101
|
|
102
|
Romanovsky AA. Pungency: A reason for the sluggish expansion of hot spicy foods from the tropics. Temperature (Austin) 2016; 3:56-8. [PMID: 27227098 PMCID: PMC4861199 DOI: 10.1080/23328940.2016.1151301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Andrej A Romanovsky
- Systemic Inflammation Laboratory (FeverLab)St. Joseph's Hospital and Medical Center Phoenix, AZ, URL: https://www.barrowneuro.org/research/research-programs/romanovsky-laboratory/ , http://www.feverlab.net/
| |
Collapse
|
103
|
TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation. Sci Rep 2016; 6:26088. [PMID: 27188969 PMCID: PMC4870621 DOI: 10.1038/srep26088] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/25/2016] [Indexed: 01/06/2023] Open
Abstract
Transient receptor potential vanilloid receptor 1 (TRPV1) is a non-selective cation channel that is stimulated by heat (>43 °C), mechanical/osmotic stimuli, and low pH. The importance of TRPV1 in inflammatory responses has been demonstrated, whereas its participation in brains remains unclear. In the present study, the intracerebroventricular (icv) administration of the TRPV1 agonist resiniferatoxin (RTX) induced the activation of signal transducer and activator of transcription 3 (STAT3) in circumventricular organs (CVOs) and thermoregulation-associated brain regions with a similar patttern to the peripheral and icv administration of lipopolysaccharide (LPS). With the peripheral and icv LPS stimuli, STAT3 activation was significantly lower in Trpv1−/− mice than in Trpv1+/+ mice. The icv administration of RTX induced transient hypothermia, whereas that of the TRPV1 antagonist capsazepine enhanced the magnitude and period of LPS-induced hyperthermia. These results indicate that TRPV1 is important for activating proinflammatory STAT3 signaling and thermoregulation-associated brain pathways in the brain.
Collapse
|
104
|
Abstract
Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
105
|
Hudson ASR, Kunstetter AC, Damasceno WC, Wanner SP. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses. ACTA ACUST UNITED AC 2016; 49:e5183. [PMID: 27191606 PMCID: PMC4869825 DOI: 10.1590/1414-431x20165183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
Physical exercise triggers coordinated physiological responses to meet the augmented
metabolic demand of contracting muscles. To provide adequate responses, the brain
must receive sensory information about the physiological status of peripheral tissues
and organs, such as changes in osmolality, temperature and pH. Most of the receptors
involved in these afferent pathways express ion channels, including transient
receptor potential (TRP) channels, which are usually activated by more than one type
of stimulus and are therefore considered polymodal receptors. Among these TRP
channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or
capsaicin receptor) has well-documented functions in the modulation of pain sensation
and thermoregulatory responses. However, the TRPV1 channel is also expressed in
non-neural tissues, suggesting that this channel may perform a broad range of
functions. In this review, we first present a brief overview of the available tools
for studying the physiological roles of the TRPV1 channel. Then, we present the
relationship between the TRPV1 channel and spontaneous locomotor activity, physical
performance, and modulation of several physiological responses, including water and
electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular,
gastrointestinal, and inflammatory responses. Altogether, the data presented herein
indicate that the TPRV1 channel modulates many physiological functions other than
nociception and thermoregulation. In addition, these data open new possibilities for
investigating the role of this channel in the acute effects induced by a single bout
of physical exercise and in the chronic effects induced by physical training.
Collapse
Affiliation(s)
- A S R Hudson
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - A C Kunstetter
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - W C Damasceno
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - S P Wanner
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
106
|
Kurosaka M, Ogura Y, Funabashi T, Akema T. Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in Myoblast Fusion. J Cell Physiol 2016; 231:2275-85. [PMID: 26892397 DOI: 10.1002/jcp.25345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/16/2016] [Indexed: 12/15/2022]
Abstract
The mechanisms that underlie the complex process of muscle regeneration after injury remain unknown. Transient receptor potential cation channel vanilloid 1 (TRPV1) is expressed in several cell types, including skeletal muscle, and is activated by high temperature and by certain molecules secreted during tissue inflammation. Severe inflammation and local temperature perturbations are induced during muscle regeneration, which suggests that TRPV1 might be activated and involved in the process. The aim of this study, was to clarify the role of TRPV1 in the myogenic potential of satellite cells responsible for muscle regeneration. We found that mRNA and protein levels of TRPV1 increased during regeneration after cardiotoxin (CTX)-induced muscle injury in mice. Using isolated mouse satellite cells (i.e., myoblasts), we observed that activation of TRPV1 by its agonist capsaicin (CAP) augmented myogenin protein levels. Whereas CAP did not alter myoblast proliferation, it facilitated myoblast fusion (evaluated using myonucleii number per myotube and fusion index). In contrast, suppression of TRPV1 by siRNA impaired myoblast fusion. Using mice, we also demonstrated that intramuscular injection of CAP facilitated muscle repair after CTX-induced muscle injury. Moreover, we showed that these roles of TRPV1 might be mediated by interleukin-4 and calcium signaling during myoblast fusion. Collectively, these results suggest that TRPV1 underlies normal myogenesis through promotion of myoblast fusion. J. Cell. Physiol. 231: 2275-2285, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
107
|
Caterina MJ. Seeking the tropical heat - a matter of microbes? Temperature (Austin) 2016; 3:43-5. [PMID: 27227094 PMCID: PMC4861195 DOI: 10.1080/23328940.2016.1139963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 10/30/2022] Open
Affiliation(s)
- Michael J Caterina
- Department of Neurosurgery, Department of Biological Chemistry Department of Neuroscience, Neurosurgery Pain Research Institute Johns Hopkins School of Medicine , 725 North Wolfe St. , Baltimore, MD 21205 USA
| |
Collapse
|
108
|
Harrison NA. Feeling cold is contagious. Temperature (Austin) 2016; 3:20-2. [PMID: 27227076 PMCID: PMC4861179 DOI: 10.1080/23328940.2015.1042567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Neil A. Harrison
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Sussex Partnership NHS Trust, Brighton, UK
| |
Collapse
|
109
|
Santiago HP, Leite LHR, Lima PMA, Rodovalho GV, Szawka RE, Coimbra CC. The improvement of exercise performance by physical training is related to increased hypothalamic neuronal activation. Clin Exp Pharmacol Physiol 2015; 43:116-24. [DOI: 10.1111/1440-1681.12507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Henrique P Santiago
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Laura HR Leite
- Department of Physiology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora Minas Gerais Brazil
| | - Paulo Marcelo A Lima
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Gisele V Rodovalho
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
110
|
Feketa VV, Marrelli SP. Systemic Administration of the TRPV3 Ion Channel Agonist Carvacrol Induces Hypothermia in Conscious Rodents. PLoS One 2015; 10:e0141994. [PMID: 26528923 PMCID: PMC4631363 DOI: 10.1371/journal.pone.0141994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022] Open
Abstract
Therapeutic hypothermia is a promising new strategy for neuroprotection. However, the methods for safe and effective hypothermia induction in conscious patients are lacking. The current study explored the Transient Receptor Potential Vanilloid 3 (TRPV3) channel activation by the agonist carvacrol as a potential hypothermic strategy. It was found that carvacrol lowers core temperature after intraperitoneal and intravenous administration in mice and rats. However, the hypothermic effect at safe doses was modest, while higher intravenous doses of carvacrol induced a pronounced drop in blood pressure and substantial toxicity. Experiments on the mechanism of the hypothermic effect in mice revealed that it was associated with a decrease in whole-body heat generation, but not with a change in cold-seeking behaviors. In addition, the hypothermic effect was lost at cold ambient temperature. Our findings suggest that although TRPV3 agonism induces hypothermia in rodents, it may have a limited potential as a novel pharmacological method for induction of hypothermia in conscious patients due to suboptimal effectiveness and high toxicity.
Collapse
Affiliation(s)
- Viktor V. Feketa
- Department of Molecular Physiology and Biophysics Graduate Program, Cardiovascular Sciences Track, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sean P. Marrelli
- Department of Molecular Physiology and Biophysics Graduate Program, Cardiovascular Sciences Track, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
111
|
Almeida MC, Vizin RCL, Carrettiero DC. Current understanding on the neurophysiology of behavioral thermoregulation. Temperature (Austin) 2015; 2:483-90. [PMID: 27227068 PMCID: PMC4843931 DOI: 10.1080/23328940.2015.1095270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022] Open
Abstract
Temperature influence on the physiology and biochemistry of living organisms has long been recognized, which propels research in the field of thermoregulation. With the cloning and characterization of the transient receptor potential (TRP) ion channels as the principal temperature sensors of the mammalian somatosensory neurons, the understanding, at a molecular level, of thermosensory and thermoregulatory mechanisms became promising. Because thermal environment can be extremely hostile (temperature range on earth's surface is from ∼ −69°C to 58°C), living organisms developed an array of thermoregulatory strategies to guarantee survival, which include both autonomic mechanisms, which aim at increasing or decreasing heat exchange between body, and ambient and behavioral strategies. The knowledge regarding neural mechanisms involved in autonomic thermoregulatory strategies has progressed immensely compared to the knowledge on behavioral thermoregulation. This review aims at collecting the up-to-date knowledge on the neural basis for behavioral thermoregulation in mammals in order to point out perspectives and deployment of this research field.
Collapse
Affiliation(s)
- Maria Camila Almeida
- Natural and Humanities Science Center; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil; Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Robson Cristiano Lillo Vizin
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC (UFABC) ; São Bernardo do Campo, SP, Brazil
| | - Daniel Carneiro Carrettiero
- Natural and Humanities Science Center; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil; Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| |
Collapse
|
112
|
Yan L, Wang J, Pan M, Qiu Q, Huang W, Qian H. Synthesis of Analogues of BCTC Incorporating a Pyrrolidinyl Linker and Biological Evaluation as Transient Receptor Potential Vanilloid 1 Antagonists. Chem Biol Drug Des 2015; 87:306-11. [DOI: 10.1111/cbdd.12661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/12/2015] [Accepted: 09/06/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Yan
- Institute of Chemistry & Biology; Henan University; Kaifeng 475004 China
| | - Jingjie Wang
- State Key Laboratory of Natural Medicines; Center of Drug Discovery; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Miaobo Pan
- State Key Laboratory of Natural Medicines; Center of Drug Discovery; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Qianqian Qiu
- State Key Laboratory of Natural Medicines; Center of Drug Discovery; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Wenlong Huang
- State Key Laboratory of Natural Medicines; Center of Drug Discovery; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Hai Qian
- State Key Laboratory of Natural Medicines; Center of Drug Discovery; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| |
Collapse
|
113
|
Zaelzer C, Hua P, Prager-Khoutorsky M, Ciura S, Voisin D, Liedtke W, Bourque C. ΔN-TRPV1: A Molecular Co-detector of Body Temperature and Osmotic Stress. Cell Rep 2015; 13:23-30. [DOI: 10.1016/j.celrep.2015.08.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 07/25/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022] Open
|
114
|
TRPA1 mediates the hypothermic action of acetaminophen. Sci Rep 2015; 5:12771. [PMID: 26227887 PMCID: PMC4533162 DOI: 10.1038/srep12771] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/09/2015] [Indexed: 11/18/2022] Open
Abstract
Acetaminophen (APAP) is an effective antipyretic and one of the most commonly used analgesic drugs. Unlike antipyretic non-steroidal anti-inflammatory drugs, APAP elicits hypothermia in addition to its antipyretic effect. Here we have examined the mechanisms responsible for the hypothermic activity of APAP. Subcutaneous, but not intrathecal, administration of APAP elicited a dose dependent decrease in body temperature in wildtype mice. Hypothermia was abolished in mice pre-treated with resiniferatoxin to destroy or defunctionalize peripheral TRPV1-expressing terminals, but resistant to inhibition of cyclo-oxygenases. The hypothermic activity was independent of TRPV1 since APAP evoked hypothermia was identical in wildtype and Trpv1−/− mice, and not reduced by administration of a maximally effective dose of a TRPV1 antagonist. In contrast, a TRPA1 antagonist inhibited APAP induced hypothermia and APAP was without effect on body temperature in Trpa1−/− mice. In a model of yeast induced pyrexia, administration of APAP evoked a marked hypothermia in wildtype and Trpv1−/− mice, but only restored normal body temperature in Trpa1−/− and Trpa1−/−/Trpv1−/− mice. We conclude that TRPA1 mediates APAP evoked hypothermia.
Collapse
|
115
|
Abstract
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
116
|
Alawi KM, Aubdool AA, Liang L, Wilde E, Vepa A, Psefteli MP, Brain SD, Keeble JE. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. FASEB J 2015; 29:4285-98. [PMID: 26136480 PMCID: PMC4650996 DOI: 10.1096/fj.15-272526] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/22/2015] [Indexed: 11/11/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.
Collapse
Affiliation(s)
- Khadija M Alawi
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Aisah A Aubdool
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Lihuan Liang
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Elena Wilde
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Abhinav Vepa
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Maria-Paraskevi Psefteli
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Susan D Brain
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Julie E Keeble
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| |
Collapse
|
117
|
Mittelman-Smith MA, Krajewski-Hall SJ, McMullen NT, Rance NE. Neurokinin 3 Receptor-Expressing Neurons in the Median Preoptic Nucleus Modulate Heat-Dissipation Effectors in the Female Rat. Endocrinology 2015; 156:2552-62. [PMID: 25825817 PMCID: PMC4475724 DOI: 10.1210/en.2014-1974] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
KNDy neurons facilitate tail skin vasodilation and modulate the effects of estradiol on thermoregulation. We hypothesize that KNDy neurons influence cutaneous vasodilation via projections to neurons in the median preoptic nucleus (MnPO) that express the neurokinin 3 receptor (NK3R). In support of this hypothesis, focal microinjections of senktide, an NK3R agonist, into the MnPO lowers core temperature (TCORE) in the female rat. To further study the role of MnPO NK3R neurons in thermoregulation, these neurons were specifically ablated using a conjugate of a selective NK3R agonist and saporin (NK3-SAP). NK3-SAP or blank-SAP (control) was injected into the MnPO/medial septum. Tail skin temperature (TSKIN) and TCORE were measured in ovariectomized rats exposed to 3 ambient temperatures (TAMBIENT) before and after estradiol-17β (E2) treatment. Before killing, we injected senktide (sc), monitored TCORE for 70 minutes, and harvested brains for Fos immunohistochemistry. Ablation of MnPO NK3R neurons lowered TSKIN at neutral and subneutral TAMBIENT regardless of E2 treatment. However, ablation did not prevent the effects of E2 on TCORE and TSKIN. In control rats, senktide injections induced hypothermia with numerous Fos-immunoreactive cells in the MnPO. In contrast, in NK3-SAP rats, senktide did not alter TCORE and minimal Fos-immunoreactive neurons were identified in the MnPO. These data show that NK3R neurons in the MnPO are required for the hypothermic effects of senktide but not for the E2 modulation of thermoregulation. The lower TSKIN in NK3-SAP-injected rats suggests that MnPO NK3R neurons, like KNDy neurons, facilitate cutaneous vasodilation, an important heat-dissipation effector.
Collapse
Affiliation(s)
- Melinda A Mittelman-Smith
- Departments of Pathology (M.A.M.-S., S.J.K.-H., N.E.R.), Cellular and Molecular Medicine (N.T.M., N.E.R.), and Neurology (N.E.R.), and the Evelyn F. McKnight Brain Institute (N.E.R.), University of Arizona College of Medicine, Tucson, Arizona 85724
| | - Sally J Krajewski-Hall
- Departments of Pathology (M.A.M.-S., S.J.K.-H., N.E.R.), Cellular and Molecular Medicine (N.T.M., N.E.R.), and Neurology (N.E.R.), and the Evelyn F. McKnight Brain Institute (N.E.R.), University of Arizona College of Medicine, Tucson, Arizona 85724
| | - Nathaniel T McMullen
- Departments of Pathology (M.A.M.-S., S.J.K.-H., N.E.R.), Cellular and Molecular Medicine (N.T.M., N.E.R.), and Neurology (N.E.R.), and the Evelyn F. McKnight Brain Institute (N.E.R.), University of Arizona College of Medicine, Tucson, Arizona 85724
| | - Naomi E Rance
- Departments of Pathology (M.A.M.-S., S.J.K.-H., N.E.R.), Cellular and Molecular Medicine (N.T.M., N.E.R.), and Neurology (N.E.R.), and the Evelyn F. McKnight Brain Institute (N.E.R.), University of Arizona College of Medicine, Tucson, Arizona 85724
| |
Collapse
|
118
|
Szolcsányi J. Effect of capsaicin on thermoregulation: an update with new aspects. Temperature (Austin) 2015; 2:277-96. [PMID: 27227029 PMCID: PMC4843897 DOI: 10.1080/23328940.2015.1048928] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/07/2023] Open
Abstract
Capsaicin, a selective activator of the chemo- and heat-sensitive transient receptor potential (TRP) V1 cation channel, has characteristic feature of causing long-term functional and structural impairment of neural elements supplied by TRPV1/capsaicin receptor. In mammals, systemic application of capsaicin induces complex heat-loss response characteristic for each species and avoidance of warm environment. Capsaicin activates cutaneous warm receptors and polymodal nociceptors but has no effect on cold receptors or mechanoreceptors. In this review, thermoregulatory features of capsaicin-pretreated rodents and TRPV1-mediated neural elements with innocuous heat sensitivity are summarized. Recent data support a novel hypothesis for the role of visceral warmth sensors in monitoring core body temperature. Furthermore, strong evidence suggests that central presynaptic nerve terminals of TRPV1-expressing cutaneous, thoracic and abdominal visceral receptors are activated by innocuous warmth stimuli and capsaicin. These responses are absent in TRPV1 knockout mice. Thermoregulatory disturbance induced by systemic capsaicin pretreatment lasts for months and is characterized by a normal body temperature at cool environment up to a total dose of 150 mg/kg s.c. Upward differential shift of set points for activation vasodilation, other heat-loss effectors and thermopreference develops. Avoidance of warm ambient temperature (35°C, 40°C) is severely impaired but thermopreference at cool ambient temperatures (Tas) are not altered. TRPV1 knockout or knockdown and genetically altered TRPV1, TRPV2 and TRPM8 knockout mice have normal core temperature in thermoneutral or cool environments, but the combined mutant mice have impaired regulation in warm or cold (4°C) environments. Several lines of evidence support that in the preoptic area warmth sensitive neurons are activated and desensitized by capsaicin, but morphological evidence for it is controversial. It is suggested that these neurons have also integrator function. Fever is enhanced in capsaicin-desensitized rats and the inhibition observed after pretreatment with low i.p. doses does not support in the light of their warmth sensitivity the concept that abdominal TRPV1-expressing nerve terminals serve as nonthermal chemosensors for reference signals in thermoregulation.
Collapse
Key Words
- (s)EPSC(s), (spontaneous) excitatory postsynaptic current(s)
- DRG, dorsal root ganglion (ganglia)
- EGFP, enhanced green fluorescent protein
- LC, locus coeruleus
- LPS, lipopolysaccharide
- NTS, nucleus of the solitary tract
- PG(s), prostaglandin(s)
- POA, the preoptic area (of the hypothalamus)
- RTX, resiniferatoxin
- TRP, transient receptor potential
- TRPM8
- TRPV1
- Ta(s), ambient temperature(s)
- Tr, rectal temperature
- Ts, skin temperature
- Tt, tail temperature
- capsaicin
- fever
- preoptic area
- thermoregulation
- visceral thermoreceptors
- warm receptors
Collapse
Affiliation(s)
- János Szolcsányi
- Department of Pharmacology and Pharmacotherapy; University Medical School of Pécs; Pécs, Hungary; Szentágothai Research Centre University of Pécs; Pécs, Hungary
| |
Collapse
|
119
|
Garami A, Romanovsky AA. The transient receptor potential vanilloid-4 channel: detecting body temperatures that drive defences against mild warmth. Acta Physiol (Oxf) 2015; 214:154-6. [PMID: 25891390 DOI: 10.1111/apha.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/16/2015] [Indexed: 12/12/2022]
Affiliation(s)
- A. Garami
- Department of Pathophysiology and Gerontology; Medical School; University of Pecs; Pecs Hungary
- Systemic Inflammation Laboratory (FeverLab); Trauma Research; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| | - A. A. Romanovsky
- Systemic Inflammation Laboratory (FeverLab); Trauma Research; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| |
Collapse
|
120
|
Wang H, Siemens J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature (Austin) 2015; 2:178-87. [PMID: 27227022 PMCID: PMC4843888 DOI: 10.1080/23328940.2015.1040604] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| | - Jan Siemens
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| |
Collapse
|
121
|
Rudd JA, Nalivaiko E, Matsuki N, Wan C, Andrews PL. The involvement of TRPV1 in emesis and anti-emesis. Temperature (Austin) 2015; 2:258-76. [PMID: 27227028 PMCID: PMC4843889 DOI: 10.1080/23328940.2015.1043042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/29/2022] Open
Abstract
Diverse transmitter systems (e.g. acetylcholine, dopamine, endocannabinoids, endorphins, glutamate, histamine, 5-hydroxytryptamine, substance P) have been implicated in the pathways by which nausea and vomiting are induced and are targets for anti-emetic drugs (e.g. 5-hydroxytryptamine3 and tachykinin NK1 antagonists). The involvement of TRPV1 in emesis was discovered in the early 1990s and may have been overlooked previously as TRPV1 pharmacology was studied in rodents (mice, rats) lacking an emetic reflex. Acute subcutaneous administration of resiniferatoxin in the ferret, dog and Suncus murinus revealed that it had “broad–spectrum” anti-emetic effects against stimuli acting via both central (vestibular system, area postrema) and peripheral (abdominal vagal afferents) inputs. One of several hypotheses discussed here is that the anti-emetic effect is due to acute depletion of substance P (or another peptide) at a critical site (e.g. nucleus tractus solitarius) in the central emetic pathway. Studies in Suncus murinus revealed a potential for a long lasting (one month) effect against the chemotherapeutic agent cisplatin. Subsequent studies using telemetry in the conscious ferret compared the anti-emetic, hypothermic and hypertensive effects of resiniferatoxin (pungent) and olvanil (non-pungent) and showed that the anti-emetic effect was present (but reduced) with olvanil which although inducing hypothermia it did not have the marked hypertensive effects of resiniferatoxin. The review concludes by discussing general insights into emetic pathways and their pharmacology revealed by these relatively overlooked studies with TRPV1 activators (pungent an non-pungent; high and low lipophilicity) and antagonists and the potential clinical utility of agents targeted at the TRPV1 system.
Collapse
Key Words
- 12-HPETE, 12-hydroperoxy-eicosatetraenoic acid
- 5-HT, 5-hydroxytryptamine
- 5-HT3, 5-hdroxytryptamine3
- 8-OH-DPAT, (±)-8-Hydroxy-2-dipropylaminotetralin
- AM404
- AM404, N-arachidonoylaminophenol
- AMT, anandamide membrane transporter
- AP, area postrema
- BBB, blood brain barrier
- CB1, cannabinoid1
- CGRP, calcitonin gene-related peptide
- CINV, chemotherapy-induced nausea and vomiting
- CP 99,994
- CTA, conditioned taste aversion
- CVO's, circumventricular organs
- D2, dopamine2
- DRG, dorsal root ganglia
- FAAH, fatty acid amide hydrolase
- H1, histamine1
- LTB4, leukotriene B4
- NADA, N-arachidonoyl-dopamine
- NK1, neurokinin1
- POAH, preoptic anterior hypothalamus
- RTX
- Suncus murinus
- TRPV1
- TRPV1, transient receptor potential vanilloid receptor1
- anti-emetic
- capsaicin
- ferret
- i.v., intravenous
- nausea
- olvanil
- thermoregulation
- vanilloid
- vomiting
Collapse
Affiliation(s)
- John A Rudd
- Brain and Mind Institute; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR; School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy; University of Newcastle ; Callaghan, NSW, Australia
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo ; Tokyo, Japan
| | - Christina Wan
- School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong ; Shatin; New Territories, Hong Kong SAR
| | - Paul Lr Andrews
- Division of Biomedical Sciences; St George's University of London ; London, UK
| |
Collapse
|
122
|
Feketa VV, Marrelli SP. Induction of therapeutic hypothermia by pharmacological modulation of temperature-sensitive TRP channels: theoretical framework and practical considerations. Temperature (Austin) 2015; 2:244-57. [PMID: 27227027 PMCID: PMC4844121 DOI: 10.1080/23328940.2015.1024383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
Therapeutic hypothermia has emerged as a remarkably effective method of neuroprotection from ischemia and is being increasingly used in clinics. Accordingly, it is also a subject of considerable attention from a basic scientific research perspective. One of the fundamental problems, with which current studies are concerned, is the optimal method of inducing hypothermia. This review seeks to provide a broad theoretical framework for approaching this problem, and to discuss how a novel promising strategy of pharmacological modulation of the thermosensitive ion channels fits into this framework. Various physical, anatomical, physiological and molecular aspects of thermoregulation, which provide the foundation for this text, have been comprehensively reviewed and will not be discussed exhaustively here. Instead, the first part of the current review, which may be helpful for a broader readership outside of thermoregulation research, will build on this existing knowledge to outline possible opportunities and research directions aimed at controlling body temperature. The second part, aimed at a more specialist audience, will highlight the conceptual advantages and practical limitations of novel molecular agents targeting thermosensitive Transient Receptor Potential (TRP) channels in achieving this goal. Two particularly promising members of this channel family, namely TRP melastatin 8 (TRPM8) and TRP vanilloid 1 (TRPV1), will be discussed in greater detail.
Collapse
Key Words
- DMH, dorso-medial hypothalamus
- MPA, medial preoptic area of hypothalamus
- TRP, Transient Receptor Potential
- TRPA1, Transient Receptor Potential cation channel, subfamily A, member 1
- TRPM8, Transient Receptor Potential cation channel, subfamily M, member 8
- TRPV1, Transient Receptor Potential cation channel, subfamily V, member 1
- TRPV2, Transient Receptor Potential cation channel, subfamily V, member 2
- TRPV3, Transient Receptor Potential cation channel, subfamily V, member 3
- TRPV4, Transient Receptor Potential cation channel, subfamily V, member 4
- ThermoTRPs
- ThermoTRPs, Thermosensitive Transient Receptor Potential cation channels
- body temperature
- core temperature
- pharmacological hypothermia
- physical cooling
- rMR, rostral medullary raphe region
- therapeutic hypothermia
- thermopharmacology
- thermoregulation
- thermosensitive ion channels
Collapse
Affiliation(s)
- Viktor V Feketa
- Department of Molecular Physiology and Biophysics Graduate Program; Cardiovascular Sciences Track; Baylor College of Medicine , Houston, TX, USA
| | - Sean P Marrelli
- Department of Molecular Physiology and Biophysics Graduate Program; Cardiovascular Sciences Track; Baylor College of Medicine, Houston, TX, USA; Department of Anesthesiology; Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
123
|
Lee E, Jung DY, Kim JH, Patel PR, Hu X, Lee Y, Azuma Y, Wang HF, Tsitsilianos N, Shafiq U, Kwon JY, Lee HJ, Lee KW, Kim JK. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. FASEB J 2015; 29:3182-92. [PMID: 25888600 DOI: 10.1096/fj.14-268300] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/31/2015] [Indexed: 01/04/2023]
Abstract
Insulin resistance is a major characteristic of obesity and type 2 diabetes, but the underlying mechanism is unclear. Recent studies have shown a metabolic role of capsaicin that may be mediated via the transient receptor potential vanilloid type-1 (TRPV1) channel. In this study, TRPV1 knockout (KO) and wild-type (WT) mice (as controls) were fed a high-fat diet (HFD), and metabolic studies were performed to measure insulin and leptin action. The TRPV1 KO mice became more obese than the WT mice after HFD, partly attributed to altered energy balance and leptin resistance in the KO mice. The hyperinsulinemic-euglycemic clamp experiment showed that the TRPV1 KO mice were more insulin resistant after HFD because of the ∼40% reduction in glucose metabolism in the white and brown adipose tissue, compared with that in the WT mice. Leptin treatment failed to suppress food intake, and leptin-mediated hypothalamic signal transducer and activator of transcription (STAT)-3 activity was blunted in the TRPV1 KO mice. We also found that the TRPV1 KO mice were more obese and insulin resistant than the WT mice at 9 mo of age. Taken together, these results indicate that lacking TRPV1 exacerbates the obesity and insulin resistance associated with an HFD and aging, and our findings further suggest that TRPV1 has a major role in regulating glucose metabolism and hypothalamic leptin's effects in obesity.
Collapse
Affiliation(s)
- Eunjung Lee
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Dae Young Jung
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jong Hun Kim
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Payal R Patel
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Xiaodi Hu
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Yongjin Lee
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Yoshihiro Azuma
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Hsun-Fan Wang
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Nicholas Tsitsilianos
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Umber Shafiq
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jung Yeon Kwon
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Hyong Joo Lee
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Ki Won Lee
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jason K Kim
- *Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA; World Class University Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea; and Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| |
Collapse
|
124
|
Andrews MD, af Forselles K, Beaumont K, Galan SRG, Glossop PA, Grenie M, Jessiman A, Kenyon AS, Lunn G, Maw G, Owen RM, Pryde DC, Roberts D, Tran TD. Discovery of a Selective TRPM8 Antagonist with Clinical Efficacy in Cold-Related Pain. ACS Med Chem Lett 2015; 6:419-24. [PMID: 25893043 DOI: 10.1021/ml500479v] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/30/2015] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential (TRP) family of ion channels comprises nonselective cation channels that respond to a wide range of chemical and thermal stimuli. TRPM8, a member of the melastatin subfamily, is activated by cold temperatures (<28 °C), and antagonists of this channel have the potential to treat cold induced allodynia and hyperalgesia. However, TRPM8 has also been implicated in mammalian thermoregulation and antagonists have the potential to induce hypothermia in patients. We report herein the identification and optimization of a series of TRPM8 antagonists that ultimately led to the discovery of PF-05105679. The clinical finding with this compound will be discussed, including both efficacy and its ability to affect thermoregulation processes in humans.
Collapse
Affiliation(s)
| | | | - Kevin Beaumont
- Pharmacokinetics,
Dynamics and Metabolism, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | - Robert M. Owen
- Worldwide
Medicinal Chemistry, Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - David C. Pryde
- Worldwide
Medicinal Chemistry, Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, United Kingdom
| | | | | |
Collapse
|
125
|
Romanovsky AA. Protecting western redcedar from deer browsing-with a passing reference to TRP channels. Temperature (Austin) 2015; 2:142-9. [PMID: 27227013 PMCID: PMC4843894 DOI: 10.1080/23328940.2015.1047078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 10/31/2022] Open
Abstract
This editorial is about tree farming. It proposes to test in an experiment whether co-planting (in the same hole) western redcedar (WRC, Thuja plicata) with Sitka spruce (Picea sitchensis) protects WRC seedlings from wildlife browsing. This sustainable protection method is an alternative to the traditional use of mechanical devices and big-game repellents. Many repellents contain transient receptor potential (TRP) agonists, such as capsaicin, a TRP vanilloid-1 agonist. This editorial also delivers a puzzle: while herbivores avoid capsaicin, why do people living in hot climates consume large quantities of it (in chili peppers)?
Collapse
Affiliation(s)
- Andrej A Romanovsky
- FeverLab; Trauma Research; St. Joseph's Hospital and Medical Center; Phoenix, AZ, USA
- Tree Fever: Forestland Conservation and Development; Glendale, AZ, USA
| |
Collapse
|
126
|
Held K, Voets T, Vriens J. TRPM3 in temperature sensing and beyond. Temperature (Austin) 2015; 2:201-13. [PMID: 27227024 PMCID: PMC4844244 DOI: 10.4161/23328940.2014.988524] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022] Open
Abstract
TRPM3, also known as melastatin 2 (MLSN2), LTRPC3 (long TRPC3) and KIAA1616, is a member of the TRPM subfamily of transient receptor potential (TRP) ion channels. The channel was originally identified as a volume-regulated ion channel that can be activated upon reduction of the extracellular osmolality. Later, the channel was proposed to be involved in the modulation of insulin release in pancreatic islets. However, new evidence has uncovered a role of TRPM3 as a thermosensitive nociceptor channel implicated in the detection of noxious heat. The channel is functionally expressed in a subset of neurons of the somatosensory system and can be activated by heat. The purpose of the present review is to summarize existing knowledge of the expression, biophysics and pharmacology of TRPM3 and to serve as a guide for future studies aimed at improving the understanding of the mechanism of thermosensation and proposed physiological functions of TRPM3.
Collapse
Key Words
- Clt, Clotrimazole
- DHEA, Dehydroepiandrosterone
- DRG, Dorsal root ganglion
- DeSPH, D-erythro-sphingosine
- PCR, Polymerase chain reaction
- PPAR-γ, Peroxisome proliferator-activator receptor - γ
- PS, Pregnenolone sulfate
- Q10, 10-degree temperature coefficient
- RT, Room temperature
- TG, Trigeminal ganglion
- TRP channel
- TRP, Transient receptor potential
- TRPM, Transient receptor potential melastatin
- TRPM3
- TRPV, Transient receptor potential vanilloid
- nociceptor
- sensory system
- temperature sensing
- ΔG, Gibbs free energy
- ΔH, Enthalpy
- ΔS, Entropy
Collapse
Affiliation(s)
- Katharina Held
- Laboratory of Experimental Gynecology; KU Leuven; Leuven, Belgium; Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe); KU Leuven; Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe); KU Leuven ; Leuven, Belgium
| | - Joris Vriens
- Laboratory of Experimental Gynecology; KU Leuven ; Leuven, Belgium
| |
Collapse
|
127
|
Holland C, van Drunen C, Denyer J, Smart K, Segboer C, Terreehorst I, Newlands A, Beerahee M, Fokkens W, Tsitoura DC. Inhibition of capsaicin-driven nasal hyper-reactivity by SB-705498, a TRPV1 antagonist. Br J Clin Pharmacol 2015; 77:777-88. [PMID: 23909699 DOI: 10.1111/bcp.12219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/21/2013] [Indexed: 11/30/2022] Open
Abstract
AIMS To assess the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of intranasal SB-705498, a selective TRPV1 antagonist. METHODS Two randomized, double-blind, placebo-controlled, clinical studies were performed: (i) an intranasal SB-705498 first time in human study to examine the safety and PK of five single escalating doses from 0.5 to 12 mg and of repeat dosing with 6 mg and 12 mg twice daily for 14 days and (ii) a PD efficacy study in subjects with non-allergic rhinitis (NAR) to evaluate the effect of 12 mg intranasal SB-705498 against nasal capsaicin challenge. RESULTS Single and repeat dosing with intranasal SB-705498 was safe and well tolerated. The overall frequency of adverse events was similar for SB-705498 and placebo and no dose-dependent increase was observed. Administration of SB-705498 resulted in less than dose proportional AUC(0,12 h) and Cmax , while repeat dosing from day 1 to day 14 led to its accumulation. SB-705498 receptor occupancy in nasal tissue was estimated to be high (>80%). Administration of 12 mg SB-705498 to patients with NAR induced a marked reduction in total symptom scores triggered by nasal capsaicin challenge. Inhibition of rhinorrhoea, nasal congestion and burning sensation was associated with 2- to 4-fold shift in capsaicin potency. CONCLUSIONS Intranasal SB-705498 has an appropriate safety and PK profile for development in humans and achieves clinically relevant attenuation of capsaicin-provoked rhinitis symptoms in patients with NAR. The potential impact intranasal SB-705498 may have in rhinitis treatment deserves further evaluation.
Collapse
Affiliation(s)
- Carlijn Holland
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Romanovsky AA. A Valentine's Day bouquet for Temperature readers: pleasing with prizes, searching for the right words, and keeping things mysterious. Temperature (Austin) 2015; 2:17-21. [PMID: 27226997 PMCID: PMC4843885 DOI: 10.1080/23328940.2015.1017089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 11/12/2022] Open
Abstract
This editorial tells its readers that the journal Temperature awards its first prizes for best papers to Boris Kingma and Assaf Yacobi. It also discusses the use of several thermoregulation-related terms and expressions, including "cold temperature," "thermoneutral temperature," and "warm-sensitive" and offers, arguably, better alternatives. The editorial also contains a new puzzle: how can color affect temperature perception?
Collapse
Affiliation(s)
- Andrej A Romanovsky
- Systemic Inflammation Laboratory (FeverLab); Trauma Research, St. Joseph's Hospital and Medical Center; Phoenix, AZ USA
| |
Collapse
|
129
|
Gautier M, Dhennin-Duthille I, Ay AS, Rybarczyk P, Korichneva I, Ouadid-Ahidouch H. New insights into pharmacological tools to TR(i)P cancer up. Br J Pharmacol 2014; 171:2582-92. [PMID: 24345078 DOI: 10.1111/bph.12561] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 12/25/2022] Open
Abstract
The aim of this review is to address the recent advances regarding the use of pharmacological agents to target transient receptor potential (TRP) channels in cancer and their potential application in therapeutics. Physiologically, TRP channels are responsible for cation entry (Ca(2+) , Na(+) , Mg(2+) ) in many mammalian cells and regulate a large number of cellular functions. However, dysfunction in channel expression and/or activity can be linked to human diseases like cancer. Indeed, there is growing evidence that TRP channel expression is altered in cancer tissues in comparison with normal ones. Moreover, these proteins are involved in many cancerous processes, including cell proliferation, apoptosis, migration and invasion, as well as resistance to chemotherapy. Among the TRP superfamily, TRPC, TRPV, TRPM and TRPA1 have been shown to play a role in many cancer types, including breast, digestive, gliomal, head and neck, lung and prostate cancers. Pharmacological modulators are used to characterize the functional implications of TRP channels in whole-cell membrane currents, resting membrane potential regulation and intracellular Ca(2+) signalling. Moreover, pharmacological modulation of TRP activity in cancer cells is systematically linked to the effect on cancerous processes (proliferation, survival, migration, invasion, sensitivity to chemotherapeutic drugs). Here we describe the effects of such TRP modulators on TRP activity and cancer cell phenotype. Furthermore, the potency and specificity of these agents will be discussed, as well as the development of new strategies for targeting TRP channels in cancer.
Collapse
Affiliation(s)
- M Gautier
- Laboratory of Cell and Molecular Physiology, SFR CAP-Santé (FED 4231), University of Picardie Jules Verne, UFR Sciences, EA 4667, Amiens, France
| | | | | | | | | | | |
Collapse
|
130
|
Inhibition of FAAH, TRPV1, and COX2 by NSAID-serotonin conjugates. Bioorg Med Chem Lett 2014; 24:5695-5698. [PMID: 25467164 DOI: 10.1016/j.bmcl.2014.10.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022]
Abstract
Serotonin was linked by amidation to the carboxylic acid groups of a series of structurally diverse NSAIDs. The resulting NSAID-serotonin conjugates were tested in vitro for their ability to inhibit FAAH, TRPV1, and COX2. Ibuprofen-5-HT and Flurbiprofen-5-HT inhibited all three targets with approximately the same potency as N-arachidonoyl serotonin (AA-5-HT), while Fenoprofen-5-HT and Naproxen-5-HT showed activity as dual inhibitors of TRPV1 and COX2.
Collapse
|
131
|
Nash MS, Verkuyl JM, Bhalay G. TRPV1 Antagonism: From Research to Clinic. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The capsaicin receptor, TRPV1, has been one of the most extensively studied molecules in sensory research. Its contribution to the sensation of pain in numerous pre-clinical inflammatory and neuropathic paradigms has been well-established and expression analysis suggests a potential role clinically in pain and bladder conditions. The field has now reached an exciting point in time with the development of a number of high quality TRPV1 antagonist drug candidates and the release of clinical data. What has become apparent from this work is that inhibition of TRPV1 function brings with it the potential liabilities of increased body temperature and altered thermal perception. However, there is cause for optimism because it appears that not all antagonists have the same properties and compounds can be identified that lack significant on-target side-effects whilst retaining efficacy, at least pre-clinically. What is perhaps now more critical to address is the question of how effective the analgesia provided by a TRPV1 antagonist will be. Although tantalizing clinical data showing effects on experimentally-induced pain or pain following molar extraction have been reported, no clear efficacy in a chronic pain condition has yet been demonstrated making it difficult to perform an accurate risk-benefit analysis for TRPV1 antagonists. Here we provide an overview of some of the most advanced clinical candidates and discuss the approaches being taken to avoid the now well established on-target effects of TRPV1 antagonists.
Collapse
Affiliation(s)
- Mark S. Nash
- Novartis Institutes for Biomedical Research Forum 1, Novartis Campus CH - 4056 Basel Switzerland
| | - J. Martin Verkuyl
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| | - Gurdip Bhalay
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| |
Collapse
|
132
|
Zhou C, Liang P, Liu J, Zhang W, Liao D, Chen Y, Chen X, Li T. Emulsified isoflurane enhances thermal transient receptor potential vanilloid-1 channel activation-mediated sensory/nociceptive blockade by QX-314. Anesthesiology 2014; 121:280-9. [PMID: 24667830 DOI: 10.1097/aln.0000000000000236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND QX-314 produces nociceptive blockade, facilitated by permeation through transient receptor potential vanilloid-1 (TRPV1) channels. TRPV1 channel can be activated by noxious heat and sensitized by volatile anesthetics. The authors hypothesized that emulsified isoflurane (EI) could enhance thermal TRPV1 channel activation-mediated sensory/nociceptive blockade by QX-314. METHODS Rats were perineurally injected with QX-314 (Sigma-Aldrich Co. Ltd. Shanghai, China) alone or QX-314 combined with EI, followed by heat exposure on the injection site. The tail-flick and tail-clamping tests were used to assess sensory and nociceptive blockade, respectively; a sciatic nerve block model was used to assess motor and sensory blockade. Effects of EI on thermal activation of TRPV1 channels were evaluated on rat dorsal root ganglia neurons by whole-cell patch-clamp recordings. RESULTS Heat exposure enhanced sensory/nociceptive blockade by QX-314 in rat tails, but not motor blockade in sciatic nerve block model. QX-314 alone or QX-314 + 42°C produced no nociceptive blockade. QX-314 + 48°C produced 100% nociceptive blockade with duration of 12.5 ± 2.0 h (mean ± SEM). By adding 2% EI, QX-314 + 42°C produced 80% nociceptive blockade with duration of 8.1 ± 1.9 h, which was similar to the effect of QX-314 + 46°C (7.7 ± 1.1 h; P = 0.781). The enhancement of heat on sensory/nociceptive blockade of QX-314 was prevented by TRPV1 channel antagonist. The temperature thresholds of TRPV1 channel activation on dorsal root ganglia neurons were significantly reduced by EI. CONCLUSIONS Thermal activation of TRPV1 channels enhanced long-lasting sensory/nociceptive blockade by QX-314 without affecting motor blockade. The addition of EI reduced temperature thresholds for inducing long-lasting sensory/nociceptive blockade due to QX-314.
Collapse
Affiliation(s)
- Cheng Zhou
- From the Laboratory of Anesthesia and Critical Care Medicine (C.Z., J.L., W.Z., D.L., Y.C., X.C., T.L.), Department of Anesthesiology (P.L., J.L., W.Z., X.C.), Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Terada Y, Kitajima M, Taguchi F, Takayama H, Horie S, Watanabe T. Identification of Indole Alkaloid Structural Units Important for Stimulus-Selective TRPM8 Inhibition: SAR Study of Naturally Occurring Iboga Derivatives. JOURNAL OF NATURAL PRODUCTS 2014; 77:1831-1838. [PMID: 25052206 DOI: 10.1021/np500235b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The iboga alkaloid voacangine (1) has been reported previously to be the first stimulus-selective TRPM8 antagonist. In the present report, a structure-activity relationship (SAR) study is described on the effects of some naturally occurring indole alkaloid analogues on TRPM8 inhibition. Dihydrocatharanthine (10) and catharanthine (11) were found to be inhibitors of TRPM8 activity, and their IC50 values were equivalent to that of BCTC, a potent and representative TRPM8 antagonist. Furthermore, it was shown that the iboga moiety is the most crucial unit for TRPM8 blockade and that its stereostructure, as found in 1 but not in 10 and 11, is essential for chemical agonist-selective TRPM8 inhibition. These findings should provide useful information for synthesizing additional stimulus-selective and TRPM8-selective blockers.
Collapse
Affiliation(s)
- Yuko Terada
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mariko Kitajima
- Department of Biofunctional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Fuyumi Taguchi
- Department of Biofunctional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromitsu Takayama
- Department of Biofunctional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University , 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Tatsuo Watanabe
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
134
|
Abstract
TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50-100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 (-/-) mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.
Collapse
|
135
|
Capsaicin induces "brite" phenotype in differentiating 3T3-L1 preadipocytes. PLoS One 2014; 9:e103093. [PMID: 25072597 PMCID: PMC4114566 DOI: 10.1371/journal.pone.0103093] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022] Open
Abstract
Objective Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes. Methods Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin. Results TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight. Conclusion Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and induces brown-like phenotype whereas higher doses.
Collapse
|
136
|
Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals. Nat Rev Neurosci 2014; 15:573-89. [PMID: 25053448 DOI: 10.1038/nrn3784] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our ability to perceive temperature is crucial: it enables us to swiftly react to noxiously cold or hot objects and helps us to maintain a constant body temperature. Sensory nerve endings, upon depolarization by temperature-gated ion channels, convey electrical signals from the periphery to the CNS, eliciting a sense of temperature. In the past two decades, we have witnessed important advances in our understanding of mammalian thermosensation, with the identification and animal-model assessment of candidate molecular thermosensors - such as types of transient receptor potential (TRP) cation channels - involved in peripheral thermosensation. Ongoing research aims to understand how these miniature thermometers operate at the cellular and molecular level, and how they can be pharmacologically targeted to treat pain without disturbing vital thermoregulatory processes.
Collapse
Affiliation(s)
- Joris Vriens
- Laboratory of Experimental Gynaecology, KU Leuven, Herestraat 49 BOX 611, B-3000 Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 BOX 802, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 BOX 802, B-3000 Leuven, Belgium
| |
Collapse
|
137
|
Banki E, Pakai E, Gaszner B, Zsiboras C, Czett A, Bhuddi PRP, Hashimoto H, Toth G, Tamas A, Reglodi D, Garami A. Characterization of the thermoregulatory response to pituitary adenylate cyclase-activating polypeptide in rodents. J Mol Neurosci 2014; 54:543-54. [PMID: 24994541 DOI: 10.1007/s12031-014-0361-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022]
Abstract
Administration of the long form (38 amino acids) of pituitary adenylate cyclase-activating polypeptide (PACAP38) into the central nervous system causes hyperthermia, suggesting that PACAP38 plays a role in the regulation of deep body temperature (T b). In this study, we investigated the thermoregulatory role of PACAP38 in details. First, we infused PACAP38 intracerebroventricularly to rats and measured their T b and autonomic thermoeffector responses. We found that central PACAP38 infusion caused dose-dependent hyperthermia, which was brought about by increased thermogenesis and tail skin vasoconstriction. Compared to intracerebroventricular administration, systemic (intravenous) infusion of the same dose of PACAP38 caused significantly smaller hyperthermia, indicating a central site of action. We then investigated the thermoregulatory phenotype of mice lacking the Pacap gene (Pacap (-/-)). Freely moving Pacap (-/-) mice had higher locomotor activity throughout the day and elevated deep T b during the light phase. When the Pacap (-/-) mice were loosely restrained, their metabolic rate and T b were lower compared to their wild-type littermates. We conclude that PACAP38 causes hyperthermia via activation of the autonomic cold-defense thermoeffectors through central targets. Pacap (-/-) mice express hyperkinesis, which is presumably a compensatory mechanism, because under restrained conditions, these mice are hypometabolic and hypothermic compared to controls.
Collapse
Affiliation(s)
- Eszter Banki
- Department of Anatomy PTE-MTA "Lendulet" PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Shafton AD, Kitchener P, McKinley MJ, McAllen RM. Reflex control of rat tail sympathetic nerve activity by abdominal temperature. Temperature (Austin) 2014; 1:37-41. [PMID: 27583279 PMCID: PMC4972510 DOI: 10.4161/temp.29597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/15/2023] Open
Abstract
The thermoregulatory reflex effects of warming and cooling in the abdomen were investigated in 4 urethane-anesthetized Sprague-Dawley rats. Animals were shaved and surrounded by a water-perfused silastic jacket. Skin temperature under the jacket was recorded by thermocouples at 3 sites and brain temperature was monitored by a thermocouple inserted lateral to the hypothalamus. A heat exchanger made from an array of silicon tubes in parallel loops was placed through a ventral incision into the abdomen; it rested against the intestinal serosa and the temperature of this interface was monitored by a thermocouple. Few- or multi-unit postganglionic activity was recorded from sympathetic nerves supplying tail vessels (tail SNA). Intra-abdominal temperature was briefly lowered or raised between 35–41 °C by perfusing the heat exchanger with cold or warm water. Warming the abdomen inhibited tail SNA while cooling it excited tail SNA in all 4 animals. We also confirmed that cooling the trunk skin activated tail SNA. Multivariate analysis of tail SNA with respect to abdominal, brain and trunk skin temperatures revealed that all had highly significant independent inhibitory actions on tail SNA, but in these experiments abdominal temperature had the weakest and brain temperature the strongest effect. We conclude that abdominal temperature has a significant thermoregulatory action in the rat, but its influence on cutaneous vasomotor control appears to be weaker than that of skin or brain temperatures.
Collapse
Affiliation(s)
- Anthony D Shafton
- The Florey Institute of Neuroscience and Mental Health; University Of Melbourne; Melbourne, VIC Australia
| | - Peter Kitchener
- Department of Anatomy & Neuroscience; University Of Melbourne; Melbourne, VIC Australia
| | - Michael J McKinley
- The Florey Institute of Neuroscience and Mental Health; University Of Melbourne; Melbourne, VIC Australia; Department of Physiology; University Of Melbourne; Melbourne, VIC Australia
| | - Robin M McAllen
- The Florey Institute of Neuroscience and Mental Health; University Of Melbourne; Melbourne, VIC Australia; Department of Anatomy & Neuroscience; University Of Melbourne; Melbourne, VIC Australia
| |
Collapse
|
139
|
Nilius B, Szallasi A. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014; 66:676-814. [DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
140
|
Marics I, Malapert P, Reynders A, Gaillard S, Moqrich A. Acute heat-evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels. PLoS One 2014; 9:e99828. [PMID: 24925072 PMCID: PMC4055713 DOI: 10.1371/journal.pone.0099828] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/19/2014] [Indexed: 01/22/2023] Open
Abstract
The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activated by warm as well as noxious heat temperatures. Loss-of-function studies in single TRPV1 and TRPV3 knock-out mice have shown that heat temperature sensation is not completely abolished suggesting functional redundancies among these two channels and highlighting the need of a detailed analysis of TRPV1::TRPV3 double knock-out mice (V1V3dKO) which is hampered by the close proximity of the loci expressing the two channels. Here we describe the generation of a novel mouse model in which trpv1 and trpv3 genes have been inactivated using bacterial artificial chromosome (BAC)-based homologous recombination in embryonic stem cells. In these mice, using classical thermosensory tests such hot plate, tail flick and the thermotaxis gradient paradigms, we confirm that TRPV1 is the master channel for sensing noxious heat temperatures and identify a cooperative role of TRPV1 and TRPV3 for sensing a well-defined window of acute moderate heat temperature. Using the dynamic hot plate assay, we unravel an intriguing and unexpected pronounced escape behavior in TRPV1 knock-out mice that was attenuated in the V1V3dKO. Together, and in agreement with the temperature activation overlap between TRPV1 and TRPV3 channels, our data provide in vivo evidence of a cooperative role between skin-derived TRPV3 and primary sensory neurons-enriched TRPV1 in modulation of moderate and noxious heat temperature sensation and suggest that other mechanisms are required for heat temperature sensation.
Collapse
Affiliation(s)
- Irène Marics
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Ana Reynders
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Stéphane Gaillard
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
- * E-mail:
| |
Collapse
|
141
|
Transient receptor potential melastatin 8 channel inhibition potentiates the hypothermic response to transient receptor potential vanilloid 1 activation in the conscious mouse. Crit Care Med 2014; 42:e355-63. [PMID: 24595220 DOI: 10.1097/ccm.0000000000000229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Mild decrease in core temperature (therapeutic hypothermia) provides lasting neuroprotection following cardiac arrest or cerebral ischemia. However, current methods for producing therapeutic hypothermia trigger a cold-defense response that must be countered by sedatives, muscle paralytics, and mechanical ventilation. We aimed to determine methods for producing hypothermia in the conscious mouse by targeting two transient receptor potential channels involved in thermoregulation, two transient receptor potential (TRP) channels involved in thermoregulation, TRP vanilloid 1 (TRPV1) and TRP melastatin 8 (TRPM8). DESIGN Controlled prospective animal study. SETTING Research laboratory at academic medical center. SUBJECTS Conscious unrestrained young and aged male mice. INTERVENTIONS Mice were treated with the TRPV1 agonist dihydrocapsaicin, a TRPM8 inhibitor ("compound 5"), or their combination and the effects on core temperature (Tcore) were measured by implanted thermocouples and wireless transponders. MEASUREMENTS AND MAIN RESULTS TRPV1 agonist dihydrocapsaicin produced a dose-dependent (2-4 mg/kg s.c.) drop in Tcore. A loading dose followed by continuous infusion of dihydrocapsaicin produced a rapid and prolonged (> 6 hr) drop of Tcore within the therapeutic range (32-34°C). The hypothermic effect of dihydrocapsaicin was augmented in aged mice and was not desensitized with repeated administration. TRPM8 inhibitor "compound 5" (20 mg/kg s.c.) augmented the drop in core temperature during cold exposure (8°C). When "compound 5" (30 mg/kg) was combined with dihydrocapsaicin (1.25-2.5 mg/kg), the drop in Tcore was amplified and prolonged. CONCLUSIONS Activating warm receptors (TRPV1) produced rapid and lasting hypothermia in young and old mice. Furthermore, hypothermia induced by TRPV1 agonists was potentiated and prolonged by simultaneous inhibition of TRPM8.
Collapse
|
142
|
Straub RH. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective. J Mol Med (Berl) 2014; 92:925-37. [DOI: 10.1007/s00109-014-1175-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 01/04/2023]
|
143
|
Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents. J Neurosci 2014; 34:4445-52. [PMID: 24671991 DOI: 10.1523/jneurosci.5387-13.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rodent transient receptor potential ankyrin-1 (TRPA1) channel has been hypothesized to serve as a temperature sensor for thermoregulation in the cold. We tested this hypothesis by using deletion of the Trpa1 gene in mice and pharmacological blockade of the TRPA1 channel in rats. In both Trpa1(-/-) and Trpa1(+/+) mice, severe cold exposure (8°C) resulted in decreases of skin and deep body temperatures to ∼8°C and 13°C, respectively, both temperatures being below the reported 17°C threshold temperature for TRPA1 activation. Under these conditions, Trpa1(-/-) mice had the same dynamics of body temperature as Trpa1(+/+) mice and showed no weakness in the tail skin vasoconstriction response or thermogenic response to cold. In rats, the effects of pharmacological blockade were studied by using two chemically unrelated TRPA1 antagonists: the highly potent and selective compound A967079, which had been characterized earlier, and the relatively new compound 43 ((4R)-1,2,3,4-tetrahydro-4-[3-(3-methoxypropoxy)phenyl]-2-thioxo-5H-indeno[1,2-d]pyrimidin-5-one), which we further characterized in the present study and found to be highly potent (IC50 against cold of ∼8 nm) and selective. Intragastric administration of either antagonist at 30 mg/kg before severe (3°C) cold exposure did not affect the thermoregulatory responses (deep body and tail skin temperatures) of rats, even though plasma concentrations of both antagonists well exceeded their IC50 value at the end of the experiment. In the same experimental setup, blocking the melastatin-8 (TRPM8) channel with AMG2850 (30 mg/kg) attenuated cold-defense mechanisms and led to hypothermia. We conclude that TRPA1 channels do not drive autonomic thermoregulatory responses to cold in rodents.
Collapse
|
144
|
Abstract
This review analyses whether skin temperature represents ambient temperature and serves as a feedforward signal for the thermoregulation system, or whether it is one of the body's temperatures and provides feedback. The body is covered mostly by hairy (non-glabrous) skin, which is typically insulated from the environment (with clothes in humans and with fur in non-human mammals). Thermal signals from hairy skin represent a temperature of the insulated superficial layer of the body and provide feedback to the thermoregulation system. It is explained that this feedback is auxiliary, both negative and positive, and that it reduces the system's response time and load error. Non-hairy (glabrous) skin covers specialized heat-exchange organs (e.g. the hand), which are also used to explore the environment. In thermoregulation, these organs are primarily effectors. Their main thermosensory-related role is to assess local temperatures of objects explored; these local temperatures are feedforward signals for various behaviours. Non-hairy skin also contributes to the feedback for thermoregulation, but this contribution is limited. Autonomic (physiological) thermoregulation does not use feedforward signals. Thermoregulatory behaviours use both feedback and feedforward signals. Implications of these principles to thermopharmacology, a new approach to achieving biological effects by blocking temperature signals with drugs, are discussed.
Collapse
Affiliation(s)
- A. A. Romanovsky
- Trauma Research Systemic Inflammation Laboratory (FeverLab) St. Joseph's Hospital and Medical Center Phoenix AZUSA
| |
Collapse
|
145
|
Terada Y, Horie S, Takayama H, Uchida K, Tominaga M, Watanabe T. Activation and inhibition of thermosensitive TRP channels by voacangine, an alkaloid present in Voacanga africana, an African tree. JOURNAL OF NATURAL PRODUCTS 2014; 77:285-297. [PMID: 24484240 DOI: 10.1021/np400885u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Voacangine (1) is an alkaloid found in the root bark of Voacanga africana. Our previous work has suggested that 1 is a novel transient receptor potential vanilloid type 1 (TRPV1) antagonist. In this study, the agonist and antagonist activities of 1 were examined against thermosensitive TRP channels. Channel activity was evaluated mainly using TRP channel-expressing HEK cells and calcium imaging. Herein, it was shown that 1 acts as an antagonist for TRPV1 and TRPM8 but as an agonist for TRPA1 (EC50, 8 μM). The compound competitively blocked capsaicin binding to TRPV1 (IC50, 50 μM). Voacangine (1) competitively inhibited the binding of menthol to TRPM8 (IC50, 9 μM), but it showed noncompetitive inhibition against icilin (IC50, 7 μM). Moreover, the compound selectively abrogated chemical agonist-induced TRPM8 activation and did not affect cold-induced activation. Among these effects, the TRPM8 inhibition profile is unique and noteworthy, because to date no studies have reported a menthol competitive inhibitor of TRPM8 derived from a natural source. Furthermore, this is the first report of a stimulus-selective TRPM8 antagonist. Accordingly, 1 may contribute to the development of a novel class of stimulus-selective TRPM8 blockers.
Collapse
Affiliation(s)
- Yuko Terada
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | | | | | | | |
Collapse
|
146
|
Szolcsányi J. Capsaicin and sensory neurones: a historical perspective. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:1-37. [PMID: 24941663 DOI: 10.1007/978-3-0348-0828-6_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Capsaicin, the pungent ingredient of red pepper has become not only a "hot" topic in neuroscience but its new target-related unique actions have opened the door for the drug industry to introduce a new chapter of analgesics. After several lines of translational efforts with over 1,000 patents and clinical trials, the 8% capsaicin dermal patch reached the market and its long-lasting local analgesic effect in some severe neuropathic pain states is now well established. This introductory chapter outlines on one hand the historical background based on the author's 50 years of experience in this field and on the other hand emphasizes new scopes, fascinating perspectives in pharmaco-physiology, and molecular pharmacology of nociceptive sensory neurons. Evidence for the effect of capsaicin on C-polymodal nociceptors (CMH), C-mechanoinsensitive (CHMi), and silent C-nociceptors are listed and the features of the capsaicin-induced blocking effects of nociceptors are demonstrated. Common and different characteristics of nociceptor-blocking actions after systemic, perineural, local, intrathecal, and in vitro treatments are summarized. Evidence for the misleading conclusions drawn from neonatal capsaicin pretreatment is presented. Perspectives opened from cloning the capsaicin receptor "Transient Receptor Potential Vanilloid 1" (TRPV1) are outlined and potential molecular mechanisms behind the long-lasting functional, ultrastructural, and nerve terminal-damaging effects of capsaicin and other TRPV1 agonists are summarized. Neurogenic inflammation and the long-list of "capsaicin-sensitive" tissue responses are mediated by an unorthodox dual sensory-efferent function of peptidergic TRPV1-expressing nerve terminals which differ from the classical efferent and sensory nerve endings that have a unidirectional role in neuroregulation. Thermoregulatory effects of capsaicin are discussed in detail. It is suggested that since hyperthermia and burn risk due to enhanced noxious heat threshold are the major obstacles of some TRPV1 antagonists, they could be overcome. The special "multisteric" gating function of the TRPV1 cation channel provides the structural ground for blocking chemical activation of TRPV1 without affecting its responsiveness to physical stimuli. A new chapter of potential analgesics targeting nociceptors is now already supported for pain relief in persistent pathological pain states.
Collapse
|
147
|
Edwards JG. TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:77-104. [PMID: 24941665 DOI: 10.1007/978-3-0348-0828-6_3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of TRPV1 in the peripheral nervous system is increasingly being investigated for its anti-inflammatory and antinociceptive properties in an effort to find a novel target to fight pain that is nonaddictive. However, in recent years, it was discovered that TRPV1 is also associated with a wide array of functions and behaviors in the central nervous system, such as fear, anxiety, stress, thermoregulation, pain, and, more recently, synaptic plasticity, the cellular mechanism that allows the brain to adapt to its environment. This suggests a new role for brain TRPV1 in areas such as learning and memory, reward and addiction, and development. This wide array of functional aspects of TRPV1 in the central nervous system (CNS) is in part due to its multimodal form of activation and highlights the potential pharmacological implications of TRPV1 in the brain. As humans also express a TRPV1 homologue, it is likely that animal research will be translational to humans and therefore worthy of exploration. This review outlines the basic expression patterns of TRPV1 in the CNS along with what is known regarding its signaling mechanisms and its role in the aforementioned brain functions. As TRPV1 involvement in synaptic plasticity has never been fully reviewed elsewhere, it will be a focus of this review. The chapter concludes with some of the potential pharmaceutical implications of further TRPV1 research.
Collapse
|
148
|
Abstract
Like most other members of the TRP family, the Trpm3 gene encodes proteins that form cation-permeable ion channels on the plasma membrane. However, TRPM3 proteins have several unique features that set them apart from the other members of this diverse family. The Trpm3 gene encodes for a surprisingly large number of isoforms generated mainly by alternative splicing. Only for two of the (at least) eight sites at which sequence diversity is generated the functional consequences have been elucidated, one leading to nonfunctional channels, the other one profoundly affecting the ionic selectivity. In the Trpm3 gene an intronic microRNA (miR-204) is co-transcribed with Trpm3. By regulating the expression of a multitude of genes, miR-204 increases the functional complexity of the Trpm3 locus. Over the past years, important progress has been made in discovering pharmacological tools to manipulate TRPM3 channel activity. These substances have facilitated the identification of endogenously expressed functional TRPM3 channels in nociceptive neurons, pancreatic beta cells, and vascular smooth muscle cells, among others. TRPM3 channels, which themselves are temperature sensitive, thus have been implicated in sensing noxious heat, in modulating insulin release, and in secretion of inflammatory cytokines. However, in many tissues where TRPM3 proteins are known to be expressed, no functional role has been identified for these channels so far. Because of the availability of adequate pharmacological and genetic tools, it is expected that future investigations on TRPM3 channels will unravel important new aspects and functions of these channels.
Collapse
Affiliation(s)
- Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037, Marburg, Germany,
| | | |
Collapse
|
149
|
Andreev YA, Kozlov SA, Korolkova YV, Dyachenko IA, Bondarenko DA, Skobtsov DI, Murashev AN, Kotova PD, Rogachevskaja OA, Kabanova NV, Kolesnikov SS, Grishin EV. Polypeptide modulators of TRPV1 produce analgesia without hyperthermia. Mar Drugs 2013; 11:5100-15. [PMID: 24351908 PMCID: PMC3877906 DOI: 10.3390/md11125100] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/15/2013] [Accepted: 12/03/2013] [Indexed: 11/16/2022] Open
Abstract
Transient receptor potential vanilloid 1 receptors (TRPV1) play a significant physiological role. The study of novel TRPV1 agonists and antagonists is essential. Here, we report on the characterization of polypeptide antagonists of TRPV1 based on in vitro and in vivo experiments. We evaluated the ability of APHC1 and APHC3 to inhibit TRPV1 using the whole-cell patch clamp approach and single cell Ca2+ imaging. In vivo tests were performed to assess the biological effects of APHC1 and APHC3 on temperature sensation, inflammation and core body temperature. In the electrophysiological study, both polypeptides partially blocked the capsaicin-induced response of TRPV1, but only APHC3 inhibited acid-induced (pH 5.5) activation of the receptor. APHC1 and APHC3 showed significant antinociceptive and analgesic activity in vivo at reasonable doses (0.01–0.1 mg/kg) and did not cause hyperthermia. Intravenous administration of these polypeptides prolonged hot-plate latency, blocked capsaicin- and formalin-induced behavior, reversed CFA-induced hyperalgesia and produced hypothermia. Notably, APHC3’s ability to inhibit the low pH-induced activation of TRPV1 resulted in a reduced behavioural response in the acetic acid-induced writhing test, whereas APHC1 was much less effective. The polypeptides APHC1 and APHC3 could be referred to as a new class of TRPV1 modulators that produce a significant analgesic effect without hyperthermia.
Collapse
Affiliation(s)
- Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; E-Mails: (Y.A.A.); (Y.V.K.); (E.V.G.)
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; E-Mails: (Y.A.A.); (Y.V.K.); (E.V.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +7-495-336-6540; Fax: +7-495-330-7301
| | - Yuliya V. Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; E-Mails: (Y.A.A.); (Y.V.K.); (E.V.G.)
| | - Igor A. Dyachenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki ave., Pushchino 142290, Moscow Region, Russia; E-Mails: (I.A.D.); (D.A.B.); (D.I.S.); (A.N.M.)
- Pushchino State Institute of Natural Sciences, 3 Nauki ave, Pushchino 142290, Moscow Region, Russia
| | - Dmitrii A. Bondarenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki ave., Pushchino 142290, Moscow Region, Russia; E-Mails: (I.A.D.); (D.A.B.); (D.I.S.); (A.N.M.)
- Pushchino State Institute of Natural Sciences, 3 Nauki ave, Pushchino 142290, Moscow Region, Russia
| | - Denis I. Skobtsov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki ave., Pushchino 142290, Moscow Region, Russia; E-Mails: (I.A.D.); (D.A.B.); (D.I.S.); (A.N.M.)
| | - Arkadii N. Murashev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki ave., Pushchino 142290, Moscow Region, Russia; E-Mails: (I.A.D.); (D.A.B.); (D.I.S.); (A.N.M.)
- Pushchino State Institute of Natural Sciences, 3 Nauki ave, Pushchino 142290, Moscow Region, Russia
| | - Polina D. Kotova
- Institute of Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia; E-Mails: (P.D.K.); (O.A.R.); (N.V.K.); (S.S.K.)
| | - Olga A. Rogachevskaja
- Institute of Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia; E-Mails: (P.D.K.); (O.A.R.); (N.V.K.); (S.S.K.)
| | - Natalia V. Kabanova
- Institute of Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia; E-Mails: (P.D.K.); (O.A.R.); (N.V.K.); (S.S.K.)
| | - Stanislav S. Kolesnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia; E-Mails: (P.D.K.); (O.A.R.); (N.V.K.); (S.S.K.)
| | - Eugene V. Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; E-Mails: (Y.A.A.); (Y.V.K.); (E.V.G.)
| |
Collapse
|
150
|
Cao Z, Balasubramanian A, Marrelli SP. Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion. Am J Physiol Regul Integr Comp Physiol 2013; 306:R149-56. [PMID: 24305062 DOI: 10.1152/ajpregu.00329.2013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditional methods of therapeutic hypothermia show promise for neuroprotection against cerebral ischemia-reperfusion (I/R), however, with limitations. We examined effectiveness and specificity of pharmacological hypothermia (PH) by transient receptor potential vanilloid 1 (TRPV1) channel agonism in the treatment of focal cerebral I/R. Core temperature (T(core)) was measured after subcutaneous infusion of TRPV1 agonist dihydrocapsaicin (DHC) in conscious C57BL/6 WT and TRPV1 knockout (KO) mice. Acute measurements of heart rate (HR), mean arterial pressure (MAP), and cerebral perfusion were measured before and after DHC treatment. Focal cerebral I/R (1 h ischemia + 24 h reperfusion) was induced by distal middle cerebral artery occlusion. Hypothermia (>8 h) was initiated 90 min after start of reperfusion by DHC infusion (osmotic pump). Neurofunction (behavioral testing) and infarct volume (TTC staining) were measured at 24 h. DHC (1.25 mg/kg) produced a stable drop in T(core) (33°C) in naive and I/R mouse models but not in TRPV1 KO mice. DHC (1.25 mg/kg) had no measurable effect on HR and cerebral perfusion but produced a slight transient drop in MAP (<6 mmHg). In stroke mice, DHC infusion produced hypothermia, decreased infarct volume by 87%, and improved neurofunctional score. The hypothermic and neuroprotective effects of DHC were absent in TRPV1 KO mice or mice maintained normothermic with heat support. PH via TRPV1 agonist appears to be a well-tolerated and effective method for promoting mild hypothermia in the conscious mouse. Furthermore, TRPV1 agonism produces effective hypothermia in I/R mice and significantly improves outcome when initiated 90 min after start of reperfusion.
Collapse
Affiliation(s)
- Zhijuan Cao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|