101
|
Li Z, Sela A, Fridman Y, Garstka L, Höfte H, Savaldi-Goldstein S, Wolf S. Optimal BR signalling is required for adequate cell wall orientation in the Arabidopsis root meristem. Development 2021; 148:273348. [PMID: 34739031 PMCID: PMC8627601 DOI: 10.1242/dev.199504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Plant brassinosteroid hormones (BRs) regulate growth in part through altering the properties of the cell wall, the extracellular matrix of plant cells. Conversely, feedback signalling from the wall connects the state of cell wall homeostasis to the BR receptor complex and modulates BR activity. Here, we report that both pectin-triggered cell wall signalling and impaired BR signalling result in altered cell wall orientation in the Arabidopsis root meristem. Furthermore, both depletion of endogenous BRs and exogenous supply of BRs triggered these defects. Cell wall signalling-induced alterations in the orientation of newly placed walls appear to occur late during cytokinesis, after initial positioning of the cortical division zone. Tissue-specific perturbations of BR signalling revealed that the cellular malfunction is unrelated to previously described whole organ growth defects. Thus, tissue type separates the pleiotropic effects of cell wall/BR signals and highlights their importance during cell wall placement. Summary: Both increased and reduced BR signalling strength results in altered cell wall orientation in the Arabidopsis root, uncoupled from whole-root growth control.
Collapse
Affiliation(s)
- Zhenni Li
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ayala Sela
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Fridman
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lucía Garstka
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Herman Höfte
- Department of Development, Signalling, and Modelling, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | - Sebastian Wolf
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
102
|
Domozych DS, Kozel L, Palacio-Lopez K. The effects of osmotic stress on the cell wall-plasma membrane domains of the unicellular streptophyte, Penium margaritaceum. PROTOPLASMA 2021; 258:1231-1249. [PMID: 33928433 DOI: 10.1007/s00709-021-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Penium margaritaceum is a unicellular zygnematophyte (basal Streptophyteor Charophyte) that has been used as a model organism for the study of cell walls of Streptophytes and for elucidating organismal adaptations that were key in the evolution of land plants.. When Penium is incubated in sorbitol-enhance medium, i.e., hyperosmotic medium, 1000-1500 Hechtian strands form within minutes and connect the plasma membrane to the cell wall. As cells acclimate to this osmotic stress over time, further significant changes occur at the cell wall and plasma membrane domains. The homogalacturonan lattice of the outer cell wall layer is significantly reduced and is accompanied by the formation of a highly elongate, "filamentous" phenotype. Distinct peripheral thickenings appear between the CW and plasma membrane and contain membranous components and a branched granular matrix. Monoclonal antibody labeling of these thickenings indicates the presence of rhamnogalacturonan-I epitopes. Acclimatization also results in the proliferation of the cell's vacuolar networks and macroautophagy. Penium's ability to acclimatize to osmotic stress offers insight into the transition of ancient zygnematophytes from an aquatic to terrestrial existence.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA.
| | - Li Kozel
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Kattia Palacio-Lopez
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
103
|
Ballesteros HGF, Rosman AC, Carvalho TLG, Grativol C, Hemerly AS. Cell wall formation pathways are differentially regulated in sugarcane contrasting genotypes associated with endophytic diazotrophic bacteria. PLANTA 2021; 254:109. [PMID: 34705112 DOI: 10.1007/s00425-021-03768-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Differences in cell wall components between two BNF-contrasting sugarcane genotypes might result from genetic variations particular to the genotype and from the efficiency in diazotrophic bacteria association. Sugarcane is a plant of the grass family (Poaceae) that is highly cultivated in Brazil, as an important energy resource. Commercial sugarcane genotypes may be successfully associated with beneficial endophytic nitrogen-fixing bacteria, which can influence several plant metabolic pathways, such as cell division and growth, synthesis of hormones, and defense compounds. In this study, we investigated how diazotrophic bacteria associated with sugarcane plants could be involved in the regulation of cell wall formation pathways. A molecular and structural characterization of the cell wall was compared between two genotypes of sugarcane with contrasting rates of Biological Nitrogen Fixation (BNF): SP70-1143 (high BNF) and Chunee (low BNF). Differentially expressed transcripts were identified in transcriptomes generated from SP70-1143 and Chunee. Expression profiles of cellulose and lignin genes, which were more expressed in SP70-1134, and callose genes, which were more expressed in Chunee, were validated by RT-qPCR and microscopic analysis of cell wall components in tissue sections. A similar expression profile in both BNF-contrasting genotypes was observed in naturally colonized plants and in plants inoculated with G. diazotrophicus. Cell walls of the high BNF genotype have a greater cellulose content, which might contribute to increase biomass. In parallel, callose was concentrated in the vascular tissues of the low BNF genotype and could possibly represent a barrier for an efficient bacterial colonization and dissemination in sugarcane tissues. Our data show a correlation between the gene profiles identified in the BNF-contrasting genotypes and a successful association with endophytic diazotrophic bacteria.
Collapse
Affiliation(s)
- Helkin Giovani F Ballesteros
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Aline C Rosman
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Thais Louise G Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Clicia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Adriana Silva Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
104
|
Coexpression of Fungal Cell Wall-Modifying Enzymes Reveals Their Additive Impact on Arabidopsis Resistance to the Fungal Pathogen, Botrytis cinerea. BIOLOGY 2021; 10:biology10101070. [PMID: 34681168 PMCID: PMC8533531 DOI: 10.3390/biology10101070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary In the present study, we created transgenic Arabidopsis plants overexpressing two fungal acetylesterases and a fungal feruloylesterase that acts on cell wall polysaccharides and studied their possible complementary additive effects on host defense reactions against the fungal pathogen, Botrytis cinerea. Our results showed that the Arabidopsis plants overexpressing two acetylesterases together contributed significantly higher resistance to B. cinerea in comparison with single protein expression. Conversely, coexpression of either of the acetyl esterases together with feruloylesterase compensates the latter’s negative impact on plant resistance. The results also provided evidence that combinatorial coexpression of some cell wall polysaccharide-modifying enzymes might exert an additive effect on plant immune response by constitutively priming plant defense pathways even before pathogen invasion. These findings have potential uses in protecting valuable crops against pathogens. Abstract The plant cell wall (CW) is an outer cell skeleton that plays an important role in plant growth and protection against both biotic and abiotic stresses. Signals and molecules produced during host–pathogen interactions have been proven to be involved in plant stress responses initiating signal pathways. Based on our previous research findings, the present study explored the possibility of additively or synergistically increasing plant stress resistance by stacking beneficial genes. In order to prove our hypothesis, we generated transgenic Arabidopsis plants constitutively overexpressing three different Aspergillus nidulans CW-modifying enzymes: a xylan acetylesterase, a rhamnogalacturonan acetylesterase and a feruloylesterase. The two acetylesterases were expressed either together or in combination with the feruloylesterase to study the effect of CW polysaccharide deacetylation and deferuloylation on Arabidopsis defense reactions against a fungal pathogen, Botrytis cinerea. The transgenic Arabidopsis plants expressing two acetylesterases together showed higher CW deacetylation and increased resistance to B. cinerea in comparison to wild-type (WT) Col-0 and plants expressing single acetylesterases. While the expression of feruloylesterase alone compromised plant resistance, coexpression of feruloylesterase together with either one of the two acetylesterases restored plant resistance to the pathogen. These CW modifications induced several defense-related genes in uninfected healthy plants, confirming their impact on plant resistance. These results demonstrated that coexpression of complementary CW-modifying enzymes in different combinations have an additive effect on plant stress response by constitutively priming the plant defense pathways. These findings might be useful for generating valuable crops with higher protections against biotic stresses.
Collapse
|
105
|
Julius BT, McCubbin TJ, Mertz RA, Baert N, Knoblauch J, Grant DG, Conner K, Bihmidine S, Chomet P, Wagner R, Woessner J, Grote K, Peevers J, Slewinski TL, McCann MC, Carpita NC, Knoblauch M, Braun DM. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning. THE PLANT CELL 2021; 33:3348-3366. [PMID: 34323976 PMCID: PMC8505866 DOI: 10.1093/plcell/koab193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.
Collapse
Affiliation(s)
- Benjamin T Julius
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Tyler J McCubbin
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Rachel A Mertz
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Present address: Inari Agriculture, West Lafayette, Indiana 47906, USA
| | - Nick Baert
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - DeAna G Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri 65211, USA
| | - Kyle Conner
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Saadia Bihmidine
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Paul Chomet
- NRGene Inc., 8910 University Center Lane, San Diego, California 92122, USA
| | - Ruth Wagner
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Jeff Woessner
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Karen Grote
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | | | | | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Nicholas C Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - David M Braun
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Author for correspondence:
| |
Collapse
|
106
|
Klymiuk V, Coaker G, Fahima T, Pozniak CJ. Tandem Protein Kinases Emerge as New Regulators of Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1094-1102. [PMID: 34096764 PMCID: PMC8761531 DOI: 10.1094/mpmi-03-21-0073-cr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprising both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat receptor proteins. Recent discoveries have revealed tandem kinase proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes-barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4-protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Gitta Coaker
- Department of Plant Pathology, University of California,
Davis, CA, U.S.A
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi
Avenue, Mt. Carmel, 3498838 Haifa, Israel
- Department of Evolutionary and Environmental Biology,
University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838 Haifa, Israel
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
107
|
Villa-Rivera MG, Cano-Camacho H, López-Romero E, Zavala-Páramo MG. The Role of Arabinogalactan Type II Degradation in Plant-Microbe Interactions. Front Microbiol 2021; 12:730543. [PMID: 34512607 PMCID: PMC8424115 DOI: 10.3389/fmicb.2021.730543] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.
Collapse
Affiliation(s)
- Maria Guadalupe Villa-Rivera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Everardo López-Romero
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| |
Collapse
|
108
|
Hessler G, Portheine SM, Gerlach EM, Lienemann T, Koch G, Voigt CA, Hoth S. PMR4-dependent cell wall depositions are a consequence but not the cause of temperature-induced autoimmunity. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab423. [PMID: 34519761 DOI: 10.1093/jxb/erab423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants possess a well-balanced immune system that is required for defense against pathogen infections. In autoimmune mutants or necrotic crosses, an intrinsic temperature-dependent imbalance leads to constitutive immune activation, resulting in severe damage or even death of plants. Recently, cell wall depositions were described as one of the symptoms following induction of the autoimmune phenotype in Arabidopsis saul1-1 mutants. However, the regulation and function of these depositions remained unclear. Here, we show that cell wall depositions, containing lignin and callose, were a common autoimmune feature and were deposited in proportion to the severity of the autoimmune phenotype at reduced ambient temperatures. When plants were exposed to reduced temperature for periods insufficient to induce an autoimmune phenotype, the cell wall depositions were not present. After low temperature intervals, sufficient to induce autoimmune responses, cell wall depositions correlated with a point of no return in saul1-1 autoimmunity. Although cell wall depositions were largely abolished in saul1-1 pmr4-1 double mutants lacking SAUL1 and the callose synthase gene GSL5/PMR4, their phenotype remained unchanged compared to that of the saul1-1 single mutant. Our data showed that cell wall depositions generally occur in autoimmunity, but appear not to be the cause of autoimmune phenotypes.
Collapse
Affiliation(s)
- Giuliana Hessler
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stephan Michael Portheine
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Eva-Maria Gerlach
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Tim Lienemann
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Gerald Koch
- Thuenen-Institute of Wood Research, Hamburg, Germany
| | - Christian A Voigt
- Molecular Plant Pathology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
- School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Stefan Hoth
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
109
|
The Cell Wall Proteome of Craterostigma plantagineum Cell Cultures Habituated to Dichlobenil and Isoxaben. Cells 2021; 10:cells10092295. [PMID: 34571944 PMCID: PMC8468770 DOI: 10.3390/cells10092295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The remarkable desiccation tolerance of the vegetative tissues in the resurrection species Craterostigma plantagineum (Hochst.) is favored by its unique cell wall folding mechanism that allows the ordered and reversible shrinking of the cells without damaging neither the cell wall nor the underlying plasma membrane. The ability to withstand extreme drought is also maintained in abscisic acid pre-treated calli, which can be cultured both on solid and in liquid culture media. Cell wall research has greatly advanced, thanks to the use of inhibitors affecting the biosynthesis of e.g., cellulose, since they allowed the identification of the compensatory mechanisms underlying habituation. Considering the innate cell wall plasticity of C. plantagineum, the goal of this investigation was to understand whether habituation to the cellulose biosynthesis inhibitors dichlobenil and isoxaben entailed or not identical mechanisms as known for non-resurrection species and to decipher the cell wall proteome of habituated cells. The results showed that exposure of C. plantagineum calli/cells triggered abnormal phenotypes, as reported in non-resurrection species. Additionally, the data demonstrated that it was possible to habituate Craterostigma cells to dichlobenil and isoxaben and that gene expression and protein abundance did not follow the same trend. Shotgun and gel-based proteomics revealed a common set of proteins induced upon habituation, but also identified candidates solely induced by habituation to one of the two inhibitors. Finally, it is hypothesized that alterations in auxin levels are responsible for the increased abundance of cell wall-related proteins upon habituation.
Collapse
|
110
|
Menna A, Dora S, Sancho-Andrés G, Kashyap A, Meena MK, Sklodowski K, Gasperini D, Coll NS, Sánchez-Rodríguez C. A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics. BMC Biol 2021; 19:161. [PMID: 34404410 PMCID: PMC8371875 DOI: 10.1186/s12915-021-01100-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimation. The CW constitutes the first physical barrier as well as a primary source of nutrients for microbes interacting with plants, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. RESULTS Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection, but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. Abolishing ethylene signaling attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. CONCLUSIONS Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.
Collapse
Affiliation(s)
- Alexandra Menna
- Department of Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Susanne Dora
- Department of Biology, ETH Zürich, 8092, Zürich, Switzerland
| | | | - Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - Mukesh Kumar Meena
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | | | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | | |
Collapse
|
111
|
Lee DH, Lee HS, Belkhadir Y. Coding of plant immune signals by surface receptors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102044. [PMID: 33979769 DOI: 10.1016/j.pbi.2021.102044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The detection of molecular signals derived from other organisms is central to the evolutionary success of plants in the colonization of Earth. The sensory coding of these signals is critical for marshaling local and systemic immune responses that keep most invading organisms at bay. Plants detect immune signals inside and outside their cells using receptors. Here, we focus on receptors that function at the cell surface. We present recent work that expands our understanding of the repertoire of immune signals sensed by this family of receptors.
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
| |
Collapse
|
112
|
Chaudhary A, Chen X, Leśniewska B, Boikine R, Gao J, Wolf S, Schneitz K. Cell wall damage attenuates root hair patterning and tissue morphogenesis mediated by the receptor kinase STRUBBELIG. Development 2021; 148:270854. [PMID: 34251020 DOI: 10.1242/dev.199425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023]
Abstract
Cell wall remodeling is essential for the control of growth and development as well as the regulation of stress responses. However, the underlying cell wall monitoring mechanisms remain poorly understood. Regulation of root hair fate and flower development in Arabidopsis thaliana requires signaling mediated by the atypical receptor kinase STRUBBELIG (SUB). Furthermore, SUB is involved in cell wall integrity signaling and regulates the cellular response to reduced levels of cellulose, a central component of the cell wall. Here, we show that continuous exposure to sub-lethal doses of the cellulose biosynthesis inhibitor isoxaben results in altered root hair patterning and floral morphogenesis. Genetically impairing cellulose biosynthesis also results in root hair patterning defects. We further show that isoxaben exerts its developmental effects through the attenuation of SUB signaling. Our evidence indicates that downregulation of SUB is a multi-step process and involves changes in SUB complex architecture at the plasma membrane, enhanced removal of SUB from the cell surface, and downregulation of SUB transcript levels. The results provide molecular insight into how the cell wall regulates cell fate and tissue morphogenesis.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Xia Chen
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Barbara Leśniewska
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rodion Boikine
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jin Gao
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Sebastian Wolf
- Cell wall signaling group, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
113
|
Zhang H, Li H, Zhang X, Yan W, Deng P, Zhang Y, Peng S, Wang Y, Wang C, Ji W. Wall-associated Receptor Kinase and The Expression Profiles in Wheat Responding to Fungal Stress.. [PMID: 0 DOI: 10.1101/2021.07.11.451968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AbstractCell wall-associated kinases (WAKs), which are encoded by conserved gene families in plants, are crucial for development and responses to diverse stresses. However, the wheat (Triticum aestivum L.) WAKs have not been systematically classified, especially those involved in protecting plants from disease. Here, we classified 129 WAK proteins (encoded by 232 genes) and 75 WAK-Like proteins (WAKLs; encoded by 109 genes) into four groups, via a phylogenetic analysis. An examination of protein sequence alignment revealed diversity in the GUB-domain of WAKs structural organization, but it was usually characterized by a PYPFG motif followed by CxGxGCC motifs, while the EGF-domain was usually initiated with a YAC motif, and eight cysteine residues were spliced by GNPY motif. The expression profiles of WAK-encoding homologous genes varied in response to Blumeria graminis f. sp. tritici (Bgt), Puccinia striiformis f. sp. tritici (Pst) and Puccinia triticina (Pt) stress. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis proved that TaWAK75 and TaWAK76b were involved in wheat resistance to Bgt. This study revealed the structure of the WAK-encoding genes in wheat, which may be useful for future functional elucidation of wheat WAKs responses to fungal infections.
Collapse
|
114
|
Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes (Basel) 2021; 12:genes12071059. [PMID: 34356075 PMCID: PMC8307928 DOI: 10.3390/genes12071059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.
Collapse
|
115
|
Roig-Oliver M, Rayon C, Roulard R, Fournet F, Bota J, Flexas J. Reduced photosynthesis in Arabidopsis thaliana atpme17.2 and atpae11.1 mutants is associated to altered cell wall composition. PHYSIOLOGIA PLANTARUM 2021; 172:1439-1451. [PMID: 32770751 DOI: 10.1111/ppl.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 05/06/2023]
Abstract
The cell wall is a complex and dynamic structure that determines plants' performance by constant remodeling of its compounds. Although cellulose is its major load-bearing component, pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties, due to pectin remodeling enzymes (PRE), induce the rearrangement of cell wall compounds, thus, modifying wall architecture. In this work, we tested for the first time how cell wall dynamics affect photosynthetic properties in Arabidopsis thaliana pectin methylesterase atpme17.2 and pectin acetylesterase atpae11.1 mutants in comparison to wild-type Col-0. Our results showed maintained PRE activities comparing mutants with wild-type and no significant differences in cellulose, but cell wall non-cellulosic neutral sugars contents changed. Particularly, the amount of galacturonic acid (GalA) - which represents to some extent the pectin cell wall proportion - was reduced in the two mutants. Additionally, physiological characterization revealed that mutants presented a decreased net CO2 assimilation (AN ) because of reductions in both stomatal (gs ) and mesophyll conductances (gm ). Thus, our results suggest that atpme17.2 and atpae11.1 cell wall modifications due to genetic alterations could play a significant role in determining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Catherine Rayon
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Romain Roulard
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - François Fournet
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| |
Collapse
|
116
|
Wang G, DiTusa SF, Oh DH, Herrmann AD, Mendoza-Cozatl DG, O'Neill MA, Smith AP, Dassanayake M. Cross species multi-omics reveals cell wall sequestration and elevated global transcript abundance as mechanisms of boron tolerance in plants. THE NEW PHYTOLOGIST 2021; 230:1985-2000. [PMID: 33629348 DOI: 10.1111/nph.17295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Boron toxicity is a world-wide problem for crops, yet we have a limited understanding of the genetic responses and adaptive mechanisms to this stress in plants. We employed a cross-species comparison between boron stress-sensitive Arabidopsis thaliana and its boron stress-tolerant extremophyte relative Schrenkiella parvula, and a multi-omics approach integrating genomics, transcriptomics, metabolomics and ionomics to assess plant responses and adaptations to boron stress. Schrenkiella parvula maintains lower concentrations of total boron and free boric acid than Arabidopsis when grown with excess boron. Schrenkiella parvula excludes excess boron more efficiently than Arabidopsis, which we propose is partly driven by SpBOR5, a boron transporter that we functionally characterize in this study. Both species use cell walls as a partial sink for excess boron. When accumulated in the cytoplasm, excess boron appears to interrupt RNA metabolism. The extremophyte S. parvula facilitates critical cellular processes while maintaining the pool of ribose-containing compounds that can bind with boric acid. The S. parvula transcriptome is pre-adapted to boron toxicity. It exhibits substantial overlaps with the Arabidopsis boron-stress responsive transcriptome. Cell wall sequestration and increases in global transcript levels under excess boron conditions emerge as key mechanisms for sustaining plant growth under boron toxicity.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sandra Feuer DiTusa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Achim D Herrmann
- Department of Geology & Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - David G Mendoza-Cozatl
- Division of Plant Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
117
|
Yang J, Xie M, Wang X, Wang G, Zhang Y, Li Z, Ma Z. Identification of cell wall-associated kinases as important regulators involved in Gossypium hirsutum resistance to Verticillium dahliae. BMC PLANT BIOLOGY 2021; 21:220. [PMID: 33992078 PMCID: PMC8122570 DOI: 10.1186/s12870-021-02992-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/27/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Verticillium wilt, caused by the soil borne fungus Verticillium dahliae, is a major threat to cotton production worldwide. An increasing number of findings indicate that WAK genes participate in plant-pathogen interactions, but their roles in cotton resistance to V. dahliae remain largely unclear. RESULTS Here, we carried out a genome-wide analysis of WAK gene family in Gossypium hirsutum that resulted in the identification of 81 putative GhWAKs, which were all predicated to be localized on plasma membrane. In which, GhWAK77 as a representative was further located in tobacco epidermal cells using transient expression of fluorescent fusion proteins. All GhWAKs could be classified into seven groups according to their diverse protein domains, indicating that they might sense different outside signals to trigger intracellular signaling pathways that were response to various environmental stresses. A lot of cis-regulatory elements were predicted in the upstream region of GhWAKs and classified into four main groups including hormones, biotic, abiotic and light. As many as 28 GhWAKs, playing a potential role in the interaction between cotton and V. dahliae, were screened out by RNA-seq and qRT-PCR. To further study the function of GhWAKs in cotton resistance to V. dahliae, VIGS technology was used to silence GhWAKs. At 20 dpi, VIGSed plants exhibited more chlorosis and wilting than the control plants. The disease indices of VIGSed plants were also significantly higher than those of the control. Furthermore, silencing of GhWAKs significantly affected the expression of JA- and SA-related marker genes, increased the spread of V. dahliae in the cotton stems, dramatically compromised V. dahliae-induced accumulation of lignin, H2O2 and NO, but enhanced POD activity. CONCLUSION Our study presents a comprehensive analysis on cotton WAK gene family for the first time. Expression analysis and VIGS assay provided direct evidences on GhWAKs participation in the cotton resistance to V. dahliae.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Meixia Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
118
|
Abstract
The plant cell wall is an extracellular matrix that envelopes cells, gives them structure and shape, constitutes the interface with symbionts, and defends plants against external biotic and abiotic stress factors. The assembly of this matrix is regulated and mediated by the cytoskeleton. Cytoskeletal elements define where new cell wall material is added and how fibrillar macromolecules are oriented in the wall. Inversely, the cytoskeleton is also key in the perception of mechanical cues generated by structural changes in the cell wall as well as the mediation of intracellular responses. We review the delivery processes of the cell wall precursors that are required for the cell wall assembly process and the structural continuity between the inside and the outside of the cell. We provide an overview of the different morphogenetic processes for which cell wall assembly is a crucial element and elaborate on relevant feedback mechanisms.
Collapse
|
119
|
Zhang S, Quartararo A, Betz OK, Madahhosseini S, Heringer AS, Le T, Shao Y, Caruso T, Ferguson L, Jernstedt J, Wilkop T, Drakakaki G. Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. PLANT DIRECT 2021; 5:e00315. [PMID: 34027297 PMCID: PMC8133763 DOI: 10.1002/pld3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 05/11/2023]
Abstract
Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.
Collapse
Affiliation(s)
- Shuxiao Zhang
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Alessandra Quartararo
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Oliver Karl Betz
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Shahab Madahhosseini
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Genetic and Plant Production DepartmentVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Angelo Schuabb Heringer
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Unidade de Biologia IntegrativaSetor de Genômica e ProteômicaUENFRio de JaneiroRJBrazil
| | - Thu Le
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Yuhang Shao
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of AgricultureNanjing Agricultural UniversityNanjingJiangsu ProvinceP. R. China
| | - Tiziano Caruso
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Judy Jernstedt
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Thomas Wilkop
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Light Microscopy CoreDepartment of PhysiologyUniversity of KentuckyLexingtonKYUSA
| | - Georgia Drakakaki
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| |
Collapse
|
120
|
Rebaque D, del Hierro I, López G, Bacete L, Vilaplana F, Dallabernardina P, Pfrengle F, Jordá L, Sánchez‐Vallet A, Pérez R, Brunner F, Molina A, Mélida H. Cell wall-derived mixed-linked β-1,3/1,4-glucans trigger immune responses and disease resistance in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:601-615. [PMID: 33544927 PMCID: PMC8252745 DOI: 10.1111/tpj.15185] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 05/05/2023]
Abstract
Pattern-triggered immunity (PTI) is activated in plants upon recognition by pattern recognition receptors (PRRs) of damage- and microbe-associated molecular patterns (DAMPs and MAMPs) derived from plants or microorganisms, respectively. To understand better the plant mechanisms involved in the perception of carbohydrate-based structures recognized as DAMPs/MAMPs, we have studied the ability of mixed-linked β-1,3/1,4-glucans (MLGs), present in some plant and microbial cell walls, to trigger immune responses and disease resistance in plants. A range of MLG structures were tested for their capacity to induce PTI hallmarks, such as cytoplasmic Ca2+ elevations, reactive oxygen species production, phosphorylation of mitogen-activated protein kinases and gene transcriptional reprogramming. These analyses revealed that MLG oligosaccharides are perceived by Arabidopsis thaliana and identified a trisaccharide, β-d-cellobiosyl-(1,3)-β-d-glucose (MLG43), as the smallest MLG structure triggering strong PTI responses. These MLG43-mediated PTI responses are partially dependent on LysM PRRs CERK1, LYK4 and LYK5, as they were weaker in cerk1 and lyk4 lyk5 mutants than in wild-type plants. Cross-elicitation experiments between MLG43 and the carbohydrate MAMP chitohexaose [β-1,4-d-(GlcNAc)6 ], which is also perceived by these LysM PRRs, indicated that the mechanism of MLG43 recognition could differ from that of chitohexaose, which is fully impaired in cerk1 and lyk4 lyk5 plants. MLG43 treatment confers enhanced disease resistance in A. thaliana to the oomycete Hyaloperonospora arabidopsidis and in tomato and pepper to different bacterial and fungal pathogens. Our data support the classification of MLGs as a group of carbohydrate-based molecular patterns that are perceived by plants and trigger immune responses and disease resistance.
Collapse
Affiliation(s)
- Diego Rebaque
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUPMMadridSpain
- Plant Response BiotechCentro de Empresas, Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Irene del Hierro
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUPMMadridSpain
| | - Gemma López
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Laura Bacete
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUPMMadridSpain
- Present address:
Institute for BiologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Francisco Vilaplana
- Division of GlycoscienceSchool of BiotechnologyRoyal Institute of Technology (KTH)StockholmSweden
| | - Pietro Dallabernardina
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
| | - Fabian Pfrengle
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
- Present address:
Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUPMMadridSpain
| | - Andrea Sánchez‐Vallet
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Rosa Pérez
- Plant Response BiotechCentro de Empresas, Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Frédéric Brunner
- Plant Response BiotechCentro de Empresas, Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUPMMadridSpain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Present address:
Área de Fisiología VegetalDepartamento de Ingeniería y Ciencias AgrariasUniversidad de LeónLeónSpain
| |
Collapse
|
121
|
Chen Z, Zhou T, Hu J, Duan H. Quartz Crystal Microbalance with Dissipation Monitoring of Dynamic Viscoelastic Changes of Tobacco BY-2 Cells under Different Osmotic Conditions. BIOSENSORS 2021; 11:136. [PMID: 33925584 PMCID: PMC8145959 DOI: 10.3390/bios11050136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023]
Abstract
The plant cell mechanics, including turgor pressure and wall mechanical properties, not only determine the growth of plant cells, but also reflect the functional and structural changes of plant cells under biotic and abiotic stresses. However, there are currently no appropriate techniques allowing to monitor the complex mechanical properties of living plant cells non-invasively and continuously. In this work, quartz crystal microbalance with dissipation (QCM-D) monitoring technique with overtones (3-9) was used for the dynamic monitoring of adhesions of living tobacco BY-2 cells onto positively charged N,N-dimethyl-N-propenyl-2-propen-1-aminiumchloride homopolymer (PDADMAC)/SiO2 QCM crystals under different concentrations of mannitol (CM) and the subsequent effects of osmotic stresses. The cell viscoelastic index (CVIn) (CVIn = ΔD⋅n/ΔF) was used to characterize the viscoelastic properties of BY-2 cells under different osmotic conditions. Our results indicated that lower overtones of QCM could detect both the cell wall and cytoskeleton structures allowing the detection of plasmolysis phenomena; whereas higher overtones could only detect the cell wall's mechanical properties. The QCM results were further discussed with the morphological changes of the BY-2 cells by an optical microscopy. The dynamic changes of cell's generated forces or cellular structures of plant cells caused by external stimuli (or stresses) can be traced by non-destructive and dynamic monitoring of cells' viscoelasticity, which provides a new way for the characterization and study of plant cells. QCM-D could map viscoelastic properties of different cellular structures in living cells and could be used as a new tool to test the mechanical properties of plant cells.
Collapse
Affiliation(s)
- Zongxing Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (J.H.); (H.D.)
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Tiean Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (J.H.); (H.D.)
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Jiajin Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (J.H.); (H.D.)
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Haifeng Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (J.H.); (H.D.)
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| |
Collapse
|
122
|
McFarlane HE, Mutwil-Anderwald D, Verbančič J, Picard KL, Gookin TE, Froehlich A, Chakravorty D, Trindade LM, Alonso JM, Assmann SM, Persson S. A G protein-coupled receptor-like module regulates cellulose synthase secretion from the endomembrane system in Arabidopsis. Dev Cell 2021; 56:1484-1497.e7. [PMID: 33878345 DOI: 10.1016/j.devcel.2021.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 01/18/2023]
Abstract
Cellulose is produced at the plasma membrane of plant cells by cellulose synthase (CESA) complexes (CSCs). CSCs are assembled in the endomembrane system and then trafficked to the plasma membrane. Because CESAs are only active in the plasma membrane, control of CSC secretion regulates cellulose synthesis. We identified members of a family of seven transmembrane domain-containing proteins (7TMs) that are important for cellulose production during cell wall integrity stress. 7TMs are often associated with guanine nucleotide-binding (G) protein signaling and we found that mutants affecting the Gβγ dimer phenocopied the 7tm mutants. Unexpectedly, the 7TMs localized to the Golgi/trans-Golgi network where they interacted with G protein components. Here, the 7TMs and Gβγ regulated CESA trafficking but did not affect general protein secretion. Our results outline how a G protein-coupled module regulates CESA trafficking and reveal that defects in this process lead to exacerbated responses to cell wall integrity stress.
Collapse
Affiliation(s)
- Heather E McFarlane
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Australia; Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Daniela Mutwil-Anderwald
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; School of the Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jana Verbančič
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Australia; Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Kelsey L Picard
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Australia; School of Natural Sciences, University of Tasmania, Hobart 7001 TAS, Australia
| | - Timothy E Gookin
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - Anja Froehlich
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - David Chakravorty
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - Luisa M Trindade
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Sarah M Assmann
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Australia; Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; Department of Plant & Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
123
|
Subcellular coordination of plant cell wall synthesis. Dev Cell 2021; 56:933-948. [PMID: 33761322 DOI: 10.1016/j.devcel.2021.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Organelles of the plant cell cooperate to synthesize and secrete a strong yet flexible polysaccharide-based extracellular matrix: the cell wall. Cell wall composition varies among plant species, across cell types within a plant, within different regions of a single cell wall, and in response to intrinsic or extrinsic signals. This diversity in cell wall makeup is underpinned by common cellular mechanisms for cell wall production. Cellulose synthase complexes function at the plasma membrane and deposit their product into the cell wall. Matrix polysaccharides are synthesized by a multitude of glycosyltransferases in hundreds of mobile Golgi stacks, and an extensive set of vesicle trafficking proteins govern secretion to the cell wall. In this review, we discuss the different subcellular locations at which cell wall synthesis occurs, review the molecular mechanisms that control cell wall biosynthesis, and examine how these are regulated in response to different perturbations to maintain cell wall homeostasis.
Collapse
|
124
|
Liu J, Zhang W, Long S, Zhao C. Maintenance of Cell Wall Integrity under High Salinity. Int J Mol Sci 2021; 22:3260. [PMID: 33806816 PMCID: PMC8004791 DOI: 10.3390/ijms22063260] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cell wall biosynthesis is a complex biological process in plants. In the rapidly growing cells or in the plants that encounter a variety of environmental stresses, the compositions and the structure of cell wall can be dynamically changed. To constantly monitor cell wall status, plants have evolved cell wall integrity (CWI) maintenance system, which allows rapid cell growth and improved adaptation of plants to adverse environmental conditions without the perturbation of cell wall organization. Salt stress is one of the abiotic stresses that can severely disrupt CWI, and studies have shown that the ability of plants to sense and maintain CWI is important for salt tolerance. In this review, we highlight the roles of CWI in salt tolerance and the mechanisms underlying the maintenance of CWI under salt stress. The unsolved questions regarding the association between the CWI and salt tolerance are discussed.
Collapse
Affiliation(s)
- Jianwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
| | - Wei Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Long
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
| |
Collapse
|
125
|
Ganie SA, Ahammed GJ. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. PLANT CELL REPORTS 2021; 40:437-459. [PMID: 33389046 DOI: 10.1007/s00299-020-02649-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Cell wall plasticity plays a very crucial role in vegetative and reproductive development of rice under drought and is a highly potential trait for improving rice yield under drought. Drought is a major constraint in rice (Oryza sativa L.) cultivation severely affecting all developmental stages, with the reproductive stage being the most sensitive. Rice plants employ multiple strategies to cope with drought, in which modification in cell wall dynamics plays a crucial role. Over the years, significant progress has been made in discovering the cell wall-specific genomic resources related to drought tolerance at vegetative and reproductive stages of rice. However, questions remain about how the drought-induced changes in cell wall made by these genomic resources potentially influence the vegetative and reproductive development of rice. The possibly major candidate genes underlying the function of quantitative trait loci directly or indirectly associated with the cell wall plasticization-mediated drought tolerance of rice might have a huge promise in dissecting the putative genomic regions associated with cell wall plasticity under drought. Furthermore, engineering the drought tolerance of rice using cell wall-related genes from resurrection plants may have huge prospects for rice yield improvement. Here, we review the comprehensive multidisciplinary analyses to unravel different components and mechanisms involved in drought-induced cell wall plasticity at vegetative and reproductive stages that could be targeted for improving rice yield under drought.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, West Bengal, 731235, India.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
126
|
Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. PLANTS 2021; 10:plants10020399. [PMID: 33669710 PMCID: PMC7921929 DOI: 10.3390/plants10020399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
The plant cell wall (CW) is a complex structure that acts as a mechanical barrier, restricting the access to most microbes. Phytopathogenic microorganisms can deploy an arsenal of CW-degrading enzymes (CWDEs) that are required for virulence. In turn, plants have evolved proteins able to inhibit the activity of specific microbial CWDEs, reducing CW damage and favoring the accumulation of CW-derived fragments that act as damage-associated molecular patterns (DAMPs) and trigger an immune response in the host. CW-derived DAMPs might be a component of the complex system of surveillance of CW integrity (CWI), that plants have evolved to detect changes in CW properties. Microbial CWDEs can activate the plant CWI maintenance system and induce compensatory responses to reinforce CWs during infection. Recent evidence indicates that the CWI surveillance system interacts in a complex way with the innate immune system to fine-tune downstream responses and strike a balance between defense and growth.
Collapse
|
127
|
Cuadrado-Pedetti MB, Rauschert I, Sainz MM, Amorim-Silva V, Botella MA, Borsani O, Sotelo-Silveira M. The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 Gene Is Involved in Anisotropic Root Growth during Osmotic Stress Adaptation. Genes (Basel) 2021; 12:236. [PMID: 33562207 PMCID: PMC7915054 DOI: 10.3390/genes12020236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in the Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 (TTL1) gene cause reduced tolerance to osmotic stress evidenced by an arrest in root growth and root swelling, which makes it an interesting model to explore how root growth is controlled under stress conditions. We found that osmotic stress reduced the growth rate of the primary root by inhibiting the cell elongation in the elongation zone followed by a reduction in the number of cortical cells in the proximal meristem. We then studied the stiffness of epidermal cell walls in the root elongation zone of ttl1 mutants under osmotic stress using atomic force microscopy. In plants grown in control conditions, the mean apparent elastic modulus was 448% higher for live Col-0 cell walls than for ttl1 (88.1 ± 2.8 vs. 16.08 ± 6.9 kPa). Seven days of osmotic stress caused an increase in the stiffness in the cell wall of the cells from the elongation zone of 87% and 84% for Col-0 and ttl1, respectively. These findings suggest that TTL1 may play a role controlling cell expansion orientation during root growth, necessary for osmotic stress adaptation.
Collapse
Affiliation(s)
- María Belén Cuadrado-Pedetti
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| | - Inés Rauschert
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay;
| | - María Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| | - Vítor Amorim-Silva
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain; (V.A.-S); (M.A.B.)
| | - Miguel Angel Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain; (V.A.-S); (M.A.B.)
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| | - Mariana Sotelo-Silveira
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| |
Collapse
|
128
|
Lorrai R, Francocci F, Gully K, Martens HJ, De Lorenzo G, Nawrath C, Ferrari S. Impaired Cuticle Functionality and Robust Resistance to Botrytis cinerea in Arabidopsis thaliana Plants With Altered Homogalacturonan Integrity Are Dependent on the Class III Peroxidase AtPRX71. FRONTIERS IN PLANT SCIENCE 2021; 12:696955. [PMID: 34484262 PMCID: PMC8415794 DOI: 10.3389/fpls.2021.696955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/26/2021] [Indexed: 05/18/2023]
Abstract
Pectin is a major cell wall component that plays important roles in plant development and response to environmental stresses. Arabidopsis thaliana plants expressing a fungal polygalacturonase (PG plants) that degrades homogalacturonan (HG), a major pectin component, as well as loss-of-function mutants for QUASIMODO2 (QUA2), encoding a putative pectin methyltransferase important for HG biosynthesis, show accumulation of reactive oxygen species (ROS), reduced growth and almost complete resistance to the fungal pathogen Botrytis cinerea. Both PG and qua2 plants show increased expression of the class III peroxidase AtPRX71 that contributes to their elevated ROS levels and reduced growth. In this work, we show that leaves of PG and qua2 plants display greatly increased cuticle permeability. Both increased cuticle permeability and resistance to B. cinerea in qua2 are suppressed by loss of AtPRX71. Increased cuticle permeability in qua2, rather than on defects in cuticle ultrastructure or cutin composition, appears to be dependent on reduced epidermal cell adhesion, which is exacerbated by AtPRX71, and is suppressed by the esmeralda1 mutation, which also reverts the adhesion defect and the resistant phenotype. Increased cuticle permeability, accumulation of ROS, and resistance to B. cinerea are also observed in mutants lacking a functional FERONIA, a receptor-like kinase thought to monitor pectin integrity. In contrast, mutants with defects in other structural components of primary cell wall do not have a defective cuticle and are normally susceptible to the fungus. Our results suggest that disrupted cuticle integrity, mediated by peroxidase-dependent ROS accumulation, plays a major role in the robust resistance to B. cinerea of plants with altered HG integrity.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fedra Francocci
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Helle J. Martens
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Simone Ferrari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- *Correspondence: Simone Ferrari,
| |
Collapse
|
129
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
130
|
Bai J, Jin K, Qin W, Wang Y, Yin Q. Proteomic Responses to Alkali Stress in Oats and the Alleviatory Effects of Exogenous Spermine Application. FRONTIERS IN PLANT SCIENCE 2021; 12:627129. [PMID: 33868329 PMCID: PMC8049610 DOI: 10.3389/fpls.2021.627129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
Alkali stress limits plant growth and yield more strongly than salt stress and can lead to the appearance of yellow leaves; however, the reasons remain unclear. In this study, we found that (1) the down-regulation of coproporphyrinogen III oxidase, protoporphyrinogen oxidase, and Pheophorbide a oxygenase in oats under alkali stress contributes to the appearance of yellow leaves (as assessed by proteome and western blot analyses). (2) Some oat proteins that are involved in the antioxidant system, root growth, and jasmonic acid (JA) and indole-3-acetic acid (IAA) synthesis are up-regulated in response to alkalinity and help increase alkali tolerance. (3) We added exogenous spermine to oat plants to improve their alkali tolerance, which resulted in higher chlorophyll contents and plant dry weights than in plants subjected to alkaline stress alone. This was due to up-regulation of chitinase and proteins related to chloroplast structure, root growth, and the antioxidant system. Spermine addition increased sucrose utilization efficiency, and promoted carbohydrate export from leaves to roots to increase energy storage in roots. Spermine addition also increased the IAA and JA contents required for root growth.
Collapse
Affiliation(s)
- Jianhui Bai
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ke Jin
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
- *Correspondence: Ke Jin,
| | - Wei Qin
- Inner Mongolia Technical College of Construction, Hohhot, China
- Wei Qin,
| | - Yuqing Wang
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Yin
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
131
|
Roig-Oliver M, Bresta P, Nadal M, Liakopoulos G, Nikolopoulos D, Karabourniotis G, Bota J, Flexas J. Cell wall composition and thickness affect mesophyll conductance to CO2 diffusion in Helianthus annuus under water deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7198-7209. [PMID: 32905592 DOI: 10.1093/jxb/eraa413] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Water deprivation affects photosynthesis, leaf anatomy, and cell wall composition. Although the former effects have been widely studied, little is known regarding those changes in cell wall major (cellulose, hemicelluloses, pectin, and lignin) and minor (cell wall-bound phenolics) compounds in plants acclimated to short- and long-term water deprivation and during recovery. In particular, how these cell wall changes impact anatomy and/or photosynthesis, specifically mesophyll conductance to CO2 diffusion (gm), has been scarcely studied. To induce changes in photosynthesis, cell wall composition and anatomy, Helianthus annuus plants were studied under five conditions: (i) control (i.e. without stress) (CL); (ii) long-term water deficit stress (LT); (iii) long-term water deficit stress with recovery (LT-Rec); (iv) short-term water deficit stress (ST); and (v) short-term water deficit stress with recovery (ST-Rec), resulting in a wide photosynthetic range (from 3.80 ± 1.05 μmol CO2 m-2 s-1 to 24.53 ± 0.42 μmol CO2 m-2 s-1). Short- and long-term water deprivation and recovery induced distinctive responses of the examined traits, evidencing a cell wall dynamic turnover during plants acclimation to each condition. In particular, we demonstrated for the first time how gm correlated negatively with lignin and cell wall-bound phenolics and how the (cellulose+hemicelloses)/pectin ratio was linked to cell wall thickness (Tcw) variations.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Panagiota Bresta
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Georgios Liakopoulos
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - Dimosthenis Nikolopoulos
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - George Karabourniotis
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
132
|
Fröschel C, Komorek J, Attard A, Marsell A, Lopez-Arboleda WA, Le Berre J, Wolf E, Geldner N, Waller F, Korte A, Dröge-Laser W. Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. Cell Host Microbe 2020; 29:299-310.e7. [PMID: 33378688 DOI: 10.1016/j.chom.2020.11.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/02/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Plant roots are built of concentric cell layers that are thought to respond to microbial infections by employing specific, genetically defined programs. Yet, the functional impact of this radial organization remains elusive, particularly due to the lack of genome-wide techniques for monitoring expression at a cell-layer resolution. Here, cell-type-specific expression of tagged ribosomes enabled the isolation of ribosome-bound mRNA to obtain cell-layer translatomes (TRAP-seq, translating ribosome affinity purification and RNA sequencing). After inoculation with the vascular pathogen Verticillium longisporum, pathogenic oomycete Phytophthora parasitica, or mutualistic endophyte Serendipita indica, root cell-layer responses reflected the fundamentally different colonization strategies of these microbes. Notably, V. longisporum specifically suppressed the endodermal barrier, which restricts fungal progression, allowing microbial access to the root central cylinder. Moreover, localized biosynthesis of antimicrobial compounds and ethylene differed in response to pathogens and mutualists. These examples highlight the power of this resource to gain insights into root-microbe interactions and to develop strategies in crop improvement.
Collapse
Affiliation(s)
- Christian Fröschel
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Jaqueline Komorek
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Agnès Attard
- INRAE, CNRS, ISA, Université Côte d'Azur, 400 Route des Chappes, 06903 Sophia Antipolis, France
| | - Alexander Marsell
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - William A Lopez-Arboleda
- Center for Computational and Theoretical Biology, CCTB, Julius-Maximilians-Universität Würzburg, Klara-Oppenheimer-Weg 32, 97074 Würzburg, Germany
| | - Joëlle Le Berre
- INRAE, CNRS, ISA, Université Côte d'Azur, 400 Route des Chappes, 06903 Sophia Antipolis, France
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, Université de Lausanne, Biophore Building, Unil-Sorge, 1015 Lausanne, Switzerland
| | - Frank Waller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Arthur Korte
- Center for Computational and Theoretical Biology, CCTB, Julius-Maximilians-Universität Würzburg, Klara-Oppenheimer-Weg 32, 97074 Würzburg, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|
133
|
Kumar V, Donev EN, Barbut FR, Kushwah S, Mannapperuma C, Urbancsok J, Mellerowicz EJ. Genome-Wide Identification of Populus Malectin/Malectin-Like Domain-Containing Proteins and Expression Analyses Reveal Novel Candidates for Signaling and Regulation of Wood Development. FRONTIERS IN PLANT SCIENCE 2020; 11:588846. [PMID: 33414796 PMCID: PMC7783096 DOI: 10.3389/fpls.2020.588846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF11721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their expression and co-expression networks. P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified here could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation in the xylem and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways. Thus, P. trichocarpa MD genes having different domain organizations comprise many genes with putative foliar defense functions, some of which could be specific to Populus and related species, as well as genes with potential involvement in signaling pathways in other tissues including developing wood.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Evgeniy N. Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Félix R. Barbut
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sunita Kushwah
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Chanaka Mannapperuma
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - János Urbancsok
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
134
|
Nawaz MA, Azeem F, Zakharenko AM, Lin X, Atif RM, Baloch FS, Chan TF, Chung G, Ham J, Sun S, Golokhvast KS. In-silico Exploration of Channel Type and Efflux Silicon Transporters and Silicification Proteins in 80 Sequenced Viridiplantae Genomes. PLANTS 2020; 9:plants9111612. [PMID: 33233677 PMCID: PMC7709012 DOI: 10.3390/plants9111612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Silicon (Si) accumulation protects plants from biotic and abiotic stresses. It is transported and distributed within the plant body through a cooperative system of channel type (e.g., OsLsi1) and efflux (Lsi2s e.g., OsLsi2) Si transporters (SITs) that belong to Noduline-26 like intrinsic protein family of aquaporins and an uncharacterized anion transporter family, respectively. Si is deposited in plant tissues as phytoliths and the process is known as biosilicification but the knowledge about the proteins involved in this process is limited. In the present study, we explored channel type SITs and Lsi2s, and siliplant1 protein (Slp1) in 80 green plant species. We found 80 channel type SITs and 133 Lsi2s. The channel type SITs characterized by the presence of two NPA motifs, GSGR or STAR selectivity filter, and 108 amino acids between two NPA motifs were absent from Chlorophytes, while Streptophytes evolved two different types of channel type SITs with different selectivity filters. Both channel type SITs and Lsi2s evolved two types of gene structures each, however, Lsi2s are ancient and were also found in Chlorophyta. Homologs of Slp1 (225) were present in almost all Streptophytes regardless of their Si accumulation capacity. In Si accumulator plant species, the Slp1s were characterized by the presence of H, D-rich domain, P, K, E-rich domain, and P, T, Y-rich domain, while moderate Si accumulators lacked H, D-rich domain and P, T, Y-rich domains. The digital expression analysis and coexpression networks highlighted the role of channel type and Lsi2s, and how Slp1 homologs were ameliorating plants’ ability to withstand different stresses by co-expressing with genes related to structural integrity and signaling. Together, the in-silico exploration made in this study increases our knowledge of the process of biosilicification in plants.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Laboratory of Bio-Economics and Biotechnology, Department of Bio-Economics and Food Safety, School of Economics and Management, Far Eastern Federal University, 690950 Vladivostok, Russia;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | | | - Xiao Lin
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Rana Muhammad Atif
- US-Pakistan Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Turkey;
| | - Ting-Fung Chan
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
| | - Junghee Ham
- Department of Health Policy and Management, Wonkwang University, Iksan, Jeonbuk 54538, Korea;
| | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
- Correspondence: (S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42, 44 Bolshaya Morskaya Street, 190000 St. Petersburg, Russia;
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia
- Pacific Geographical Institute, FEB RAS, 7 Radio street, 690014 Vladivostok, Russia
- Correspondence: (S.S.); (K.S.G.)
| |
Collapse
|
135
|
Surówka E, Potocka I, Dziurka M, Wróbel-Marek J, Kurczyńska E, Żur I, Maksymowicz A, Gajewska E, Miszalski Z. Tocopherols mutual balance is a key player for maintaining Arabidopsis thaliana growth under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:369-383. [PMID: 33007531 DOI: 10.1016/j.plaphy.2020.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 05/26/2023]
Abstract
Enhanced channeling carbon through pathways: shikimate/chorismate, benzenoid-phenylopropanoid or 2-C-methyl-D-erythritol 4-phosphate (MEP) provides a multitude of secondary metabolites and cell wall components and allows plants response to environmental stresses. Through the biosynthetic pathways, different secondary metabolites, like tocopherols (TCs), are bind to mutual dependencies and metabolic loops, that are not yet fully understood. We compared, in parallel, the influence of α- and γ-TCs on metabolites involved in osmoprotective/antioxidative response, and physico-chemical modification of plasma membrane and cell wall. We studied Arabidopsis thaliana Columbia ecotype (WT), mutant vte1 deficient in α- and γ-TCs, mutant vte4 over-accumulating γ-TC instead of α-TC, and transgenic line tmt over-accumulating α-TC; exposed to NaCl. The results indicate that salt stress activates β-carboxylation processes in WT plants and in plants with altered TCs accumulation. In α-TC-deficient plants, NaCl causes ACC decrease, but does not change SA, whose concentration remains higher than in α-TC accumulating plants. α/γ-TCs contents influence carbohydrates, poliamines, phenolic (caffeic, ferrulic, cinnamic) acids accumulation patterns. Salinity results in increased detection of the LM5 galactan and LM19 homogalacturonan epitopes in α-TC accumulating plants, and the LM6 arabinan and MAC207 AGP epitopes in α-TC deficient mutants. Parallel, plants with altered TCs composition show decreased both the cell turgor and elastic modulus determined at the individual cell level. α-TC deficient plants reveal lower values of cell turgor and elastic modulus, but higher cell hydraulic conductivity than α-TC accumulating plants. Under salt stress, α-TC shows stronger regulatory effect than γ-TC through the impact on chloroplastic biosynthetic pathways and ROS/osmotic-modulating compounds.
Collapse
Affiliation(s)
- Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland.
| | - Izabela Potocka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Anna Maksymowicz
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| |
Collapse
|
136
|
Du F, Jiao Y. Mechanical control of plant morphogenesis: concepts and progress. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:16-23. [PMID: 32619966 DOI: 10.1016/j.pbi.2020.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Understanding how the genome encodes organismal shape is fundamental to biology. Extensive molecular genetic studies have uncovered genes regulating morphogenesis, that is, the generation of shape, however, such genes do not directly determine cell and tissue shape. Recent studies have started to elucidate how mechanical cues mediate the physical shaping of cells and tissues. In particular, the mechanical force generated during cell and tissue growth coordinates deformation at the tissue and organ scale. In this review, we summarize the recent progress of mechanical regulation of plant development. We focus our discussion on how patterns of mechanical stresses are formed, how mechanical cues are perceived, and how they guide cell and organ morphogenesis.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
137
|
Paulino MKSS, Souza ERD, Lins CMT, Dourado PRM, Leal LYDC, Monteiro DR, Rego Junior FEDA, Silva CUDC. Influence of vesicular trichomes of Atriplex nummularia on photosynthesis, osmotic adjustment, cell wall elasticity and enzymatic activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:177-186. [PMID: 32771929 DOI: 10.1016/j.plaphy.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Vesicular trichomes play a key role in excluding toxic ions from some halophyte species, preventing the essential processes and functions of plants from being altered. Thus, the present study aimed to evaluate the influence of these structures on Atriplex nummularia irrigated using waters with three levels of osmotic potential (-0.1, -1.4 and -2.7 MPa), formulated with NaCl in plants with vesicular trichomes and plants with partial removal of trichomes. The experiment was conducted in a protected environment and plants were evaluated for physiological parameters (water, osmotic and pressure potentials, relative water content, osmotic adjustment, pressure-volume curve, gas exchange), electrolyte leakage, lipid peroxidation and enzymatic activity (superoxide dismutase, ascorbate peroxidase, catalase). The results obtained made it possible to identify the strong contribution of vesicular trichomes to physiological and biochemical parameters, with indication of cell wall stiffening and maintenance of turgor. Furthermore, the evaluation of the osmotic potentials obtained in the study suggests that the contribution of vesicular trichomes to the salinity tolerance of the species is greater than that of osmotic adjustment. Furthermore, gas exchange results suggest that the presence of trichomes was able to regulate stomatal processes so that the plant maintains its photosynthetic performance. Evaluation of electrolyte leakage, together with the increase in malondialdehyde content, showed that the maintenance of trichomes reduces the probability of oxidative stress. The activity of antioxidant enzymes was efficient in eliminating reactive oxygen species, especially the activity of ascorbate peroxidase, which stood out in terms of hydrogen peroxide detoxification.
Collapse
Affiliation(s)
| | - Edivan Rodrigues de Souza
- Federal Rural University of Pernambuco, UFRPE, Rua Dom Manuel de Medeiros, S/n, CEP 52171-900, Recife, Pernambuco, Brazil.
| | - Cíntia Maria Teixeira Lins
- Federal Rural University of Pernambuco, UFRPE, Rua Dom Manuel de Medeiros, S/n, CEP 52171-900, Recife, Pernambuco, Brazil.
| | - Pablo Rugero Magalhães Dourado
- Federal Rural University of Pernambuco, UFRPE, Rua Dom Manuel de Medeiros, S/n, CEP 52171-900, Recife, Pernambuco, Brazil.
| | - Lucas Yago de Carvalho Leal
- Federal Rural University of Pernambuco, UFRPE, Rua Dom Manuel de Medeiros, S/n, CEP 52171-900, Recife, Pernambuco, Brazil.
| | - Danilo Rodrigues Monteiro
- Federal Rural University of Pernambuco, UFRPE, Rua Dom Manuel de Medeiros, S/n, CEP 52171-900, Recife, Pernambuco, Brazil.
| | | | | |
Collapse
|
138
|
Sheng H, Chen S. Plant silicon-cell wall complexes: Identification, model of covalent bond formation and biofunction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:13-19. [PMID: 32736240 DOI: 10.1016/j.plaphy.2020.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Silicon (Si) is the second most abundant element on earth crust, consisting primarily of silicate minerals. Si is found in the tissues of almost all terrestrial plants and is mostly deposited in specialized cells or cell walls as amorphous silica. Numerous discoveries have shown that in addition to non-covalent interactions through amorphous silica, Si can form covalent bonds with plant cell wall components such as hemicelluloses, pectin and lignin. The covalent bonds may be formed via Si-O-C linkages between monosilicic acid (H4SiO4) and cis-diols of cell wall polysaccharides or lignin. The covalently bound organosilicon, independent of amorphous inorganic silica, may play a crucial role in plant cell wall structure and remodeling and thus plant growth and its resistance against biotic and abiotic stresses. This review discusses the existing research on the discovery of plant silicon-cell wall complexes and proposes a model of their covalent bond formation and biofunction.
Collapse
Affiliation(s)
- Huachun Sheng
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Shaolin Chen
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
139
|
Oliveira DM, Mota TR, Salatta FV, Sinzker RC, Končitíková R, Kopečný D, Simister R, Silva M, Goeminne G, Morreel K, Rencoret J, Gutiérrez A, Tryfona T, Marchiosi R, Dupree P, Del Río JC, Boerjan W, McQueen-Mason SJ, Gomez LD, Ferrarese-Filho O, Dos Santos WD. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. PLANT, CELL & ENVIRONMENT 2020; 43:2172-2191. [PMID: 32441772 DOI: 10.1111/pce.13805] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 05/15/2023]
Abstract
Although cell wall polymers play important roles in the tolerance of plants to abiotic stress, the effects of salinity on cell wall composition and metabolism in grasses remain largely unexplored. Here, we conducted an in-depth study of changes in cell wall composition and phenolic metabolism induced upon salinity in maize seedlings and plants. Cell wall characterization revealed that salt stress modulated the deposition of cellulose, matrix polysaccharides and lignin in seedling roots, plant roots and stems. The extraction and analysis of arabinoxylans by size-exclusion chromatography, 2D-NMR spectroscopy and carbohydrate gel electrophoresis showed a reduction of arabinoxylan content in salt-stressed roots. Saponification and mild acid hydrolysis revealed that salinity also reduced the feruloylation of arabinoxylans in roots of seedlings and plants. Determination of lignin content and composition by nitrobenzene oxidation and 2D-NMR confirmed the increased incorporation of syringyl units in lignin of maize roots. Salt stress also induced the expression of genes and the activity of enzymes enrolled in phenylpropanoid biosynthesis. The UHPLC-MS-based metabolite profiling confirmed the modulation of phenolic profiling by salinity and the accumulation of ferulate and its derivatives 3- and 4-O-feruloyl quinate. In conclusion, we present a model for explaining cell wall remodeling in response to salinity.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Thatiane R Mota
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Fábio V Salatta
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Renata C Sinzker
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Mariana Silva
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Leonardo D Gomez
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
140
|
Wu X, Lai Y, Lv L, Ji M, Han K, Yan D, Lu Y, Peng J, Rao S, Yan F, Zheng H, Chen J. Fasciclin-like arabinogalactan gene family in Nicotiana benthamiana: genome-wide identification, classification and expression in response to pathogens. BMC PLANT BIOLOGY 2020; 20:305. [PMID: 32611364 PMCID: PMC7329489 DOI: 10.1186/s12870-020-02501-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/16/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Nicotiana benthamiana is widely used as a model plant to study plant-pathogen interactions. Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), participate in mediating plant growth, development and response to abiotic stress. However, the members of FLAs in N. benthamiana and their response to plant pathogens are unknown. RESULTS 38 NbFLAs were identified from a genome-wide study. NbFLAs could be divided into four subclasses, and their gene structure and motif composition were conserved in each subclass. NbFLAs may be regulated by cis-acting elements such as STRE and MBS, and may be the targets of transcription factors like C2H2. Quantitative real time polymerase chain reaction (RT-qPCR) results showed that selected NbFLAs were differentially expressed in different tissues. All of the selected NbFLAs were significantly downregulated following infection by turnip mosaic virus (TuMV) and most of them also by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000), suggesting possible roles in response to pathogenic infection. CONCLUSIONS This study systematically identified FLAs in N. benthamiana, and indicates their potential roles in response to biotic stress. The identification of NbFLAs will facilitate further studies of their role in plant immunity in N. benthamiana.
Collapse
Affiliation(s)
- Xinyang Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yuchao Lai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lanqing Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Mengfei Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Dankan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
141
|
Yoneda A, Ohtani M, Katagiri D, Hosokawa Y, Demura T. Hechtian Strands Transmit Cell Wall Integrity Signals in Plant Cells. PLANTS 2020; 9:plants9050604. [PMID: 32397402 PMCID: PMC7284614 DOI: 10.3390/plants9050604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023]
Abstract
Hechtian strands are thread-like structures in plasmolyzed plant cells that connect the cell wall to the plasma membrane. Although these strands were first observed more than 100 years ago, their physiological roles are largely unknown. Here, we used intracellular laser microdissection to examine the effects of disrupting Hechtian strands on plasmolyzed tobacco BY-2 cells. When we focused femtosecond laser pulses on Hechtian strands, targeted disruptions were induced, but no visible changes in cell morphology were detected. However, the calcofluor white signals from β-glucans was detected in plasmolyzed cells with disrupted Hechtian strands, whereas no signals were detected in untreated plasmolyzed cells. These results suggest that Hechtian strands play roles in sensing cell wall integrity.
Collapse
Affiliation(s)
- Arata Yoneda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Daisuke Katagiri
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
| | - Yoichiroh Hosokawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
- Correspondence: ; Tel.: +81-743-72-5460
| |
Collapse
|
142
|
Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, Zhang X. Phenylpropanoid Pathway Engineering: An Emerging Approach towards Plant Defense. Pathogens 2020; 9:pathogens9040312. [PMID: 32340374 PMCID: PMC7238016 DOI: 10.3390/pathogens9040312] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022] Open
Abstract
Pathogens hitting the plant cell wall is the first impetus that triggers the phenylpropanoid pathway for plant defense. The phenylpropanoid pathway bifurcates into the production of an enormous array of compounds based on the few intermediates of the shikimate pathway in response to cell wall breaches by pathogens. The whole metabolomic pathway is a complex network regulated by multiple gene families and it exhibits refined regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. The pathway genes are involved in the production of anti-microbial compounds as well as signaling molecules. The engineering in the metabolic pathway has led to a new plant defense system of which various mechanisms have been proposed including salicylic acid and antimicrobial mediated compounds. In recent years, some key players like phenylalanine ammonia lyases (PALs) from the phenylpropanoid pathway are proposed to have broad spectrum disease resistance (BSR) without yield penalties. Now we have more evidence than ever, yet little understanding about the pathway-based genes that orchestrate rapid, coordinated induction of phenylpropanoid defenses in response to microbial attack. It is not astonishing that mutants of pathway regulator genes can show conflicting results. Therefore, precise engineering of the pathway is an interesting strategy to aim at profitably tailored plants. Here, this review portrays the current progress and challenges for phenylpropanoid pathway-based resistance from the current prospective to provide a deeper understanding.
Collapse
Affiliation(s)
- Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Zhongyuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Aduragbemi Amo
- College of Agronomy, Northwest A&F University, Xianyang 712100, China;
| | - Bilal Ahmed
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Xiaozhen Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
- Correspondence: ; Tel.: +86-029-8708-2613
| |
Collapse
|
143
|
The Plasma Membrane-An Integrating Compartment for Mechano-Signaling. PLANTS 2020; 9:plants9040505. [PMID: 32295309 PMCID: PMC7238056 DOI: 10.3390/plants9040505] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/30/2022]
Abstract
Plants are able to sense their mechanical environment. This mechanical signal is used by the plant to determine its phenotypic features. This is true also at a smaller scale. Morphogenesis, both at the cell and tissue level, involves mechanical signals that influence specific patterns of gene expression and trigger signaling pathways. How a mechanical stress is perceived and how this signal is transduced into the cell remains a challenging question in the plant community. Among the structural components of plant cells, the plasma membrane has received very little attention. Yet, its position at the interface between the cell wall and the interior of the cell makes it a key factor at the nexus between biochemical and mechanical cues. So far, most of the key players that are described to perceive and maintain mechanical cell status and to respond to a mechanical stress are localized at or close to the plasma membrane. In this review, we will focus on the importance of the plasma membrane in mechano-sensing and try to illustrate how the composition of this dynamic compartment is involved in the regulatory processes of a cell to respond to mechanical stress.
Collapse
|
144
|
Mesophyll conductance: the leaf corridors for photosynthesis. Biochem Soc Trans 2020; 48:429-439. [DOI: 10.1042/bst20190312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.
Collapse
|