101
|
Ye J, Wang X, Wang W, Yu H, Ai G, Li C, Sun P, Wang X, Li H, Ouyang B, Zhang J, Zhang Y, Han H, Giovannoni JJ, Fei Z, Ye Z. Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. PLANT PHYSIOLOGY 2021; 186:2078-2092. [PMID: 34618111 PMCID: PMC8331143 DOI: 10.1093/plphys/kiab230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/03/2021] [Indexed: 05/05/2023]
Abstract
Tomato (Solanum lycopersicum) is a highly valuable fruit crop, and yield is one of the most important agronomic traits. However, the genetic architecture underlying tomato yield-related traits has not been fully addressed. Based on ∼4.4 million single nucleotide polymorphisms obtained from 605 diverse accessions, we performed a comprehensive genome-wide association study for 27 agronomic traits in tomato. A total of 239 significant associations corresponding to 129 loci, harboring many previously reported and additional genes related to vegetative and reproductive development, were identified, and these loci explained an average of ∼8.8% of the phenotypic variance. A total of 51 loci associated with 25 traits have been under selection during tomato domestication and improvement. Furthermore, a candidate gene, Sl-ACTIVATED MALATE TRANSPORTER15, that encodes an aluminum-activated malate transporter was functionally characterized and shown to act as a pivotal regulator of leaf stomata formation, thereby affecting photosynthesis and drought resistance. This study provides valuable information for tomato genetic research and breeding.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Xin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Wenqian Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengya Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianyu Wang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Author for communication:
| |
Collapse
|
102
|
Iwamoto M, Tsuchida-Mayama T, Ichikawa H. The transcription factor gene RDD4 contributes to the control of nutrient ion accumulation in rice. PHYSIOLOGIA PLANTARUM 2021; 172:2059-2069. [PMID: 33876435 DOI: 10.1111/ppl.13434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the expression and functions of the transcription factor gene RDD4 (rice Dof daily fluctuations 4), which has sequence similarity to RDD1 that controls nutrient ion accumulation in rice. RDD4 protein was highly accumulated in leaf sheaths and localized to vascular bundles. RDD4-overexpressing plants (RDD4-OX) improved the accumulation of various nutrient ions, irrespective of nutrient concentration in a hydroponic solution. K+ and Cl- deficiencies induced the accumulation of other cations and anions, respectively. Interestingly, in RDD4-OX plants K+ and Cl- deficiencies increased PO4 3- and Mg2+ contents, respectively, despite opposite electric charges. Furthermore, PO4 3- deficiency induced NO3 - and Mg2+ accumulation in RDD4-OX plants. These data show that RDD4 is associated with the control of nutrient ion contents within plants. Also, photosynthetic CO2 assimilation in RDD4-OX plants was higher than in wild-type (WT) plants, although the sizes of shoots and panicles decreased in RDD4-OX plants. Subsequent microarray analysis indicated that OsFWL7, similar to maize CNR1 that negatively regulates plant size, showed the most significant difference in its expression levels between WT and RDD4-OX plants. Based on these results, it is hypothesized that a prominent increase in the OsFWL7 expression reduces plant size in RDD4-OX plants.
Collapse
Affiliation(s)
- Masao Iwamoto
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Tomoko Tsuchida-Mayama
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Hiroaki Ichikawa
- Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| |
Collapse
|
103
|
Advances in Genomics Approaches Shed Light on Crop Domestication. PLANTS 2021; 10:plants10081571. [PMID: 34451616 PMCID: PMC8401213 DOI: 10.3390/plants10081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Crop domestication occurred ~10,000–12,000 years ago when humans shifted from a hunter–gatherer to an agrarian society. Crops were domesticated by selecting the traits in wild plant species that were suitable for human use. Research is crucial to elucidate the mechanisms and processes involved in modern crop improvement and breeding. Recent advances in genomics have revolutionized our understanding of crop domestication. In this review, we summarized cutting-edge crop domestication research by presenting its (1) methodologies, (2) current status, (3) applications, and (4) perspectives. Advanced genomics approaches have clarified crop domestication processes and mechanisms, and supported crop improvement.
Collapse
|
104
|
Beauchet A, Gévaudant F, Gonzalez N, Chevalier C. In search of the still unknown function of FW2.2/CELL NUMBER REGULATOR, a major regulator of fruit size in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5300-5311. [PMID: 33974684 DOI: 10.1093/jxb/erab207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The FW2.2 gene is associated with the major quantitative trait locus (QTL) governing fruit size in tomato, and acts by negatively controlling cell division during fruit development. FW2.2 belongs to a multigene family named the CELL NUMBER REGULATOR (CNR) family. CNR proteins harbour the uncharacterized PLAC8 motif made of two conserved cysteine-rich domains separated by a variable region that are predicted to be transmembrane segments, and indeed FW2.2 localizes to the plasma membrane. Although FW2.2 was cloned more than two decades ago, the molecular mechanisms of action remain unknown. In particular, how FW2.2 functions to regulate cell cycle and fruit growth, and thus fruit size, is as yet not understood. Here we review current knowledge on PLAC8-containing CNR/FWL proteins in plants, which are described to participate in organogenesis and the regulation of organ size, especially in fruits, and in cadmium resistance, ion homeostasis, and/or Ca2+ signalling. Within the plasma membrane FW2.2 and some CNR/FWLs are localized in microdomains, which is supported by recent data from interactomics studies. Hence FW2.2 and CNR/FWL could be involved in a transport function of signalling molecules across membranes, influencing organ growth via a cell to cell trafficking mechanism.
Collapse
Affiliation(s)
- Arthur Beauchet
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Frédéric Gévaudant
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| |
Collapse
|
105
|
Wang S, Lv S, Zhao T, Jiang M, Liu D, Fu S, Hu M, Huang S, Pei Y, Wang X. Modification of Threonine-825 of SlBRI1 Enlarges Cell Size to Enhance Fruit Yield by Regulating the Cooperation of BR-GA Signaling in Tomato. Int J Mol Sci 2021; 22:ijms22147673. [PMID: 34299293 PMCID: PMC8305552 DOI: 10.3390/ijms22147673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroids (BRs) are growth-promoting phytohormones that can efficiently function by exogenous application at micromolar concentrations or by endogenous fine-tuning of BR-related gene expression, thus, precisely controlling BR signal strength is a key factor in exploring the agricultural potential of BRs. BRASSINOSTEROID INSENSITIVE1 (BRI1), a BR receptor, is the rate-limiting enzyme in BR signal transduction, and the phosphorylation of each phosphorylation site of SlBRI1 has a distinct effect on BR signal strength and botanic characteristics. We recently demonstrated that modifying the phosphorylation sites of tomato SlBRI1 could improve the agronomic traits of tomato to different extents; however, the associated agronomic potential of SlBRI1 phosphorylation sites in tomato has not been fully exploited. In this research, the biological functions of the phosphorylation site threonine-825 (Thr-825) of SlBRI1 in tomato were investigated. Phenotypic analysis showed that, compared with a tomato line harboring SlBRI1, transgenic tomato lines expressing SlBRI1 with a nonphosphorylated Thr-825 (T825A) exhibited a larger plant size due to a larger cell size and higher yield, including a greater plant height, thicker stems, longer internodal lengths, greater plant expansion, a heavier fruit weight, and larger fruits. Molecular analyses further indicated that the autophosphorylation level of SlBRI1, BR signaling, and gibberellic acid (GA) signaling were elevated when SlBRI1 was dephosphorylated at Thr-825. Taken together, the results demonstrated that dephosphorylation of Thr-825 can enhance the functions of SlBRI1 in BR signaling, which subsequently activates and cooperates with GA signaling to stimulate cell elongation and then leads to larger plants and higher yields per plant. These results also highlight the agricultural potential of SlBRI1 phosphorylation sites for breeding high-yielding tomato varieties through precise control of BR signaling.
Collapse
|
106
|
Fernie AR, Alseekh S, Liu J, Yan J. Using precision phenotyping to inform de novo domestication. PLANT PHYSIOLOGY 2021; 186:1397-1411. [PMID: 33848336 PMCID: PMC8260140 DOI: 10.1093/plphys/kiab160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 05/09/2023]
Abstract
An update on the use of precision phenotyping to assess the potential of lesser cultivated species as candidates for de novo domestication or similar development for future agriculture.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| |
Collapse
|
107
|
Nimmakayala P, Lopez-Ortiz C, Shahi B, Abburi VL, Natarajan P, Kshetry AO, Shinde S, Davenport B, Stommel J, Reddy UK. Exploration into natural variation for genes associated with fruit shape and size among Capsicum chinense collections. Genomics 2021; 113:3002-3014. [PMID: 34229041 DOI: 10.1016/j.ygeno.2021.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
Phenotype diversity within cultivated Capsicum chinense is particularly evident for fruit shape and size. We used this diversity in C. chinense to further unravel the genetic mechanisms underlying fruit shape variation in pepper and related Solanaceous species. We identified candidate genes for C. chinense fruit shape, explored their contribution to population structure, and characterized their potential function in pepper fruit shape. Using genotyping by sequencing, we identified 43,081 single nucleotide polymorphisms (SNPs) from diverse collections of C. chinense. Principal component, neighbor-joining tree, and population structure analyses resolved 3 phylogenetically robust clusters associated with fruit shapes. Genome-wide association study (GWAS) was used to identify associated genomic regions with various fruit shape traits obtained from image analysis with Tomato Analyzer software. In our GWAS, we selected 12 SNPs associated with locule number trait and 8 SNP markers associated with other fruit shape traits such as perimeter, area, obovoid, ellipsoid and morphometrics (5y, 6y and 7y). The SNPs in CLAVATA1, WD-40, Auxin receptor, AAA type ATPase family protein, and RNA polymerase III genes were the major markers identified for fruit locule number from our GWAS results. Furthermore, we found SNPs in tetratricopeptide-repeat thioredoxin-like 3, enhancer of ABA co-receptor 1, subunit of exocyst complex 8 and pleiotropic drug resistance proteins associated with various fruit shape traits. CLAVATA1, WD-40 and Auxin receptor genes are known genes that affect tomato fruit shape. In this study, we used Arabidopsis thaliana T-DNA insertion knockout mutants and expression profiles for functional characterization of newly identified genes and to understand their role in fruit shape.
Collapse
Affiliation(s)
- Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Bhagarathi Shahi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Venkata L Abburi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Arjun Ojha Kshetry
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Suhas Shinde
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Brittany Davenport
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA, ARS, Beltsville MD-20705, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA.
| |
Collapse
|
108
|
Wang W, Liu J, Wang H, Li T, Zhao H. A highly efficient regeneration, genetic transformation system and induction of targeted mutations using CRISPR/Cas9 in Lycium ruthenicum. PLANT METHODS 2021; 17:71. [PMID: 34217355 PMCID: PMC8254353 DOI: 10.1186/s13007-021-00774-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND CRISPR/Cas9 is a rapidly developing genome editing technology in various biological systems due to its efficiency, portability, simplicity and versatility. This editing technology has been successfully applied in in several important plants of Solanaceae such as tomato, tobacco, potato, petunia and groundcherry. Wolfberry ranked the sixth among solanaceous crops of outstanding importance in China following potato, tomato, eggplant, pepper and tobacco. To date, there has been no report on CRISPR/Cas9 technology to improve Lycium ruthenicum due to the unknown genome sequencing and the lack of efficient regeneration and genetic transformation systems. RESULTS In this study, we have established an efficientregeneration and genetic transformation system of Lycium ruthenicum. We have used this system to validate target sites for fw2.2, a major fruit weight quantitative trait locus first identified from tomato and accounted for 30% of the variation in fruit size. In our experiments, the editing efficiency was very high, with 95.45% of the transgenic lines containing mutations in the fw2.2 target site. We obtained transgenic wolfberry plants containing four homozygous mutations and nine biallelic mutations in the fw2.2 gene. CONCLUSIONS These results suggest that CRISPR-based gene editing is effective for the improvement of black wolfberry traits, and we expect this approach to be routinely applied to this important economic fruit.
Collapse
Affiliation(s)
- Wang Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture; Beijing Laboratory of Urban and Rural Ecological Environment; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiangmiao Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture; Beijing Laboratory of Urban and Rural Ecological Environment; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Hai Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture; Beijing Laboratory of Urban and Rural Ecological Environment; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tong Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture; Beijing Laboratory of Urban and Rural Ecological Environment; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huien Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture; Beijing Laboratory of Urban and Rural Ecological Environment; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
109
|
Su W, Shao Z, Wang M, Gan X, Yang X, Lin S. EjBZR1 represses fruit enlargement by binding to the EjCYP90 promoter in loquat. HORTICULTURE RESEARCH 2021; 8:152. [PMID: 34193858 PMCID: PMC8245498 DOI: 10.1038/s41438-021-00586-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Loquat (Eriobotrya japonica) is a subtropical tree that bears fruit that ripens during late spring. Fruit size is one of the dominant factors inhibiting the large-scale production of this fruit crop. To date, little is known about fruit size regulation. In this study, we first discovered that cell size is more important to fruit size than cell number in loquat and that the expression of the EjBZR1 gene is negatively correlated with cell and fruit size. Virus-induced gene silencing (VIGS) of EjBZR1 led to larger cells and fruits in loquat, while its overexpression reduced cell and plant size in Arabidopsis. Moreover, both the suppression and overexpression of EjBZR1 inhibited the expression of brassinosteroid (BR) biosynthesis genes, especially that of EjCYP90A. Further experiments indicated that EjCYP90A, a cytochrome P450 gene, is a fruit growth activator, while EjBZR1 binds to the BRRE (CGTGTG) motif of the EjCYP90A promoter to repress its expression and fruit cell enlargement. Overall, our results demonstrate a possible pathway by which EjBZR1 directly targets EjCYP90A and thereby affects BR biosynthesis, which influences cell expansion and, consequently, fruit size. These findings help to elucidate the molecular functions of BZR1 in fruit growth and thus highlight a useful genetic improvement that can lead to increased crop yields by repressing gene expression.
Collapse
Affiliation(s)
- Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
- Fruit Research Institute, Fujian Academy of Agricultural Science, 350013, Fuzhou, China
- Key Laboratory of Loquat Germplasm Innovation and Utilization, Putian University, 351100, Putian, China
| | - Zikun Shao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
| | - Man Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
| | - Xiaoqing Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, 510642, Guangzhou, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
110
|
Yang L, Liu L, Wang Z, Zong Y, Yu L, Li Y, Liao F, Chen M, Cai K, Guo W. Comparative anatomical and transcriptomic insights into Vaccinium corymbosum flower bud and fruit throughout development. BMC PLANT BIOLOGY 2021; 21:289. [PMID: 34167466 PMCID: PMC8223347 DOI: 10.1186/s12870-021-03067-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/17/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Blueberry (Vaccinium spp.) is characterized by the production of berries that are smaller than most common fruits, and the underlying mechanisms of fruit size in blueberry remain elusive. V. corymbosum 'O'Neal' and 'Bluerain' are commercial southern highbush blueberry cultivars with large- and small-size fruits, respectively, which mature 'O'Neal' fruits are 1 ~ 2-fold heavier than those of 'Bluerain'. In this study, the ontogenetical patterns of 'O'Neal' and 'Bluerain' hypanthia and fruits were compared, and comparative transcriptomic analysis was performed during early fruit development. RESULTS V. corymbosum 'O'Neal' and 'Bluerain' hypanthia and fruits exhibited intricate temporal and spatial cell proliferation and expansion patterns. Cell division before anthesis and cell expansion after fertilization were the major restricting factors, and outer mesocarp was the key tissue affecting fruit size variation among blueberry genotypes. Comparative transcriptomic and annotation analysis of differentially expressed genes revealed that the plant hormone signal transduction pathway was enriched, and that jasmonate-related TIFYs genes might be the key components orchestrating other phytohormones and influencing fruit size during early blueberry fruit development. CONCLUSIONS These results provided detailed ontogenetic evidence for determining blueberry fruit size, and revealed the important roles of phytohormone signal transductions involving in early fruit development. The TIFY genes could be useful as markers for large-size fruit selection in the current breeding programs of blueberry.
Collapse
Affiliation(s)
- Li Yang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
| | - Liangmiao Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Zhuoyi Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yu Zong
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Lei Yu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yongqaing Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Fanglei Liao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Manman Chen
- Zhejiang College of Security Technology, Wenzhou, Zhejiang, 325000, P. R. China
| | - Kailing Cai
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Weidong Guo
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
| |
Collapse
|
111
|
Hassan Z, Ul-Allah S, Khan AA, Shahzad U, Khurshid M, Bakhsh A, Amin H, Jahan MS, Rehim A, Manzoor Z. Phenotypic characterization of exotic tomato germplasm: An excellent breeding resource. PLoS One 2021; 16:e0253557. [PMID: 34143846 PMCID: PMC8213146 DOI: 10.1371/journal.pone.0253557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Tomato production in Pakistan faces significant problems of low yields due to various biotic and abiotic stresses primarily because of a narrow genetic base of the cultivars being used. Therefore, Introduction and evaluation of the exotic tomato germplasm has become necessary to acquire elite material to develop future breeding programs. To this end, the present study was conducted for the phenotypic characterization of twenty exotic tomato genotypes along with two locally grown cultivars in semi-arid subtropical climate. Data were collected for morphological, fruit quality and fruit yield traits. A significant (p<0.05) phenotypic variation was observed for all the studied traits. Maximum yield was obtained from “Rober” i.e., 1508.31 g per plant. The maximum shelf life was observed in the Cromco, with the least weight loss (2.45%) and loss in the firmness of fruit (22.61%) in 4 days. Correlation analyses revealed a strong genetic association among morphological and yield related traits. High estimates of the heritability (ranged from 79.77% to 95.01% for different traits), along with a high genetic advance (up to 34%) showed the potential usefulness of these traits and genotypes to develop breeding programs to improve the tomato yield and fruit quality.
Collapse
Affiliation(s)
- Zeshan Hassan
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus, Layyah, Pakistan
- * E-mail: (ZM); (ZH)
| | - Sami Ul-Allah
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus, Layyah, Pakistan
| | - Azhar Abbas Khan
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus, Layyah, Pakistan
| | - Umbreen Shahzad
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus, Layyah, Pakistan
| | - Muhammad Khurshid
- Institute of Biochemistry and Biotechnology, University of The Punjab, Lahore, Pakistan
| | - Ali Bakhsh
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Huma Amin
- Department of Agroforestry Sciences, University of Valladolid, Soria, Spain
| | - Muhammad Shah Jahan
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus, Layyah, Pakistan
| | - Abdul Rehim
- Department of Soil Science, Faculty of Agricultural Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Zahid Manzoor
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
- * E-mail: (ZM); (ZH)
| |
Collapse
|
112
|
Liang Y, Liu HJ, Yan J, Tian F. Natural Variation in Crops: Realized Understanding, Continuing Promise. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:357-385. [PMID: 33481630 DOI: 10.1146/annurev-arplant-080720-090632] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Crops feed the world's population and shape human civilization. The improvement of crop productivity has been ongoing for almost 10,000 years and has evolved from an experience-based to a knowledge-driven practice over the past three decades. Natural alleles and their reshuffling are long-standing genetic changes that affect how crops respond to various environmental conditions and agricultural practices. Decoding the genetic basis of natural variation is central to understanding crop evolution and, in turn, improving crop breeding. Here, we review current advances in the approaches used to map the causal alleles of natural variation, provide refined insights into the genetics and evolution of natural variation, and outline how this knowledge promises to drive the development of sustainable agriculture under the dome of emerging technologies.
Collapse
Affiliation(s)
- Yameng Liang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; ,
| | - Hai-Jun Liu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria;
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; ,
| |
Collapse
|
113
|
Sierra-Orozco E, Shekasteband R, Illa-Berenguer E, Snouffer A, van der Knaap E, Lee TG, Hutton SF. Identification and characterization of GLOBE, a major gene controlling fruit shape and impacting fruit size and marketability in tomato. HORTICULTURE RESEARCH 2021; 8:138. [PMID: 34075031 PMCID: PMC8169893 DOI: 10.1038/s41438-021-00574-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 05/13/2023]
Abstract
Within large-fruited germplasm, fruit size is influenced by flat and globe shapes. Whereas flat fruits are smaller and retain better marketability, globe fruits are larger and more prone to cuticle disorders. Commercial hybrids are often developed from crosses between flat and globe shaped parents because flat shape is thought to be dominant and fruit size intermediate. The objectives of this study were to determine the genetic basis of flat/globe fruit shape in large-fruited fresh-market tomato germplasm and to characterize its effects on several fruit traits. Twenty-three advanced single plant selections from the Fla. 8000 × Fla. 8111B cross were selectively genotyped using a genome-wide SNP array, and inclusive composite interval mapping identified a single locus on the upper arm of chromosome 12 associated with shape, which we termed globe. A 238-plant F2 population and 69 recombinant inbred lines for this region from the same parents delimited globe to approximately 392-kilobases. A germplasm survey representing materials from multiple breeding programs demonstrated that the locus explains the flat/globe shape broadly. A single base insertion in an exon of Solyc12g006860, a gene annotated as a brassinosteroid hydroxylase, segregated completely with shape in all populations tested. CRISPR/Cas9 knock out plants confirmed this gene as underlying the globe locus. In silico analysis of the mutant allele of GLOBE among 595 wild and domesticated accessions suggested that the allele arose very late in the domestication process. Fruit measurements in three genetic backgrounds evidenced that globe impacts fruit size and several fruit shape attributes, pedicel length/width, and susceptibility of fruit to weather check. The mutant allele of GLOBE appears mostly recessive for all traits except fruit size where it acts additively.
Collapse
Affiliation(s)
- Edgar Sierra-Orozco
- University of Florida, Gulf Coast Research and Education Center, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Reza Shekasteband
- North Carolina State University, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, 455 Research Drive, Mills River, NC, 28759, USA
| | - Eudald Illa-Berenguer
- University of Georgia, Center for Applied Genetic Technologies, 111 Riverbend Road, Athens, GA, 30602, USA
| | - Ashley Snouffer
- University of Georgia, Center for Applied Genetic Technologies, 111 Riverbend Road, Athens, GA, 30602, USA
| | - Esther van der Knaap
- University of Georgia, Center for Applied Genetic Technologies, 111 Riverbend Road, Athens, GA, 30602, USA
- University of Georgia, Department of Horticulture, 1111 Plant Sciences Bldg, Athens, GA, 30602, USA
| | - Tong Geon Lee
- University of Florida, Gulf Coast Research and Education Center, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Samuel F Hutton
- University of Florida, Gulf Coast Research and Education Center, 14625 County Road 672, Wimauma, FL, 33598, USA.
| |
Collapse
|
114
|
Alseekh S, Scossa F, Wen W, Luo J, Yan J, Beleggia R, Klee HJ, Huang S, Papa R, Fernie AR. Domestication of Crop Metabolomes: Desired and Unintended Consequences. TRENDS IN PLANT SCIENCE 2021; 26:650-661. [PMID: 33653662 DOI: 10.1016/j.tplants.2021.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 05/02/2023]
Abstract
The majority of the crops and vegetables of today were domesticated from their wild progenitors within the past 12 000 years. Considerable research effort has been expended on characterizing the genes undergoing positive and negative selection during the processes of crop domestication and improvement. Many studies have also documented how the contents of a handful of metabolites have been altered during human selection, but we are only beginning to unravel the true extent of the metabolic consequences of breeding. We highlight how crop metabolomes have been wittingly or unwittingly shaped by the processes of domestication, and highlight how we can identify new targets for metabolite engineering for the purpose of de novo domestication of crop wild relatives.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178 Rome, Italy
| | - Weiwei Wen
- Key laboratory of Horticultural Plant Biology (MOE),College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Hubei, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China; College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-, CI), 71122 Foggia, Italy
| | - Harry J Klee
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture - Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
| |
Collapse
|
115
|
Pereira L, Santo Domingo M, Argyris J, Mayobre C, Valverde L, Martín-Hernández AM, Pujol M, Garcia-Mas J. A novel introgression line collection to unravel the genetics of climacteric ripening and fruit quality in melon. Sci Rep 2021; 11:11364. [PMID: 34059766 PMCID: PMC8166866 DOI: 10.1038/s41598-021-90783-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/18/2021] [Indexed: 11/09/2022] Open
Abstract
Introgression lines are valuable germplasm for scientists and breeders, since they ease genetic studies such as QTL interactions and positional cloning as well as the introduction of favorable alleles into elite varieties. We developed a novel introgression line collection in melon using two commercial European varieties with different ripening behavior, the climacteric cantalupensis 'Védrantais' as recurrent parent and the non-climacteric inodorus 'Piel de Sapo' as donor parent. The collection contains 34 introgression lines, covering 99% of the donor genome. The mean introgression size is 18.16 Mb and ~ 3 lines were obtained per chromosome, on average. The high segregation of these lines for multiple fruit quality traits allowed us to identify 27 QTLs that modified sugar content, altered fruit morphology or were involved in climacteric ripening. In addition, we confirmed the genomic location of five major genes previously described, which control mainly fruit appearance, such as mottled rind and external color. Most of the QTLs had been reported before in other populations sharing parental lines, while three QTLs (EAROQP11.3, ECDQP11.2 and FIRQP4.1) were newly detected in our work. These introgression lines would be useful to perform additional genetic studies, as fine mapping and gene pyramiding, especially for important complex traits such as fruit weight and climacteric ripening.
Collapse
Affiliation(s)
- Lara Pereira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Jason Argyris
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain.,Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Laura Valverde
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain.,Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain. .,Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain. .,Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
116
|
Shi X, Yang H, Chen C, Hou J, Hanson KM, Albert PS, Ji T, Cheng J, Birchler JA. Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. THE PLANT CELL 2021; 33:917-939. [PMID: 33677584 PMCID: PMC8226301 DOI: 10.1093/plcell/koab030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Genomic imbalance caused by changing the dosage of individual chromosomes (aneuploidy) has a more detrimental effect than varying the dosage of complete sets of chromosomes (ploidy). We examined the impact of both increased and decreased dosage of 15 distal and 1 interstitial chromosomal regions via RNA-seq of maize (Zea mays) mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated toward the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which the expression of many genes under genome imbalance are modulated toward the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Katherine M Hanson
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
117
|
Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M. Application of CRISPR/Cas9 in Crop Quality Improvement. Int J Mol Sci 2021; 22:4206. [PMID: 33921600 PMCID: PMC8073294 DOI: 10.3390/ijms22084206] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
The various crop species are major agricultural products and play an indispensable role in sustaining human life. Over a long period, breeders strove to increase crop yield and improve quality through traditional breeding strategies. Today, many breeders have achieved remarkable results using modern molecular technologies. Recently, a new gene-editing system, named the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, has also succeeded in improving crop quality. It has become the most popular tool for crop improvement due to its versatility. It has accelerated crop breeding progress by virtue of its precision in specific gene editing. This review summarizes the current application of CRISPR/Cas9 technology in crop quality improvement. It includes the modulation in appearance, palatability, nutritional components and other preferred traits of various crops. In addition, the challenge in its future application is also discussed.
Collapse
Affiliation(s)
- Qier Liu
- Institute of Agricultural Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Fan Yang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jingjuan Zhang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Hang Liu
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Shanjida Rahman
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Shahidul Islam
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Wujun Ma
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Maoyun She
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| |
Collapse
|
118
|
Ding Y, Zhang R, Zhu L, Wang M, Ma Y, Yuan D, Liu N, Hu H, Min L, Zhang X. An enhanced photosynthesis and carbohydrate metabolic capability contributes to heterosis of the cotton (Gossypium hirsutum) hybrid 'Huaza Mian H318', as revealed by genome-wide gene expression analysis. BMC Genomics 2021; 22:277. [PMID: 33865322 PMCID: PMC8052695 DOI: 10.1186/s12864-021-07580-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Heterosis has been exploited for decades in different crops due to resulting in dramatic increases in yield, but relatively little molecular evidence on this topic was reported in cotton. Results The elite cotton hybrid variety ‘Huaza Mian H318’ (H318) and its parental lines were used to explore the source of its yield heterosis. A four-year investigation of yield-related traits showed that the boll number of H318 showed higher stability than that of its two parents, both in suitable and unsuitable climate years. In addition, the hybrid H318 grew faster and showed higher fresh and dry weights than its parental lines at the seedling stage. Transcriptome analysis of seedlings identified 17,308 differentially expressed genes (DEGs) between H318 and its parental lines, and 3490 extremely changed DEGs were screened out for later analysis. Most DEGs (3472/3490) were gathered between H318 and its paternal line (4–5), and only 64 DEGs were found between H318 and its maternal line (B0011), which implied that H318 displays more similar transcriptional patterns to its maternal parent at the seedling stage. GO and KEGG analyses showed that these DEGs were highly enriched in photosynthesis, lipid metabolic, carbohydrate metabolic and oxidation-reduction processes, and the expression level of these DEGs was significantly higher in H318 relative to its parental lines, which implied that photosynthesis, metabolism and stress resistances were enhanced in H318. Conclusion The enhanced photosynthesis, lipid and carbohydrate metabolic capabilities contribute to the heterosis of H318 at the seedling stage, and establishes a material foundation for subsequent higher boll-setting rates in complex field environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07580-8.
Collapse
Affiliation(s)
- Yuanhao Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
119
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
120
|
Lyzenga WJ, Pozniak CJ, Kagale S. Advanced domestication: harnessing the precision of gene editing in crop breeding. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:660-670. [PMID: 33657682 PMCID: PMC8051614 DOI: 10.1111/pbi.13576] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 05/05/2023]
Abstract
Human population growth has increased the demand for food crops, animal feed, biofuel and biomaterials, all the while climate change is impacting environmental growth conditions. There is an urgent need to develop crop varieties which tolerate adverse growth conditions while requiring fewer inputs. Plant breeding is critical to global food security and, while it has benefited from modern technologies, it remains constrained by a lack of valuable genetic diversity, linkage drag, and an effective way to combine multiple favourable alleles for complex traits. CRISPR/Cas technology has transformed genome editing across biological systems and promises to transform agriculture with its high precision, ease of design, multiplexing ability and low cost. We discuss the integration of CRISPR/Cas-based gene editing into crop breeding to advance domestication and refine inbred crop varieties for various applications and growth environments. We highlight the use of CRISPR/Cas-based gene editing to fix desirable allelic variants, generate novel alleles, break deleterious genetic linkages, support pre-breeding and for introgression of favourable loci into elite lines.
Collapse
Affiliation(s)
- Wendy J. Lyzenga
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sateesh Kagale
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| |
Collapse
|
121
|
Guo M, Zhang Z, Li S, Lian Q, Fu P, He Y, Qiao J, Xu K, Liu L, Wu M, Du Z, Li S, Wang J, Shao P, Yu Q, Xu G, Li D, Wang Y, Tian S, Zhao J, Feng X, Li R, Jiang W, Zhao X. Genomic analyses of diverse wild and cultivated accessions provide insights into the evolutionary history of jujube. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:517-531. [PMID: 32946650 PMCID: PMC7955879 DOI: 10.1111/pbi.13480] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
The Chinese jujube (Ziziphus jujuba Mill.), a member of the Rhamnaceae family, is an important perennial fruit tree crop of substantial economic, ecological and nutritional value, and is also used as a traditional herbal medicine. Here, we report the resequencing of 493 jujube accessions, including 202 wild and 291 cultivated accessions at >16× depth. Our population genomic analyses revealed that the Shanxi-Shaanxi area of China was jujube's primary domestication centre and that jujube was then disseminated into East China before finally extending into South China. Divergence events analysis indicated that Ziziphus acidojujuba and Ziziphus jujuba diverged around 2.7 Mya, suggesting the interesting possibility that a long pre-domestication period may have occurred prior to human intervention. Using the large genetic polymorphism data set, we identified a 15-bp tandem insertion in the promoter of the jujube ortholog of the POLLEN DEFECTIVE IN GUIDANCE 1 (POD1) gene, which was strongly associated with seed-setting rate. Integrating genome-wide association study (GWAS), transcriptome data, expression analysis and transgenic validation in tomato, we identified a DA3/UBIQUITIN-SPECIFIC PROTEASE 14 (UBP14) ortholog, which negatively regulate fruit weight in jujube. We also identified candidate genes, which have likely influenced the selection of fruit sweetness and crispness texture traits among fresh and dry jujubes. Our study not only illuminates the genetic basis of jujube evolution and domestication and provides a deep and rich genomic resource to facilitate both crop improvement and hypothesis-driven basic research, but also identifies multiple agriculturally important genes for this unique perennial tree fruit species.
Collapse
Affiliation(s)
- Mingxin Guo
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| | | | - Shipeng Li
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| | - Qun Lian
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Pengcheng Fu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Yali He
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Jinxin Qiao
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Keke Xu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Linpei Liu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Miaoyan Wu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Zheran Du
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Sunan Li
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Junjie Wang
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Peiyin Shao
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Qiang Yu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Gan Xu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Dengke Li
- Pomology InstituteShanxi Academy of Agricultural SciencesTaiguChina
| | - Yongkang Wang
- Pomology InstituteShanxi Academy of Agricultural SciencesTaiguChina
| | - Shan Tian
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| | - Jing Zhao
- Novogene Bioinformatics InstituteBeijingChina
| | - Xue Feng
- Novogene Bioinformatics InstituteBeijingChina
| | - Ruiqiang Li
- Novogene Bioinformatics InstituteBeijingChina
| | | | - Xusheng Zhao
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| |
Collapse
|
122
|
Raduski AR, Igić B. Biosystematic studies on the status of Solanum chilense. AMERICAN JOURNAL OF BOTANY 2021; 108:520-537. [PMID: 33783814 DOI: 10.1002/ajb2.1621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Common taxonomic practices, which condition species' descriptions on diagnostic morphological traits, may systematically lump outcrossing species and unduly split selfing species. Specifically, higher effective population sizes and genetic diversity of obligate outcrossers are expected to result less reliable phenotypic diagnoses. Wild tomatoes, members of Solanum sect. Lycopersicum, are commonly used as a source of exotic germplasm for improvement of the cultivated tomato, and are increasingly employed in basic research. Although the section experienced significant early work, which continues presently, the taxonomic status of many wild species has undergone a number of significant revisions and remains uncertain. Species in this section vary in their breeding systems, notably the expression of self-incompatibility, which determines individual propensity for outcrossing METHODS: Here, we examine the taxonomic status of obligately outcrossing Chilean wild tomato (Solanum chilense) using reduced-representation sequencing (RAD-seq), a range of phylogenetic and population genetic analyses, as well as analyses of crossing and morphological data. RESULTS Overall, each of our analyses provides a considerable weight of evidence that the Pacific coastal populations and Andean inland populations of the currently described Solanum chilense represent separately evolving populations, and conceal at least one undescribed cryptic species. CONCLUSIONS Despite its vast economic importance, Solanum sect. Lycopersicon still exhibits considerable taxonomic instability. A pattern of under-recognition of outcrossing species may be common, not only in tomatoes, but across flowering plants. We discuss the possible causes and implications of this observation, with a focus on macroevolutionary inference.
Collapse
Affiliation(s)
- Andrew R Raduski
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, U.S.A
- Dept. of Plant & Microbial Biology, University of Minnesota - Twin Cities, St. Paul, Minnesota, 55108, U.S.A
| | - Boris Igić
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, U.S.A
| |
Collapse
|
123
|
Scossa F, Alseekh S, Fernie AR. Integrating multi-omics data for crop improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153352. [PMID: 33360148 DOI: 10.1016/j.jplph.2020.153352] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 05/26/2023]
Abstract
Our agricultural systems are now in urgent need to secure food for a growing world population. To meet this challenge, we need a better characterization of plant genetic and phenotypic diversity. The combination of genomics, transcriptomics and metabolomics enables a deeper understanding of the mechanisms underlying the complex architecture of many phenotypic traits of agricultural relevance. We review the recent advances in plant genomics to see how these can be integrated with broad molecular profiling approaches to improve our understanding of plant phenotypic variation and inform crop breeding strategies.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178, Rome, Italy.
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.
| |
Collapse
|
124
|
Liu X, Meng G, Wang M, Qian Z, Zhang Y, Yang W. Tomato SlPUB24 enhances resistance to Xanthomonas euvesicatoria pv. perforans race T3. HORTICULTURE RESEARCH 2021; 8:30. [PMID: 33518716 PMCID: PMC7848003 DOI: 10.1038/s41438-021-00468-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 05/04/2023]
Abstract
Solanum lycopersicum var. cerasiforme accession PI 114490 has broad-spectrum resistance to bacterial spot caused by several species of Xanthomonas. Resistance is quantitatively inherited, and a common quantitative trait locus QTL-11B on chromosome 11 has been identified previously. In this study, the SlPub24 gene was characterized in QTL-11B. SlPub24 in PI 114490 was upregulated by infection with X. euvesicatoria pv. perforans race T3, but its transcription was low in the susceptible line OH 88119 whether or not it was infected by the pathogen. The differential expression of SlPub24 between PI 114490 and OH 88119 was due to great sequence variation in the promoter region. The promoter of SlPub24 in OH 88119 had very low activity and did not respond to pathogen infection. Transgenic lines of OH 88119 overexpressing SlPub24 isolated from PI 114490 showed significantly enhanced resistance, while mutants of Slpub24 generated by CRISPR/Cas9 editing showed more susceptibility to race T3 and to other races. The mutants also showed spontaneous cell death in leaves. The expression of the salicylic acid (SA) pathway gene phenylalanine ammonia-lyase (PAL) and signaling-related genes pathogenesis-related (PR1) and nonexpresser of PR1 (NPR1) were influenced by SlPub24. The content of SA in tomato plants was consistent with the level of SlPub24 expression. Furthermore, SlPUB24 interacted with the cell wall protein SlCWP and could regulate the degradation of SlCWP. The expression levels of SlCWP and SlCWINV1, a cell wall invertase gene, showed opposite patterns during pathogen infection. The activity of SlCWINV1 was lower in mutants than in PI 114490. The results are discussed in terms of the roles of the abovementioned genes, and a potential model for SlPUB24-mediated resistance to bacterial spot is proposed.
Collapse
Affiliation(s)
- Xin Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Ge Meng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Mengrui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Zilin Qian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Yaxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China.
| |
Collapse
|
125
|
Tian Y, Liu X, Fan C, Li T, Qin H, Li X, Chen K, Zheng Y, Chen F, Xu Y. Enhancement of Tobacco ( Nicotiana tabacum L.) Seed Lipid Content for Biodiesel Production by CRISPR-Cas9-Mediated Knockout of NtAn1. FRONTIERS IN PLANT SCIENCE 2021; 11:599474. [PMID: 33552096 PMCID: PMC7859101 DOI: 10.3389/fpls.2020.599474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 05/27/2023]
Abstract
Tobacco (Nicotiana tabacum L.) seed lipid is a promising non-edible feedstock for biodiesel production. In order to meet the increasing demand, achieving high seed lipid content is one of the major goals in tobacco seed production. The TT8 gene and its homologs negatively regulate seed lipid accumulation in Arabidopsis and Brassica species. We speculated that manipulating the homolog genes of TT8 in tobacco could enhance the accumulation of seed lipid. In this present study, we found that the TT8 homolog genes in tobacco, NtAn1a and NtAn1b, were highly expressed in developing seed. Targeted mutagenesis of NtAn1 genes was created by the CRISPR-Cas9-based gene editing technology. Due to the defect of proanthocyanidin (PA) biosynthesis, mutant seeds showed the phenotype of a yellow seed coat. Seed lipid accumulation was enhanced by about 18 and 15% in two targeted mutant lines. Protein content was also significantly increased in mutant seeds. In addition, the seed yield-related traits were not affected by the targeted mutagenesis of NtAn1 genes. Thus, the overall lipid productivity of the NtAn1 knockout mutants was dramatically enhanced. The results in this present paper indicated that tobacco NtAn1 genes regulate both PAs and lipid accumulation in the process of seed development and that targeted mutagenesis of NtAn1 genes could generate a yellow-seeded tobacco variety with high lipid and protein content. Furthermore, the present results revealed that the CRISPR-Cas9 system could be employed in tobacco seed de novo domestication for biodiesel feedstock production.
Collapse
Affiliation(s)
- Yinshuai Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China
| | - Xinanbei Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caixin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingting Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kai Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Yunpu Zheng
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China
| | - Ying Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
126
|
Genetic structure analysis of cultivated and wild chestnut populations reveals gene flow from cultivars to natural stands. Sci Rep 2021; 11:240. [PMID: 33420378 PMCID: PMC7794426 DOI: 10.1038/s41598-020-80696-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023] Open
Abstract
Japanese chestnut (Castanea crenata Sieb. et Zucc.), the only fruit tree species domesticated in Japan, has been cultivated alongside natural stands since prehistorical times. Understanding the genetic diversity of this species and the relationships between cultivated and wild chestnut is important for clarifying its breeding history and determining conservation strategies. We assessed 3 chestnut cultivar populations and 29 wild chestnut populations (618 accessions). Genetic distance analysis revealed that wild populations in the Kyushu region are genetically distant from other populations, whereas other wild and cultivar populations are comparatively similar. Assignment tests suggested that cultivars were relatively similar to populations from central to western Honshu. Bayesian structure analyses showed that wild individuals were roughly classified according to geographical distribution along the Japanese archipelago, except that some wild individuals carried the genetic cluster prevalent in cultivars. Parentage analyses between cultivars and wild individuals identified 26 wild individuals presumed to have a parent–offspring relationship with a cultivar. These results suggested that the genetic structure of some wild individuals in natural stands was influenced by gene flow from cultivars. To conserve wild individuals carrying true “wild” genetic clusters, these individuals should be collected and preserved by ex situ conservation programs.
Collapse
|
127
|
Liu J, Fernie AR, Yan J. Crop breeding - From experience-based selection to precision design. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153313. [PMID: 33202375 DOI: 10.1016/j.jplph.2020.153313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Crops are the foundation of human society, not only by providing needed nutrition, but also by feeding livestock and serving as raw materials for industry. Cereal crops, which supply most of our calories, have been supporting humans for thousands of years. However food security is facing many challenges nowadays, including growing populations, water shortage, and increased incidence of biotic and abiotic stresses. According to statistical data from the Food and Agriculture Organization of the United Nations (FAO, http://www.fao.org/), the people suffering severe food insecurity increased from 7.9 % in 2015 to 9.7 % in 2019 and the number of people exposed to moderate or severe food insecurity have increased by 400 million over the same time period. Although there are many ways to cope with these challenges, crop breeding remains the most crucial and direct manner. With the development of molecular genetics, the speed of cloning genetic variations underlying corresponding phenotypes of agricultural importance is considerably more rapid. As a consequence breeding methods have evolved from phenotype-based to genome-based selection. In the future, knowledge-driven crop design, which integrates multi-omics data to reveal the connections between genotypes and phenotypes and to build selection models, will undoubtedly become the most efficient way to shape plants, to improve crops, and to ensure food security.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
128
|
Shi X, Chen C, Yang H, Hou J, Ji T, Cheng J, Veitia RA, Birchler JA. The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. Methods Mol Biol 2020; 2093:161-171. [PMID: 32088896 DOI: 10.1007/978-1-0716-0179-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Dosage effects in plants are caused by changes in the copy number of chromosomes, segments of chromosomes, or multiples of individual genes. Genes often exhibit a dosage effect in which the amount of product is closely correlated with the number of copies present. However, when larger segments of chromosomes are varied, there are trans-acting effects across the genome that are unleashed that modulate gene expression in cascading effects. These appear to be mediated by the stoichiometric relationship of gene regulatory machineries. There are both positive and negative modulations of target gene expression, but the latter is the plurality effect. When this inverse effect is combined with a dosage effect, compensation for a gene can occur in which its expression is similar to the normal diploid regardless of the change in chromosomal dosage. In contrast, changing the whole genome in a polyploidy series has fewer relative effects as the stoichiometric relationship is not disrupted. Together, these observations suggest that the stoichiometry of gene regulation is important as a reflection of the mode of assembly of the individual subunits involved in the effective regulatory macromolecular complexes. This principle has implications for gene expression mechanisms, quantitative trait genetics, and the evolution of genes depending on the mode of duplication, either segmentally or via whole-genome duplication.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Reiner A Veitia
- Institut Jacques Monod, Paris, France
- Universite Paris-Diderot/Paris 7, Paris, France
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
129
|
Gupta P, Dholaniya PS, Devulapalli S, Tawari NR, Sreelakshmi Y, Sharma R. Reanalysis of genome sequences of tomato accessions and its wild relatives: development of Tomato Genomic Variation (TGV) database integrating SNPs and INDELs polymorphisms. Bioinformatics 2020; 36:4984-4990. [PMID: 32829394 DOI: 10.1093/bioinformatics/btaa617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Facilitated by technological advances and expeditious decrease in the sequencing costs, whole-genome sequencing is increasingly implemented to uncover variations in cultivars/accessions of many crop plants. In tomato (Solanum lycopersicum), the availability of the genome sequence, followed by the resequencing of tomato cultivars and its wild relatives, has provided a prodigious resource for the improvement of traits. A high-quality genome resequencing of 84 tomato accessions and wild relatives generated a dataset that can be used as a resource to identify agronomically important alleles across the genome. Converting this dataset into a searchable database, including information about the influence of single-nucleotide polymorphisms (SNPs) on protein function, provides valuable information about the genetic variations. The database will assist in searching for functional variants of a gene for introgression into tomato cultivars. RESULTS A recent release of better-quality tomato genome reference assembly SL3.0, and new annotation ITAG3.2 of SL3.0, dropped 3857 genes, added 4900 novel genes and updated 20 766 genes. Using the above version, we remapped the data from the tomato lines resequenced under the '100 tomato genome resequencing project' on new tomato genome assembly SL3.0 and made an online searchable Tomato Genomic Variations (TGVs) database. The TGV contains information about SNPs and insertion/deletion events and expands it by functional annotation of variants with new ITAG3.2 using SIFT4G software. This database with search function assists in inferring the influence of SNPs on the function of a target gene. This database can be used for selecting SNPs, which can be potentially deployed for improving tomato traits. AVAILABILITY AND IMPLEMENTATION TGV is freely available at http://psd.uohyd.ac.in/tgv.
Collapse
Affiliation(s)
- Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | | | - Nilesh Ramesh Tawari
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences
| |
Collapse
|
130
|
Sinha P, Singh VK, Saxena RK, Khan AW, Abbai R, Chitikineni A, Desai A, Molla J, Upadhyaya HD, Kumar A, Varshney RK. Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2482-2490. [PMID: 32455481 PMCID: PMC7680530 DOI: 10.1111/pbi.13422] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 05/05/2023]
Abstract
Haplotype-based breeding, a recent promising breeding approach to develop tailor-made crop varieties, deals with identification of superior haplotypes and their deployment in breeding programmes. In this context, whole genome re-sequencing data of 292 genotypes from pigeonpea reference set were mined to identify the superior haplotypes for 10 drought-responsive candidate genes. A total of 83, 132 and 60 haplotypes were identified in breeding lines, landraces and wild species, respectively. Candidate gene-based association analysis of these 10 genes on a subset of 137 accessions of the pigeonpea reference set revealed 23 strong marker-trait associations (MTAs) in five genes influencing seven drought-responsive component traits. Haplo-pheno analysis for the strongly associated genes resulted in the identification of most promising haplotypes for three genes regulating five component drought traits. The haplotype C. cajan_23080-H2 for plant weight (PW), fresh weight (FW) and turgid weight (TW), the haplotype C. cajan_30211-H6 for PW, FW, TW and dry weight (DW), the haplotype C. cajan_26230-H11 for FW and DW and the haplotype C. cajan_26230-H5 for relative water content (RWC) were identified as superior haplotypes under drought stress condition. Furthermore, 17 accessions containing superior haplotypes for three drought-responsive genes were identified. The identified superior haplotypes and the accessions carrying these superior haplotypes will be very useful for deploying haplotype-based breeding to develop next-generation tailor-made better drought-responsive pigeonpea cultivars.
Collapse
Affiliation(s)
- Pallavi Sinha
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelangana StateIndia
| | - Vikas K. Singh
- International Rice Research Institute (IRRI)South‐Asia HubICRISAT CampusPatancheruTelangana StateIndia
| | - Rachit K. Saxena
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelangana StateIndia
| | - Aamir W. Khan
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelangana StateIndia
| | - Ragavendran Abbai
- International Rice Research Institute (IRRI)South‐Asia HubICRISAT CampusPatancheruTelangana StateIndia
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelangana StateIndia
| | - Aarthi Desai
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelangana StateIndia
| | - Johiruddin Molla
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelangana StateIndia
- Ghatal Rabindra Satabarsiki MahaVidyalayaPaschim MedinipurWest BengalIndia
| | - Hari D. Upadhyaya
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelangana StateIndia
| | - Arvind Kumar
- International Rice Research Institute (IRRI)South‐Asia HubICRISAT CampusPatancheruTelangana StateIndia
- IRRI South Asia Regional CenterVaranasiIndia
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelangana StateIndia
| |
Collapse
|
131
|
Genome-Wide Identification and Molecular Characterization of the Growth-Regulating Factors-Interacting Factor Gene Family in Tomato. Genes (Basel) 2020; 11:genes11121435. [PMID: 33260638 PMCID: PMC7760089 DOI: 10.3390/genes11121435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 01/22/2023] Open
Abstract
Growth-regulating factors-interacting factor (GIF) proteins play crucial roles in the regulation of plant growth and development. However, the molecular mechanism of GIF proteins in tomato is poorly understood. Here, four SlGIF genes (named SlGRF1a, SlGIF1b, SlGIF2, and SlGIF3) were identified from the tomato genome and clustered into two major clades by phylogenetic analysis. The gene structure and motif pattern analyses showed similar exon/intron patterns and motif organizations in all the SlGIFs. We identified 33 cis-acting regulatory elements (CAREs) in the promoter regions of the SlGIFs. The expression profiling revealed the four GIFs are expressed in various tissues and stages of fruit development and induced by phytohormones (IAA and GA). The subcellular localization assays showed all four GIFs were located in nucleus. The yeast two-hybrid assay indicated various growth-regulating factors (SlGRFs) proteins interacted with the four SlGIF proteins. However, SlGRF4 was a common interactor with the SlGIF proteins. Moreover, a higher co-expression relationship was shown between three SlGIF genes and five SlGRF genes. The protein association network analysis found a chromodomain helicase DNA-binding protein (CHD) and an actin-like protein to be associated with the four SlGIF proteins. Overall, these results will improve our understanding of the potential functions of GIF genes and act as a base for further functional studies on GIFs in tomato growth and development.
Collapse
|
132
|
Arnoux S, Fraïsse C, Sauvage C. Genomic inference of complex domestication histories in three Solanaceae species. J Evol Biol 2020; 34:270-283. [PMID: 33107098 DOI: 10.1111/jeb.13723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Domestication is a human-induced selection process that imprints the genomes of domesticated populations over a short evolutionary time scale and that occurs in a given demographic context. Reconstructing historical gene flow, effective population size changes and their timing is therefore of fundamental interest to understand how plant demography and human selection jointly shape genomic divergence during domestication. Yet, the comparison under a single statistical framework of independent domestication histories across different crop species has been little evaluated so far. Thus, it is unclear whether domestication leads to convergent demographic changes that similarly affect crop genomes. To address this question, we used existing and new transcriptome data on three crop species of Solanaceae (eggplant, pepper and tomato), together with their close wild relatives. We fitted twelve demographic models of increasing complexity on the unfolded joint allele frequency spectrum for each wild/crop pair, and we found evidence for both shared and species-specific demographic processes between species. A convergent history of domestication with gene flow was inferred for all three species, along with evidence of strong reduction in the effective population size during the cultivation stage of tomato and pepper. The absence of any reduction in size of the crop in eggplant stands out from the classical view of the domestication process; as does the existence of a "protracted period" of management before cultivation. Our results also suggest divergent management strategies of modern cultivars among species as their current demography substantially differs. Finally, the timing of domestication is species-specific and supported by the few historical records available.
Collapse
Affiliation(s)
- Stéphanie Arnoux
- INRA UR1052 GAFL, Centre de Recherche INRA PACA, Avignon Cedex 9, France.,Vilmorin SA, Lédenon, France
| | | | - Christopher Sauvage
- INRA UR1052 GAFL, Centre de Recherche INRA PACA, Avignon Cedex 9, France.,Syngenta SAS France, Saint Sauveur, France
| |
Collapse
|
133
|
Roohanitaziani R, de Maagd RA, Lammers M, Molthoff J, Meijer-Dekens F, van Kaauwen MPW, Finkers R, Tikunov Y, Visser RGF, Bovy AG. Exploration of a Resequenced Tomato Core Collection for Phenotypic and Genotypic Variation in Plant Growth and Fruit Quality Traits. Genes (Basel) 2020; 11:genes11111278. [PMID: 33137951 PMCID: PMC7692805 DOI: 10.3390/genes11111278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023] Open
Abstract
A tomato core collection consisting of 122 gene bank accessions, including landraces, old cultivars, and wild relatives, was explored for variation in several plant growth, yield and fruit quality traits. The resequenced accessions were also genotyped with respect to a number of mutations or variations in key genes known to underlie these traits. The yield-related traits fruit number and fruit weight were much higher in cultivated varieties when compared to wild accessions, while, in wild tomato accessions, Brix was higher than in cultivated varieties. Known mutations in fruit size and shape genes could well explain the fruit size variation, and fruit colour variation could be well explained by known mutations in key genes of the carotenoid and flavonoid pathway. The presence and phenotype of several plant architecture affecting mutations, such as self-pruning (sp), compound inflorescence (s), jointless-2 (j-2), and potato leaf (c) were also confirmed. This study provides valuable phenotypic information on important plant growth- and quality-related traits in this collection. The allelic distribution of known genes that underlie these traits provides insight into the role and importance of these genes in tomato domestication and breeding. This resource can be used to support (precision) breeding strategies for tomato crop improvement.
Collapse
Affiliation(s)
- Raana Roohanitaziani
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
- Graduate School Experimental Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A. de Maagd
- Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (R.A.d.M.); (M.L.)
| | - Michiel Lammers
- Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (R.A.d.M.); (M.L.)
| | - Jos Molthoff
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Fien Meijer-Dekens
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Martijn P. W. van Kaauwen
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Richard Finkers
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
- Correspondence: ; Tel.: +31-317-480762
| |
Collapse
|
134
|
Rehman F, Gong H, Li Z, Zeng S, Yang T, Ai P, Pan L, Huang H, Wang Y. Identification of fruit size associated quantitative trait loci featuring SLAF based high-density linkage map of goji berry (Lycium spp.). BMC PLANT BIOLOGY 2020; 20:474. [PMID: 33059596 PMCID: PMC7565837 DOI: 10.1186/s12870-020-02567-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/22/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Goji (Lycium spp., 2n = 24) is a fruit bearing woody plant popular as a superfood for extensive medicinal and nutritional advantages. Fruit size associated attributes are important for evaluating small-fruited goji berry and plant architecture. The domestication traits are regulated quantitatively in crop plants but few studies have attempted on genomic regions corresponding to fruit traits. RESULTS In this study, we established high-resolution map using specific locus amplified fragment (SLAF) sequencing for de novo SNPs detection based on 305 F1 individuals derived from L. chinense and L. barbarum and performed quantitative trait loci (QTL) analysis of fruit size related traits in goji berry. The genetic map contained 3495 SLAF markers on 12 LGs, spanning 1649.03 cM with 0.47 cM average interval. Female and male parents and F1 individuals` sequencing depth was 111.85-fold and 168.72-fold and 35.80-fold, respectively. The phenotype data were collected for 2 successive years (2018-2019); however, two-year mean data were combined in an extra year (1819). Total 117 QTLs were detected corresponding to multiple traits, of which 78 QTLs in 2 individual years and 36 QTLs in extra year. Six Promising QTLs (qFW10-6.1, qFL10-2.1, qLL10-2.1, qLD10-2.1, qLD12-4.1, qLA10-2.1) were discovered influencing fruit weight, fruit length and leaf related attributes covering an interval ranged from 27.32-71.59 cM on LG10 with peak LOD of 10.48 and 14.6% PVE. Three QTLs targeting fruit sweetness (qFS3-1, qFS5-2) and fruit firmness (qFF10-1) were also identified. Strikingly, various traits QTLs were overlapped on LG10, in particular, qFL10-2.1 was co-located with qLL10-2.1, qLD10-2.1 and qLA10-2.1 among stable QTLs, harbored tightly linked markers, while qLL10-1 was one major QTL with 14.21 highest LOD and 19.3% variance. As LG10 harbored important traits QTLs, we might speculate that it could be hotspot region regulating fruit size and plant architectures. CONCLUSIONS This report highlights the extremely saturated linkage map using SLAF-seq and novel loci contributing fruit size-related attributes in goji berry. Our results will shed light on domestication traits and further strengthen molecular and genetic underpinnings of goji berry; moreover, these findings would better facilitate to assemble the reference genome, determining potential candidate genes and marker-assisted breeding.
Collapse
Affiliation(s)
- Fazal Rehman
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiguang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhong Li
- Bairuiyuan Company, Yinchuan, 750000, Ningxia, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Tianshun Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Peiyan Ai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhu Pan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hongwen Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
- GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
135
|
Wu L, Lan J, Xiang X, Xiang H, Jin Z, Khan S, Liu Y. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis). PLoS One 2020; 15:e0240355. [PMID: 33044982 PMCID: PMC7549808 DOI: 10.1371/journal.pone.0240355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
Kiwifruit (Actinidia chinensis) is a rich nutritious fruit crop owing to a markedly higher content of vitamin C and minerals. To promote fruit set and to increase the yield of kiwifruit, forchlorfenuron (CPPU) has been widely applied. However, the molecular details regarding CPPU controlling kiwifruit development, especially at the fastest fruit growth stage, remain unknown. In the present study, we measured the effect of CPPU on developmental regulation in red-fleshed kiwifruit (Actinidia chinensis 'Hongyang'). Additionally, a cytological analysis was performed to clarify the precise changes in the cell structure of the CPPU-treated kiwifruits. Moreover, the concentration of endogenous phytohormones, including indoleacetic acid (IAA), zeatin (ZT), gibberellic acid 3 (GA3), and abscisic acid (ABA), were measured by Enzyme-linked Immunosorbent Assay (ELISA). Furthermore, RNA-Seq was performed to dissect the complicated molecular mechanisms, with a focus on biosynthesis, metabolism, and signaling compounds, such as endogenous hormones, sugars, and L-ascorbic acid. Our results demonstrated that CPPU treatment not only regulates the size and weight of a single fruit but also improves the quality in 'Hongyang' kiwifruit through the accumulation of both soluble sugar and vitamin C. It was also seen that CPPU regulates kiwifruit development by enhancing cell expansion of epidermal cells and parenchyma cells, while, promoting cell division of subepidermal cells. Additionally, CPPU significantly increased the gibberellin and cytokinin biosynthetic pathway and signaling, while repressing auxin and ABA biosynthetic pathway; thus, signaling plays an essential role in CPPU controlling kiwifruit development. Notably, transcriptomic analysis revealed that a total of 2244 genes, including 352 unannotated genes, were differentially expressed in kiwifruits because of CPPU treatment, including 127 transcription factors. These genes are mainly enriched in plant hormone signal transduction, photosynthesis, MAPK signaling pathway, starch and sucrose metabolism, and phenylpropanoid biosynthesis. Overall, our results highlight that CPPU regulation of kiwifruit development is mainly associated with an antagonistic and/or synergistic regulatory role of endogenous phytohormones, and enhancing the energy supply. This provides new insights into the molecular details of CPPU controlling kiwifruit development at the fastest fruit growth stage, which is of agricultural importance for kiwifruit breeding and crop improvement.
Collapse
Affiliation(s)
- Lin Wu
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Jianbin Lan
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Xiaoxue Xiang
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Haiyang Xiang
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Zhao Jin
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Sadia Khan
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario, Canada
| | - Yiqing Liu
- College of Horticulture and Gardening, Institute of Horticulture Plants, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
136
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|
137
|
Sultana N, Islam S, Juhasz A, Yang R, She M, Alhabbar Z, Zhang J, Ma W. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front Genet 2020; 11:583785. [PMID: 33193713 PMCID: PMC7554635 DOI: 10.3389/fgene.2020.583785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity. Knowledge about the physiological and transcriptomic changes that regulate NUE, in particular how plants cope with nitrogen (N) stress during flowering and the grain filling period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in different tissues and shows significant genetic variability. A comparative transcriptome study was carried out using RNA-seq analysis to investigate the effect of nitrogen levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs) were identified under nitrogen stress where down-regulated DEGs were predominantly associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and defense response, whereas the up-regulated DEGs were associated with nucleotide metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis further revealed that highly interacted down-regulated DEGs were involved in light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in steroid biosynthesis under N stress. The common down-regulated genes across the cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein 1589 of uncharacterized protein function, etc., whereas common up-regulated genes included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein, and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism and proteolysis. The DEGs with high abundance in high NUE cultivar can be good candidates to develop nitrogen stress-tolerant variety with improved NUE.
Collapse
Affiliation(s)
- Nigarin Sultana
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Shahidul Islam
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Angela Juhasz
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Rongchang Yang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zaid Alhabbar
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wujun Ma
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
138
|
Detection of Quantitative Trait Loci (QTL) Associated with the Fruit Morphology of Tomato. Genes (Basel) 2020; 11:genes11101117. [PMID: 32987633 PMCID: PMC7598714 DOI: 10.3390/genes11101117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is the second most-consumed vegetable in the world. The market value and culinary purpose of tomato are often determined by fruit size and shape, which makes the genetic improvement of these traits a priority for tomato breeders. The main objective of the study was to detect quantitative trait loci (QTL) associated with the tomato fruit shape and size. The use of elite breeding materials in the genetic mapping studies will facilitate the detection of genetic loci of direct relevance to breeders. We performed QTL analysis in an intra-specific population of tomato developed from a cross between two elite breeding lines NC 30P × NC-22L-1(2008) consisting of 110 recombinant inbred lines (RIL). The precision software Tomato Analyzer (TA) was used to measure fruit morphology attributes associated with fruit shape and size traits. The RIL population was genotyped with the SolCAP 7720 SNP array. We identified novel QTL controlling elongated fruit shape on chromosome 10, explaining up to 24% of the phenotypic variance. This information will be useful in improving tomato fruit morphology traits.
Collapse
|
139
|
Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N, Martínez-Romero J, Zuñiga-Dávila D. Plant microbiota modified by plant domestication. Syst Appl Microbiol 2020; 43:126106. [PMID: 32847781 DOI: 10.1016/j.syapm.2020.126106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/19/2022]
Abstract
Human life became largely dependent on agricultural products after distinct crop-domestication events occurred around 10,000 years ago in different geographical sites. Domestication selected suitable plants for human agricultural practices with unexpected consequences on plant microbiota, which has notable effects on plant growth and health. Among other traits, domestication has changed root architecture, exudation, or defense responses that could have modified plant microbiota. Here we present the comparison of reported data on the microbiota from widely consumed cereals and legumes and their ancestors showing that different bacteria were found in domesticated and wild plant microbiomes in some cases. Considering the large variability in plant microbiota, adequate sampling efforts and function-based approaches are needed to further support differences between the microbiota from wild and domesticated plants. The study of wild plant microbiomes could provide a valuable resource of unexploited beneficial bacteria for crops.
Collapse
Affiliation(s)
| | | | - Nataly Taco-Taype
- Laboratorio de Ecología Microbiana, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | - Doris Zuñiga-Dávila
- Laboratorio de Ecología Microbiana, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
140
|
Prince SJ, Vuong TD, Wu X, Bai Y, Lu F, Kumpatla SP, Valliyodan B, Shannon JG, Nguyen HT. Mapping Quantitative Trait Loci for Soybean Seedling Shoot and Root Architecture Traits in an Inter-Specific Genetic Population. FRONTIERS IN PLANT SCIENCE 2020; 11:1284. [PMID: 32973843 PMCID: PMC7466435 DOI: 10.3389/fpls.2020.01284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/06/2020] [Indexed: 05/27/2023]
Abstract
Wild soybean species (Glycine soja Siebold & Zucc.) comprise a unique resource to widen the genetic base of cultivated soybean [Glycine max (L.) Merr.] for various agronomic traits. An inter-specific mapping population derived from a cross of cultivar Williams 82 and PI 483460B, a wild soybean accession, was utilized for genetic characterization of root architecture traits. The objectives of this study were to identify and characterize quantitative trait loci (QTL) for seedling shoot and root architecture traits, as well as to determine additive/epistatic interaction effects of identified QTLs. A total of 16,469 single nucleotide polymorphisms (SNPs) developed for the Illumina beadchip genotyping platform were used to construct a high resolution genetic linkage map. Among the 11 putative QTLs identified, two significant QTLs on chromosome 7 were determined to be associated with total root length (RL) and root surface area (RSA) with favorable alleles from the wild soybean parent. These seedling root traits, RL (BARC_020495_04641 ~ BARC_023101_03769) and RSA (SNP02285 ~ SNP18129_Magellan), could be potential targets for introgression into cultivated soybean background to improve both tap and lateral roots. The RL QTL region harbors four candidate genes with higher expression in root tissues: Phosphofructokinase (Glyma.07g126400), Snf7 protein (Glyma.07g127300), unknown functional gene (Glyma.07g127900), and Leucine Rich-Repeat protein (Glyma.07g127100). The novel alleles inherited from the wild soybean accession could be used as molecular markers to improve root system architecture and productivity in elite soybean lines.
Collapse
Affiliation(s)
- Silvas J. Prince
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Plant Biology Division, Noble Research Institute, LLC, Ardmore, OK, United States
| | - Tri D. Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Xiaolei Wu
- BASF Agricultural Solutions, Morrisville, NC, United States
| | - Yonghe Bai
- Nuseed Americas, Woodland, CA, United States
| | - Fang Lu
- Amgen Inc., Thousand Oaks, CA, United States
| | | | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO, United States
| | - J. Grover Shannon
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
141
|
Tikunov YM, Roohanitaziani R, Meijer‐Dekens F, Molthoff J, Paulo J, Finkers R, Capel I, Carvajal Moreno F, Maliepaard C, Nijenhuis‐de Vries M, Labrie CW, Verkerke W, van Heusden AW, van Eeuwijk F, Visser RGF, Bovy AG. The genetic and functional analysis of flavor in commercial tomato: the FLORAL4 gene underlies a QTL for floral aroma volatiles in tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1189-1204. [PMID: 32369642 PMCID: PMC7496274 DOI: 10.1111/tpj.14795] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 05/21/2023]
Abstract
Tomato (Solanum lycopersicum L.) has become a popular model for genetic studies of fruit flavor in the last two decades. In this article we present a study of tomato fruit flavor, including an analysis of the genetic, metabolic and sensorial variation of a collection of contemporary commercial glasshouse tomato cultivars, followed by a validation of the associations found by quantitative trait locus (QTL) analysis of representative biparental segregating populations. This led to the identification of the major sensorial and chemical components determining fruit flavor variation and detection of the underlying QTLs. The high representation of QTL haplotypes in the breeders' germplasm suggests that there is great potential for applying these QTLs in current breeding programs aimed at improving tomato flavor. A QTL on chromosome 4 was found to affect the levels of the phenylalanine-derived volatiles (PHEVs) 2-phenylethanol, phenylacetaldehyde and 1-nitro-2-phenylethane. Fruits of near-isogenic lines contrasting for this locus and in the composition of PHEVs significantly differed in the perception of fruity and rose-hip-like aroma. The PHEV locus was fine mapped, which allowed for the identification of FLORAL4 as a candidate gene for PHEV regulation. Using a gene-editing-based (CRISPR-CAS9) reverse-genetics approach, FLORAL4 was demonstrated to be the key factor in this QTL affecting PHEV accumulation in tomato fruit.
Collapse
Affiliation(s)
- Yury M. Tikunov
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Raana Roohanitaziani
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Fien Meijer‐Dekens
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Jos Molthoff
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Joao Paulo
- BiometrisWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Richard Finkers
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Iris Capel
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Fatima Carvajal Moreno
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Chris Maliepaard
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Mariska Nijenhuis‐de Vries
- Food & Biobased ResearchWageningen University and ResearchBornse Weilanden 9Wageningen6708WGthe Netherlands
| | - Caroline W. Labrie
- Greenhouse HorticultureWageningen University and ResearchViolierenweg 1Bleiswijk2665MVthe Netherlands
| | - Wouter Verkerke
- Greenhouse HorticultureWageningen University and ResearchViolierenweg 1Bleiswijk2665MVthe Netherlands
| | - Adriaan W. van Heusden
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Fred van Eeuwijk
- BiometrisWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Richard G. F. Visser
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Arnaud G. Bovy
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| |
Collapse
|
142
|
Gao H, Li J, Wang L, Zhang J, He C. Transcriptomic variation of the flower-fruit transition in Physalis and Solanum. PLANTA 2020; 252:28. [PMID: 32720160 DOI: 10.1007/s00425-020-03434-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Gene expression variations in response to fertilization between Physalis and Solanum might play essential roles in species divergence and fruit evolution. Fertilization triggers variation in fruit development and morphology. The Chinese lantern, a morphological novelty derived from the calyx, is formed upon fertilization in Physalis but is not observed in Solanum. The underlying genetic variations are largely unknown. Here, we documented the developmental and morphological differences in the flower and fruit between Physalis floridana and Solanum pimpinellifolium and then evaluated both the transcript sequence variation and gene expression at the transcriptomic level at fertilization between the two species. In Physalis transcriptomic analysis, 468 unigenes were identified as differentially expressed genes (DEGs) that were strongly regulated by fertilization across 3 years. In comparison with tomato, 14,536 strict single-copy orthologous gene pairs were identified between P. floridana and S. pimpinellifolium in the flower-fruit transcriptome. Nine types of gene variations with specific GO-enriched patterns were identified, covering 58.82% orthologous gene pairs that were DEGs in either trend or dosage at the flower-fruit transition between the two species, which could adequately distinguish Solanum and Physalis, implying that differential gene expression at fertilization might play essential roles during the divergence and fruit evolution of Solanum-Physalis. Virus-induced gene silencing analyses revealed the developmental roles of some transcription factor genes in fertility, Chinese lantern development, and fruit weight control in Physalis. This study presents the first floral transcriptomic resource of Physalis, and reveals some candidate genetic variations accounting for the early fruit developmental evolution in Physalis in comparison to Solanum.
Collapse
Affiliation(s)
- Huihui Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Li Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
| | - Jisi Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
143
|
Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB. Global Role of Crop Genomics in the Face of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:922. [PMID: 32765541 PMCID: PMC7378793 DOI: 10.3389/fpls.2020.00922] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The development of climate change resilient crops is necessary if we are to meet the challenge of feeding the growing world's population. We must be able to increase food production despite the projected decrease in arable land and unpredictable environmental conditions. This review summarizes the technological and conceptual advances that have the potential to transform plant breeding, help overcome the challenges of climate change, and initiate the next plant breeding revolution. Recent developments in genomics in combination with high-throughput and precision phenotyping facilitate the identification of genes controlling critical agronomic traits. The discovery of these genes can now be paired with genome editing techniques to rapidly develop climate change resilient crops, including plants with better biotic and abiotic stress tolerance and enhanced nutritional value. Utilizing the genetic potential of crop wild relatives (CWRs) enables the domestication of new species and the generation of synthetic polyploids. The high-quality crop plant genome assemblies and annotations provide new, exciting research targets, including long non-coding RNAs (lncRNAs) and cis-regulatory regions. Metagenomic studies give insights into plant-microbiome interactions and guide selection of optimal soils for plant cultivation. Together, all these advances will allow breeders to produce improved, resilient crops in relatively short timeframes meeting the demands of the growing population and changing climate.
Collapse
Affiliation(s)
| | | | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
144
|
Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel TH, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo AL, Tieman DM, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez TR, Lemmon ZH, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie WR, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck FJ, van der Knaap E, Schatz MC, Lippman ZB. Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato. Cell 2020; 182:145-161.e23. [PMID: 32553272 PMCID: PMC7354227 DOI: 10.1016/j.cell.2020.05.021] [Citation(s) in RCA: 445] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/10/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.
Collapse
Affiliation(s)
- Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lara Pereira
- Center for Applied Genetic Technologies, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA
| | - Lei Zhang
- Center for Applied Genetic Technologies, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA
| | - Hamsini Suresh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Danielle Ciren
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yuval Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tom Hai Harel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gili Shalev-Schlosser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziva Amsellem
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hamid Razifard
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ana L Caicedo
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Denise M Tieman
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - Harry Klee
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - Melanie Kirsche
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Zachary H Lemmon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jennifer Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gina Robitaille
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - W Richard McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Samuel Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
145
|
Ercolano MR, Di Donato A, Sanseverino W, Barbella M, De Natale A, Frusciante L. Complex migration history is revealed by genetic diversity of tomato samples collected in Italy during the eighteenth and nineteenth centuries. HORTICULTURE RESEARCH 2020; 7:100. [PMID: 32637128 PMCID: PMC7327043 DOI: 10.1038/s41438-020-0322-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Native to South America, the tomato is now grown almost worldwide. During its domestication and improvement, important selection signatures were fixed in certain agronomic and adaption traits. Such traits include fruit morphology, which became a major target for selection over the centuries. However, little is known about precisely when some mutations arose and how they spread through the germplasm. For instance, elongated fruit variants, originating both via mutations in SUN and OVATE genes, may have arisen prior to domestication or during tomato cultivation in Europe. To gain insights into the tomato admixture and selection pattern, the genome of two tomato herbarium specimens conserved in the Herbarium Porticense (PORUN) was sequenced. Comparison of the DNA of herbarium samples collected in Italy between 1750 and 1890 with that of living tomato accessions yielded insights into the history of tomato loci selection. Interestingly, the genotype of the more recent sample (LEO90), classified in 1890 as the oblungum variety, shows several private variants in loci implicated in fruit shape determination, also present also in wild tomato samples. In addition, LEO90, sampled in the nineteenth century, is genetically more distant from cultivated varieties than the SET17 genotype, collected in the eighteenth century, suggesting that elongated tomato varieties may originate from a cross between a landrace and a wild ancestor. Findings from our study have major implications for the understanding of tomato migration patterns and for the conservation of allelic diversity and loci recovery.
Collapse
Affiliation(s)
- M. R. Ercolano
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| | - A. Di Donato
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| | | | - M. Barbella
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| | - A. De Natale
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Naples, Italy
- Società dei Naturalisti, Via Mezzocannone 8, 80134 Naples, Italy
| | - L. Frusciante
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| |
Collapse
|
146
|
Ruan B, Shang L, Zhang B, Hu J, Wang Y, Lin H, Zhang A, Liu C, Peng Y, Zhu L, Ren D, Shen L, Dong G, Zhang G, Zeng D, Guo L, Qian Q, Gao Z. Natural variation in the promoter of TGW2 determines grain width and weight in rice. THE NEW PHYTOLOGIST 2020; 227:629-640. [PMID: 32167575 DOI: 10.1111/nph.16540] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/03/2020] [Indexed: 05/10/2023]
Abstract
Understanding the genetic basis of natural variation in grain size among diverse rice varieties can help breeders develop high-yielding rice cultivars. Here, we report the discovery of qTGW2, a new semidominant quantitative trait locus for grain width and weight. The corresponding gene, TGW2, encodes CELL NUMBER REGULATOR 1 (OsCNR1) localized to the plasma membrane. A single nucleotide polymorphism (SNP) variation 1818 bp upstream of TGW2 is responsible for its different expression, leading to alteration in grain width and weight by influencing cell proliferation and expansion in glumes. TGW2 interacts with KRP1, a regulator of cell cycle in plants, to negatively regulate grain width and weight. Genetic diversity analysis of TGW2 in 141 rice accessions revealed it as a breeding target in a selective sweep region. Our findings provide new insights into the genetic mechanism underlying grain morphology and grain weight, and uncover a promising gene for improving rice yield.
Collapse
Affiliation(s)
- Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Bin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Hai Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Anpeng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Youlin Peng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
147
|
Whole genome resequencing of four Italian sweet pepper landraces provides insights on sequence variation in genes of agronomic value. Sci Rep 2020; 10:9189. [PMID: 32514106 PMCID: PMC7280500 DOI: 10.1038/s41598-020-66053-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Sweet pepper (Capsicum annuum L.) is a high value crop and one of the most widely grown vegetables belonging to the Solanaceae family. In addition to commercial varieties and F1 hybrids, a multitude of landraces are grown, whose genetic combination is the result of hundreds of years of random, environmental, and farmer selection. High genetic diversity exists in the landrace gene pool which however has scarcely been studied, thus bounding their cultivation. We re-sequenced four pepper inbred lines, within as many Italian landraces, which representative of as many fruit types: big sized blocky with sunken apex ('Quadrato') and protruding apex or heart shaped ('Cuneo'), elongated ('Corno') and smaller sized sub-spherical ('Tumaticot'). Each genomic sequence was obtained through Illumina platform at coverage ranging from 39 to 44×, and reconstructed at a chromosome scale. About 35.5k genes were predicted in each inbred line, of which 22,017 were shared among them and the reference genome (accession 'CM334'). Distinctive variations in miRNAs, resistance gene analogues (RGAs) and susceptibility genes (S-genes) were detected. A detailed survey of the SNP/Indels occurring in genes affecting fruit size, shape and quality identified the highest frequencies of variation in regulatory regions. Many structural variations were identified as presence/absence variations (PAVs), notably in resistance gene analogues (RGAs) and in the capsanthin/capsorubin synthase (CCS) gene. The large allelic diversity observed in the four inbred lines suggests their potential use as a pre-breeding resource and represents a one-stop resource for C. annuum genomics and a key tool for dissecting the path from sequence variation to phenotype.
Collapse
|
148
|
Kuang C, Li J, Liu H, Liu J, Sun X, Zhu X, Hua W. Genome-Wide Identification and Evolutionary Analysis of the Fruit-Weight 2.2-Like Gene Family in Polyploid Oilseed Rape (Brassica napus L.). DNA Cell Biol 2020; 39:766-782. [DOI: 10.1089/dna.2019.5036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Chen Kuang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hongfang Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jun Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xingchao Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaoyi Zhu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wei Hua
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
149
|
Mata-Nicolás E, Montero-Pau J, Gimeno-Paez E, Garcia-Carpintero V, Ziarsolo P, Menda N, Mueller LA, Blanca J, Cañizares J, van der Knaap E, Díez MJ. Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. HORTICULTURE RESEARCH 2020; 7:66. [PMID: 32377357 PMCID: PMC7192925 DOI: 10.1038/s41438-020-0291-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 05/19/2023]
Abstract
A collection of 163 accessions, including Solanum pimpinellifolium, Solanum lycopersicum var. cerasiforme and Solanum lycopersicum var. lycopersicum, was selected to represent the genetic and morphological variability of tomato at its centers of origin and domestication: Andean regions of Peru and Ecuador and Mesoamerica. The collection is enriched with S. lycopersicum var. cerasiforme from the Amazonian region that has not been analyzed previously nor used extensively. The collection has been morphologically characterized showing diversity for fruit, flower and vegetative traits. Their genomes were sequenced in the Varitome project and are publicly available (solgenomics.net/projects/varitome). The identified SNPs have been annotated with respect to their impact and a total number of 37,974 out of 19,364,146 SNPs have been described as high impact by the SnpEeff analysis. GWAS has shown associations for different traits, demonstrating the potential of this collection for this kind of analysis. We have not only identified known QTLs and genes, but also new regions associated with traits such as fruit color, number of flowers per inflorescence or inflorescence architecture. To speed up and facilitate the use of this information, F2 populations were constructed by crossing the whole collection with three different parents. This F2 collection is useful for testing SNPs identified by GWAs, selection sweeps or any other candidate gene. All data is available on Solanaceae Genomics Network and the accession and F2 seeds are freely available at COMAV and at TGRC genebanks. All these resources together make this collection a good candidate for genetic studies.
Collapse
Affiliation(s)
- Estefanía Mata-Nicolás
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Department of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | - Esther Gimeno-Paez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Víctor Garcia-Carpintero
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Peio Ziarsolo
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | | | | | - José Blanca
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Joaquín Cañizares
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Georgia, GA USA
- Department of Horticulture, University of Georgia, Georgia, GA USA
| | - María José Díez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
150
|
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1791-1810. [PMID: 32040676 PMCID: PMC7214393 DOI: 10.1007/s00122-020-03560-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing placement of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of the trait architectures of agricultural significance will be crucial to accelerate crop improvement.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|