101
|
HAKALA JUUSOO, ROVIO SUVIP, PAHKALA KATJA, NEVALAINEN JAAKKO, JUONALA MARKUS, HUTRI-KÄHÖNEN NINA, HEINONEN OLLIJ, HIRVENSALO MIRJA, TELAMA RISTO, VIIKARI JORMASA, TAMMELIN TUIJAH, RAITAKARI OLLIT. Physical Activity from Childhood to Adulthood and Cognitive Performance in Midlife. Med Sci Sports Exerc 2019; 51:882-890. [DOI: 10.1249/mss.0000000000001862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
102
|
Ruotsalainen I, Renvall V, Gorbach T, Syväoja HJ, Tammelin TH, Karvanen J, Parviainen T. Aerobic fitness, but not physical activity, is associated with grey matter volume in adolescents. Behav Brain Res 2019; 362:122-130. [DOI: 10.1016/j.bbr.2018.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
103
|
Aerobic Fitness Level Moderates the Association Between Cannabis Use and Executive Functioning and Psychomotor Speed Following Abstinence in Adolescents and Young Adults. J Int Neuropsychol Soc 2019; 25:134-145. [PMID: 30474579 PMCID: PMC6374167 DOI: 10.1017/s1355617718000966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The high rate of cannabis (CAN) use in emerging adults is concerning given prior research suggesting neurocognitive deficits associated with CAN use in youth. Regular CAN use downregulates endocannabinoid activity, while aerobic exercise upregulates cannabinoid receptor 1 activity and releases endocannabinoids. Here we investigate the influence of regular CAN use on neuropsychological performance, and whether aerobic fitness moderates these effects. METHODS Seventy-nine young adults (37 CAN users) aged 16-26 participated. Groups were balanced for aerobic fitness level. Exclusion criteria included: left-handedness, past-year independent Axis-I disorders, major medical/neurologic disorders, prenatal issues, or prenatal alcohol/illicit drug exposure. After 3 weeks of abstinence, participants completed a neuropsychological battery and a maximal oxygen consumption test (VO2 max). Multiple regressions tested whether past-year CAN use, VO2 max, and CAN*VO2 max interaction predicted neuropsychological performance, controlling for past-year alcohol use, cotinine, gender, and depression symptoms. RESULTS Increased CAN use was associated with decreased performance on working memory and psychomotor tasks. High aerobic fitness level was related to better performance on visual memory, verbal fluency, and sequencing ability. CAN*VO2 max predicted performance of psychomotor speed, visual memory, and sequencing ability. CONCLUSIONS Following monitored abstinence, increased CAN use was associated with poorer performance in working memory and psychomotor speed. Higher aerobic fitness level moderated the impact of CAN on visual memory, executive function and psychomotor speed, as more aerobically fit CAN users demonstrated better performance relative to low-fit users. Therefore, aerobic fitness may present an affordable and efficacious method to improve cognitive functioning in CAN users. (JINS, 2019, 25, 134-145).
Collapse
|
104
|
Jeon BH. Effects of Seahorse Supplementation for 6 Weeks on Muscle Mass, Muscle Fitness, and Exercise Performance Abilities in Elderly. THE ASIAN JOURNAL OF KINESIOLOGY 2019. [DOI: 10.15758/ajk.2019.21.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
105
|
Karssemeijer EGA, Aaronson JA, Bossers WJR, Donders R, Olde Rikkert MGM, Kessels RPC. The quest for synergy between physical exercise and cognitive stimulation via exergaming in people with dementia: a randomized controlled trial. ALZHEIMERS RESEARCH & THERAPY 2019; 11:3. [PMID: 30611286 PMCID: PMC6320611 DOI: 10.1186/s13195-018-0454-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Background Exercise is often proposed as a non-pharmacological intervention to delay cognitive decline in people with dementia, but evidence remains inconclusive. Previous studies suggest that combining physical exercise with cognitive stimulation may be more successful in this respect. Exergaming is a promising intervention in which physical exercise is combined with cognitively challenging tasks in a single session. The aim of this study was to investigate the effect of exergame training and aerobic training on cognitive functioning in older adults with dementia. Methods A three-armed randomized controlled trial (RCT) compared exergame training, aerobic training and an active control intervention consisting of relaxation and flexibility exercises. Individuals with dementia were randomized and individually trained three times a week during 12 weeks. Cognitive functioning was measured at baseline, after the 12-week intervention period and at 24-week follow-up by neuropsychological assessment. The domains of executive function, episodic memory, working memory and psychomotor speed were evaluated. Test scores were converted into standardized z-scores that were averaged per domain. Between-group differences were analysed with analysis of covariance. Results Data from 115 people with dementia (mean (SD) age = 79.2 (6.9) years; mean (SD) MMSE score = 22.9 (3.4)) were analysed. There was a significant improvement in psychomotor speed in the aerobic and exergame groups compared to the active control group (mean difference domain score (95% CI) aerobic versus control 0.370 (0.103–0.637), p = 0.007; exergame versus control 0.326 (0.081–0.571), p = 0.009). The effect size was moderate (partial η2 = 0.102). No significant differences between the intervention and control groups were found for executive functioning, episodic memory and working memory. Conclusions To our knowledge, this is the first RCT evaluating the effects of exergame training and aerobic training on cognitive functioning in people with dementia. We found that both exergame training and aerobic training improve psychomotor speed, compared to an active control group. This finding may be clinically relevant as psychomotor speed is an important predictor for functional decline. No effects were found on executive function, episodic memory and working memory. Trial registration Netherlands Trial Register, NTR5581. Registered on 7 October 2015. Electronic supplementary material The online version of this article (10.1186/s13195-018-0454-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther G A Karssemeijer
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Nijmegen, the Netherlands.,Radboud University Medical Center, Radboudumc Alzheimer Center, Nijmegen, the Netherlands
| | - Justine A Aaronson
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Psychology, Nijmegen, the Netherlands
| | - Willem J R Bossers
- BeweegStrateeg, Groningen, the Netherlands.,Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rogier Donders
- Radboud University Medical Center, Department for Health Evidence, Nijmegen, the Netherlands
| | - Marcel G M Olde Rikkert
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Nijmegen, the Netherlands.,Radboud University Medical Center, Radboudumc Alzheimer Center, Nijmegen, the Netherlands
| | - Roy P C Kessels
- Radboud University Medical Center, Radboudumc Alzheimer Center, Nijmegen, the Netherlands. .,Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Psychology, Nijmegen, the Netherlands. .,Center for Cognition, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
106
|
Leeson HC, Chan-Ling T, Lovelace MD, Brownlie JC, Gu BJ, Weible MW. P2X7 receptor signaling during adult hippocampal neurogenesis. Neural Regen Res 2019; 14:1684-1694. [PMID: 31169175 PMCID: PMC6585562 DOI: 10.4103/1673-5374.257510] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurogenesis is a persistent and essential feature of the adult mammalian hippocampus. Granular neurons generated from resident pools of stem or progenitor cells provide a mechanism for the formation and consolidation of new memories. Regulation of hippocampal neurogenesis is complex and multifaceted, and numerous signaling pathways converge to modulate cell proliferation, apoptosis, and clearance of cellular debris, as well as synaptic integration of newborn immature neurons. The expression of functional P2X7 receptors in the central nervous system has attracted much interest and the regulatory role of this purinergic receptor during adult neurogenesis has only recently begun to be explored. P2X7 receptors are exceptionally versatile: in their canonical role they act as adenosine triphosphate-gated calcium channels and facilitate calcium-signaling cascades exerting control over the cell via calcium-encoded sensory proteins and transcription factor activation. P2X7 also mediates transmembrane pore formation to regulate cytokine release and facilitate extracellular communication, and when persistently stimulated by high extracellular adenosine triphosphate levels large P2X7 pores form, which induce apoptotic cell death through cytosolic ion dysregulation. Lastly, as a scavenger receptor P2X7 directly facilitates phagocytosis of the cellular debris that arises during neurogenesis, as well as during some disease states. Understanding how P2X7 receptors regulate the physiology of stem and progenitor cells in the adult hippocampus is an important step towards developing useful therapeutic models for regenerative medicine. This review considers the relevant aspects of adult hippocampal neurogenesis and explores how P2X7 receptor activity may influence the molecular physiology of the hippocampus, and neural stem and progenitor cells.
Collapse
Affiliation(s)
- Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland; Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Tailoi Chan-Ling
- Discipline of Anatomy and Histology, School of Medical Science; Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael D Lovelace
- Discipline of Anatomy and Histology, School of Medical Science, The University of Sydney; Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical Research; Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jeremy C Brownlie
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael W Weible
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland; Bosch Institute, The University of Sydney, Sydney, New South Wales; School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
107
|
Wegner M, Koutsandréou F, Müller-Alcazar A, Lautenbach F, Budde H. Effects of Different Types of Exercise Training on the Cortisol Awakening Response in Children. Front Endocrinol (Lausanne) 2019; 10:463. [PMID: 31428044 PMCID: PMC6689951 DOI: 10.3389/fendo.2019.00463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
Context: Due to great variability of the hypothalamus-pituitary-adrenal (HPA)-axis, research has to produce better-controlled findings to make a more meaningful statement regarding the effect of exercise training (ET) on the cortisol awakening response (CAR), especially in children. Objective: The aim of the study was to investigate the effects of different ET interventions on the CAR in children. Design and setting: We conducted a short-term training study for 10 weeks in primary schools in Westphalia, Germany. Participants: 71 children (9-10 years old) were randomly assigned to a cardiovascular exercise group (n = 27), a motor exercise group (n = 23), or a control group (n = 21). Intervention: An experienced instructor trained the children in an after-school setting in 45 min sessions, three times a week over the course of 10 weeks. Main outcome measure: CAR (0, +30 min) was assessed on 2 schooldays one week apart before and after the 10-week intervention. A Shuttle Run Test was performed to determine the cardiovascular fitness. Motor fitness was assessed using the Heidelberg Gross Motor Test. Results: Children who enhanced their cardiovascular fitness over the course of the intervention showed an increased CAR after the intervention time (B = 0.213), whereas children who underwent a motor exercise intervention and at the same time gained in motor fitness exhibited a decreased CAR after intervention (B = -0.188). Conclusions: It has been speculated that other neurobiological pathways are activated by different exercise interventions. The extent to which these ET effects on CAR can be applied in clinical settings needs further investigation. Précis: The 10-weeks longitudinal effects of cardiovascular vs. motor exercise interventions (three times a week) on CAR in children show that these interventions exert different effects on hypothalamus-pituitary-adrenal (HPA) axis activity.
Collapse
Affiliation(s)
- Mirko Wegner
- Department of Sport Psychology, Institute of Sports Science, Humboldt University Berlin, Berlin, Germany
- *Correspondence: Mirko Wegner
| | | | | | - Franziska Lautenbach
- Department of Sport Psychology, Institute for Sport Psychology and Sport Pedagogy, Leipzig University, Leipzig, Germany
| | - Henning Budde
- Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
108
|
Feter N, Spanevello RM, Soares MSP, Spohr L, Pedra NS, Bona NP, Freitas MP, Gonzales NG, Ito LGMS, Stefanello FM, Rombaldi AJ. How does physical activity and different models of exercise training affect oxidative parameters and memory? Physiol Behav 2018; 201:42-52. [PMID: 30552921 DOI: 10.1016/j.physbeh.2018.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
Abstract
The present study investigated the chronic effects of different physical exercise and physical activity models on cognitive function, cholinergic activity, and oxidative stress markers in the cerebral cortex and hippocampus. Eighty 60-day old C57BL/6 mice were divided into the following five groups: Sedentary (SED), moderate-intensity continuous training (MICT), high-intensity interval training (HIIT), resistance training (RT), and physical activity (RW, for "running wheel"). Cognitive function (recognition and spatial memory), oxidative stress parameters, and acetylcholinesterase (AChE) activity in the cerebral cortex and hippocampus were evaluated. MICT mice exhibited enhanced recognition memory compared to SED mice (p = .046) and other exercised groups (HIIT: p < .001; RW: p = .003; RT: p < .001). The RT group showed better spatial memory compared to the SED (p = .004), MICT (p = .019), and RW (p = .003) groups. RW, MICT, HIIT, and RT training models reduced nitrites in the hippocampus compared to the SED group. RT led to a significant increase in both lipid peroxidation (p = .01) and reactive oxygen species (ROS) (p < .001) levels compared to the SED group in the hippocampus. MICT promoted an increase in catalase (CAT) activity (p = .002), while superoxide dismutase (SOD) activity was diminished by RT compared to MICT and HIIT (p = .008). In the cerebral cortex, RT increased ROS levels, but exhibited the lowest lipid peroxidation level among the groups (p < .001). The RW group showed an activity-induced increase in lipid peroxidation level compared to the SED group, and the highest level of CAT activity among all groups (p < .001). AChE activity was higher in the RT group compared to the SED, MICT, and RW groups (p = .039) in the cerebral cortex. In summary, nitrite levels in the hippocampus were decreased in all intervention groups regardless of activity or exercise model. Likewise, MICT improved recognition memory besides increasing CAT activity. We conclude that the MICT and RT protocols seem to act as oxidative stress regulators and non-pharmacological strategies to improve cognitive function.
Collapse
Affiliation(s)
- Natan Feter
- Post-graduate Program in Physical Education, Federal University of Pelotas, Pelotas 96055-630, Brazil.
| | | | | | - Luiza Spohr
- Post-graduate Program in Biochemistry, Federal University of Pelotas, Pelotas 96055-630, Brazil
| | - Nathalia Stark Pedra
- Post-graduate Program in Biochemistry, Federal University of Pelotas, Pelotas 96055-630, Brazil
| | - Natália Pontes Bona
- Post-graduate Program in Biochemistry, Federal University of Pelotas, Pelotas 96055-630, Brazil
| | | | | | | | | | - Airton José Rombaldi
- Post-graduate Program in Physical Education, Federal University of Pelotas, Pelotas 96055-630, Brazil
| |
Collapse
|
109
|
Lan Y, Huang Z, Jiang Y, Zhou X, Zhang J, Zhang D, Wang B, Hou G. Strength exercise weakens aerobic exercise-induced cognitive improvements in rats. PLoS One 2018; 13:e0205562. [PMID: 30304037 PMCID: PMC6179267 DOI: 10.1371/journal.pone.0205562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
Aerobic exercise improves cognitive function and adult hippocampal neurogenesis. However, the effects of aerobic exercise combined with strength exercise on cognitive function and adult hippocampal neurogenesis are still unknown. In this study, we established exercise paradigms in rats to mimic aerobic exercise combined with low- and high-intensity strength exercise. We found that aerobic exercise improved spatial learning and memory as well as adult hippocampal neurogenesis, whereas strength exercise suppressed aerobic exercise-induced cognitive improvements and adult hippocampal neurogenesis in an intensity-dependent manner. Furthermore, the levels of β-hydroxybutyrate (β-HB) and its downstream effector brain-derived neurotrophic factor (BDNF) were increased in the aerobic exercise group, and strength exercise impaired the aerobic exercise-induced increases in β-HB and BDNF mRNA levels. Taken together, these results demonstrated that strength exercise weakened aerobic exercise-induced cognitive improvements and adult hippocampal neurogenesis in rats.
Collapse
Affiliation(s)
- Yongsheng Lan
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Zhaoyuan Huang
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Yanjie Jiang
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Xuehua Zhou
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Jingyu Zhang
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Dianyu Zhang
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Bo Wang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangqing Hou
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
110
|
Ahtiainen JP, Lensu S, Ruotsalainen I, Schumann M, Ihalainen JK, Fachada V, Mendias CL, Brook MS, Smith K, Atherton PJ, Koch LG, Britton SL, Kainulainen H. Physiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training. Exp Physiol 2018; 103:1513-1523. [PMID: 30184287 DOI: 10.1113/ep087144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can phenotypic traits associated with low response to one mode of training be extrapolated to other exercise-inducible phenotypes? The present study investigated whether rats that are low responders to endurance training are also low responders to resistance training. What is the main finding and its importance? After resistance training, rats that are high responders to aerobic exercise training improved more in maximal strength compared with low-responder rats. However, the greater gain in strength in high-responder rats was not accompanied by muscle hypertrophy, suggesting that the responses observed could be mainly neural in origin. ABSTRACT The purpose of this study was to determine whether rats selectively bred for low and high response to aerobic exercise training co-segregate for differences in muscle adaptations to ladder-climbing resistance training. Five high-responder (HRT) and five low-responder (LRT) rats completed the resistance training, while six HRT and six LRT rats served as sedentary control animals. Before and after the 6 week intervention, body composition was determined by dual energy X-ray absorptiometry. Before tissue harvesting, the right triceps surae muscles were loaded by electrical stimulation. Muscle fibre cross-sectional areas, nuclei per cell, phosphorylation status of selected signalling proteins of mTOR and Smad pathways, and muscle protein, DNA and RNA concentrations were determined for the right gastrocnemius muscle. The daily protein synthesis rate was determined by the deuterium oxide method from the left quadriceps femoris muscle. Tissue weights of fore- and hindlimb muscles were measured. In response to resistance training, maximal carrying capacity was greater in HRT (∼3.3 times body mass) than LRT (∼2.5 times body mass), indicating greater improvements of strength in HRT. However, muscle hypertrophy that could be related to greater strength gains in HRT was not observed. Furthermore, noteworthy changes within the experimental groups or differences between groups were not observed in the present measures. The lack of hypertrophic muscular adaptations despite considerable increases in muscular strength suggest that adaptations to the present ladder-climbing training in HRT and LRT rats were largely induced by neural adaptations.
Collapse
Affiliation(s)
- Juha P Ahtiainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Lensu
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | - Moritz Schumann
- German Sport University, Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, Cologne, Germany
| | - Johanna K Ihalainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Vasco Fachada
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | - Matthew S Brook
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Heikki Kainulainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
111
|
dos Santos FV, Targa AD, Hammerschmidt I, Zanata SM, Maia FG, Visentainer JV, Santos Junior OO, da Costa BA, Lagranha CJ, Ferraz AC. Fish oil supplementation reverses behavioral and neurochemical alterations induced by swimming exercise in rats. Physiol Behav 2018; 194:95-102. [DOI: 10.1016/j.physbeh.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/12/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
|
112
|
Cahill SP, Cole JD, Yu RQ, Clemans-Gibbon J, Snyder JS. Differential Effects of Extended Exercise and Memantine Treatment on Adult Neurogenesis in Male and Female Rats. Neuroscience 2018; 390:241-255. [PMID: 30176321 DOI: 10.1016/j.neuroscience.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/13/2018] [Accepted: 08/26/2018] [Indexed: 11/19/2022]
Abstract
Adult neurogenesis has potential to ameliorate a number of disorders that negatively impact the hippocampus, including age-related cognitive decline, depression, and schizophrenia. A number of treatments enhance adult neurogenesis including exercise, NMDA receptor antagonism, antidepressant drugs and environmental enrichment. Despite the chronic nature of many disorders, most animal studies have only examined the efficacy of neurogenic treatments over short timescales (≤1 month). Also, studies of neurogenesis typically include only 1 sex, even though many disorders differentially impact males and females. We tested whether two known neurogenic treatments, running and the NMDA receptor antagonist, memantine, could cause sustained increases in neurogenesis in male and female rats. We found that continuous access to a running wheel (cRUN) initially increased neurogenesis, but effects were minimal after 1 month and completely absent after 5 months. Similarly, a single injection of memantine (sMEM) transiently increased neurogenesis before returning to baseline at 1 month. To determine whether neurogenesis could be increased over a 2-month timeframe, we next subjected rats to interval running (iRUN), multiple memantine injections (mMEM), or alternating blocks of iRUN and mMEM. Two months of iRUN increased DCX+ cells in females and iRUN followed by mMEM increased DCX+ cells in males, indicating that neurogenesis was increased in the later stages of the treatments. However, thymidine analogs revealed that neurogenesis was minimally increased during the initial stages of the treatments. These findings highlight temporal limitations and sex differences in the efficacy of neurogenic manipulations, which may be relevant for designing plasticity-promoting treatments.
Collapse
Affiliation(s)
- Shaina P Cahill
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - John Darby Cole
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ru Qi Yu
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jack Clemans-Gibbon
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
113
|
Paddock N, Sheppard P, Gardiner P. Chronic Increases in Daily Neuromuscular Activity Promote Changes in Gene Expression in Small and Large Dorsal Root Ganglion Neurons in Rat. Neuroscience 2018; 388:171-180. [PMID: 30031124 DOI: 10.1016/j.neuroscience.2018.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023]
Abstract
The purpose of this study was to determine the response, in rat, to chronic physical activity in small and large DRG neurons. Rats were cage-confined or underwent 16-18 weeks of daily increased activity, via 2 h of treadmill running per day or free access to voluntary exercise wheels, following which small (≤30 µm) and large (≥40 µm) diameter DRG neurons were harvested by laser capture microdissection from flash-frozen lumbar DRGs. Relative mRNA levels were determined using real-time polymerase chain reaction. Following chronic treadmill and voluntary wheel exercise, gene expression responses in neurons mostly differed between exercise types. Changes in both small and large DRG neurons included increases in opioid receptor mu subunit (MOR), NGF and GAP43, and decreases in 5HT1A, TrkA, TrkB, and delta-type opioid receptor (DOR) mRNAs. In small DRG neurons, treadmill exercise increased the expression of mRNA for 5HT1D and decreased expression for 5HT1F receptors. In large DRG neurons, voluntary wheel exercise decreased the expression for 5HT1D receptors, whereas both treadmill and voluntary wheel exercise decreased the expression of mRNA for TrkC receptors. DRG neurons show slightly more changes in gene expression after voluntary exercise compared to the treadmill exercise group. Small and large lumbar sensory neurons are responsive to chronically increased neuromuscular activity by changing the expression of genes, the products of which could potentially change the sensory processing of nociceptors and proprioceptors, which could in turn alter functions such as pain transmission and locomotor coordination.
Collapse
Affiliation(s)
- Natasha Paddock
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Patricia Sheppard
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Phillip Gardiner
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
114
|
Effect of Long-Term Sodium Salicylate Administration on Learning, Memory, and Neurogenesis in the Rat Hippocampus. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7807426. [PMID: 29805976 PMCID: PMC5899878 DOI: 10.1155/2018/7807426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 02/02/2023]
Abstract
Tinnitus is thought to be caused by damage to the auditory and nonauditory system due to exposure to loud noise, aging, or other etiologies. However, at present, the exact neurophysiological basis of chronic tinnitus remains unknown. To explore whether the function of the limbic system is disturbed in tinnitus, the hippocampus was selected, which plays a vital role in learning and memory. The hippocampal function was examined with a learning and memory procedure. For this purpose, sodium salicylate (NaSal) was used to create a rat animal model of tinnitus, evaluated with prepulse inhibition behavior (PPI). The acquisition and retrieval abilities of spatial memory were measured using the Morris water maze (MWM) in NaSal-treated and control animals, followed by observation of c-Fos and delta-FosB protein expression in the hippocampal field by immunohistochemistry. To further identify the neural substrate for memory change in tinnitus, neurogenesis in the subgranular zone of the dentate gyrus (DG) was compared between the NaSal group and the control group. The results showed that acquisition and retrieval of spatial memory were impaired by NaSal treatment. The expression of c-Fos and delta-FosB protein was also inhibited in NaSal-treated animals. Simultaneously, neurogenesis in the DG was also impaired in tinnitus animals. In general, our data suggest that the hippocampal system (limbic system) may play a key role in tinnitus pathology.
Collapse
|
115
|
Fattoretti P, Malatesta M, Cisterna B, Milanese C, Zancanaro C. Modulatory Effect of Aerobic Physical Activity on Synaptic Ultrastructure in the Old Mouse Hippocampus. Front Aging Neurosci 2018; 10:141. [PMID: 29867450 PMCID: PMC5964889 DOI: 10.3389/fnagi.2018.00141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Aerobic physical exercise (APE) leads to improved brain functions. To better understand the beneficial effect of APE on the aging brain, a morphometric study was carried out of changes in hippocampal synapses of old (>27 months) Balb/c mice undergoing treadmill training (OTT) for 4 weeks in comparison with old sedentary (OS), middle-aged sedentary (MAS) and middle-aged treadmill training (MATT) mice. The inner molecular layer of the hippocampal dentate gyrus (IMLDG) and the molecular stratum of Ammon’s horn1 neurons (SMCA1) were investigated. The number of synapses per cubic micron of tissue (numeric density, Nv), overall synaptic area per cubic micron of tissue (surface density, Sv), average area of synaptic contact zones (S), and frequency (%) of perforated synapses (PS) were measured in electron micrographs of ethanol-phosphotungstic acid (E-PTA) stained tissue. Data were analyzed with analysis of variance (ANOVA). In IMLDG, an effect of age was found for Nv and Sv, but not S and %PS. Similar results were found for exercise and the interaction of age and exercise. In post hoc analysis Nv was higher (60.6% to 75.1%; p < 0.001) in MATT vs. MAS, OS and OTT. Sv was higher (32.3% to 54.6%; p < 0.001) in MATT vs. MAS, OS and OTT. In SMCA1, age affected Nv, Sv and %PS, but not S. The effect of exercise was significant for Sv only. The interaction of age and exercise was significant for Nv, Sv and %PS. In post hoc analysis Nv was lower in OS vs. MAS, MATT and OTT (−26.1% to −32.1%; p < 0.038). MAS and OTT were similar. Sv was lower in OS vs. MAS, MATT and OTT (−23.4 to −30.3%, p < 0.004). MAS and OTT were similar. PS frequency was higher in OS vs. MAS, MATT and OTT (48.3% to +96.6%, p < 0.023). APE positively modulated synaptic structural dynamics in the aging hippocampus, possibly in a region-specific way. The APE-associated reduction in PS frequency in SMCA1 of old mice suggests that an increasing complement of PS is a compensatory phenomenon to maintain synaptic efficacy. In conclusion, the modulation of synaptic plasticity by APE gives quantitative support to the concept that APE protects from neurodegeneration and improves learning and memory in aging.
Collapse
Affiliation(s)
- Patrizia Fattoretti
- Cellular Bioenergetics Laboratory, Center for Neurobiology of Aging, Istituto Nazionale di Riposo e Cura per Anziani (INRCA), Ancona, Italy
| | - Manuela Malatesta
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Barbara Cisterna
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Milanese
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Zancanaro
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
116
|
Joggin’ the Noggin: Towards a Physiological Understanding of Exercise-Induced Cognitive Benefits. Neurosci Biobehav Rev 2018; 88:177-186. [DOI: 10.1016/j.neubiorev.2018.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/31/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
|
117
|
Shors TJ, Chang HYM, Millon EM. MAP Training My Brain™: Meditation Plus Aerobic Exercise Lessens Trauma of Sexual Violence More Than Either Activity Alone. Front Neurosci 2018; 12:211. [PMID: 29740264 PMCID: PMC5924799 DOI: 10.3389/fnins.2018.00211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/26/2022] Open
Abstract
Sexual violence against women often leads to post-traumatic stress disorder (PTSD), a mental illness characterized by intrusive thoughts and memories about the traumatic event (Shors and Millon, 2016). These mental processes are obviously generated by the brain but often felt in the body. MAP Training My Brain™ is a novel clinical intervention that combines mental training of the brain with physical training of the body (Curlik and Shors, 2013; Shors et al., 2014). Each training session begins with 20-min of sitting meditation, followed by 10-min of slow-walking meditation, and ending with 30-min of aerobic exercise at 60-80% of the maximum heart rate (see maptrainmybrain.com). In previous studies, the combination of mental and physical (MAP) training together significantly reduced symptoms of depression and ruminative thoughts, while reducing anxiety (Shors et al., 2014, 2017; Alderman et al., 2016). We also documented positive changes in brain activity during cognitive control and whole-body oxygen consumption in various populations. In the present pilot study, we asked whether the combination of meditation and aerobic exercise during MAP Training would reduce trauma-related thoughts, ruminations, and memories in women and if so, whether the combination would be more effective than either activity alone. To test this hypothesis, interventions were provided to a group of women (n = 105), many of whom had a history of sexual violence (n = 32). Groups were trained with (1) MAP Training, (2) meditation alone, (3) aerobic exercise alone, or (4) not trained. Individuals in training groups completed two sessions a week for at least 6 weeks. MAP Training My Brain™ significantly reduced post-traumatic cognitions and ruminative thoughts in women with a history of sexual violence, whereas meditation alone, and exercise alone did not. MAP Training significantly enhanced a measure of self-worth, whereas meditation and exercise alone did not. Similar positive effects were observed for all participants, although meditation alone was also effective in reducing trauma-related thoughts. Overall, these data indicate the combination of meditation and exercise is synergistic. As a consequence, MAP Training is preferable and especially so for women who have experienced sexual violence in their past. Simply put, the whole is greater than the sum of its parts.
Collapse
Affiliation(s)
- Tracey J Shors
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Han Y M Chang
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Emma M Millon
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
118
|
Mul JD. Voluntary exercise and depression-like behavior in rodents: are we running in the right direction? J Mol Endocrinol 2018; 60:R77-R95. [PMID: 29330149 DOI: 10.1530/jme-17-0165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Acute or chronic exposure to stress can increase the risk to develop major depressive disorder, a severe, recurrent and common psychiatric condition. Depression places an enormous social and financial burden on modern society. Although many depressed patients are treated with antidepressants, their efficacy is only modest, underscoring the necessity to develop clinically effective pharmaceutical or behavioral treatments. Exercise training produces beneficial effects on stress-related mental disorders, indicative of clinical potential. The pro-resilient and antidepressant effects of exercise training have been documented for several decades. Nonetheless, the underlying molecular mechanisms and the brain circuitries involved remain poorly understood. Preclinical investigations using voluntary wheel running, a frequently used rodent model that mimics aspects of human exercise training, have started to shed light on the molecular adaptations, signaling pathways and brain nuclei underlying the beneficial effects of exercise training on stress-related behavior. In this review, I highlight several neurotransmitter systems that are putative mediators of the beneficial effects of exercise training on mental health, and review recent rodent studies that utilized voluntary wheel running to promote our understanding of exercise training-induced central adaptations. Advancements in our mechanistic understanding of how exercise training induces beneficial neuronal adaptations will provide a framework for the development of new strategies to treat stress-associated mental illnesses.
Collapse
Affiliation(s)
- Joram D Mul
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of EndocrinologyDepartment of Clinical Chemistry, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| |
Collapse
|
119
|
Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, Martins JB, Mendonça VA, Lacerda AC, Massensini AR, Poortamns JR, Meeusen R, Leite HR. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol Behav 2018; 184:6-11. [DOI: 10.1016/j.physbeh.2017.10.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/18/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
|
120
|
Gheorghe A, Qiu W, Galea LAM. Hormonal Regulation of Hippocampal Neurogenesis: Implications for Depression and Exercise. Curr Top Behav Neurosci 2018; 43:379-421. [PMID: 30414016 DOI: 10.1007/7854_2018_62] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult hippocampal neurogenesis exists in all mammalian species, including humans, and although there has been considerable research investigating the function and regulation of neurogenesis, there remain many open questions surrounding the complexity of this phenomenon. This stems partially from the fact that neurogenesis is a multistage process that involves proliferation, differentiation, migration, survival, and eventual integration of new cells into the existing hippocampal circuitry, each of which can be independently influenced. The function of adult neurogenesis in the hippocampus is related to stress regulation, behavioral efficacy of antidepressants, long-term spatial memory, forgetting, and pattern separation. Steroid hormones influence the regulation of hippocampal neurogenesis, stress regulation, and cognition and differently in males and females. In this chapter, we will briefly tap into the complex network of steroid hormone modulation of neurogenesis in the hippocampus with specific emphasis on stress, testosterone, and estrogen. We examine the possible role of neurogenesis in the etiology of depression and influencing treatment by examining the influence of both pharmacological (selective serotonin reuptake inhibitors, tricyclic antidepressants) treatments and non-pharmacological (exercise) remedies.
Collapse
Affiliation(s)
- Ana Gheorghe
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. .,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada. .,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
121
|
Fernandes J, Arida RM. Does resistance exercise exert a role in hippocampal neurogenesis? J Physiol 2018; 594:6799. [PMID: 27870119 DOI: 10.1113/jp272309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jansen Fernandes
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 862, Ed. Ciências Biomédicas, 5°andar. Vila Clementino, CEP 04023-900, São Paulo, SP, Brazil
| | - Ricardo Mario Arida
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 862, Ed. Ciências Biomédicas, 5°andar. Vila Clementino, CEP 04023-900, São Paulo, SP, Brazil
| |
Collapse
|
122
|
Is hippocampal neurogenesis modulated by the sensation of self-motion encoded by the vestibular system? Neurosci Biobehav Rev 2017; 83:489-495. [DOI: 10.1016/j.neubiorev.2017.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 01/26/2023]
|
123
|
Short- and Long-term Exposure to Low and High Dose Running Produce Differential Effects on Hippocampal Neurogenesis. Neuroscience 2017; 369:202-211. [PMID: 29175485 DOI: 10.1016/j.neuroscience.2017.11.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
Abstract
Continuous running wheel (RW) exercise increases adult hippocampal neurogenesis in the dentate gyrus (DG) of rodents. Evidence suggests that greater amounts of RW exercise does not always equate to more adult-generated neurons in hippocampus. It can also be argued that continuous access to a RW results in exercise levels not representative of human exercise patterns. This study tested if RW paradigms that more closely represent human exercise patterns (e.g. shorter bouts, alternating daily exercise) alter neurogenesis. Neurogenesis was measured by examining the survival and fate of bromodeoxyuridine (BrdU)-labeled proliferating cells in the DG of male Sprague-Dawley rats after acute (14 days) or chronic (30 days) RW access. Rats were assigned to experimental groups based on the number of hours that they had access to a RW over two days: 0 h, 4 h, 8 h, 24 h, and 48 h. After acute RW access, rats that had unlimited access to the RW on alternating days (24 h) had a stronger neurogenic response compared to those rats that ran modest distances (4 h, 8 h) or not at all (0 h). In contrast, following chronic RW access, rats that ran a moderate amount (4 h, 8 h) had significantly more surviving cells compared to 0 h, 24 h, and 48 h. Linear regression analysis established a negative relationship between running distance and surviving BrdU+ cells in the chronic RW access cohort (R2 = 0.40). These data demonstrate that in rats moderate amounts of RW exercise are superior to continuous daily RW exercise paradigms at promoting hippocampal neurogenesis in the long-term.
Collapse
|
124
|
Shors TJ, Millon EM, Chang HYM, Olson RL, Alderman BL. Do sex differences in rumination explain sex differences in depression? J Neurosci Res 2017; 95:711-718. [PMID: 27870434 DOI: 10.1002/jnr.23976] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022]
Abstract
It is generally accepted that women tend to ruminate more than men do and these thought patterns are often associated with depressive symptoms (Nolen-Hoeksema et al., ). Based on these findings, we considered whether the relationship between rumination and depression is stronger in women than in men and if so, whether this might explain the higher prevalence of major depressive disorder (MDD) in women and finally, whether the association can be disrupted through a mind/body intervention. Adult men and women, most of whom were clinically depressed, participated in an intervention known as MAP Training, which combines "mental" training with silent meditation and "physical" training with aerobic exercise (Shors et al., ). After eight weeks of training, both men and women reported significantly fewer symptoms of depression and fewer ruminative thoughts (Alderman et al., ). Statistical correlations between depressive symptoms and ruminative thoughts were strong and significant (rho > 0.50; p < 0.05) for both men and women before and after MAP Training. However, only in women did depressive symptoms relate to "reflective" ruminations, which involve analyses of past events, feelings, and behaviors. This is also the only relationship that dissipated after the intervention. In general, these analyses suggest that the strength of the relationship between depressive symptoms and rumination does not necessarily explain sex differences in depression; but because the relationship is strong, targeting rumination through intervention can reduce the incidence of MDD, which is more prevalent among women. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tracey J Shors
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Emma M Millon
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Han Yan M Chang
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Ryan L Olson
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, Texas, USA
| | - Brandon L Alderman
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
125
|
Vivar C, van Praag H. Running Changes the Brain: the Long and the Short of It. Physiology (Bethesda) 2017; 32:410-424. [PMID: 29021361 PMCID: PMC6148340 DOI: 10.1152/physiol.00017.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Exercise is a simple intervention that profoundly benefits cognition. In rodents, running increases neurogenesis in the hippocampus, a brain area important for memory. We describe the dynamic changes in new neuron number and afferent connections throughout their maturation. We highlight the effects of exercise on the neurotransmitter systems involved, with a focus on the role of glutamate and acetylcholine in the initial development of new neurons in the adult brain.
Collapse
Affiliation(s)
- Carmen Vivar
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico; and
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
126
|
Karssemeijer EGA, Aaronson JA, Bossers WJ, Smits T, Olde Rikkert MGM, Kessels RPC. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Res Rev 2017; 40:75-83. [PMID: 28912076 DOI: 10.1016/j.arr.2017.09.003] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 11/19/2022]
Abstract
Combined cognitive and physical exercise interventions have potential to elicit cognitive benefits in older adults with mild cognitive impairment (MCI) or dementia. This meta-analysis aims to quantify the overall effect of these interventions on global cognitive functioning in older adults with MCI or dementia. Ten randomized controlled trials that applied a combined cognitive-physical intervention with cognitive function as an outcome measure were included. For each study effect sizes were computed (i.e., post-intervention standardized mean difference (SMD) scores) and pooled, using a random-effects meta-analysis. The primary analysis showed a small-to-medium positive effect of combined cognitive-physical interventions on global cognitive function in older adults with MCI or dementia (SMD[95% confidence interval]=0.32[0.17;0.47], p<0.00). A combined intervention was equally beneficial in patients with dementia (SMD=0.36[0.12;0.60], p<0.00) and MCI (SMD=0.39[0.15;0.63], p<0.05). In addition, the analysis showed a moderate-to-large positive effect after combined cognitive-physical interventions for activities of daily living (ADL) (SMD=0.65[0.09;1.21], p<0.01)and a small-to-medium positive effect for mood (SMD=0.27[0.04;0.50], p<0.01). These functional benefits emphasize the clinical relevance of combined cognitive and physical training strategies.
Collapse
Affiliation(s)
- Esther G A Karssemeijer
- Department of Geriatric Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Justine A Aaronson
- Department of Medical Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willem J Bossers
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tara Smits
- Department of Geriatric Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatric Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Geriatric Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
127
|
McDermott KL, McFall GP, Andrews SJ, Anstey KJ, Dixon RA. Memory Resilience to Alzheimer's Genetic Risk: Sex Effects in Predictor Profiles. J Gerontol B Psychol Sci Soc Sci 2017; 72:937-946. [PMID: 28025282 DOI: 10.1093/geronb/gbw161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/12/2016] [Indexed: 02/05/2023] Open
Abstract
Objectives Apolipoprotein E (APOE) ɛ4 and Clusterin (CLU) C alleles are risk factors for Alzheimer's disease (AD) and episodic memory (EM) decline. Memory resilience occurs when genetically at-risk adults perform at high and sustained levels. We investigated whether (a) memory resilience to AD genetic risk is predicted by biological and other risk markers and (b) the prediction profiles vary by sex and AD risk variant. Method Using a longitudinal sample of nondemented adults (n = 642, aged 53-95) we focused on memory resilience (over 9 years) to 2 AD risk variants (APOE, CLU). Growth mixture models classified resilience. Random forest analysis, stratified by sex, tested the predictive importance of 22 nongenetic risk factors from 5 domains (n = 24-112). Results For both sexes, younger age, higher education, stronger grip, and everyday novel cognitive activity predicted memory resilience. For women, 9 factors from functional, health, mobility, and lifestyle domains were also predictive. For men, only fewer depressive symptoms was an additional important predictor. The prediction profiles were similar for APOE and CLU. Discussion Although several factors predicted resilience in both sexes, a greater number applied only to women. Sex-specific mechanisms and intervention targets are implied.
Collapse
Affiliation(s)
| | - G Peggy McFall
- Neuroscience and Mental Health Institute.,Department of Psychology, University of Alberta, Edmonton, Canada
| | - Shea J Andrews
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Roger A Dixon
- Neuroscience and Mental Health Institute.,Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
128
|
The effects of strength exercise on hippocampus volume and functional fitness of older women. Exp Gerontol 2017; 97:22-28. [DOI: 10.1016/j.exger.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 11/22/2022]
|
129
|
Park CH, Kwak YS. Analysis of energy restriction and physical activity on brain function: the role of ketone body and brain-derived neurotrophic factor. J Exerc Rehabil 2017; 13:378-380. [PMID: 29114500 PMCID: PMC5667612 DOI: 10.12965/jer.1735028.514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
Abstract
Brain development is a complex process, and stimuli during this development period may modulate the functional maturation of the brain. It has been shown that environmental stimuli, such as physical activity habits, have a beneficial effect on brain development. Endurance exercise and prolonged fasting state are known to improve brain function including cognition. The exact mechanisms of exercise improving brain function are still unknown. However, it can be considered that energy restriction and stressful challenge induced by long-lasting physical exercise might cause direct effect on brain function. Upregulation of brain-derived neurotrophic factor and ketone body caused by exercise might be considered as the mechanism of exercise on brain function. In the present study, we discussed on two main topics: “exercise and BDNF” and “exercise and energy restriction.”
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Marine Sports, Pukyong National University, Busan, Korea
| | - Yi-Sub Kwak
- Department of Physical Education, Dong-Eui Uinversity, Busan, Korea
| |
Collapse
|
130
|
Watanasriyakul WT, Wardwell J, McNeal N, Schultz R, Woodbury M, Dagner A, Cox M, Grippo AJ. Voluntary physical exercise protects against behavioral and endocrine reactivity to social and environmental stressors in the prairie vole. Soc Neurosci 2017; 13:602-615. [PMID: 28786739 DOI: 10.1080/17470919.2017.1365761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Physical activity can combat detrimental effects of stress. The current study examined the potential protective effects of exercise against a combination of social isolation and chronic mild stress (CMS) in a prairie vole model. Female voles were isolated for 4 weeks, with the addition of CMS during the final 2 weeks. Half of the voles were allowed access to a running wheel during this final 2 weeks, while the other half remained sedentary. Animals underwent behavioral tests to assess depressive- and anxiety-behaviors. In a subset of animals, plasma was collected 10 minutes after behavioral testing for corticosterone analysis. In a separate subset, brains were collected 2 hours after behavioral testing for cFos analysis in the paraventricular nucleus (PVN). Voles in the exercise group displayed significantly lower depressive- and anxiety-behaviors, and displayed significantly lower corticosterone levels, compared to animals in the sedentary group. There was no difference in PVN cFos activity between groups. Interestingly, animals that moderately exercised displayed lower levels of depressive-behavior and attenuated corticosterone reactivity compared to animals in the low and high activity subgroups. These findings suggest that physical activity can protect against a combination of social and environmental stressors.
Collapse
Affiliation(s)
| | - Joshua Wardwell
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Neal McNeal
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Rachel Schultz
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Matthew Woodbury
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Ashley Dagner
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Miranda Cox
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Angela J Grippo
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| |
Collapse
|
131
|
Victorino AB, Serra FT, Piñero PP, de Almeida AA, Lopim GM, Matias Junior I, Machado HR, Lent R, Cabral FR, Gomez-Pinilla F, Arida RM, Gomes da Silva S. Aerobic exercise in adolescence results in an increase of neuronal and non-neuronal cells and in mTOR overexpression in the cerebral cortex of rats. Neuroscience 2017; 361:108-115. [PMID: 28802917 DOI: 10.1016/j.neuroscience.2017.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Better cognitive performance and greater cortical and hippocampal volume have been observed in individuals who undertook aerobic exercise during childhood and adolescence. One possible explanation for these beneficial effects is that juvenile physical exercise enables better neural development and hence more cells and neuronal circuitries. It is probable that such effects occur through intracellular signaling proteins associated with cell growth, proliferation and survival. Based on this information, we evaluated the number of neuronal and non-neuronal cells using isotropic fractionation and the expression and activation of intracellular proteins (ERK, CREB, Akt, mTOR and p70S6K) in the cerebral cortex and hippocampal formation of the rats submitted to a physical exercise program on a treadmill during adolescence. Results showed that physical exercise increases the number of neuronal and non-neuronal cortical cells and hippocampal neuronal cells in adolescent rats. Moreover, mTOR overexpression was found in the cortical region of exercised adolescent rats. These findings indicate a significant cellular proliferative effect of aerobic exercise on the cerebral cortex in postnatal development.
Collapse
Affiliation(s)
| | | | | | - Alexandre Aparecido de Almeida
- Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Instituto Federal Goiano (IF Goiano), Campus Ceres, Ceres, GO, Brazil
| | | | - Ivair Matias Junior
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), São Paulo, SP, Brazil
| | - Helio Rubens Machado
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), São Paulo, SP, Brazil
| | - Roberto Lent
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | | | - Sérgio Gomes da Silva
- Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil; Hospital Israelita Albert Einstein (HIAE), São Paulo, SP, Brazil.
| |
Collapse
|
132
|
Kim JI, Jeon SG, Kim KA, Kim JJ, Song EJ, Jeon Y, Kim E, Lee KB, Kwak JH, Moon M. Platycodon grandiflorus Root Extract Improves Learning and Memory by Enhancing Synaptogenesis in Mice Hippocampus. Nutrients 2017; 9:nu9070794. [PMID: 28737698 PMCID: PMC5537907 DOI: 10.3390/nu9070794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A.DC. (PG) has long been used as an ingredient of foods and is known to have beneficial effects on cognitive functions as well. The present study examined the effect of each PG extract (PGE) from root, aerial part, and seeds on cognitive functions in mice. Changes in spatial learning and memory using a Y-maze test, and markers of adult hippocampal neurogenesis and synaptogenesis were examined. Moreover, changes in neuritogenesis and activation of the ERK1/2 pathway were investigated. Results indicated that mice administered PGE (root) showed increased spontaneous alternation in the Y-maze test and synaptogenesis in the hippocampus. In addition, PGE (root) and platycodin D, the major bioactive compound from the PG root, significantly stimulated neuritic outgrowth by phosphorylation of the ERK1/2 signaling pathway in vitro. These results indicate that the PGE (root), containing platycodin D, enhances cognitive function through synaptogenesis via activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Korea.
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Kyoung Ah Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Jwa-Jin Kim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk 28024, Korea.
- Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 34134, Korea.
- LES Corporation Inc., 4 Munhwawon-ro 46beon-gil Yuseong-gu, Daejeon 34167, Korea.
| | - Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yukyoung Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Korea.
| | - Eunbin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Korea.
| | - Kyung Bok Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| |
Collapse
|
133
|
Sex differences in aerobic exercise efficacy to improve cognition: A systematic review and meta-analysis of studies in older rodents. Front Neuroendocrinol 2017; 46:86-105. [PMID: 28614695 DOI: 10.1016/j.yfrne.2017.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022]
Abstract
Research in humans indicates that women may show greater cognitive benefits from aerobic training (AT) than men. To determine whether this sex difference extends to rodents, we conducted a systematic review and meta-analysis of studies in healthy, older rodents. Results indicate that compared to controls, AT improved hippocampus-dependent and -independent learning and memory. A sex difference was found with males showing larger benefits from AT on conditioned-avoidance and non-spatial memory tasks. AT also increased brain-derived neurotrophic factor compared to controls, with larger effects in females. As an exploratory analysis, sex differences in voluntary AT were examined separately from forced AT. Voluntary AT enhanced non-spatial memory to a greater extent in males. Forced AT enhanced hippocampus-dependent learning and memory more so in females. These findings suggest that sex is an important factor to consider, and studies directly assessing sex differences in the ability of exercise to improve brain function are needed.
Collapse
|
134
|
Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol 2017; 46:71-85. [PMID: 28442274 DOI: 10.1016/j.yfrne.2017.04.002] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/28/2017] [Accepted: 04/17/2017] [Indexed: 01/20/2023]
Abstract
Exercise is a non-pharmacological strategy to mitigate the deleterious effects of aging on brain health. However, a large amount of variation exists in its efficacy. Sex of participants and exercise type are two possible factors contributing to this variation. To better understand this, we conducted a concurrent systematic review and meta-analysis of cognitively healthy older adults. Executive functions, episodic memory, visuospatial function, word fluency, processing speed and global cognitive function were examined for exercise- and sex-dependent effects. For executive functions, three types of exercise interventions - aerobic training, resistance training, and multimodal training (i.e., both aerobic and resistance training) - were associated with larger effect sizes in studies comprised of a higher percentage of women compared to studies with a lower percentage of women. This suggests that women's executive processes may benefit more from exercise than men. Regardless of sex, compared to control, all three exercise training approaches enhanced visuospatial function, but only multimodal training enhanced episodic memory. Overall, aerobic training led to greater benefits than resistance training in global cognitive function and executive functions, while multimodal combined training led to greater benefits than aerobic training for global cognitive function, episodic memory, and word fluency. Possible underlying mechanisms, including brain-derived neurotrophic factor and sex steroid hormones, are discussed.
Collapse
|
135
|
Rich B, Scadeng M, Yamaguchi M, Wagner PD, Breen EC. Skeletal myofiber vascular endothelial growth factor is required for the exercise training-induced increase in dentate gyrus neuronal precursor cells. J Physiol 2017; 595:5931-5943. [PMID: 28597506 DOI: 10.1113/jp273994] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Peripheral vascular endothelial growth factor (VEGF) is necessary for exercise to stimulate hippocampal neurogenesis. Here we report that skeletal myofiber VEGF directly or indirectly regulates exercise-signalled proliferation of neuronal precursor cells. Our results found skeletal myofiber VEGF to be necessary for maintaining blood flow through hippocampal regions independent of exercise training state. This study demonstrates that skeletal myofiber VEGF is required for the hippocampal VEGF response to acute exercise. These results help to establish the mechanisms by which exercise, through skeletal myofiber VEGF, affects the hippocampus. ABSTRACT Exercise signals neurogenesis in the dentate gyrus of the hippocampus. This phenomenon requires vascular endothelial growth factor (VEGF) originating from outside the blood-brain barrier, but no cellular source has been identified. Thus, we hypothesized that VEGF produced by skeletal myofibers plays a role in regulating hippocampal neuronal precursor cell proliferation following exercise training. This was tested in adult conditional skeletal myofiber-specific VEGF gene-ablated mice (VEGFHSA-/- ) by providing VEGFHSA-/- and non-ablated (VEGFf/f ) littermates with running wheels for 14 days. Following this training period, hippocampal cerebral blood flow (CBF) was measured by functional magnetic resonance imaging (fMRI), and neuronal precursor cells (BrdU+/Nestin+) were detected by immunofluorescence. The VEGFf/f trained group showed improvements in both speed and endurance capacity in acute treadmill running tests (P < 0.05). The VEGFHSA-/- group did not. The number of proliferating neuronal precursor cells was increased with training in VEGFf/f (P < 0.05) but not in VEGFHSA-/- mice. Endothelial cell (CD31+) number did not change in this region with exercise training or skeletal myofiber VEGF gene deletion. However, resting blood flow through the hippocampal region was lower in VEGFHSA-/- mice, both untrained and trained, than untrained VEGFf/f mice (P < 0.05). An acute hypoxic challenge decreased CBF (P < 0.05) in untrained VEGFf/f , untrained VEGFHSA-/- and trained VEGFHSA-/- mice, but not trained VEGFf/f mice. VEGFf/f , but not VEGFHSA-/- , mice were able to acutely run on a treadmill at an intensity sufficient to increase hippocampus VEGF levels. These data suggest that VEGF expressed by skeletal myofibers may directly or indirectly regulate both hippocampal blood flow and neurogenesis.
Collapse
Affiliation(s)
- Benjamin Rich
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miriam Scadeng
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Peter D Wagner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
136
|
The Treadmill Exercise Protects against Dopaminergic Neuron Loss and Brain Oxidative Stress in Parkinsonian Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2138169. [PMID: 28713483 PMCID: PMC5497606 DOI: 10.1155/2017/2138169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/23/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD), a progressive neurological pathology, presents motor and nonmotor impairments. The objectives were to support data on exercise benefits to PD. Male Wistar rats were distributed into sham-operated (SO) and 6-OHDA-lesioned, both groups without and with exercise. The animals were subjected to treadmill exercises (14 days), 24 h after the stereotaxic surgery and striatal 6-OHDA injection. Those from no-exercise groups stayed on the treadmill for the same period and, afterwards, were subjected to behavioral tests and euthanized for neurochemical and immunohistochemical assays. The data, analyzed by ANOVA and Tukey post hoc test, were considered significant for p < 0.05. The results showed behavioral change improvements in the 6-OHDA group, after the treadmill exercise, evaluated by apomorphine rotational behavior, open field, and rota rod tests. The exercise reduced striatal dopaminergic neuronal loss and decreased the oxidative stress. In addition, significant increases in BDNF contents and in immunoreactive cells to TH and DAT were also observed, in striata of the 6-OHDA group with exercise, relatively to those with no exercise. We conclude that exercise improves behavior and dopaminergic neurotransmission in 6-OHDA-lesioned animals. The increased oxidative stress and decreased BDNF contents were also reversed, emphasizing the importance of exercise for the PD management.
Collapse
|
137
|
Houdebine L, Gallelli CA, Rastelli M, Sampathkumar NK, Grenier J. Effect of physical exercise on brain and lipid metabolism in mouse models of multiple sclerosis. Chem Phys Lipids 2017; 207:127-134. [PMID: 28606714 DOI: 10.1016/j.chemphyslip.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a central nervous demyelinating disease characterized by cyclic loss and repair of myelin sheaths associated with chronic inflammation and neuronal loss. This degenerative pathology is accompanied by modified levels of oxysterols (oxidative derivatives of cholesterol, implicated in cholesterol metabolism), highlighted in the brain, blood and cerebrospinal fluid of MS patients. The pathological accumulation of such derivatives is thought to participate in the onset and progression of the disease through their implication in inflammation, oxidative stress, demyelination and neurodegeneration. In this context, physical exercise is envisaged as a complementary resource to ameliorate therapeutic strategies. Indeed, physical activity exerts beneficial effects on neuronal plasticity, decreases inflammation and oxidative stress and improves blood-brain integrity in extents that could be beneficial for brain health. The present review attempts to summarize the available data on the positive effect of physical exercise to highlight possible links between physical activity and modulation of cholesterol/oxysterol homeostasis in MS.
Collapse
Affiliation(s)
- Léo Houdebine
- Paris Descartes University, INSERM UMRS 1124, France
| | | | | | | | | |
Collapse
|
138
|
Acevedo-Triana CA, Rojas MJ, Cardenas FP. Running wheel training does not change neurogenesis levels or alter working memory tasks in adult rats. PeerJ 2017; 5:e2976. [PMID: 28503368 PMCID: PMC5426350 DOI: 10.7717/peerj.2976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis), causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. METHODS An experimental design with two groups was developed: the experimental group (n = 12) was subject to a forced exercise program for five days, whereas the control group (n = 9) stayed in the home cage. Six to eight weeks after training, the rats' working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. RESULTS No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding), or in the levels of BrdU positive cells. DISCUSSION Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level.
Collapse
Affiliation(s)
| | - Manuel J. Rojas
- Animal Health Department, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
139
|
Vieira JM, Carvalho FB, Gutierres JM, Soares MSP, Oliveira PS, Rubin MA, Morsch VM, Schetinger MR, Spanevello RM. Caffeine prevents high-intensity exercise-induced increase in enzymatic antioxidant and Na+-K+-ATPase activities and reduction of anxiolytic like-behaviour in rats. Redox Rep 2017; 22:493-500. [DOI: 10.1080/13510002.2017.1322739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Juliano M. Vieira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fabiano B. Carvalho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jessié M. Gutierres
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mayara S. P. Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, Pelotas, RS, Brazil
| | - Pathise S. Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, Pelotas, RS, Brazil
| | - Maribel A. Rubin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera M. Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Roselia M. Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, Pelotas, RS, Brazil
| |
Collapse
|
140
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
141
|
Karssemeijer EGA, Bossers WJR, Aaronson JA, Kessels RPC, Olde Rikkert MGM. The effect of an interactive cycling training on cognitive functioning in older adults with mild dementia: study protocol for a randomized controlled trial. BMC Geriatr 2017; 17:73. [PMID: 28327083 PMCID: PMC5361710 DOI: 10.1186/s12877-017-0464-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/14/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To date there is no cure or an effective disease-modifying drug to treat dementia. Available acetylcholine-esterase inhibiting drugs or memantine only produce small benefits on cognitive and behavioural functioning and their clinical relevance remains controversial. Combined cognitive-aerobic interventions are an appealing alternative or add-on to current pharmacological treatments. The primary aim of this study is to investigate the efficacy of a combined cognitive-aerobic training and a single aerobic training compared to an active control group in older adults with mild dementia. We expect to find a beneficial effect on executive functioning in both training regimes, compared to the control intervention, with the largest effect in the combined cognitive-aerobic group. Secondary, intervention effects on cognitive functioning in other domains, physical functioning, physical activity levels, activities of daily living, frailty and quality of life are studied. METHODS The design is a single-blind, randomized controlled trial (RCT) with three groups: a combined cognitive-aerobic bicycle training (interactive cycling), a single aerobic bicycle training and a control intervention, which consists of stretching and toning exercises. Older adults with mild dementia follow a 12-week training program consisting of three training sessions of 30-40 min per week. The primary study outcome is objective executive functioning measured with a neuropsychological assessment. Secondary measures are objective cognitive functioning in other domains, physical functioning, physical activity levels, activities of daily living, frailty, mood and quality of life. The three groups are compared at baseline, after 6 and 12 weeks of training, and at 24-week follow-up. DISCUSSION This study will provide novel information on the effects of an interactive cycling training on executive function in older adults with mild dementia. Furthermore, since this study has both a combined cognitive-aerobic training and a single aerobic training group the effectiveness of the different components of the intervention can be identified. The results of this study may be used for physical and mental activity recommendations in older adults with dementia. TRIAL REGISTRATION The Netherlands National Trial Register NTR5581 . Registered 14 February 2016.
Collapse
Affiliation(s)
- E G A Karssemeijer
- Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands. .,Radboud university medical center, Radboudumc Alzheimer Center, PO 9101 (hp 925), Nijmegen, 6500 HB, The Netherlands.
| | - W J R Bossers
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands
| | - J A Aaronson
- Department of Medical Psychology, Donders Institute for Brain Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - R P C Kessels
- Department of Medical Psychology, Donders Institute for Brain Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - M G M Olde Rikkert
- Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands.,Radboud university medical center, Radboudumc Alzheimer Center, PO 9101 (hp 925), Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
142
|
Rutherford BR, Taylor WD, Brown PJ, Sneed JR, Roose SP. Biological Aging and the Future of Geriatric Psychiatry. J Gerontol A Biol Sci Med Sci 2017; 72:343-352. [PMID: 27994004 PMCID: PMC6433424 DOI: 10.1093/gerona/glw241] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023] Open
Abstract
Advances in understanding the biological bases of aging have intellectually revitalized the field of geriatric psychiatry and broadened its scope to include promoting successful aging and studying resilience factors in older adults. To describe the process by which this paradigm shift has occurred and illustrate its implications for treatment and research of late-life brain disorders, late-life depression is discussed as a prototype case. Prior phases of geriatric psychiatry research were focused on achieving depressive symptom relief, outlining pharmacokinetic and pharmacodynamic differences between older and younger adults, and identifying moderators of treatment response. Building on this work, current geriatric psychiatry researchers have begun to disentangle the etiologic complexity in late-life depression by focusing on the causative aging-related processes involved, identifying both neurobiological and behavioral intermediates, and finally delineating depression subtypes that are distinguishable by their underlying biology and the treatment approach required. In this review, we discuss several age-related processes that are critical to the development of late-life mood disorders, outline implications of these processes for the clinical evaluation and management of later-life psychiatric disorders, and finally put forth suggestions for better integrating aging and developmental processes into the National Institute of Mental Health's Research Domain Criteria.
Collapse
Affiliation(s)
- Bret R Rutherford
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute
| | - Warren D Taylor
- Vanderbilt University Medical Center, Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, Tennessee Valley Health Care Center
| | - Patrick J Brown
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute
| | - Joel R Sneed
- Queens College of the City University of New York
| | - Steven P Roose
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute
| |
Collapse
|
143
|
Mendonça FN, Santos LEC, Rodrigues AM, Gomes da Silva S, Arida RM, da Silveira GA, Scorza FA, Almeida ACG. Physical Exercise Restores the Generation of Newborn Neurons in an Animal Model of Chronic Epilepsy. Front Neurosci 2017; 11:98. [PMID: 28298884 PMCID: PMC5331057 DOI: 10.3389/fnins.2017.00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/14/2017] [Indexed: 01/10/2023] Open
Abstract
Neurogenesis impairment is associated with the chronic phase of the epilepsy in humans and also observed in animal models. Recent studies with animal models have shown that physical exercise is capable of improving neurogenesis in adult subjects, alleviating cognitive impairment and depression. Here, we show that there is a reduction in the generation of newborn granule cells in the dentate gyrus of adult rats subjected to a chronic model of epilepsy during the postnatal period of brain development. We also show that the physical exercise was capable to restore the number of newborn granule cells in this animals to the level observed in the control group. Notably, a larger number of newborn granule cells exhibiting morphological characteristics indicative of correct targeting into the hippocampal circuitry and the absence of basal dendrite projections was also observed in the epileptic animals subjected to physical exercise compared to the epileptic animals. The results described here could represent a positive interference of the physical exercise on the neurogenesis process in subjects with chronic epilepsy. The results may also help to reinterpret the benefits of the physical exercise in alleviating symptoms of depression and cognitive dysfunction.
Collapse
Affiliation(s)
- Fabricio N Mendonça
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| | - Luiz E C Santos
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| | - Antônio M Rodrigues
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| | - Sérgio Gomes da Silva
- Instituto do Cérebro, Hospital Israelita Albert EinsteinSão Paulo, Brazil; Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das CruzesMogi das Cruzes, Brazil
| | - Ricardo M Arida
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil
| | - Gilcélio A da Silveira
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| | - Fulvio A Scorza
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-ReiSão João del-Rei, Brazil; Disciplina de Neurologia Experimental, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP)São Paulo, Brazil
| | - Antônio-Carlos G Almeida
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| |
Collapse
|
144
|
Kuga GK, Botezelli JD, Gaspar RC, Gomes RJ, Pauli JR, Leme JACDA. Hippocampal insulin signaling and neuroprotection mediated by physical exercise in Alzheimer´s Disease. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
145
|
Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM, Argente J, Chowen JA. Glial cells and energy balance. J Mol Endocrinol 2017; 58:R59-R71. [PMID: 27864453 DOI: 10.1530/jme-16-0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Guerra-Cantera
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Argente
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
146
|
Tharmaratnam T, Civitarese RA, Tabobondung T, Tabobondung TA. Exercise becomes brain: sustained aerobic exercise enhances hippocampal neurogenesis. J Physiol 2017; 595:7-8. [PMID: 28035680 DOI: 10.1113/jp272761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | | | - Tyler Tabobondung
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Taylor A Tabobondung
- Department of Physical and Environmental Sciences, University of Toronto, ON, Canada
| |
Collapse
|
147
|
Barha CK, Galea LA, Nagamatsu LS, Erickson KI, Liu-Ambrose T. Personalising exercise recommendations for brain health: considerations and future directions. Br J Sports Med 2016; 51:636-639. [DOI: 10.1136/bjsports-2016-096710] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 12/27/2022]
|
148
|
Strickland JC, Smith MA. Animal models of resistance exercise and their application to neuroscience research. J Neurosci Methods 2016; 273:191-200. [PMID: 27498037 PMCID: PMC5075509 DOI: 10.1016/j.jneumeth.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/24/2016] [Accepted: 08/03/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Numerous studies have demonstrated that participation in regular resistance exercise (e.g., strength training) is associated with improvements in mental health, memory, and cognition. However, less is known about the neurobiological mechanisms mediating these effects. The goal of this mini-review is to describe and evaluate the available animal models of resistance exercise that may prove useful for examining CNS activity. NEW METHOD Various models have been developed to examine resistance exercise in laboratory animals. COMPARISON WITH EXISTING METHODS Resistance exercise models vary in how the resistance manipulation is applied, either through direct stimulation of the muscle (e.g., in situ models) or through behavior maintained by operant contingencies (e.g., whole organism models). Each model presents distinct advantages and disadvantages for examining central nervous system (CNS) activity, and consideration of these attributes is essential for the future investigation of underlying neurobiological substrates. RESULTS Potential neurobiological mechanisms mediating the effects of resistance exercise on pain, anxiety, memory, and drug use have been efficiently and effectively investigated using resistance exercise models that minimize stress and maximize the relative contribution of resistance over aerobic factors. CONCLUSIONS Whole organism resistance exercise models that (1) limit the use of potentially stressful stimuli and (2) minimize the contribution of aerobic factors will be critical for examining resistance exercise and CNS function.
Collapse
Affiliation(s)
| | - Mark A Smith
- Department of Psychology, Davidson College, Davidson, NC, USA; Program in Neuroscience, Davidson College, Davidson, NC, USA.
| |
Collapse
|
149
|
Schon HT, Weiskirchen R. Exercise-Induced Release of Pharmacologically Active Substances and Their Relevance for Therapy of Hepatic Injury. Front Pharmacol 2016; 7:283. [PMID: 27625607 PMCID: PMC5003891 DOI: 10.3389/fphar.2016.00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic liver disease (CLD) features constant parenchymal injury and repair together with an increasing hepatic impairment, finally leading to fibrosis and cirrhosis and a heightened risk of hepatocellular carcinoma (HCC). Closely related to the rise in obesity, the worldwide prevalence of nonalcoholic fatty liver disease, the most common form of CLD, has reached an epidemic dimension and is estimated to afflict up to 46% of the general population, including more than one out of three U.S. citizens. Up to now there is no effective drug treatment available, which is why recommendations encompass both exercise programs and changes in dietary habits. Exercise is well-known for unleashing potent anti-inflammatory effects, which can principally counteract liver inflammation and chronic low-grade inflammation. This review article summarizes the underlying mechanisms responsible for the exercise-mediated anti-inflammatory effects, illustrates the application in animal models as well as in humans, and highlights the therapeutic value when possible. Based on the available results there is no doubt that exercise can even be beneficial in an advanced stage of liver disease and it is the goal of this review article to provide evidence for the therapeutic impact on fibrosis, cirrhosis, and HCC and to assess whether exercise might be of value as adjuvant therapy in the treatment of CLD. In principle, all exercise programs carried out in these high-risk patients should be guided and observed by qualified healthcare professionals to guarantee the patients’ safety. Nevertheless, it is also necessary to additionally determine the optimal amount and intensity of exercise to maximize its value, which is why further studies are essential.
Collapse
Affiliation(s)
- Hans-Theo Schon
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital RWTH Aachen Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital RWTH Aachen Aachen, Germany
| |
Collapse
|
150
|
Liu L, Zhang Q, Cai Y, Sun D, He X, Wang L, Yu D, Li X, Xiong X, Xu H, Yang Q, Fan X. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget 2016; 7:56045-56059. [PMID: 27517628 PMCID: PMC5302895 DOI: 10.18632/oncotarget.11178] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
Radial glial-like cells (RGLs) in the adult dentate gyrus (DG) function as progenitor cells for adult hippocampal neurogenesis, a process involved in the stress-related pathophysiology and treatment efficiency of depression. Resveratrol (RSV) has been demonstrated to be a potent activator of neurogenesis. The present study investigated whether chronic RSV treatment has antidepressant potential in relation to hippocampal neurogenesis. Mice received two weeks of RSV (20 mg/kg) or dimethylsulfoxide (DMSO) treatment, followed by lipopolysaccharide (LPS; 1 mg/kg) or saline injections for 5 days. We found that RSV treatment abrogated the increased immobility in the forced swimming test and tail suspension test induced by LPS. Immunohistochemical staining revealed that RSV treatment reversed the increase in microglial activation and the inhibition in DG neurogenesis. RSV treatment also attenuated LPS-induced defects in the expanding of RGLs through promoting symmetric division. In addition, RSV ameliorated LPS-induced NF-κB activation in the hippocampus coincides with the up-regulation levels of Sirt1 and Hes1. Taken together, these data indicated that RSV-induced Sirt1 activation counteracts LPS-induced depression-like behaviors via a neurogenic mechanism. A new model to understand the role of RSV in treating depression may result from these findings.
Collapse
Affiliation(s)
- Liang Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qin Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Dayu Sun
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xie He
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Dan Yu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xiaoyi Xiong
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| |
Collapse
|