101
|
Abstract
Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric, view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Although at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant, and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future.
Collapse
Affiliation(s)
- Boris Martinac
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
102
|
Papanastasiou I, Tsotinis A, Foscolos GB, Prathalingam SR, Kelly JM. Synthesis of conformationally constrained adamantane imidazolines with trypanocidal activity. J Heterocycl Chem 2008. [DOI: 10.1002/jhet.5570450524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
103
|
Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc Natl Acad Sci U S A 2008; 105:12313-8. [PMID: 18719119 DOI: 10.1073/pnas.0805709105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
K(+) channels operate in the plasma membrane and in membranes of organelles including mitochondria. The mechanisms and topogenic information for their differential synthesis and targeting is unknown. This article describes 2 similar viral K(+) channels that are differentially sorted; one protein (Kesv) is imported by the Tom complex into the mitochondria, the other (Kcv) to the plasma membrane. By creating chimeras we discovered that mitochondrial sorting of Kesv depends on a hierarchical combination of N- and C-terminal signals. Crucial is the length of the second transmembrane domain; extending its C terminus by > or = 2 hydrophobic amino acids redirects Kesv from the mitochondrial to the plasma membrane. Activity of Kesv in the plasma membrane is detected electrically or by yeast rescue assays only after this shift in sorting. Hence only minor structural alterations in a transmembrane domain are sufficient to switch sorting of a K(+) channel between the plasma membrane and mitochondria.
Collapse
|
104
|
Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology 2008; 372:340-8. [DOI: 10.1016/j.virol.2007.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/30/2007] [Accepted: 10/24/2007] [Indexed: 11/18/2022]
|
105
|
Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 2008; 451:591-5. [PMID: 18235503 PMCID: PMC3108054 DOI: 10.1038/nature06531] [Citation(s) in RCA: 786] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 12/03/2007] [Indexed: 11/08/2022]
Abstract
The integral membrane protein M2 of influenza virus forms pH-gated proton channels in the viral lipid envelope. The low pH of an endosome activates the M2 channel before haemagglutinin-mediated fusion. Conductance of protons acidifies the viral interior and thereby facilitates dissociation of the matrix protein from the viral nucleoproteins--a required process for unpacking of the viral genome. In addition to its role in release of viral nucleoproteins, M2 in the trans-Golgi network (TGN) membrane prevents premature conformational rearrangement of newly synthesized haemagglutinin during transport to the cell surface by equilibrating the pH of the TGN with that of the host cell cytoplasm. Inhibiting the proton conductance of M2 using the anti-viral drug amantadine or rimantadine inhibits viral replication. Here we present the structure of the tetrameric M2 channel in complex with rimantadine, determined by NMR. In the closed state, four tightly packed transmembrane helices define a narrow channel, in which a 'tryptophan gate' is locked by intermolecular interactions with aspartic acid. A carboxy-terminal, amphipathic helix oriented nearly perpendicular to the transmembrane helix forms an inward-facing base. Lowering the pH destabilizes the transmembrane helical packing and unlocks the gate, admitting water to conduct protons, whereas the C-terminal base remains intact, preventing dissociation of the tetramer. Rimantadine binds at four equivalent sites near the gate on the lipid-facing side of the channel and stabilizes the closed conformation of the pore. Drug-resistance mutations are predicted to counter the effect of drug binding by either increasing the hydrophilicity of the pore or weakening helix-helix packing, thus facilitating channel opening.
Collapse
Affiliation(s)
- Jason R. Schnell
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
106
|
Zoidis G, Tsotinis A, Kolocouris N, Kelly JM, Prathalingam SR, Naesens L, De Clercq E. Design and synthesis of bioactive 1,2-annulated adamantane derivatives. Org Biomol Chem 2008; 6:3177-85. [DOI: 10.1039/b804907f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
107
|
Heron AJ, Thompson JR, Mason AE, Wallace MI. Direct detection of membrane channels from gels using water-in-oil droplet bilayers. J Am Chem Soc 2007; 129:16042-7. [PMID: 18052065 DOI: 10.1021/ja075715h] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We form planar lipid bilayers between an aqueous droplet and a hydrogel support immersed in a lipid-oil solution. By scanning the bilayer over the surface of an SDS-PAGE gel, we are able to directly detect membrane proteins from gels using single-channel recording. Using this technique, we are able to examine low levels of endogenous protein from cell extracts without the need for over-expression. We also use droplet bilayers to detect small molecules from hydrogels. The bilayers show enhanced stability compared to conventional planar lipid bilayers, and both bilayer size and position can be controlled during an experiment. Hydrogel scanning with droplet bilayers provides a new method for the discovery and characterization of ion channels with the potential for high-throughput screening.
Collapse
Affiliation(s)
- Andrew J Heron
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | |
Collapse
|
108
|
Gazzarrini S, Abenavoli A, Gradmann D, Thiel G, Moroni A. Electrokinetics of miniature K+ channel: open-state V sensitivity and inhibition by K+ driving force. J Membr Biol 2007; 214:9-17. [PMID: 17568981 DOI: 10.1007/s00232-006-0024-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 10/26/2006] [Indexed: 11/26/2022]
Abstract
Kcv, isolated from a Chlorella virus, is the smallest known K+ channel. When Kcv is expressed in Xenopus oocytes and exposed to 50 mM: [K+](o), its open-state current-voltage relationship (I-V) has the shape of a "tilted S" between -200 and +120 mV. Details of this shape depend on the conditioning voltage (V (c)) immediately before an I-V recording. Unexpectedly, the I-V relationships, recorded in different [K+](o), do intersect. These characteristics are numerically described here by fits of a kinetic model to the experimental data. In this model, the V (c) sensitivity of I-V is mainly assigned to an affinity increase of external K+ association at more positive voltages. The general, tilted-S shape as well as the unexpected intersections of the I-V relationships are kinetically described by a decrease of the cord conductance by the electrochemical driving force for K+ in either direction, like in fast V-dependent blocking by competing ions.
Collapse
Affiliation(s)
- Sabrina Gazzarrini
- Department of Biology and IBF-CNR, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
109
|
Fitzgerald LA, Graves MV, Li X, Hartigan J, Pfitzner AJP, Hoffart E, Van Etten JL. Sequence and annotation of the 288-kb ATCV-1 virus that infects an endosymbiotic chlorella strain of the heliozoon Acanthocystis turfacea. Virology 2007; 362:350-61. [PMID: 17276475 PMCID: PMC2018652 DOI: 10.1016/j.virol.2006.12.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/16/2006] [Accepted: 12/24/2006] [Indexed: 11/25/2022]
Abstract
Acanthocystis turfacea chlorella virus (ATCV-1), a prospective member of the family Phycodnaviridae, genus Chlorovirus, infects a unicellular, eukaryotic, chlorella-like green alga, Chlorella SAG 3.83, that is a symbiont in the heliozoon A. turfacea. The 288,047-bp ATCV-1 genome is the first virus to be sequenced that infects Chlorella SAG 3.83. ATCV-1 contains 329 putative protein-encoding and 11 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands and intergenic space is minimal. Thirty-four percent of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. For example, these unique gene products include ribonucleoside-triphosphate reductase, dTDP-d-glucose 4,6 dehydratase, potassium ion transporter, aquaglyceroporin, and mucin-desulfating sulfatase. Comparison of ATCV-1 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that about 80% of the ATCV-1 genes are present in PBCV-1.
Collapse
Affiliation(s)
- Lisa A Fitzgerald
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Mehnert T, Lam YH, Judge PJ, Routh A, Fischer D, Watts A, Fischer WB. Towards a Mechanism of Function of the Viral Ion Channel Vpu from HIV-1. J Biomol Struct Dyn 2007; 24:589-96. [PMID: 17508781 DOI: 10.1080/07391102.2007.10507148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Vpu, an integral membrane protein encoded in HIV-1, is implicated in the release of new virus particles from infected cells, presumably mediated by ion channel activity of homo-oligomeric Vpu bundles. Reconstitution of both full length Vpu(1-81) and a short, the transmembrane (TM) domain comprising peptide Vpu(1-32) into bilayers under a constant electric field results in an asymmetric orientation of those channels. For both cases, channel activity with similar kinetics is observed. Channels can open and remain open within a broad series of conductance states even if a small or no electric potential is applied. The mean open time for Vpu peptide channels is voltage-independent. The rate of channel opening shows a biphasic voltage activation, implicating that the gating is influenced by the interaction of the dipole moments of the TM helices with an electric field.
Collapse
Affiliation(s)
- T Mehnert
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
111
|
Antoine AF, Montpellier C, Cailliau K, Browaeys-Poly E, Vilain JP, Dubuisson J. The Alphavirus 6K Protein Activates Endogenous Ionic Conductances when Expressed in Xenopus Oocytes. J Membr Biol 2007; 215:37-48. [PMID: 17483865 DOI: 10.1007/s00232-007-9003-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 01/08/2007] [Indexed: 02/03/2023]
Abstract
The Alphavirus Sindbis 6K protein is involved in several functions. It contributes to the processing and membrane insertion of E1 and PE2 viral envelope glycoproteins and to virus budding. It also permeabilizes Escherichia coli and mammalian cells. These viroporin-like properties have been proposed to help virus budding by modifying membrane permeabilities. We expressed Sindbis virus 6K cRNA in Xenopus oocytes to further characterize the effect of 6K on membrane conductances and permeabilization. Although no intrinsic channel properties were seen, cell shrinkage was observed within 24 h. Voltage-clamp experiments showed that 6K upregulated endogenous currents: a hyperpolarization-activated inward current (I (in)) and a calcium-dependent chloride current (I (Cl)). 6K was located at both the plasma and the endoplasmic reticulum membranes. The plasma membrane current upregulation likely results from disruption of the calcium homeostasis of the cell at the endoplasmic reticulum level. Indeed, 6K cRNA expression induced reticular calcium store depletion and capacitative calcium entry activation. By experimental modifications of the incubation medium, we showed that downstream of these events cell shrinkage resulted from a 6K -induced KCl efflux (I (Cl) upregulation leads to chloride efflux, which itself electrically drives potassium efflux), which was responsible for an osmotic water efflux. Our data confirm that 6K specifically triggers a sequential cascade of events that leads to cytoplasmic calcium elevation and cell permeabilization, which likely play a role in the Sindbis virus life cycle.
Collapse
Affiliation(s)
- Anne-Frédérique Antoine
- Equipe d'Accueil 4020, Institut Fédératif de la Recherche 147, Université de Lille, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | | | |
Collapse
|
112
|
Monné M, Robinson AJ, Boes C, Harbour ME, Fearnley IM, Kunji ERS. The mimivirus genome encodes a mitochondrial carrier that transports dATP and dTTP. J Virol 2007; 81:3181-6. [PMID: 17229695 PMCID: PMC1866048 DOI: 10.1128/jvi.02386-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/08/2007] [Indexed: 11/20/2022] Open
Abstract
Members of the mitochondrial carrier family have been reported in eukaryotes only, where they transport metabolites and cofactors across the mitochondrial inner membrane to link the metabolic pathways of the cytosol and the matrix. The genome of the giant virus Mimiviridae mimivirus encodes a member of the mitochondrial carrier family of transport proteins. This viral protein has been expressed in Lactococcus lactis and is shown to transport dATP and dTTP. As the 1.2-Mb double-stranded DNA mimivirus genome is rich in A and T residues, we speculate that the virus is using this protein to target the host mitochondria as a source of deoxynucleotides for its replication.
Collapse
Affiliation(s)
- Magnus Monné
- Dunn Human Nutrition Unit, Medical Research Council, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
113
|
Tayefeh S, Kloss T, Thiel G, Hertel B, Moroni A, Kast SM. Molecular Dynamics Simulation of the Cytosolic Mouth in Kcv-Type Potassium Channels. Biochemistry 2007; 46:4826-39. [PMID: 17397187 DOI: 10.1021/bi602468r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The functional effect of mutations near the intracellular mouth of the short viral Kcv potassium channel was studied by molecular dynamics simulations. As a model system we used the analogously mutated and truncated KirBac1.1, a channel with known crystal structure that shares genuine local sequence motifs with Kcv. By a novel simulated annealing methodology for structural averaging, information about the structure and dynamics of the intracellular mouth was extracted and complemented by Poisson-Boltzmann and 3D-RISM (reference interaction site model) integral equation theory for the determination of the K+ free energy surface. Besides the wild-type analogue of Kcv with its experimental reference activity (truncated KirBac1.1), two variants were studied: a deletion mutant where the N-terminus is further truncated by eight amino acids, showing inactivity in the Kcv reference system, and a point mutant where the kink-forming proline at position 13 is substituted by alanine, resulting in hyperactivity. The computations reveal that the change of activity is closely related to a hydrophilic intracellular constriction formed by the C-terminal residues of the monomers. Hyperactivity of the point mutant is correlated with both sterical and electrostatic factors, while inactivity of the deletion mutant is related to a loss of specific salt bridge patterns between the C- and N-terminus at the constriction and to the consequences for ion passage barriers, as revealed by integral equation theory. The cytosolic gate, however, is probably formed by the N-terminal segment up to the proline kink and not by the constriction. The results are compared with design principles found for other channels.
Collapse
Affiliation(s)
- Sascha Tayefeh
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 20, 64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
114
|
Abstract
Engineered protein channels have many potential applications in biosensing at the single-molecule level. A future generation of biosensor could be an array of target-specific ion channels, where each protein pore acts as a sensor element. An important step toward this goal is to create a portable, durable, single-protein channel-integrated chip device. Here we report a versatile, modular chip that contains a single-ion channel for single-molecular biosensing. The core of the device is a long-lived lipid membrane that has been sandwiched between two air-insulated agarose layers which gel in situ. A single-protein pore embedded in the membrane serves as the sensor element. The modular device is highly portable, allowing a single-ion channel to continuously function following detachment of the chip from the instrument and independent transportation of the device. The chip also exhibits high durability, which is evidenced from long-duration continuous observation of single-channel dynamics. Once engineered protein pores are installed, the chip becomes a robust stochastic sensor for real-time targeting such as detection of the second messenger IP3. This pluggable biochip could be incorporated with many applicable devices, such as a microfluidic system, and be made into a microarray for both biomedical detection and membrane protein research.
Collapse
Affiliation(s)
- Jiwook Shim
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri – Columbia, MO 65211
| | - Li-Qun Gu
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri – Columbia, MO 65211
| |
Collapse
|
115
|
Shim JW, Yang M, Gu LQ. In vitro synthesis, tetramerization and single channel characterization of virus-encoded potassium channel Kcv. FEBS Lett 2007; 581:1027-34. [PMID: 17316630 DOI: 10.1016/j.febslet.2007.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/02/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Chlorella virus-encoded membrane protein Kcv represents a new class of potassium channel. This 94-amino acids miniature K(+) channel consists of two trans-membrane alpha-helix domains intermediated by a pore domain that contains a highly conserved K(+) selectivity filter. Therefore, as an archetypal K(+) channel, the study of Kcv may yield valuable insights into the structure-function relationships underlying this important class of ion channel. Here, we report a series of new properties of Kcv. We first verified Kcv can be synthesized in vitro. By co-synthesis and assembly of wild-type and the tagged version of Kcv, we were able to demonstrate a tetrameric stoichiometry, a molecular structure adopted by all known K(+) channels. Most notably, the tetrameric Kcv complex retains its functional integrity in SDS (strong detergent)-containing solutions, a useful feature that allows for direct purification of protein from polyacrylamide gel. Once purified, the tetramer can form single potassium-selective ion channels in a lipid bilayer with functions consistent to the heterologously expressed Kcv. These finding suggest that the synthetic Kcv can serve as a model of virus-encoded K(+) channels; and its newly identified properties can be applied to the future study on structure-determined mechanisms such as K(+) channel functional stoichiometry.
Collapse
Affiliation(s)
- Ji Wook Shim
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
116
|
Pagliuca C, Goetze TA, Wagner R, Thiel G, Moroni A, Parcej D. Molecular Properties of Kcv, a Virus Encoded K+ Channel. Biochemistry 2007; 46:1079-90. [PMID: 17240991 DOI: 10.1021/bi061530w] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The miniature viral K+ channel Kcv represents the pore module of all K+ channels. A synthetic gene of Kcv with an elevated GC content compared to that of the wild-type gene was expressed heterologously in Pichia pastoris, and the purified protein was functionally reconstituted into liposomes. Biochemical assays reveal a remarkable cation selective stability of the channel tetramer via SDS-PAGE. Only cations, which permeate Kcv, were able to protect the oligomer against disassembly into monomers at high temperatures. Electrophysiological characterization of the single Kcv channel reveals a saturating conductance (lambda(max)) of 360 pS; the single-channel current-voltage relation was strongly rectifying with a negative slope conductance at extreme voltages. The channel was highly selective for K+ and was blocked by Ba2+ and in a side specific manner by Na+ and Cs+ also. The channel conducted Rb+, but as a consequence, the channel was shifted into a hyperactive state. We conclude that specific binding interactions of cations in the conductive pathway are an important determinant of channel stability and function.
Collapse
Affiliation(s)
- Cinzia Pagliuca
- Dipartimento di Biologia e IBF-CNR, Universitá degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
117
|
Fitzgerald LA, Graves MV, Li X, Feldblyum T, Nierman WC, Van Etten JL. Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A. Virology 2006; 358:472-84. [PMID: 17027058 PMCID: PMC1904511 DOI: 10.1016/j.virol.2006.08.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/17/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Viruses NY-2A and AR158, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella NC64A. The 368,683-bp genome of NY-2A and the 344,690-bp genome of AR158 are the two largest chlorella virus genomes sequenced to date; NY-2A contains 404 putative protein-encoding and 7 tRNA-encoding genes and AR158 contains 360 putative protein-encoding and 6 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Two of the NY-2A genes encode inteins, the large subunit of ribonucleotide reductase and a superfamily II helicase. These are the first inteins to be detected in the chlorella viruses. Approximately 40% of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. These include GDP-d-mannose dehydratase, fucose synthase, aspartate transcarbamylase, Ca(++) transporting ATPase and ubiquitin. Comparison of NY-2A and AR158 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that 85% of the genes are present in all three viruses.
Collapse
Affiliation(s)
- Lisa A. Fitzgerald
- Deparment of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Michael V. Graves
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Xiao Li
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Tamara Feldblyum
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
| | - William C. Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, Washington, DC 20037
| | - James L. Van Etten
- Deparment of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722 and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68588-0666
- *Corresponding author. Mailing address: Department of Plant Pathology, University of Nebraska-Lincoln, NE 68383-0722. Phone: (402) 472-3168. Fax: (402) 472-2853. E-mail:
| |
Collapse
|
118
|
Lu W, Zheng BJ, Xu K, Schwarz W, Du L, Wong CKL, Chen J, Duan S, Deubel V, Sun B. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A 2006; 103:12540-5. [PMID: 16894145 PMCID: PMC1567914 DOI: 10.1073/pnas.0605402103] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fourteen ORFs have been identified in the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) genome. ORF 3a of SARS-CoV codes for a recently identified transmembrane protein, but its function remains unknown. In this study we confirmed the 3a protein expression and investigated its localization at the surface of SARS-CoV-infected or 3a-cDNA-transfected cells. Our experiments showed that recombinant 3a protein can form a homotetramer complex through interprotein disulfide bridges in 3a-cDNA-transfected cells, providing a clue to ion channel function. The putative ion channel activity of this protein was assessed in 3a-complement RNA-injected Xenopus oocytes by two-electrode voltage clamp. The results suggest that 3a protein forms a potassium sensitive channel, which can be efficiently inhibited by barium. After FRhK-4 cells were transfected with an siRNA, which is known to suppress 3a expression, followed by infection with SARS-CoV, the released virus was significantly decreased, whereas the replication of the virus in the infected cells was not changed. Our observation suggests that SARS-CoV ORF 3a functions as an ion channel that may promote virus release. This finding will help to explain the highly pathogenic nature of SARS-CoV and to develop new strategies for treatment of SARS infection.
Collapse
Affiliation(s)
- Wei Lu
- *Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology
- Max Planck Guest Laboratory, and
| | - Bo-Jian Zheng
- Department of Microbiology, University of Hong Kong and Queen Mary Hospital, Hong Kong, China; and
| | - Ke Xu
- *Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology
| | - Wolfgang Schwarz
- Max Planck Guest Laboratory, and
- Max Planck Institute for Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt/M, Germany
| | - Lanying Du
- Department of Microbiology, University of Hong Kong and Queen Mary Hospital, Hong Kong, China; and
| | - Charlotte K. L. Wong
- Department of Microbiology, University of Hong Kong and Queen Mary Hospital, Hong Kong, China; and
| | - Jiadong Chen
- **Shanghai Institute of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shuming Duan
- **Shanghai Institute of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Vincent Deubel
- *Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China
| | - Bing Sun
- *Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology
- To whom correspondence should be sent at the ∗ address. E-mail:
| |
Collapse
|
119
|
Hertel B, Tayefeh S, Mehmel M, Kast SM, Van Etten J, Moroni A, Thiel G. Elongation of Outer Transmembrane Domain Alters Function of Miniature K+ Channel Kcv. J Membr Biol 2006; 210:21-9. [PMID: 16708260 DOI: 10.1007/s00232-005-7026-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 02/03/2006] [Indexed: 10/24/2022]
Abstract
The virus-coded channel Kcv has the typical structure of a two-transmembrane domain K(+) channel. Exceptional are its cytoplasmic domains: the C terminus basically ends inside the membrane and, hence, precludes the formation of a cytoplasmic gate by the so-called bundle crossing; the cytoplasmic N terminus is composed of only 12 amino acids. According to structural predictions, it is positioned in the membrane/aqueous interface and connected via a proline kink to the outer transmembrane domain (TM1). Here, we show that this proline kink affects channel function by determining the position of TM1 in the membrane bilayer. Extension of the hydrophobic length of TM1 by either eliminating the proline kink or introducing an alanine in TM1 augments a time- and voltage-dependent inward rectification of the channel. This suggests that the positional information of TM1 in the bilayer is transmitted to a channel gate, which is not identical with the cytoplasmic bundle crossing.
Collapse
Affiliation(s)
- Brigitte Hertel
- Institute of Botany, University of Technology Darmstadt, Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
120
|
Gazzarrini S, Kang M, Epimashko S, Van Etten JL, Dainty J, Thiel G, Moroni A. Chlorella virus MT325 encodes water and potassium channels that interact synergistically. Proc Natl Acad Sci U S A 2006; 103:5355-60. [PMID: 16569697 PMCID: PMC1414795 DOI: 10.1073/pnas.0600848103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fast and selective transport of water through cell membranes is facilitated by water channels. Water channels belonging to the major intrinsic proteins (MIPs) family have been found in all three domains of life, Archaea, Bacteria, and Eukarya. Here we show that Chlorella virus MT325 has a water channel gene, aqpv1, that forms a functional aquaglyceroporin in oocytes. aqpv1 is transcribed during infection together with MT325 kcv, a gene encoding a previously undescribed type of viral potassium channel. Coexpression of AQPV1 and MT325-Kcv in Xenopus oocytes synergistically increases water transport, suggesting a possible concerted action of the two channels in the infection cycle. The two channels operate by a thermodynamically coupled mechanism that simultaneously alters water conductance and driving force for water movement. Considering the universal role of osmosis, this mechanism is relevant to any cell coexpressing water and potassium channels and could have pathological as well as basic physiological relevance.
Collapse
Affiliation(s)
- Sabrina Gazzarrini
- Dipartimento di Biologia and Istituto di Biofisica–Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Ming Kang
- Department of Plant Pathology and Nebraska Center of Virology, University of Nebraska, Lincoln, NE 68583-0722
| | - Svetlana Epimashko
- Dipartimento di Biologia and Istituto di Biofisica–Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - James L. Van Etten
- Department of Plant Pathology and Nebraska Center of Virology, University of Nebraska, Lincoln, NE 68583-0722
- To whom correspondence should be addressed at:
Department of Plant Pathology, 406 Plant Sciences Hall, University of Nebraska, Lincoln, NE 68583-0722. E-mail:
| | - Jack Dainty
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada M5S 3B2
| | - Gerhard Thiel
- Institute of Botany, Darmstadt University of Technology, 64287 Darmstadt, Germany; and
| | - Anna Moroni
- Dipartimento di Biologia and Istituto di Biofisica–Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
- Istituto Nazionale per la Fisica della Materia, Unità di Milano-Università, Via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
121
|
Frohns F, Käsmann A, Kramer D, Schäfer B, Mehmel M, Kang M, Van Etten JL, Gazzarrini S, Moroni A, Thiel G. Potassium ion channels of Chlorella viruses cause rapid depolarization of host cells during infection. J Virol 2006; 80:2437-44. [PMID: 16474150 PMCID: PMC1395400 DOI: 10.1128/jvi.80.5.2437-2444.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have established that chlorella viruses encode K(+) channels with different structural and functional properties. In the current study, we exploit the different sensitivities of these channels to Cs(+) to determine if the membrane depolarization observed during virus infection is caused by the activities of these channels. Infection of Chlorella NC64A with four viruses caused rapid membrane depolarization of similar amplitudes, but with different kinetics. Depolarization was fastest after infection with virus SC-1A (half time [t(1/2)], about 9 min) and slowest with virus NY-2A (t(1/2), about 12 min). Cs(+) inhibited membrane depolarization only in viruses that encode a Cs(+)-sensitive K(+) channel. Collectively, the results indicate that membrane depolarization is an early event in chlorella virus-host interactions and that it is correlated with viral-channel activity. This suggestion was supported by investigations of thin sections of Chlorella cells, which show that channel blockers inhibit virus DNA release into the host cell. Together, the data indicate that the channel is probably packaged in the virion, presumably in its internal membrane. We hypothesize that fusion of the virus internal membrane with the host plasma membrane results in an increase in K(+) conductance and membrane depolarization; this depolarization lowers the energy barrier for DNA release into the host.
Collapse
Affiliation(s)
- Florian Frohns
- Institute of Botany, Department of Biology, Darmstadt University of Technology, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Dunigan DD, Fitzgerald LA, Van Etten JL. Phycodnaviruses: a peek at genetic diversity. Virus Res 2006; 117:119-32. [PMID: 16516998 DOI: 10.1016/j.virusres.2006.01.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 01/18/2006] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
The family Phycodnaviridae encompasses a diverse collection of large icosahedral, dsDNA viruses infecting algae. These viruses have genomes ranging from 160 to 560kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The genomes of members in three genera in the Phycodnaviridae have recently been sequenced and the purpose of this manuscript is to summarize these data. The viruses have diverse genome structures, some with large regions of non-coding sequence and others with regions of single-stranded DNA. Typically, phycodnaviruses have the coding capacity for hundreds of genes. The genome analyses have revealed in excess of 1000 unique genes, with only 14 homologous genes held in common among the three genera of the phycodnavirses sequenced to date. Thus, the gene diversity far exceeds the number of so-called "core" genes. Little is known about the replication of these viruses, but the consequences of these infections of the phytoplankton have global affects, including altered geochemical cycling and weather patterns.
Collapse
Affiliation(s)
- David D Dunigan
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, USA.
| | | | | |
Collapse
|
123
|
Abstract
Chlorella viruses or chloroviruses are large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330-kbp genome of Paramecium bursaria chlorella virus 1 (PBCV-1), the prototype of this virus family (Phycodnaviridae), predict approximately 366 protein-encoding genes and 11 tRNA genes. The predicted gene products of approximately 50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site-specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus-encoded K(+) channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV-1 has three types of introns; a self-splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV-1 as well as other related viruses.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi, Japan
| | | | | |
Collapse
|
124
|
Zhang Y, Moriyama H, Homma K, Van Etten JL. Chlorella virus-encoded deoxyuridine triphosphatases exhibit different temperature optima. J Virol 2005; 79:9945-53. [PMID: 16014955 PMCID: PMC1181562 DOI: 10.1128/jvi.79.15.9945-9953.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg(2+) for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a K(m) of 11.7 microM, a turnover k(cat) of 6.8 s(-1), and a catalytic efficiency of k(cat)/K(m) = 5.8 x 10(5) M(-1) s(-1). dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37 degrees C) than PBCV-1 dUTPase (50 degrees C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81-->Ser81 and Thr84-->Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84-->Arg84, Glu81-->Ser81, and Glu81-->Ser81 plus Thr84-->Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55 degrees C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.
Collapse
Affiliation(s)
- Yuanzheng Zhang
- Department of Plant Pathology, University of Nebraska-Lincoln, 68583-0722, USA
| | | | | | | |
Collapse
|
125
|
Kang M, Dunigan DD, VAN Etten JL. Chlorovirus: a genus of Phycodnaviridae that infects certain chlorella-like green algae. MOLECULAR PLANT PATHOLOGY 2005; 6:213-224. [PMID: 20565652 DOI: 10.1111/j.1364-3703.2005.00281.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Taxonomy: Chlorella viruses are assigned to the family Phycodnaviridae, genus Chlorovirus, and are divided into three species: Chlorella NC64A viruses, Chlorella Pbi viruses and Hydra viridis Chlorella viruses. Chlorella viruses are large, icosahedral, plaque-forming, dsDNA viruses that infect certain unicellular, chlorella-like green algae. The type member is Paramecium bursaria chlorella virus 1 (PBCV-1). Physical properties: Chlorella virus particles are large (molecular weight approximately 1 x 10(9) Da) and complex. The virion of PBCV-1 contains more than 100 different proteins; the major capsid protein, Vp54, comprises approximately 40% of the virus protein. Cryoelectron microscopy and three-dimensional image reconstruction of PBCV-1 virions indicate that the outer glycoprotein-containing capsid shell is icosahedral and surrounds a lipid bilayered membrane. The diameter of the viral capsid ranges from 1650 A along the two- and three-fold axes to 1900 A along the five-fold axis. The virus contains 5040 copies of Vp54, and the triangulation number is 169. The PBCV-1 genome is a linear, 330 744-bp, non-permuted dsDNA with covalently closed hairpin ends. The PBCV-1 genome contains approximately 375 protein-encoding genes and 11 tRNA genes. About 50% of the protein-encoding genes match proteins in the databases. Hosts: Chlorella NC64A and Chlorella Pbi, the hosts for NC64A viruses and Pbi viruses, respectively, are endosymbionts of the protozoan Paramecium bursaria. However, they can be grown in the laboratory free of both the paramecium and the virus. These two chlorella species are hosts to viruses that have been isolated from fresh water collected around the world. The host for hydra chlorella virus, a symbiotic chlorella from Hydra viridis, has not been grown independently of its host; thus the virus can only be obtained from chlorella cells freshly released from hydra.
Collapse
Affiliation(s)
- Ming Kang
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, USA
| | | | | |
Collapse
|
126
|
Roosild TP, Choe S. Redesigning an integral membrane K+ channel into a soluble protein. Protein Eng Des Sel 2005; 18:79-84. [PMID: 15788421 DOI: 10.1093/protein/gzi010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Even though the structure determination of soluble proteins has become routine, the number of unrelated integral membrane protein structures remains at a few dozen. The importance of this class of proteins to the molecular mechanisms underlying numerous biological phenomena demands that novel experimental techniques be developed to overcome the limitations imposed by conventional detergent-dependent approaches. Here we report the re-engineering of a putative K+ channel protein of unknown structure into a water-soluble analogue. By analyzing evolutionary conservation patterns of related sequences, lipid-facing residues of the primitive channel were identified and mutagenized into more polar alternatives. Further stabilization of the resultant construct was achieved through fusion with maltose-binding protein. The final soluble protein forms a tetramer, suggesting that it accurately models its predecessor. This methodology, as a viable alternative to the use of detergents, should be applicable to a wide range of integral membrane protein families including transporters and other signal transducers.
Collapse
Affiliation(s)
- Tarmo P Roosild
- Structural Biology Laboratory, Salk Institute and Division of Biology, University of California at San Diego, San Diego, CA 92037, USA
| | | |
Collapse
|
127
|
Chen J, Cassar SC, Zhang D, Gopalakrishnan M. A novel potassium channel encoded by Ectocarpus siliculosus virus. Biochem Biophys Res Commun 2005; 326:887-93. [PMID: 15607752 DOI: 10.1016/j.bbrc.2004.11.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Indexed: 10/26/2022]
Abstract
Kcv, the first identified viral potassium channel encoded by the green algae Paramecium bursaria chlorella virus (PBCV-1), conducted K(+) selective currents when expressed in heterologous systems. This K(+) channel was proposed to be important for PBCV-1 infection and replication. In the present study, we identified and functionally characterized a novel K(+) channel Kesv, encoded by Ectocarpus siliculosus virus that infects filamentous marine brown algae. Kesv encodes a protein of 124 amino acids and is 21.8% identical and 37.1% homologous to Kcv. Membrane topology programs predicted that Kesv consists of three transmembrane domains. When expressed in Xenopus oocytes, Kesv induced largely instantaneous, K(+) selective currents that were sensitive to block by Ba(2+) and amantadine. Thus, Kesv along with Kcv, constitutes an emerging family of viral potassium channels, which may play important roles in the life cycle of viruses.
Collapse
Affiliation(s)
- Jun Chen
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6125, USA.
| | | | | | | |
Collapse
|
128
|
Abstract
Among players in neurobiology, ion channels are the demigods that underlie all our senses, behaviour and intelligence. In animals, these 'gated pores' detect ligands, voltage, heat or stretch forces and emit electric or ionic signals. Patch clamp and genome sequencing now show that nearly all microbes also have these 'smart' molecules. Microbial channel proteins have yielded crystal structures so dear to neuroscientists. However, their natural roles in microbial physiology remain largely unknown. The intellectual and technical schisms between 'neuro' and 'micro' biology must be bridged before we know how we became so smart, and whether microbes are just as smart.
Collapse
Affiliation(s)
- Ching Kung
- Laboratory of Molecular Biology and Department of Genetics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
129
|
Kang M, Graves M, Mehmel M, Moroni A, Gazzarrini S, Thiel G, Gurnon JR, Van Etten JL. Genetic diversity in chlorella viruses flanking kcv, a gene that encodes a potassium ion channel protein. Virology 2004; 326:150-9. [PMID: 15262503 DOI: 10.1016/j.virol.2004.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
Abstract
The chlorella virus PBCV-1 encodes a 94-amino acid protein named Kcv that produces a K+-selective and slightly voltage-sensitive conductance when expressed in heterologous systems. As reported herein, (i) Northern analysis of kcv expression in PBCV-1-infected cells revealed a complicated pattern suggesting that the gene might be transcribed as a di- or tri-cistronic mRNA both at early and late times after virus infection. (ii) The protein kinase inhibitors H-89, A3, and staurosporine inhibited PBCV-1 Kcv activity in Xenopus oocytes, suggesting that Kcv activity might be controlled by phosphorylation or dephosphorylation. (iii) The PBCV-1 genomic sequence revealed a gene encoding a putative protein kinase (pkx) adjacent to kcv. These findings prompted us to examine the kcv flanking regions in 16 additional chlorella viruses and transcription in two of these viruses, as well as the effect of the three protein kinase inhibitors on two Kcv homologs in Xenopus oocytes. The results indicate (i) pkx is always located 5' to kcv, but the spacing between the two genes varies from 31 to 1588 nucleotides. More variation occurs in the kcv 3' flanking region of the 16 viruses. (ii) The kcv gene is expressed as a late mono-cistronic mRNA. (iii) Unlike the affect on PBCV-1 Kcv, the three protein kinase inhibitors have little or no effect on the activity of the two Kcv homologs in oocytes. (iv) A comparison of the kcv 5' upstream sequences from the 16 viruses identified a highly conserved 10-nucleotide sequence that is present in the promoter region of all of the viruses.
Collapse
Affiliation(s)
- Ming Kang
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Gazzarrini S, Kang M, Van Etten JL, Tayefeh S, Kast SM, DiFrancesco D, Thiel G, Moroni A. Long Distance Interactions within the Potassium Channel Pore Are Revealed by Molecular Diversity of Viral Proteins. J Biol Chem 2004; 279:28443-9. [PMID: 15105432 DOI: 10.1074/jbc.m401184200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kcv is a 94-amino acid protein encoded by chlorella virus PBCV-1 that corresponds to the pore module of K(+) channels. Therefore, Kcv can be a model for studying the protein design of K(+) channel pores. We analyzed the molecular diversity generated by approximately 1 billion years of evolution on kcv genes isolated from 40 additional chlorella viruses. Because the channel is apparently required for virus replication, the Kcv variants are all functional and contain multiple and dispersed substitutions that represent a repertoire of allowed sets of amino acid substitutions (from 4 to 12 amino acids). Correlations between amino acid substitutions and the new properties displayed by these channels guided site-directed mutations that revealed synergistic amino acid interactions within the protein as well as previously unknown interactions between distant channel domains. The effects of these multiple changes were not predictable from a priori structural knowledge of the channel pore.
Collapse
Affiliation(s)
- Sabrina Gazzarrini
- Department of Biology and Consiglio Nazionale delle Ricerche Istituto di Biofisica-Mi, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Brownlee C. Biography of James L. Van Etten. Proc Natl Acad Sci U S A 2004; 101:5315-7. [PMID: 15067122 PMCID: PMC399311 DOI: 10.1073/pnas.0401846101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
132
|
Abstract
Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, dsDNA viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. Its 330-kb genome contains approximately 373 protein-encoding genes and 11 tRNA genes. The predicted gene products of approximately 50% of these genes resemble proteins of known function, including many that are unexpected for a virus, e.g., ornithine decarboxylase, hyaluronan synthase, GDP-D-mannose 4,6 dehydratase, and a potassium ion channel protein. In addition to their large genome size, the chlorella viruses have other features that distinguish them from most viruses. These features include: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases. (b) The viruses encode at least some, if not all, of the enzymes required to glycosylate their proteins. (c) PBCV-1 has at least three types of introns, a self-splicing intron in a transcription factor-like gene, a spliceosomal processed intron in its DNA polymerase gene, and a small intron in one of its tRNA genes. (d) Many chlorella virus-encoded proteins are either the smallest or among the smallest proteins of their class. (e) Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history.
Collapse
Affiliation(s)
- James L Van Etten
- Nebraska Center for Virology and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, USA.
| |
Collapse
|
133
|
Kang M, Moroni A, Gazzarrini S, DiFrancesco D, Thiel G, Severino M, Van Etten JL. Small potassium ion channel proteins encoded by chlorella viruses. Proc Natl Acad Sci U S A 2004; 101:5318-24. [PMID: 14762169 PMCID: PMC397378 DOI: 10.1073/pnas.0307824100] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kcv, a 94-aa protein encoded by Paramecium bursaria chlorella virus 1, is the smallest known protein to form a functional potassium ion channel and basically corresponds to the "pore module" of potassium channels. Both viral replication and channel activity are inhibited by the ion channel blockers barium and amantadine but not by cesium. Genes encoding Kcv-like proteins were isolated from 40 additional chlorella viruses. Differences in 16 of the 94 amino acids were detected, producing six Kcv-like proteins with amino acid substitutions occurring in most of the functional domains of the protein (N terminus, transmembrane 1, pore helix, selectivity filter, and transmembrane 2). The six proteins form functional potassium selective channels in Xenopus oocytes with different properties including altered current kinetics and inhibition by cesium. The amino acid changes together with the different properties observed in the six Kcv-like channels will be used to guide site-directed mutations, either singularly or in combination, to identify key amino acids that confer specific properties to Kcv.
Collapse
Affiliation(s)
- Ming Kang
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
Plaque-forming dsDNA (>330 kb) viruses that infect certain unicellular, eukaryotic chlorella-like green algae contain approximately 375 protein-encoding genes. These proteins include a 94 amino acid K+ channel protein, called Kcv, as well as two putative ligand-gated ion channels. The viruses also encode other proteins that could be involved in the assembly and/or function of ion channels, including protein kinases and a phosphatase, polyamine biosynthetic enzymes and histamine decarboxylase.
Collapse
Affiliation(s)
- Ming Kang
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722, USA
| | | | | | | |
Collapse
|
135
|
Abstract
Viroporins are a group of proteins that participate in several viral functions, including the promotion of release of viral particles from cells. These proteins also affect cellular functions, including the cell vesicle system, glycoprotein trafficking and membrane permeability. Viroporins are not essential for the replication of viruses, but their presence enhances virus growth. Comprising some 60-120 amino acids, viroporins have a hydrophobic transmembrane domain that interacts with and expands the lipid bilayer. Some viroporins also contain other motifs, such as basic amino acid residues or a domain rich in aromatic amino acids that confers on the protein the ability to interact with the interfacial lipid bilayer. Viroporin oligomerization gives rise to hydrophilic pores at the membranes of virus-infected cells. As the list of known viroporins steadily grows, recent research efforts focus on deciphering the actions of the viroporins poliovirus 2B, alphavirus 6K, HIV-1 Vpu and influenza virus M2. All these proteins can enhance the passage of ions and small molecules through membranes depending on their concentration gradient. Future work will lengthen the list of viroporins and will provide a deeper understanding of their mechanisms of action.
Collapse
Affiliation(s)
- Maria Eugenia Gonzalez
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| | | |
Collapse
|
136
|
Kelly ML, Cook JA, Brown-Augsburger P, Heinz BA, Smith MC, Pinto LH. Demonstrating the intrinsic ion channel activity of virally encoded proteins. FEBS Lett 2003; 552:61-7. [PMID: 12972153 DOI: 10.1016/s0014-5793(03)00851-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review summarizes the types of evidence that can be invoked in order to demonstrate that a virally encoded protein possesses ion channel activity that is intrinsic to the life cycle of the virus. Ion channel activity has been proposed to be a key step in the life cycle of influenza virus, and the protein responsible for this activity has been proposed to be the M2 protein encoded by the virus. This review contrasts the evidence supporting the conclusion that the A/M2 protein of influenza A virus has intrinsic ion channel activity with the evidence that the 3AB protein encoded by the human rhinovirus possesses intrinsic ion channel activity.
Collapse
Affiliation(s)
- Marie L Kelly
- Department of Physiology, Wayne State Medical School, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
137
|
Gazzarrini S, Severino M, Lombardi M, Morandi M, DiFrancesco D, Van Etten JL, Thiel G, Moroni A. The viral potassium channel Kcv: structural and functional features. FEBS Lett 2003; 552:12-6. [PMID: 12972145 DOI: 10.1016/s0014-5793(03)00777-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chlorella virus PBCV-1 was the first virus found to encode a functional potassium channel protein (Kcv). Kcv is small (94 aa) and basically consists of the M1-P-M2 (membrane-pore-membrane) module typical of the pore regions of all known potassium channels. Kcv forms functional channels in three heterologous systems. This brief review discusses the gating, permeability and modulation properties of Kcv and compares them to the properties of bacterial and mammalian K+ channels.
Collapse
Affiliation(s)
- Sabrina Gazzarrini
- Department of Biology, CNR-IBF Unità di Milano, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Vpu, a membrane protein from human immunodeficiency virus-1, folds into two distinct structural domains with different biological activities: a transmembrane (TM) helical domain involved in the budding of new virions from infected cells, and a cytoplasmic domain encompassing two amphipathic helices, which is implicated in CD4 degradation. The molecular mechanism by which Vpu facilitates virion budding is not clear. This activity of Vpu requires an intact TM helical domain. And it is known that oligomerization of the VPU TM domain results in the formation of sequence-specific, cation-selective channels. It has been shown that the channel activity of Vpu is confined to the TM domain, and that the cytoplasmic helices regulate the lifetime of the Vpu channel in the conductive state. Structure-function correlates based on the convergence of information about the channel activity of Vpu reconstituted in lipid bilayers and on its 3-D structure in membranes by a combination of solution and solid-state nuclear magnetic resonance spectroscopy may provide valuable insights to understand the role of Vpu in the pathogenesis of AIDS and for drug design aimed to block channel activity.
Collapse
Affiliation(s)
- M Montal
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0366, USA.
| |
Collapse
|
139
|
Mehmel M, Rothermel M, Meckel T, Van Etten JL, Moroni A, Thiel G. Possible function for virus encoded K+ channel Kcv in the replication of chlorella virus PBCV-1. FEBS Lett 2003; 552:7-11. [PMID: 12972144 DOI: 10.1016/s0014-5793(03)00776-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The K+ channel Kcv is encoded by the chlorella virus PBCV-1. There is evidence that this channel plays an essential role in the replication of the virus, because both PBCV-1 plaque formation and Kcv channel activity in Xenopus oocytes have similar sensitivities to inhibitors. Here we report circumstantial evidence that the Kcv channel is important during virus infection. Recordings of membrane voltage in the host cells Chlorella NC64A reveal a membrane depolarization within the first few minutes of infection. This depolarization displays the same sensitivity to cations as Kcv conductance; depolarization also requires the intact membrane of the virion. Together these data are consistent with the idea that the virus carries functional K+ channels in the virion and inserts them into the host cell plasma membrane during infection.
Collapse
Affiliation(s)
- Mario Mehmel
- Membrane Biophysics, Botany Institute, Darmstadt University of Technology, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
140
|
Abstract
The NB protein of influenza B virus is thought to function as an ion channel and therefore would be expected to have an essential function in viral replication. Because direct evidence for its absolute requirement in the viral life cycle is lacking, we generated NB knockout viruses by reverse genetics and tested their growth properties both in vitro and in vivo. Mutants not expressing NB replicated as efficiently as the wild-type virus in cell culture, whereas in mice they showed restricted growth compared with findings for the wild-type virus. Thus, the NB protein is not essential for influenza B virus replication in cell culture but promotes efficient growth in mice.
Collapse
Affiliation(s)
- Masato Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
141
|
Moroni A, Viscomi C, Sangiorgio V, Pagliuca C, Meckel T, Horvath F, Gazzarrini S, Valbuzzi P, Van Etten JL, DiFrancesco D, Thiel G. The short N-terminus is required for functional expression of the virus-encoded miniature K(+) channel Kcv. FEBS Lett 2002; 530:65-9. [PMID: 12387867 DOI: 10.1016/s0014-5793(02)03397-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kcv (K(+) Chlorella virus) is a miniature virus-encoded K(+) channel. Its predicted membrane-pore-membrane structure lacks a cytoplasmic C-terminus and it has a short 12 amino acid (aa) cytoplasmic N-terminus. Kcv forms a functional channel when expressed in human HEK 293 cells. Deletion of the 14 N-terminal aa results in no apparent differences in the subcellular location and expression level of the Kcv protein. However, the truncated protein does not induce a measurable current in transfected HEK 293 cells or Xenopus oocytes. We conclude that the N-terminus controls functional properties of the Kcv channel, but does not influence protein expression.
Collapse
Affiliation(s)
- Anna Moroni
- Department of Biology and Istituto di Biofisica del CNR, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Mullins FM, Stepanovic SZ, Desai RR, George AL, Balser JR. Extracellular sodium interacts with the HERG channel at an outer pore site. J Gen Physiol 2002; 120:517-37. [PMID: 12356854 PMCID: PMC2229534 DOI: 10.1085/jgp.20028589] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2002] [Revised: 07/15/2002] [Accepted: 07/23/2002] [Indexed: 12/21/2022] Open
Abstract
Most voltage-gated K(+) currents are relatively insensitive to extracellular Na(+) (Na(+)(o)), but Na(+)(o) potently inhibits outward human ether-a-go-go-related gene (HERG)-encoded K(+) channel current (Numaguchi, H., J.P. Johnson, Jr., C.I. Petersen, and J.R. Balser. 2000. Nat. Neurosci. 3:429-30). We studied wild-type (WT) and mutant HERG currents and used two strategic probes, intracellular Na(+) (Na(+)(i)) and extracellular Ba(2+) (Ba(2+)(o)), to define a site where Na(+)(o) interacts with HERG. Currents were recorded from transfected Chinese hamster ovary (CHO-K1) cells using the whole-cell voltage clamp technique. Inhibition of WT HERG by Na(+)(o) was not strongly dependent on the voltage during activating pulses. Three point mutants in the P-loop region (S624A, S624T, S631A) with intact K(+) selectivity and impaired inactivation each had reduced sensitivity to inhibition by Na(+)(o). Quantitatively similar effects of Na(+)(i) to inhibit HERG current were seen in the WT and S624A channels. As S624A has impaired Na(+)(o) sensitivity, this result suggested that Na(+)(o) and Na(+)(i) act at different sites. Extracellular Ba(2+) (Ba(2+)(o)) blocks K(+) channel pores, and thereby serves as a useful probe of K(+) channel structure. HERG channel inactivation promotes relief of Ba(2+) block (Weerapura, M., S. Nattel, M. Courtemanche, D. Doern, N. Ethier, and T. Hebert. 2000. J. Physiol. 526:265-278). We used this feature of HERG inactivation to distinguish between simple allosteric and pore-occluding models of Na(+)(o) action. A remote allosteric model predicts that Na(+)(o) will speed relief of Ba(2+)(o) block by promoting inactivation. Instead, Na(+)(o) slowed Ba(2+) egress and Ba(2+) relieved Na(+)(o) inhibition, consistent with Na(+)(o) binding to an outer pore site. The apparent affinities of the outer pore for Na(+)(o) and K(+)(o) as measured by slowing of Ba(2+) egress were compatible with competition between the two ions for the channel pore in their physiological concentration ranges. We also examined the role of the HERG closed state in Na(+)(o) inhibition. Na(+)(o) inhibition was inversely related to pulsing frequency in the WT channel, but not in the pore mutant S624A.
Collapse
Affiliation(s)
- Franklin M. Mullins
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Svetlana Z. Stepanovic
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Reshma R. Desai
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alfred L. George
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jeffrey R. Balser
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
143
|
Shrivastava IH, Tieleman DP, Biggin PC, Sansom MSP. K(+) versus Na(+) ions in a K channel selectivity filter: a simulation study. Biophys J 2002; 83:633-45. [PMID: 12124253 PMCID: PMC1302175 DOI: 10.1016/s0006-3495(02)75197-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Molecular dynamics simulations of a bacterial potassium channel (KcsA) embedded in a phospholipid bilayer reveal significant differences in interactions of the selectivity filter with K(+) compared with Na(+) ions. K(+) ions and water molecules within the filter undergo concerted single-file motion in which they translocate between adjacent sites within the filter on a nanosecond timescale. In contrast, Na(+) ions remain bound to sites within the filter and do not exhibit translocation on a nanosecond timescale. Furthermore, entry of a K(+) ion into the filter from the extracellular mouth is observed, whereas this does not occur for a Na(+) ion. Whereas K(+) ions prefer to sit within a cage of eight oxygen atoms of the filter, Na(+) ions prefer to interact with a ring of four oxygen atoms plus two water molecules. These differences in interactions in the selectivity filter may contribute to the selectivity of KcsA for K(+) ions (in addition to the differences in dehydration energy between K(+) and Na(+)) and the block of KcsA by internal Na(+) ions. In our simulations the selectivity filter exhibits significant flexibility in response to changes in ion/protein interactions, with a somewhat greater distortion induced by Na(+) than by K(+) ions.
Collapse
Affiliation(s)
- Indira H Shrivastava
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
144
|
Abstract
Viral ion channels are short auxiliary membrane proteins with a length of ca. 100 amino acids. They are found in enveloped viruses from influenza A, influenza B and influenza C (Orthomyxoviridae), and the human immunodeficiency virus type 1 (HIV-1, Retroviridae). The channels are called M2 (influenza A), NB (influenza B), CM2 (influenza C) and Vpu (HIV-1). Recently, in Paramecium bursaria chlorella virus (PBCV-1, Phycodnaviridae), a K+ selective ion channel has been discovered. The viral channels form homo oligomers to allow an ion flux and represent miniaturised systems. Proton conductivity of M2 is established; NB, Vpu and the potassium channel from PBC-1 conduct ions; for CM2 ion conductivity is still under proof. This review summarises the current knowledge of these short viral membrane proteins. Their discovery is outlined and experimental evidence for their structure and function is discussed. Studies using computational methods are presented as well as investigations of drug-protein interactions.
Collapse
Affiliation(s)
- Wolfgang B Fischer
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, UK.
| | | |
Collapse
|
145
|
Moshelion M, Becker D, Czempinski K, Mueller-Roeber B, Attali B, Hedrich R, Moran N. Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. PLANT PHYSIOLOGY 2002; 128:634-42. [PMID: 11842166 PMCID: PMC148925 DOI: 10.1104/pp.010549] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Revised: 09/11/2001] [Accepted: 11/02/2001] [Indexed: 05/18/2023]
Abstract
In a search for potassium channels involved in light- and clock-regulated leaf movements, we cloned four putative K channel genes from the leaf-moving organs, pulvini, of the legume Samanea saman. The S. saman SPOCK1 is homologous to KCO1, an Arabidopsis two-pore-domain K channel, the S. saman SPORK1 is similar to SKOR and GORK, Arabidopsis outward-rectifying Shaker-like K channels, and the S. saman SPICK1 and SPICK2 are homologous to AKT2, a weakly-inward-rectifying Shaker-like Arabidopsis K channel. All four S. saman sequences possess the universal K-channel-specific pore signature, TXXTXGYG, strongly suggesting a role in transmembrane K(+) transport. The four S. saman genes had different expression patterns within four leaf parts: "extensor" and "flexor" (the motor tissues), the leaf blades (mainly mesophyll), and the vascular bundle ("rachis"). Based on northern blot analysis, their transcript level was correlated with the rhythmic leaf movements: (a) all four genes were regulated diurnally (Spick2, Spork1, and Spock1 in extensor and flexor, Spick1 in extensor and rachis); (b) Spork1 and Spock1 rhythms were inverted upon the inversion of the day-night cycle; and (c) in extensor and/or flexor, the expression of Spork1, Spick1, and Spick2 was also under a circadian control. These findings parallel the circadian rhythm shown to govern the resting membrane K(+) permeability in extensor and flexor protoplasts and the susceptibility of this permeability to light stimulation (Kim et al., 1993). Thus, Samanea pulvinar motor cells are the first described system combining light and circadian regulation of K channels at the level of transcript and membrane transport.
Collapse
Affiliation(s)
- Menachem Moshelion
- University of Potsdam, Department of Biochemistry, Karl-Liebknecht-Strasse 24-25, Haus 20, D-14476 Golm, Germany
| | | | | | | | | | | | | |
Collapse
|
146
|
Jakobsson E, Jay Mashl R, Tseng TT. Investigating ion channels using computational methods. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)52011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
147
|
Delaroque N, Müller DG, Bothe G, Pohl T, Knippers R, Boland W. The complete DNA sequence of the Ectocarpus siliculosus Virus EsV-1 genome. Virology 2001; 287:112-32. [PMID: 11504547 DOI: 10.1006/viro.2001.1028] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ectocarpus siliculosus Virus-1, EsV-1, is the type-species of a genus of Phycodnaviridae, the phaeoviruses, infecting marine filamentous brown algae. The EsV-1 genome of 335,593 bp contains tandem and dispersed repetitive elements in addition to a large number of open reading frames of which 231 are currently counted as genes. Many genes can be assigned to functional groups involved in DNA synthesis, DNA integration, transposition, and polysaccharide metabolism. Furthermore, EsV-1 contains components of a surprisingly complex signal transduction system with six different hybrid histidine protein kinases and four putative serine/threonine protein kinases. Several other genes encode polypeptides with protein-protein interaction domains. However, 50% of the predicted genes have no counterparts in data banks. Only 28 of the 231 identified genes have significant sequence similarities to genes of the Chlorella virus PBCV-1, another phycodnavirus. To our knowledge, the EsV-1 genome is the largest viral DNA sequenced to date.
Collapse
Affiliation(s)
- N Delaroque
- Department of Biology, Universität Konstanz, Konstanz, D-78457, Germany.
| | | | | | | | | | | |
Collapse
|
148
|
Watanabe T, Watanabe S, Ito H, Kida H, Kawaoka Y. Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity. J Virol 2001; 75:5656-62. [PMID: 11356973 PMCID: PMC114278 DOI: 10.1128/jvi.75.12.5656-5662.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ion channel proteins are common constituents of cells and have even been identified in some viruses. For example, the M2 protein of influenza A virus has proton ion channel activity that is thought to play an important role in viral replication. Because direct support for this function is lacking, we attempted to generate viruses with defective M2 ion channel activity. Unexpectedly, mutants with apparent loss of M2 ion channel activity by an in vitro assay replicated as efficiently as the wild-type virus in cell culture. We also generated a chimeric mutant containing an M2 protein whose transmembrane domain was replaced with that from the hemagglutinin glycoprotein. This virus replicated reasonably well in cell culture but showed no growth in mice. Finally, a mutant lacking both the transmembrane and cytoplasmic domains of M2 protein grew poorly in cell culture and showed no growth in mice. Thus, influenza A virus can undergo multiple cycles of replication without the M2 transmembrane domain responsible for ion channel activity, although this activity promotes efficient viral replication.
Collapse
Affiliation(s)
- T Watanabe
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
149
|
Abstract
Knowledge of signaling mechanisms has increased dramatically during the past decade, particularly in the areas of development, biochemical signaling cascades, synaptic transmission and ion channel biophysics.
Collapse
Affiliation(s)
- L Y Jan
- Howard Hughes Medical Institute, University of California, 533 Parnassus Avenue, San Francisco, CA 94143-0725, USA.
| | | |
Collapse
|