root of Panax sp.) are reported to exhibit a variety of pharmacological effects such as anticancer, antidiabetic, and neuroprotective activities. These ginsengs contain hydrophilic sugar-conjugated ginsenosides and polysaccharides as the bioactive constituents. When taken orally, their hydrophilic constituents are metabolized into hydrophobic ginsenosides compound K, Rh1, and Rh2 that are absorbable into the blood. These metabolites exhibit the pharmacological effects more strongly than hydrophilic parental constituents. To enforce these metabolites, fermented WG and RG are developed. Moreover, natural products including ginseng are frequently used for the treatment of allergic disorders. Therefore, this review introduces the current knowledge related to the effectiveness of ginseng on allergic disorders including asthma, allergic rhinitis, atopic dermatitis, and pruritus. We discuss how ginseng, its constituents, and its metabolites regulate allergy-related immune responses. We also describe how ginseng controls allergic disorders.
Collapse
Affiliation(s)
- Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea;
| | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
125
|
Jo YH, Lee H, Oh MH, Lee GH, Lee YJ, Lee JS, Kim MJ, Kim WY, Kim JS, Yoo DS, Cho SW, Cha SW, Pyo MK. Antioxidant and hepatoprotective effects of Korean ginseng extract GS-KG9 in a D-galactosamine-induced liver damage animal model. Nutr Res Pract 2020; 14:334-351. [PMID: 32765814 PMCID: PMC7390743 DOI: 10.4162/nrp.2020.14.4.334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/OBJECTIVES This study was designed to investigate the improvement effect of white ginseng extract (GS-KG9) on D-galactosamine (Ga1N)-induced oxidative stress and liver injury. SUBJECTS/METHODS Sixty Sprague-Dawley rats were divided into 6 groups. Rats were orally administrated with GS-KG9 (300, 500, or 700 mg/kg) or silymarin (25 mg/kg) for 2 weeks. The rats of the GS-KG9- and silymarin-treated groups and a control group were then intraperitoneally injected Ga1N at a concentration of 650 mg/kg for 4 days. To investigate the protective effect of GS-KG9 against GalN-induced liver injury, blood liver function indicators, anti-oxidative stress indicators, and histopathological features were analyzed. RESULTS Serum biochemical analysis indicated that GS-KG9 ameliorated the elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in GalN-treated rats. The hepatoprotective effects of GS-KG9 involved enhancing components of the hepatic antioxidant defense system, including glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). In addition, GS-KG9 treatment inhibited reactive oxygen species (ROS) production induced by GalN treatment in hepatocytes and significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins, which are antioxidant proteins. In particular, by histological analyses bases on hematoxylin and eosin, Masson's trichrome, α-smooth muscle actin, and transforming growth factor-β1 staining, we determined that the administration of 500 mg/kg GS-KG9 inhibited hepatic inflammation and fibrosis due to the excessive accumulation of collagen. CONCLUSIONS These findings demonstrate that GS-KG9 improves GalN-induced liver inflammation, necrosis, and fibrosis by attenuating oxidative stress. Therefore, GS-KG9 may be considered a useful candidate in the development of a natural preventive agent against liver injury.
Collapse
Affiliation(s)
- Yun Ho Jo
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Hwan Lee
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Myeong Hwan Oh
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Gyeong Hee Lee
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - You Jin Lee
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Ji Sun Lee
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Min Jung Kim
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Won Yong Kim
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Jin Seong Kim
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Dae Seok Yoo
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Sang Won Cho
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Seon Woo Cha
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Mi Kyung Pyo
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| |
Collapse
|
126
|
Tian X, Lv S, Tian H, Wang R, Wang H. Development of an accurate and reliable DNA method for botanical origin authentication of ginseng food products. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
127
|
Kim AR, Kim SW, Lee BW, Kim KH, Kim WH, Seok H, Lee JH, Um J, Yim SH, Ahn Y, Jin SW, Jung DW, Oh WK, Williams DR. Screening ginseng saponins in progenitor cells identifies 20(R)-ginsenoside Rh 2 as an enhancer of skeletal and cardiac muscle regeneration. Sci Rep 2020; 10:4967. [PMID: 32188912 PMCID: PMC7080739 DOI: 10.1038/s41598-020-61491-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/24/2020] [Indexed: 01/18/2023] Open
Abstract
Aging is associated with increased prevalence of skeletal and cardiac muscle disorders, such as sarcopenia and cardiac infarction. In this study, we constructed a compendium of purified ginsenoside compounds from Panax ginseng C.A. Meyer, which is a traditional Korean medicinal plant used to treat for muscle weakness. Skeletal muscle progenitor cell-based screening identified three compounds that enhance cell viability, of which 20(R)-ginsenoside Rh2 showed the most robust response. 20(R)-ginsenoside Rh2 increased viability in myoblasts and cardiomyocytes, but not fibroblasts or disease-related cells. The cellular mechanism was identified as downregulation of cyclin-dependent kinase inhibitor 1B (p27Kip1) via upregulation of Akt1/PKB phosphorylation at serine 473, with the orientation of the 20 carbon epimer being crucially important for biological activity. In zebrafish and mammalian models, 20(R)-ginsenoside Rh2 enhanced muscle cell proliferation and accelerated recovery from degeneration. Thus, we have identified 20(R)-ginsenoside Rh2 as a p27Kip1 inhibitor that may be developed as a natural therapeutic for muscle degeneration.
Collapse
Affiliation(s)
- Ah Ra Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
- Developmental Genetics Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Seon-Wook Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Ba-Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kuk-Hwa Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Hong Seok
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Ji-Hyung Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - JungIn Um
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Soon-Ho Yim
- Department of Pharmaceutical Engineering, Dongshin University, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Department of Cardiology, Chonnam National University Hospital/Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Suk-Won Jin
- Developmental Genetics Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea.
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea.
| |
Collapse
|
128
|
Im DS. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng. Biomolecules 2020; 10:biom10030444. [PMID: 32183094 PMCID: PMC7175368 DOI: 10.3390/biom10030444] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Panax ginseng, also known as Korean ginseng, is a famous medicinal plant used for the treatment of many inflammatory diseases. Ginsenosides (ginseng saponins) are the main class of active constituents of ginseng. The anti-inflammatory effects of ginseng extracts were proven with purified ginsenosides, such as ginsenosides Rb1, Rg1, Rg3, and Rh2, as well as compound K. The negative regulation of pro-inflammatory cytokine expressions (TNF-α, IL-1β, and IL-6) and enzyme expressions (iNOS and COX-2) was found as the anti-inflammatory mechanism of ginsenosides in M1-polarized macrophages and microglia. Recently, another action mechanism emerged explaining the anti-inflammatory effect of ginseng. This is a pro-resolution of inflammation derived by M2-polarized macrophages. Direct and indirect evidence supports how several ginsenosides (ginsenoside Rg3, Rb1, and Rg1) induce the M2 polarization of macrophages and microglia, and how these M2-polarized cells contribute to the suppression of inflammation progression and promotion of inflammation resolution. In this review, the new action mechanism of ginseng anti-inflammation is summarized.
Collapse
Affiliation(s)
- Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; ; Tel.: +82-2-961-9377; Fax: +82-2-961-9580
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
129
|
Cho YJ, Choi SH, Lee R, Hwang H, Rhim H, Cho IH, Kim HC, Lee JI, Hwang SH, Nah SY. Ginseng Gintonin Contains Ligands for GPR40 and GPR55. Molecules 2020; 25:molecules25051102. [PMID: 32121640 PMCID: PMC7179172 DOI: 10.3390/molecules25051102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Gintonin, a novel ginseng-derived glycolipoprotein complex, has an exogenous ligand for lysophosphatidic acid (LPA) receptors. However, recent lipid analysis of gintonin has shown that gintonin also contains other bioactive lipids besides LPAs, including linoleic acid and lysophosphatidylinositol (LPI). Linoleic acid, a free fatty acid, and LPI are known as ligands for the G-protein coupled receptors (GPCR), GPR40, and GPR55, respectively. We, herein, investigated whether gintonin could serve as a ligand for GPR40 and GPR55, using the insulin-secreting beta cell-derived cell line INS-1 and the human prostate cancer cell line PC-3, respectively. Gintonin dose-dependently enhanced insulin secretion from INS-1 cells. Gintonin-stimulated insulin secretion was partially inhibited by a GPR40 receptor antagonist but not an LPA1/3 receptor antagonist and was down-regulated by small interfering RNA (siRNA) against GPR40. Gintonin dose-dependently induced [Ca2+]i transients and Ca2+-dependent cell migration in PC-3 cells. Gintonin actions in PC-3 cells were attenuated by pretreatment with a GPR55 antagonist and an LPA1/3 receptor antagonist or by down-regulating GPR55 with siRNA. Taken together, these results demonstrated that gintonin-mediated insulin secretion by INS-1 cells and PC-3 cell migration were regulated by the respective activation of GPR40 and GPR55 receptors. These findings indicated that gintonin could function as a ligand for both receptors. Finally, we demonstrated that gintonin contained two more GPCR ligands, in addition to that for LPA receptors. Gintonin, with its multiple GPCR ligands, might provide the molecular basis for the multiple pharmacological actions of ginseng.
Collapse
Affiliation(s)
- Yeon-Jin Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Hongik Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.H.); (H.R.)
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.H.); (H.R.)
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea;
| | - Jeong-Ik Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
- Correspondence: (S.-H.H.); (S.-Y.N.); Tel.: +82-33-738-7922 (S.-H.H.); +82-2-450-4154 (S.-Y.N.)
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
- Correspondence: (S.-H.H.); (S.-Y.N.); Tel.: +82-33-738-7922 (S.-H.H.); +82-2-450-4154 (S.-Y.N.)
| |
Collapse
|
130
|
Iqbal H, Rhee DK. Ginseng alleviates microbial infections of the respiratory tract: a review. J Ginseng Res 2020; 44:194-204. [PMID: 32148400 PMCID: PMC7031735 DOI: 10.1016/j.jgr.2019.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
The detrimental impact of air pollution as a result of frequent exposure to fine particles posed a global public health risk mainly to the pulmonary disorders in pediatric and geriatric population. Here, we reviewed the current literature regarding the role of ginseng and/or its components as antimicrobials, especially against pathogens that cause respiratory infections in animal and in vitro models. Some of the possible mechanisms for ginseng-mediated viral inhibition suggested are improvements in systemic and mucosa-specific antibody responses, serum hemagglutinin inhibition, lymphocyte proliferation, cell survival rate, and viral clearance in the lungs. In addition, ginseng reduces the expression levels of proinflammatory cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-8) and chemokines produced by airway epithelial cells and macrophages, thus preventing weight loss. In case of bacterial infections, ginseng acts by alleviating inflammatory cytokine production, increasing survival rates, and activating phagocytes and natural killer cells. In addition, ginseng inhibits biofilm formation and induces the dispersion and dissolution of mature biofilms. Most clinical trials revealed that ginseng, at various dosages, is a safe and effective method of seasonal prophylaxis, relieving the symptoms and reducing the risk and duration of colds and flu. Taken together, these findings support the efficacy of ginseng as a therapeutic and prophylactic agent for respiratory infections.
Collapse
Key Words
- ARI, acute respiratory illness
- Bacteria
- COPD, chronic obstructive pulmonary disease
- Clinical trials
- GSLS, ginseng stem–leaf saponins
- Ginseng
- HRV, human rhinovirus
- IFN, interferon
- IL, interleukin
- IgA, immunoglobulin A
- PD, protopanaxadiol
- PT, protopanaxatriol
- ROS, reactive oxygen species
- RSV, respiratory syncytial virus
- RTIs, respiratory tract infections
- Respiratory tract infections
- TNF-α, tumor necrosis factor-alpha
- Virus
Collapse
Affiliation(s)
| | - Dong-kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
131
|
Effect of Roasting Time and Cryogenic Milling on the Physicochemical Characteristics of Dried Ginseng Powder. Foods 2020; 9:foods9020223. [PMID: 32093227 PMCID: PMC7073925 DOI: 10.3390/foods9020223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the effect of reduced particle size of ginseng by roasting and cryogenic milling on increasing its water solubility and physiological activity. The samples were roasted for different times (9–21 min) and generated in different sizes (10–50, and >50 μm). All roasted samples revealed significantly smaller particle sizes than did non-roasted samples, based on Sauter mean diameter (D [3,2], p < 0.05). Furthermore, the particle sizes of roasted samples decreased until roasting up to 15 min. In terms of the water solubility index (WSI), antioxidant activity, total polyphenol content (TPC), and total polysaccharides according to particle size, 10–20 μm-sized samples showed the highest values when compared with >50 μm-sized samples. Based on roasting time, WSI values of all samples roasted for up to 15 min were higher than those of the control (not roasted) (p < 0.05). Antioxidant activity and TPC also increased with increasing roasting time. Total polysaccharide content was the highest upon roasting for 15 min, except for the 10–20 μm sample. Ginsenoside content of roasted samples >20 μm size was higher than that of the control (not roasted) except after 15 min of roasting. Therefore, roasting and cryogenic milling are effective in producing ginseng root powder.
Collapse
|
132
|
Jeon JH, Lee S, Lee W, Jin S, Kwon M, Shin CH, Choi MK, Song IS. Herb-Drug Interaction of Red Ginseng Extract and Ginsenoside Rc with Valsartan in Rats. Molecules 2020; 25:E622. [PMID: 32023909 PMCID: PMC7037682 DOI: 10.3390/molecules25030622] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the herb-drug interactions involving red ginseng extract (RGE) or ginsenoside Rc with valsartan, a substrate for organic anion transporting polypeptide (OATP/Oatp) transporters. In HEK293 cells overexpressing drug transporters, the protopanaxadiol (PPD)-type ginsenosides- Rb1, Rb2, Rc, Rd, Rg3, compound K, and Rh2-inhibited human OATP1B1 and OATP1B3 transporters (IC50 values of 7.99-68.2 µM for OATP1B1; 1.36-30.8 µM for OATP1B3), suggesting the herb-drug interaction of PPD-type ginsenosides involving OATPs. Protopanaxatriol (PPT)-type ginsenosides-Re, Rg1, and Rh1-did not inhibit OATP1B1 and OATP1B3 and all ginsenosides tested didn't inhibit OCT and OAT transporters. However, in rats, neither RGE nor Rc, a potent OATP inhibitor among PPD-type ginsenoside, changed in vivo pharmacokinetics of valsartan following repeated oral administration of RGE (1.5 g/kg/day for 7 days) or repeated intravenous injection of Rc (3 mg/kg for 5 days). The lack of in vivo herb-drug interaction between orally administered RGE and valsartan could be attributed to the low plasma concentration of PPD-type ginsenosides (5.3-48.4 nM). Even high plasma concentration of Rc did not effectively alter the pharmacokinetics of valsartan because of high protein binding and the limited liver distribution of Rc. The results, in conclusion, would provide useful information for herb-drug interaction between RGE or PPD-type ginsenosides and Oatp substrate drugs.
Collapse
Affiliation(s)
- Ji-Hyeon Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Sowon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Wonpyo Lee
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (W.L.); (S.J.)
| | - Sojeong Jin
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (W.L.); (S.J.)
| | - Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Chul Hwi Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (W.L.); (S.J.)
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| |
Collapse
|
133
|
Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020; 44:24-32. [PMID: 32095094 PMCID: PMC7033355 DOI: 10.1016/j.jgr.2019.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases prevail among modern societies and underdeveloped countries, and a high mortality rate has also been reported by the World Health Organization affecting millions of people worldwide. Hyperactive platelets are the major culprits in thrombotic disorders. A group of drugs is available to deal with such platelet-related disorders; however, sometimes, side effects and complications caused by these drugs outweigh their benefits. Ginseng and its nutraceuticals have been reported to reduce the impact of thrombotic conditions and improve cardiovascular health by antiplatelet mechanisms. This review provides (1) a comprehensive insight into the available pharmacological options from ginseng and ginsenosides (saponin and nonsaponin fractions) for platelet-originated cardiovascular disorders; (2) a discussion on the impact of specific functional groups on the modulation of platelet functions and how structural modifications among ginsenosides affect platelet activation, which may further provide a basis for drug design, optimization, and the development of ginsenoside scaffolds as pharmacological antiplatelet agents; (3) an insight into the synergistic effects of ginsenosides on platelet functions; and (4) a perspective on future research and the development of ginseng and ginsenosides as super nutraceuticals.
Collapse
Key Words
- AA, arachidonic acid
- AC, adenylyl cyclase
- ADP, adenosine diphosphate
- ASA, acetylsalicylic acid
- ATP, adenosine triphosphate
- Akt, protein kinase B
- Antiplatelet
- COX, cyclooxygenase
- CRP, collagen-related peptide
- CSF, crude saponin fraction
- ERK, extracellular signal–regulated kinase
- GPVI, glycoprotein VI
- Ginsenosides
- IC50, half maximal (50%) inhibitory concentration
- IP3, inositol-1,4,5-triphosphate
- JNK, c-Jun N-terminal kinase
- MAPK, mitogen-activated protein kinase
- MKK4, mitogen-activated protein kinase kinase 4
- MLC, myosin light chain
- Nutraceutical
- PAF, platelet-activating factor
- PAR, proteinase-activated receptor
- PI3K, phosphatidylinositol 3-kinase
- PKA, protein kinase A
- PKC, protein kinase C
- PKG, protein kinase G
- PLA2, phospholipase A2
- PLCγ2, phospholipase C gamma-2
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- PT, prothrombin time
- ROCK, Rho-associated protein kinase
- SFK, Src family kinase
- Structural modification
- Syk, spleen tyrosine kinase
- Synergism
- TS, total saponin
- TxA2, thromboxane A2
- TxAS, thromboxane-A synthase
- TxB2, thromboxane B2
- TxR, thromboxane receptor
- VASP, vasodilator-stimulated phosphoprotein
- [Ca2+]i, intracellular calcium ion
- aPTT, activated partial thromboplastin time
- cAMP, cyclic adenosine monophosphate
- cPLA2α, cytosolic phospholipase A2α
- vWF, von Willebrand factor
Collapse
Affiliation(s)
| | | | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
134
|
Nagar H, Kang SK, Choi SW, Song HJ, Choi SJ, Piao S, Kim S, Lee I, Kim CS. Antihypertensive Effects of Rg3-Enriched Korean Vitamin Ginseng in Spontaneously Hypertensive Rats. Nat Prod Commun 2020. [DOI: 10.1177/1934578x19900712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ginseng is well known to treat various diseases. Ginsenoside Rg3 exhibits a variety of pharmacological activities including cardiovascular protective effects. Vitamins utilized as supplements have minimal interactions with other drugs making them attractive targets for therapeutics. Here, we prepared Rg3-enriched Korean ginseng catalyzed by vitamin (REKVG) and evaluated its ability to improve hypertension in spontaneously hypertensive rats (SHRs). The ginsenoside content in both Korean Red ginseng (KRG) and REKVG were analyzed using high-performance liquid chromatography (HPLC). Male SHRs and Wistar-Kyoto rats (WKYs) were randomly divided into 6 groups (WKY saline, WKY KRG, WKY REKVG, SHR saline, SHR KRG, and SHR REKVG). KRG and REKVG were orally administered once daily to the rats at a dose of 10 mg/kg for 6 weeks, and blood pressure was measured in live rats using the tail-cuff method. Human umbilical vein endothelial cells were used for the in vitro experiment. HPLC chromatograms revealed that the concentration of ginsenoside Rg3 in REKVG was much higher than that in KRG. The administration of REKVG significantly decreased the systolic blood pressure in SHRs at the end of 6 weeks as compared to KRG. Further, REKVG use resulted in a dose-dependent increase in Akt and endothelial nitric oxide synthase (eNOS) phosphorylation and NO production in endothelial cells. In addition, the administration of REKVG significantly increased Akt and eNOS phosphorylation and increased plasma NO levels in SHRs. We conclude that REKVG effectively lowers the blood pressure in rats and therefore could be considered for use in preventing or improving hypertension.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Si Wan Choi
- Division of Cardiology, Internal Medicine, School of Medicine, Chungnam National University, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, School of Medicine, Chungnam National University, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shuyu Piao
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
135
|
Choi SY, Park JS, Shon CH, Lee CY, Ryu JM, Son DJ, Hwang BY, Yoo HS, Cho YC, Lee J, Kim JW, Roh YS. Fermented Korean Red Ginseng Extract Enriched in Rd and Rg3 Protects against Non-Alcoholic Fatty Liver Disease through Regulation of mTORC1. Nutrients 2019; 11:nu11122963. [PMID: 31817227 PMCID: PMC6949916 DOI: 10.3390/nu11122963] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
The fermentation of Korean red ginseng (RG) increases the bioavailability and efficacy of RG, which has a protective role in various diseases. However, the ginsenoside-specific molecular mechanism of the fermented RG with Cordyceps militaris (CRG) has not been elucidated in non-alcoholic fatty liver disease (NAFLD). A mouse model of NAFLD was induced by a fast-food diet (FFD) and treated with CRG (100 or 300 mg/kg) for the last 8 weeks. CRG-mediated signaling was assessed in the liver cells isolated from mice. CRG administration significantly reduced the FFD-induced steatosis, liver injury, and inflammation, indicating that CRG confers protective effects against NAFLD. Of note, an extract of CRG contains a significantly increased amount of ginsenosides (Rd and Rg3) after bioconversion compared with that of conventional RG. Moreover, in vitro treatment with Rd or Rg3 produced anti-steatotic effects in primary hepatocytes. Mechanistically, CRG protected palmitate-induced activation of mTORC1 and subsequent inhibition of mitophagy and PPARα signaling. Similar to that noted in hepatocytes, CRG exerted anti-inflammatory activity through mTORC1 inhibition-mediated M2 polarization. In conclusion, CRG inhibits lipid-mediated pathologic activation of mTORC1 in hepatocytes and macrophages, which in turn prevents NAFLD development. Thus, the administration of CRG may be an alternative for the prevention of NAFLD.
Collapse
Affiliation(s)
- Su-Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Chang-Ho Shon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Chae-Young Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Jae-Myun Ryu
- NOVA K-MED Co., Ltd., 1646 Yuseong-daero, HNU Innobiz Park Suite 403, Yuseong-gu, Daejeon 34054, Korea;
| | - Dong-Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Bang-Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Hwan-Soo Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, CA 92093, USA;
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Deokjin-gu, Jeonju-si 54596, Korea
- Correspondence: (J.-W.K.); (Y.-S.R.); Tel.: +82-63-850-0953 (J.-W.K.); +82-43-261-2819 (Y.-S.R.)
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
- Correspondence: (J.-W.K.); (Y.-S.R.); Tel.: +82-63-850-0953 (J.-W.K.); +82-43-261-2819 (Y.-S.R.)
| |
Collapse
|
136
|
Wang DD, Kim YJ, Baek NI, Mathiyalagan R, Wang C, Jin Y, Xu XY, Yang DC. Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications. J Ginseng Res 2019; 45:48-57. [PMID: 33437156 PMCID: PMC7790896 DOI: 10.1016/j.jgr.2019.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022] Open
Abstract
Background Ginsenoside Rh2 is well known for many pharmacological activities, such as anticancer, antidiabetes, antiinflammatory, and antiobesity properties. Glycosyltransferases (GTs) are ubiquitous enzymes present in nature and are widely used for the synthesis of oligosaccharides, polysaccharides, glycoconjugates, and novel derivatives. We aimed to synthesize new ginsenosides from Rh2 using the recombinant GT enzyme and investigate its cytotoxicity with diverse cell lines. Methods We have used a GT gene with 1,224-bp gene sequence cloned from Lactobacillus rhamnosus (LRGT) and then expressed in Escherichia coli BL21 (DE3). The recombinant GT protein was purified and demonstrated to transform Rh2 into two novel ginsenosides, and they were characterized by nuclear magnetic resonance (NMR) techniques and evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Results Two novel ginsenosides with an additional glucopyranosyl (6→1) and two additional glucopyranosyl (6→1) linked with the C-3 position of the substrate Rh2 were synthesized, respectively. Cell viability assay in the lung cancer (A549) cell line showed that glucosyl ginsenoside Rh2 inhibited cell viability more potently than ginsenoside Rg3 and Rh2 at a concentration of 10 μM. Furthermore, glucosyl ginsenoside Rh2 did not exhibit any cytotoxic effect in murine macrophage cells (RAW264.7), mouse embryo fibroblasts cells (3T3-L1), and skin cells (B16BL6) at a concentration of 10 μM compared with ginsenoside Rh2 and Rg3. Conclusion This is the first report on the synthesis of two novel ginsenosides, namely, glucosyl ginsenoside Rh2 and diglucosyl ginsenoside Rh2 from Rh2 by using recombinant GT isolated from L. rhamnosus. Moreover, diglucosyl ginsenoside Rh2 might be a new candidate for treatment of inflammation, obesity, and skin whiting, and especially for anticancer.
Collapse
Affiliation(s)
- Dan-Dan Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea.,Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin Republic of Korea
| | - Nam In Baek
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin Republic of Korea
| | - Chao Wang
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Yan Jin
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Xing Yue Xu
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea.,Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin Republic of Korea
| |
Collapse
|
137
|
Hepatoprotective effect of ultrasonicated ginseng berry extract on a rat mild bile duct ligation model. J Ginseng Res 2019; 43:606-617. [PMID: 31695567 PMCID: PMC6823758 DOI: 10.1016/j.jgr.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/27/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
Background The Panax ginseng berry extract (GBE) is well known to have an antidiabetic effect. The aim of this study is to evaluate and investigate the protective effect of ultrasonication-processed P. ginseng berry extract (UGBE) compared with GBE on liver fibrosis induced by mild bile duct ligation (MBDL) model in rats. After ultrasonication process, the composition ratio of ginsenoside in GBE was changed. The component ratio of ginsenosides Rh1, Rh4, Rg2, Rg3, Rk1, Rk3, and F4 in the extract was elevated. Methods In this study, the protective effect of the newly developed UGBE was evaluated on hepatotoxicity and neuronal damage in MBDL model. Silymarin (150 mg/kg) was used for positive control. UGBE (100 mg/kg, 250 mg/kg, 500 mg/kg), GBE (250 mg/kg), and silymarin (150 mg/kg) were orally administered for 6 weeks after MBDL surgery. Results The MBDL surgery induced severe hepatotoxicity that leads to liver inflammation in rats. Also, the serum ammonia level was increased by MBDL surgery. However, the liver dysfunction of MBDL surgery–operated rats was attenuated by UGBE treatment via myeloid differentiation factor 88-dependent Toll-like receptor 4 signaling pathways. Conclusion UGBE has a protective effect on liver fibrosis induced by MBDL in rats through inhibition of the TLR4 signaling pathway in liver.
Collapse
|
138
|
Gao K, Liu Z, Chen J, Chen L, Qi Y, Wang Z, Sun Y. Effects of different substrates on low-temperature storage of fresh ginseng. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6258-6266. [PMID: 31250451 DOI: 10.1002/jsfa.9899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Fresh ginseng was buried in three types of sand with different moisture contents and three types of soil and then stored at 2 °C to determine the effects of these storage substrates on fresh ginseng. RESULTS At a storage time of 200 days, ginseng stored in underforest soil softened the most slowly and had a significantly greater firmness compared to the other samples (P < 0.05). The amount of most ginsenosides changed after storage for most of the substrates. Samples stored in ginseng soil and biological fertilizer had the highest concentration of total saponin and ginseng polysaccharides, respectively. Fresh ginseng stored in medium-water content sand had a significantly lower polyphenol oxidase activity (P < 0.05). A significant difference was observed in the total concentration of nucleosides and nucleobases between the ginseng samples stored with and without substrates (P < 0.05). CONCLUSION The data obtained in the present study suggest that the use of storage substrates is an optimal method for extending the shelf life of fresh ginseng without detrimental effects on its components. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kun Gao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Zhengbo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Jianbo Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Lixue Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun, China
| | - Yuli Qi
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun, China
| | - Zeshuai Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
139
|
Zhang L, Chen X, Cheng Y, Chen Q, Tan H, Son D, Chang D, Bian Z, Fang H, Xu H. Safety and antifatigue effect of Korean Red Ginseng: a randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res 2019; 43:676-683. [PMID: 31695571 PMCID: PMC6823766 DOI: 10.1016/j.jgr.2019.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/25/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Korean Red Ginseng (KRG) is widely used for strengthening the immune system and fighting fatigue, especially in people with deficiency syndrome. However, there is concern that the long-term application or a high dose of KRG can cause "fireness" ( in Chinese) because of its "dryness" ( in Chinese). The aim of this study was to assess the safety and efficacy of a 4-week treatment with KRG in participants with deficiency syndrome. METHODS This was a 4-week, randomized, double-blind, placebo-controlled clinical trial. A total of 180 Chinese participants were randomly allocated to three groups: placebo control group, participants were given a placebo, 3.6 g/d; KRG 1.8 g and 3.6 g groups. The primary outcomes were the changes in fireness and safety evaluation (adverse events, laboratory tests, and electrocardiogram). The secondary outcomes were the efficacy of KRG on fatigue, which include the following: traditional Chinese medicine (TCM) symptom scale and fatigue self-assessment scale. RESULTS Of the 180 patients, 174 completed the full study. After 4 weeks of KRG treatment, the Fire-heat symptoms score including Excess fire-heat score and Deficient fire-heat score showed no significant change as compared with placebo treatment, and no clinically significant changes in any safety parameter were observed. Based on the TCM syndrome score and fatigue self-assessment score, TCM symptoms and fatigue were greatly improved after treatment with KRG, which showed a dose- and time-dependent effect. The total effective rate was also significantly increased in the KRG groups. CONCLUSION Our study revealed that KRG has a potent antifatigue effect without significant adverse effects in people with deficiency syndrome. Although a larger sample size and longer treatment may be required for a more definite conclusion, this clinical trial is the first to disprove the common conception of "fireness" related to KRG.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyun Chen
- Department of Rheumatology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqi Cheng
- Prevention and Health Care Department of Traditional Chinese Medicine, Department of Rheumatology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qilong Chen
- Research Center for TCM Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwook Son
- Korea Ginseng Corporation, Daejeon, Republic of Korea
| | | | - Zhaoxiang Bian
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hong Fang
- Prevention and Health Care Department of Traditional Chinese Medicine, Department of Rheumatology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
140
|
Lee HJ, Jeong J, Alves AC, Han ST, In G, Kim EH, Jeong WS, Hong YS. Metabolomic understanding of intrinsic physiology in Panax ginseng during whole growing seasons. J Ginseng Res 2019; 43:654-665. [PMID: 31700261 PMCID: PMC6823831 DOI: 10.1016/j.jgr.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Panax ginseng Meyer has widely been used as a traditional herbal medicine because of its diverse health benefits. Amounts of ginseng compounds, mainly ginsenosides, vary according to seasons, varieties, geographical regions, and age of ginseng plants. However, no study has comprehensively determined perturbations of various metabolites in ginseng plants including roots and leaves as they grow. METHODS Nuclear magnetic resonance (1H NMR)-based metabolomics was applied to better understand the metabolic physiology of ginseng plants and their association with climate through global profiling of ginseng metabolites in roots and leaves during whole growing periods. RESULTS The results revealed that all metabolites including carbohydrates, amino acids, organic acids, and ginsenosides in ginseng roots and leaves were clearly dependent on growing seasons from March to October. In particular, ginsenosides, arginine, sterols, fatty acids, and uracil diphosphate glucose-sugars were markedly synthesized from March until May, together with accelerated sucrose catabolism, possibly associated with climatic changes such as sun exposure time and rainfall. CONCLUSION This study highlights the intrinsic metabolic characteristics of ginseng plants and their associations with climate changes during their growth. It provides important information not only for better understanding of the metabolic phenotype of ginseng but also for quality improvement of ginseng through modification of cultivation.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Jaesik Jeong
- Department of Statistics, Chonnam National University, Gwangju, Republic of Korea
| | | | - Sung-Tai Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Gyo In
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Eun-Hee Kim
- Protein Structure Group, Korea Basic Science Institute, Chungbuk, Republic of Korea
| | - Woo-Sik Jeong
- Department of Food & Life Science, College of Biomedical Science & Engineering, Inje University, Gyeongsangnam, Republic of Korea
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
141
|
Chen W, Balan P, Popovich DG. Analysis of Ginsenoside Content ( Panax ginseng) from Different Regions. Molecules 2019; 24:E3491. [PMID: 31561496 PMCID: PMC6803836 DOI: 10.3390/molecules24193491] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Recently Panax ginseng has been grown as a secondary crop under a pine tree canopy in New Zealand (NZ). The aim of the study is to compare the average content of ginsenosides from NZ-grown ginseng and its original native locations (China and Korea) grown ginseng. Ten batches of NZ-grown ginseng were extracted using 70% methanol and analyzed using LC-MS/MS. The average content of ginsenosides from China and Korea grown ginseng were obtained by collecting data from 30 and 17 publications featuring China and Korea grown ginseng, respectively. The average content of total ginsenosides in NZ-grown ginseng was 40.06 ± 3.21 mg/g (n = 14), which showed significantly (p < 0.05) higher concentration than that of China grown ginseng (16.48 ± 1.24 mg/g, n = 113) and Korea grown ginseng (21.05 ± 1.57 mg/g, n = 106). For the individual ginsenosides, except for the ginsenosides Rb2, Rc, and Rd, ginsenosides Rb1, Re, Rf, and Rg1 from NZ-grown ginseng were 2.22, 2.91, 1.65, and 1.27 times higher than that of ginseng grown in China, respectively. Ginsenosides Re and Rg1 in NZ-grown ginseng were also 2.14 and 1.63 times higher than ginseng grown in Korea. From the accumulation of ginsenosides, New Zealand volcanic pumice soil may be more suitable for ginseng growth than its place of origin.
Collapse
Affiliation(s)
- Wei Chen
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand.
| | - Prabhu Balan
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand.
| | - David G Popovich
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand.
| |
Collapse
|
142
|
Cho DY, Skinner D, Zhang S, Lazrak A, Lim DJ, Weeks CG, Banks CG, Han CK, Kim SK, Tearney GJ, Matalon S, Rowe SM, Woodworth BA. Korean Red Ginseng aqueous extract improves markers of mucociliary clearance by stimulating chloride secretion. J Ginseng Res 2019; 45:66-74. [PMID: 33437158 PMCID: PMC7790903 DOI: 10.1016/j.jgr.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022] Open
Abstract
Background Abnormal chloride (Cl-) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl- secretion in nasal epithelium. Methods Primary murine nasal septal epithelial (MNSE) [wild-type (WT) and transgenic CFTR-/-], fisher-rat-thyroid (FRT) cells expressing human WT CFTR, and TMEM16A-expressing human embryonic kidney cultures were utilized for the present experiments. Ciliary beat frequency (CBF) and airway surface liquid (ASL) depth measurements were performed using micro-optical coherence tomography (μOCT). Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers and whole-cell patch clamp analysis. Results RGAE (at 30μg/mL of ginsenosides) significantly increased Cl- transport [measured as change in short-circuit current (ΔISC = μA/cm2)] when compared with control in WT and CFTR-/- MNSE (WT vs control = 49.8±2.6 vs 0.1+/-0.2, CFTR-/- = 33.5±1.5 vs 0.2±0.3, p < 0.0001). In FRT cells, the CFTR-mediated ΔISC attributed to RGAE was small (6.8 ± 2.5 vs control, 0.03 ± 0.01, p < 0.05). In patch clamp, TMEM16A-mediated currents were markedly improved with co-administration of RGAE and uridine 5-triphosphate (8406.3 +/- 807.7 pA) over uridine 5-triphosphate (3524.1 +/- 292.4 pA) or RGAE alone (465.2 +/- 90.7 pA) (p < 0.0001). ASL and CBF were significantly greater with RGAE (6.2+/-0.3 μm vs control, 3.9+/-0.09 μm; 10.4+/-0.3 Hz vs control, 7.3 ± 0.2 Hz; p < 0.0001) in MNSE. Conclusion RGAE augments ASL depth and CBF by stimulating Cl- secretion through CaCC, which suggests therapeutic potential in both CF and non-CF chronic rhinosinusitis.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ahmed Lazrak
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Dong Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christopher G Weeks
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Catherine G Banks
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Chang Kyun Han
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, Konkuk University, Chungju, Republic of Korea
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Sadis Matalon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bradford A Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
143
|
Interactions of ginseng with therapeutic drugs. Arch Pharm Res 2019; 42:862-878. [PMID: 31493264 DOI: 10.1007/s12272-019-01184-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Ginseng is the most frequently used herbal medicine for immune system stimulation and as an adjuvant with prescribed drugs owing to its numerous pharmacologic activities. It is important to investigate the beneficial effects and interaction of ginseng with therapeutic drugs. This review comprehensively discusses drug metabolizing enzyme- and transporter-mediated ginseng-drug interaction by analyzing in vitro and clinical results with a focus on ginsenoside, a pharmacologically active marker of ginseng. Impact of ginseng therapy or ginseng combination therapy on diabetic patients and of ginseng interaction with antiplatelets and anticoagulants were evaluated based on ginseng origin and ginsenoside content. Daily administration of Korean red ginseng (0.5-3 g extract; dried ginseng > 60%) did not cause significant herb-drug interaction with drug metabolizing enzymes and transporters. Among various therapeutic drugs administered in combination with ginseng, adjuvant chemotherapy, comprising ginseng (1-3 g extract) and anticancer drugs, was effective for reducing cancer-related fatigue and improving the quality of life and emotional scores. Limited information regarding ginsenoside content in each ginseng product and plasma ginsenoside concentration among patients necessitates standardization of ginseng product and establishment of pharmacokinetic-pharmacodynamic correlation to further understand beneficial effects of ginseng-therapeutic drug interactions in future clinical studies.
Collapse
|
144
|
Costache II, Miron A, Hăncianu M, Aursulesei V, Costache AD, Aprotosoaie AC. Pharmacokinetic Interactions between Cardiovascular Medicines and Plant Products. Cardiovasc Ther 2019; 2019:9402781. [PMID: 32089733 PMCID: PMC7012273 DOI: 10.1155/2019/9402781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
The growing use of plant products among patients with cardiovascular pharmacotherapy raises the concerns about their potential interactions with conventional cardiovascular medicines. Plant products can influence pharmacokinetics or/and pharmacological activity of coadministered drugs and some of these interactions may lead to unexpected clinical outcomes. Numerous studies and case reports showed various pharmacokinetic interactions that are characterized by a high degree of unpredictability. This review highlights the pharmacokinetic clinically relevant interactions between major conventional cardiovascular medicines and plant products with an emphasis on their putative mechanisms, drawbacks of herbal products use, and the perspectives for further well-designed studies.
Collapse
Affiliation(s)
- Irina-Iuliana Costache
- Faculty of Medicine, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- “Sf. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Miron
- Faculty of Pharmacy, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Monica Hăncianu
- Faculty of Pharmacy, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Viviana Aursulesei
- Faculty of Medicine, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- “Sf. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alexandru Dan Costache
- Faculty of Medicine, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Ana Clara Aprotosoaie
- Faculty of Pharmacy, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
145
|
Cai M, Yang EJ. Complementary and alternative medicine for treating amyotrophic lateral sclerosis: A narrative review. Integr Med Res 2019; 8:234-239. [PMID: 31692669 PMCID: PMC6806396 DOI: 10.1016/j.imr.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease that is characterized by selective motor neuron cell death in the motor cortex, brainstem, and spinal cord. Two drugs for ALS, riluzole and edaravone, have been approved by FDA for the treatment of ALS patients. However, they have many side effects, and riluzole extends the patient's life by only 2-3 months. Therefore, ALS patients seek an effective therapy for treating the symptoms or delaying the progression of ALS. Based on this, we review the effects of complementary and alternative medicine (CAM) in ALS animals or patients to verify the efficacy of CAM in incurable diseases. For this review, we searched published papers focusing on the effect of CAM in pre-clinical and clinical study in ALS. Methods The search keywords included amyotrophic lateral sclerosis, acupuncture, herbal medicine, Traditional Chinese medicine, CAM, animals, and clinical study through electronic databases PubMed and Google Scholar from their inception until March 2019. Results In the ALS animal model, CAM modulated the immune system to increase motor function by reducing the expression levels of neuroinflammatory proteins in the spinal cord. Besides this, ALS patients treated with herbal medicine showed improved disease symptoms, but clinical trials with larger sample sizes are needed to develop a treatment with this herbal medicine. Conclusion This review shows that CAM may be useful for ALS treatment, but more evidence regarding the efficacy and molecular mechanisms is required to establish CAM as a good therapy for the treatment of ALS patients.
Collapse
Affiliation(s)
- Mudan Cai
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, South Korea
| | - Eun Jin Yang
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| |
Collapse
|
146
|
Lewicka A, Szymański Ł, Rusiecka K, Kucza A, Jakubczyk A, Zdanowski R, Lewicki S. Supplementation of Plants with Immunomodulatory Properties during Pregnancy and Lactation-Maternal and Offspring Health Effects. Nutrients 2019; 11:nu11081958. [PMID: 31434310 PMCID: PMC6723993 DOI: 10.3390/nu11081958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
A pregnant woman’s diet consists of many products, such as fruits, vegetables, cocoa, tea, chocolate, coffee, herbal and fruit teas, and various commercially available dietary supplements, which contain a high number of biological active plant-derived compounds. Generally, these compounds play beneficial roles in women’s health and the development of fetus health. There are, however, some authors who report that consuming excessive amounts of plants that contain high concentrations of polyphenols may negatively affect the development of the fetus and the offspring’s health. Important and problematic issues during pregnancy and lactation are bacterial infections treatment. In the treatment are proposals to use plant immunomodulators, which are generally considered safe for women and their offspring. Additional consumption of biologically active compounds from plants, however, may increase the risk of occurrences to irreversible changes in the offspring’s health. Therefore, it is necessary to carry out safety tests for immunomodulators before introducing them into a maternal diet. Here, we present data from animal experiments for the four most-studied plants immunomodulators genus: Rhodiola, Echinacea, Panax, and Camellia, which were used in maternal nutrition.
Collapse
Affiliation(s)
- Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Łukasz Szymański
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Kamila Rusiecka
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Anna Kucza
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| |
Collapse
|
147
|
An X, Fu R, Ma P, Ma X, Fan D. Ginsenoside Rk1 inhibits cell proliferation and promotes apoptosis in lung squamous cell carcinoma by calcium signaling pathway. RSC Adv 2019; 9:25107-25118. [PMID: 35528653 PMCID: PMC9069870 DOI: 10.1039/c9ra05037j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/01/2019] [Indexed: 12/02/2022] Open
Abstract
Ginsenoside Rk1 (Rk1) is a rare saponin extracted from Sun Ginseng (SG) and has been shown to have an anti-tumor effect; however, the potential role of its in lung squamous cell carcinoma remains elusive. In this study, we investigated the anti-proliferative activity and involved mechanism of Rk1 against lung squamous cell carcinoma in vitro and in vivo. First, MTT assay, cell colony formation assay and cell cycle assay showed that Rk1 effectively inhibited cell proliferation and colony formation, and induced cell arrest at G1 phase. Following AV/PI staining, JC-10 staining, Western blot and immunohistochemistry indicated that Rk1 induced caspase-dependent apoptosis. In addition, Rk1 induced ER stress, causing the release of Ca2+, resulting in intracellular calcium and mitochondrial calcium overload. Intracellular calcium overload activated the calpain-caspase-12 and calpain-caspase-7-PARP pathways, while mitochondrial calcium overload caused mitochondrial membrane potential reduced, and the release of cytochrome c. BAPTA-AM (Ca2+ scavengers) and calpeptin (calpain inhibitors) significantly attenuated Rk1-induced apoptosis. Moreover, Rk1 significantly inhibited the growth of SK-MES-1 xenograft tumors with low toxic side effects. In summary, this study for the first time demonstrated that Rk1 had significant antitumor effects against lung squamous cell carcinoma and great potential to serve as a novel anticancer agent.
Collapse
Affiliation(s)
- Xining An
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China +86-29-8830-5118 +86-29-8830-5118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
- Biotech. & Biomed. Research Institute, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China +86-29-8830-5118 +86-29-8830-5118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
- Biotech. & Biomed. Research Institute, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China +86-29-8830-5118 +86-29-8830-5118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
- Biotech. & Biomed. Research Institute, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China +86-29-8830-5118 +86-29-8830-5118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
- Biotech. & Biomed. Research Institute, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China +86-29-8830-5118 +86-29-8830-5118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
- Biotech. & Biomed. Research Institute, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China
| |
Collapse
|
148
|
Liang T, Zou L, Sun S, Kuang X, Wei J, Wang L, Li Y, Sun C. Hybrid sequencing of the Gynostemma pentaphyllum transcriptome provides new insights into gypenoside biosynthesis. BMC Genomics 2019; 20:632. [PMID: 31382891 PMCID: PMC6683540 DOI: 10.1186/s12864-019-6000-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background Gypenosides are a group of triterpene saponins from Gynostemma pentaphyllum that are the same as or very similar to ginsenosides from the Panax species. Several enzymes involved in ginsenoside biosynthesis have been characterized, which provide important clues for elucidating the gypenoside biosynthetic pathway. We suppose that gypenosides and ginsenosides may have a similar biosynthetic mechanism and that the corresponding enzymes in the two pathways may have considerable similarity in their sequences. To further understand gypenoside biosynthesis, we sequenced the G. pentaphyllum transcriptome with a hybrid sequencing-based strategy and then determined the candidate genes involved in this pathway using phylogenetic tree construction and gene expression analysis. Results Following the PacBio standard analysis pipeline, 66,046 polished consensus sequences were obtained, while Illumina data were assembled into 140,601 unigenes with Trinity software. Then, these output sequences from the two analytical routes were merged. After removing redundant data with CD-HIT software, a total of 140,157 final unigenes were obtained. After functional annotation, five 2,3-oxidosqualene cyclase genes, 145 cytochrome P450 genes and 254 UDP-glycosyltransferase genes were selected for the screening of genes involved in gypenoside biosynthesis. Using phylogenetic analysis, several genes were divided into the same subfamilies or closely related evolutionary branches with characterized enzymes involved in ginsenoside biosynthesis. Using real-time PCR technology, their expression patterns were investigated in different tissues and at different times after methyl jasmonate induction. Since the genes in the same biosynthetic pathway are generally coexpressed, we speculated that GpOSC1, GpCYP89, and GpUGT35 were the leading candidates for gypenoside biosynthesis. In addition, six GpWRKYs and one GpbHLH might play a possible role in regulating gypenoside biosynthesis. Conclusions We developed a hybrid sequencing strategy to obtain longer length transcriptomes with increased accuracy, which will greatly contribute to downstream gene screening and characterization, thus improving our ability to elucidate secondary metabolite biosynthetic pathways. With this strategy, we found several candidate genes that may be involved in gypenoside biosynthesis, which laid an important foundation for the elucidation of this biosynthetic pathway, thus greatly contributing to further research in metabolic regulation, synthetic biology and molecular breeding in this species. Electronic supplementary material The online version of this article (10.1186/s12864-019-6000-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tongtong Liang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of, Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Liqiu Zou
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of, Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Sijie Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of, Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Xuejun Kuang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of, Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of, Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Lizhi Wang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Ying Li
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of, Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| | - Chao Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of, Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
149
|
Li J, Wang D, Xing X, Cheng TJR, Liang PH, Bulone V, Park JH, Hsieh YS. Structural analysis and biological activity of cell wall polysaccharides extracted from Panax ginseng marc. Int J Biol Macromol 2019; 135:29-37. [DOI: 10.1016/j.ijbiomac.2019.05.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|
150
|
Lee DY, Kim MJ, Yoon D, Lee YS, Kim GS, Yoo YC. Ginseng Berry Prevents Alcohol-Induced Liver Damage by Improving the Anti-Inflammatory System Damage in Mice and Quality Control of Active Compounds. Int J Mol Sci 2019; 20:ijms20143522. [PMID: 31323789 PMCID: PMC6678525 DOI: 10.3390/ijms20143522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/07/2019] [Accepted: 07/14/2019] [Indexed: 12/21/2022] Open
Abstract
The ginseng berry contains a variety of biologically active compounds and has a higher ginsenoside content than its roots. This study focused on the hepatoprotective activity of ginseng berry extract prepared by enzyme treatment (EGB) compared to the non-enzyme-treated ginseng berry extract (GB) and quality control of EGB. The feeding effect of EGB on alcohol-induced liver damage (AILD) was investigated by measuring the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) compared with those of EtOH-fed mice. Furthermore, cytokine levels in the culture supernatants of EGB- or GB-treated RAW 264.7 cells were determined by enzyme-linked immunosorbent assay. The developed method was applied to the simultaneous quantification of four major ginsenosides in EGB using UPLC-QTOF/MS. Treatment with EGB at a dose of 0.5 or 1 mg/mouse significantly suppressed the AST and ALT levels in mice with AILD. Enzyme-treated ginseng berry was also found to suppress the production of inflammatory mediators like nitric oxide (NO), tumor-necrosis factor-α (TNF-α), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, showing higher activity than that of GB. The amount of ginsenoside Re, F5, F3, and Rd in the EGB obtained using UPLC-QTOF/MS was 45.9, 3.3, 4.0, and 6.2 mg/g, respectively. These results suggest that EGB has a potential effect on AILD, and its hepatoprotective effect provides beneficial insights into developing new candidates for the prevention and cure of AILD. Also, this study demonstrated the utility of UPLC-QTOF/MS-based major compounds for quality control (QC) of EGB.
Collapse
Affiliation(s)
- Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Min-Jee Kim
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Yung Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.
| |
Collapse
|