101
|
Low Spike Antibody Levels and Impaired BA.4/5 Neutralization in Patients with Multiple Myeloma or Waldenstrom's Macroglobulinemia after BNT162b2 Booster Vaccination. Cancers (Basel) 2022; 14:cancers14235816. [PMID: 36497296 PMCID: PMC9737406 DOI: 10.3390/cancers14235816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Patients with symptomatic monoclonal gammopathies have impaired humoral responses to COVID-19 vaccination. Their ability to recognize SARS-CoV-2 Omicron variants is of concern. We compared the response to BNT162b2 mRNA vaccinations of patients with multiple myeloma (MM, n = 60) or Waldenstrom's macroglobulinemia (WM, n = 20) with healthy vaccine recipients (n = 37). Patient cohorts on active therapy affecting B cell development had impaired binding and neutralizing antibody (NAb) response rate and magnitude, including several patients lacking responses, even after a 3rd vaccine dose, whereas non-B cell depleting therapies had a lesser effect. In contrast, MM and WM cohorts off-therapy showed increased NAb with a broad response range. ELISA Spike-Receptor Binding Domain (RBD) Ab titers in healthy vaccine recipients and patient cohorts were good predictors of the ability to neutralize not only the original WA1 but also the most divergent Omicron variants BA.4/5. Compared to WA1, significantly lower NAb responses to BA.4/5 were found in all patient cohorts on-therapy. In contrast, the MM and WM cohorts off-therapy showed a higher probability to neutralize BA.4/5 after the 3rd vaccination. Overall, the boost in NAb after the 3rd dose suggests that repeat vaccination of MM and WM patients is beneficial even under active therapy.
Collapse
|
102
|
Antigenic sin of wild-type SARS-CoV-2 vaccine shapes poor cross-neutralization of BA.4/5/2.75 subvariants in BA.2 breakthrough infections. Nat Commun 2022; 13:7120. [PMID: 36402756 PMCID: PMC9675777 DOI: 10.1038/s41467-022-34400-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 11/20/2022] Open
Abstract
With declining SARS-CoV-2-specific antibody titers and increasing numbers of spike mutations, the ongoing emergence of Omicron subvariants causes serious challenges to current vaccination strategies. BA.2 breakthrough infections have occurred in people who have received the wild-type vaccines, including mRNA, inactivated, or recombinant protein vaccines. Here, we evaluate the antibody evasion of recently emerged subvariants BA.4/5 and BA.2.75 in two inactivated vaccine-immunized cohorts with BA.2 breakthrough infections. Compared with the neutralizing antibody titers against BA.2, marked reductions are observed against BA.2.75 in both 2-dose and 3-dose vaccine groups. In addition, although BA.2 breakthrough infections induce a certain cross-neutralization capacity against later Omicron subvariants, the original antigenic sin phenomenon largely limits the improvement of variant-specific antibody response. These findings suggest that BA.2 breakthrough infections seem unable to provide sufficient antibody protection against later subvariants such as BA.2.75 in the current immunization background with wild-type vaccines.
Collapse
|
103
|
Lai A, Bergna A, Della Ventura C, Menzo S, Bruzzone B, Sagradi F, Ceccherini-Silberstein F, Weisz A, Clementi N, Brindicci G, Vicenti I, Sasset L, Caucci S, Corvaro B, Ippoliti S, Acciarri C, De Pace V, Lanfranchi L, Bellocchi MC, Giurato G, Ferrarese R, Lagioia A, Francisci D, Colombo ML, Lazzarin S, Ogliastro M, Cappelletti MR, Iannetta M, Rizzo F, Torti C, Fumi M, d’Avenia M, Brusa S, Greco F, Menchise A, Letizia V, Vaccaro E, Santoro CR, Fraccalvieri C, Testa S, Carioti L, Rocco T, Saracino A, Cattelan A, Clementi M, Sarmati L, Riva A, Galli M, Antinori S, Zehender G. Epidemiological and Clinical Features of SARS-CoV-2 Variants Circulating between April-December 2021 in Italy. Viruses 2022; 14:v14112508. [PMID: 36423117 PMCID: PMC9699621 DOI: 10.3390/v14112508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 is constantly evolving, leading to new variants. We analysed data from 4400 SARS-CoV-2-positive samples in order to pursue epidemiological variant surveillance and to evaluate their impact on public health in Italy in the period of April-December 2021. The main circulating strain (76.2%) was the Delta variant, followed by the Alpha (13.3%), the Omicron (5.3%), and the Gamma variants (2.9%). The B.1.1 lineages, Eta, Beta, Iota, Mu, and Kappa variants, represented around 1% of cases. There were 48.2% of subjects who had not been vaccinated, and they had a lower median age compared to the vaccinated subjects (47 vs. 61 years). An increasing number of infections in the vaccinated subjects were observed over time, with the highest proportion in November (85.2%). The variants correlated with clinical status; the largest proportion of symptomatic patients (59.6%) was observed with the Delta variant, while subjects harbouring the Gamma variant showed the highest proportion of asymptomatic infection (21.6%), albeit also deaths (5.4%). The Omicron variant was only found in the vaccinated subjects, of which 47% had been hospitalised. The diffusivity and pathogenicity associated with the different SARS-CoV-2 variants are likely to have relevant public health implications, both at the national and international levels. Our study provides data on the rapid changes in the epidemiological landscape of the SARS-CoV-2 variants in Italy.
Collapse
Affiliation(s)
- Alessia Lai
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20174 Milan, Italy
- Correspondence: ; Tel.: +39-0250319775
| | - Annalisa Bergna
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20174 Milan, Italy
| | - Carla Della Ventura
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20174 Milan, Italy
| | - Stefano Menzo
- Virology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60131 Ancona, Italy
| | | | - Fabio Sagradi
- Unit of Infectious Diseases, Azienda Socio Sanitaria Territoriale Cremona, 26100 Cremona, Italy
| | | | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84084 Salerno, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20158 Milan, Italy
| | | | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Lolita Sasset
- Infectious Diseases Unit, Azienda Ospedale Università di Padova, 35128 Padova, Italy
| | - Sara Caucci
- Virology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Benedetta Corvaro
- Virology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Silvia Ippoliti
- Virology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Carla Acciarri
- Virology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60131 Ancona, Italy
| | | | - Leonardo Lanfranchi
- Unit of Infectious Diseases, Azienda Socio Sanitaria Territoriale Cremona, 26100 Cremona, Italy
| | - Maria C. Bellocchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84084 Salerno, Italy
| | - Roberto Ferrarese
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20158 Milan, Italy
| | | | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, Santa Maria della Misericordia Hospital, University of Perugia, 06123 Perugia, Italy
| | - Martina L. Colombo
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20174 Milan, Italy
| | - Samuel Lazzarin
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20174 Milan, Italy
| | - Matilde Ogliastro
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy
| | - Maria R. Cappelletti
- Unit of Infectious Diseases, Azienda Socio Sanitaria Territoriale Cremona, 26100 Cremona, Italy
| | - Marco Iannetta
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84084 Salerno, Italy
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Maurizio Fumi
- UOC Patologia Clinica, AO San Pio Benevento, 82100 Benevento, Italy
| | - Morena d’Avenia
- UOSVD di Citopatologia e Screening, Department of Laboratory Medicines, 70131 Bari, Italy
| | - Stefano Brusa
- Department of Translational Medical Sciences, Università Federico II, 80138 Naples, Italy
| | - Francesca Greco
- UOC Microbiologia e Virologia, PO Cosenza, 87100 Cosenza, Italy
| | - Angela Menchise
- Microbiology and Virology Laboratory, A.O.R. San Carlo Potenza, 85100 Potenza, Italy
| | - Vittoria Letizia
- UOSD Genetics and Molecular Biology, AORN Sant’Anna e San Sebastiano di Caserta, 81100 Caserta, Italy
| | - Emilia Vaccaro
- Molecular Biology Units, AOU ‘S. Giovanni di Dio e Ruggi d’Aragona’ Università di Salerno, 84131 Salerno, Italy
| | | | | | - Sophie Testa
- Unit of Infectious Diseases, Azienda Socio Sanitaria Territoriale Cremona, 26100 Cremona, Italy
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Teresa Rocco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84084 Salerno, Italy
| | | | - Annamaria Cattelan
- Infectious Diseases Unit, Azienda Ospedale Università di Padova, 35128 Padova, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20158 Milan, Italy
| | - Loredana Sarmati
- Infectious Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20174 Milan, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20174 Milan, Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20174 Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20174 Milan, Italy
| | | |
Collapse
|
104
|
Park YJ, Pinto D, Walls AC, Liu Z, De Marco A, Benigni F, Zatta F, Silacci-Fregni C, Bassi J, Sprouse KR, Addetia A, Bowen JE, Stewart C, Giurdanella M, Saliba C, Guarino B, Schmid MA, Franko NM, Logue JK, Dang HV, Hauser K, di Iulio J, Rivera W, Schnell G, Rajesh A, Zhou J, Farhat N, Kaiser H, Montiel-Ruiz M, Noack J, Lempp FA, Janer J, Abdelnabi R, Maes P, Ferrari P, Ceschi A, Giannini O, de Melo GD, Kergoat L, Bourhy H, Neyts J, Soriaga L, Purcell LA, Snell G, Whelan SPJ, Lanzavecchia A, Virgin HW, Piccoli L, Chu HY, Pizzuto MS, Corti D, Veesler D. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science 2022; 378:619-627. [PMID: 36264829 DOI: 10.1126/science.adc9127] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5, and that breakthrough infections, but not vaccination alone, induce neutralizing antibodies in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1, BA.2, and BA.4/5 receptor-binding domains, whereas Omicron primary infections elicit B cells of narrow specificity up to 6 months after infection. Although most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant-neutralizing antibody that is a strong candidate for clinical development.
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Dora Pinto
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna De Marco
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Jessica Bassi
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Christian Saliba
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Michael A Schmid
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Nicholas M Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Jennifer K Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Ha V Dang
- Vir Biotechnology, San Francisco, CA, USA
| | | | | | | | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA, USA
| | | | | | | | | | | | - Javier Janer
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Piet Maes
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Alessandro Ceschi
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | | | | | | | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Luca Piccoli
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | - Davide Corti
- Humabs Biomed SA, Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
105
|
Pang YT, Acharya A, Lynch DL, Pavlova A, Gumbart JC. SARS-CoV-2 spike opening dynamics and energetics reveal the individual roles of glycans and their collective impact. Commun Biol 2022; 5:1170. [PMID: 36329138 PMCID: PMC9631587 DOI: 10.1038/s42003-022-04138-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The trimeric spike (S) glycoprotein, which protrudes from the SARS-CoV-2 viral envelope, binds to human ACE2, initiated by at least one protomer's receptor binding domain (RBD) switching from a "down" (closed) to an "up" (open) state. Here, we used large-scale molecular dynamics simulations and two-dimensional replica exchange umbrella sampling calculations with more than a thousand windows and an aggregate total of 160 μs of simulation to investigate this transition with and without glycans. We find that the glycosylated spike has a higher barrier to opening and also energetically favors the down state over the up state. Analysis of the S-protein opening pathway reveals that glycans at N165 and N122 interfere with hydrogen bonds between the RBD and the N-terminal domain in the up state, while glycans at N165 and N343 can stabilize both the down and up states. Finally, we estimate how epitope exposure for several known antibodies changes along the opening path. We find that the BD-368-2 antibody's epitope is continuously exposed, explaining its high efficacy.
Collapse
Affiliation(s)
- Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, 13244, USA
| | - Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
106
|
Cheng SS, Mok CK, Li JK, Ng SS, Lam BH, Jeevan T, Kandeil A, Pekosz A, Chan KC, Tsang LC, Ko FW, Chen C, Yiu K, Luk LL, Chan KK, Webby RJ, Poon LL, Hui DS, Peiris M. Plaque-neutralizing antibody to BA.2.12.1, BA.4 and BA.5 in individuals with three doses of BioNTech or CoronaVac vaccines, natural infection and breakthrough infection. J Clin Virol 2022; 156:105273. [PMID: 36081282 PMCID: PMC9428331 DOI: 10.1016/j.jcv.2022.105273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND BA.2.12.1, BA.4 and BA.5 subvariants of SARS-CoV-2 variant-of-concern (VOC) Omicron (B.1.1.529) are spreading globally. They demonstrate higher transmissibility and immune escape. OBJECTIVES Determine BA.2.12.1, BA.4 and BA.5 virus plaque reduction neutralization test (PRNT) antibody titres in individuals recently vaccinated with BNT162b2 (n = 20) or CoronaVac (n = 20) vaccines or those convalescent from ancestral wild- type (WT) SARS-CoV-2 (n = 20) or BA.2 infections with (n = 17) or without (n = 7) prior vaccination. RESULTS Relative to neutralization of the WT virus, those vaccinated with BNT162b2 had 4.8, 3.4, 4.6, 11.3 and 15.5-fold reductions of geometric mean antibody titres (GMT) to BA.1, BA.2, BA.2.12.1, BA.4 and BA.5 viruses, respectively. Similarly, those vaccinated with CoronaVac had 8.0, 7.0, 11.8, 12.0 and 12.0 fold GMT reductions and those with two doses of CoronaVac boosted by BNT162b2 had 6.1, 6.7, 6,3, 13.0 and 21.2 fold GMT reductions to these viruses, respectively. Vaccinated individuals with BA.2 breakthrough infections had higher GMT antibody levels vs. BA.4 (36.9) and BA.5 (36.9) than unvaccinated individuals with BA.2 infections (BA.4 GMT 8.2; BA.5 GMT 11.0). CONCLUSIONS BA.4 and BA.5 subvariants were less susceptible to BNT162b2 or CoronaVac vaccine elicited antibody neutralization than subvariants BA.1, BA.2 and BA.2.12.1. Nevertheless, three doses BNT162b2 or booster of BNT162b2 following two doses of CoronaVac elicited detectable BA.4 and BA.5 neutralizing antibody responses while those vaccinated with three doses of CoronaVac largely fail to do so. BA.2 infections in vaccinated individuals led to higher levels of BA.4 or BA.5 neutralizing antibody compared to those who were vaccine-naive.
Collapse
Affiliation(s)
- Samuel Sm Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris Kp Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - John Kc Li
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Susanna S Ng
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bosco Hs Lam
- Department of Pathology, North Lantau Hospital, Hong Kong SAR, China
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ahmed Kandeil
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Karl Ck Chan
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo Ch Tsang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fanny W Ko
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunke Chen
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Karen Yiu
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Leo Lh Luk
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ken Kp Chan
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Leo Lm Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David Sc Hui
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Immunology and Infection, Hong Kong Science Park, Shatin, Hong Kong SAR, China.
| |
Collapse
|
107
|
Chen Z, Zhang P, Matsuoka Y, Tsybovsky Y, West K, Santos C, Boyd LF, Nguyen H, Pomerenke A, Stephens T, Olia AS, Zhang B, De Giorgi V, Holbrook MR, Gross R, Postnikova E, Garza NL, Johnson RF, Margulies DH, Kwong PD, Alter HJ, Buchholz UJ, Lusso P, Farci P. Potent monoclonal antibodies neutralize Omicron sublineages and other SARS-CoV-2 variants. Cell Rep 2022; 41:111528. [PMID: 36302375 PMCID: PMC9554601 DOI: 10.1016/j.celrep.2022.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Zhaochun Chen
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kamille West
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanh Nguyen
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Pomerenke
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Stephens
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Valeria De Giorgi
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael R Holbrook
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health, Frederick, MD, USA
| | - Robin Gross
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health, Frederick, MD, USA
| | - Elena Postnikova
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health, Frederick, MD, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harvey J Alter
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
108
|
An ACE2-Based Decoy Inhibitor Effectively Neutralizes SARS-CoV-2 Omicron BA.5 Variant. Viruses 2022; 14:v14112387. [PMID: 36366484 PMCID: PMC9695261 DOI: 10.3390/v14112387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
The recently circulating SARS-CoV-2 Omicron BA.5 is rampaging the world with elevated transmissibility compared to the original SARS-CoV-2 strain. Immune escape of BA.5 was observed after treatment with many monoclonal antibodies, calling for broad-spectrum, immune-escape-evading therapeutics. In retrospect, we previously reported Kansetin as an ACE2 mimetic and a protein antagonist against SARS-CoV-2, which proved potent neutralization bioactivity on the Reference, Alpha, Beta, Delta, and Omicron strains of SARS-CoV-2. Since BA.5 is expected to rely on the interaction of the Spike complex with human ACE2 for cell entry, we reasonably assumed the lasting efficacy of the ACE2-mimicking Kansetin for neutralizing the new SARS-CoV-2 variant. The investigation was accordingly performed on in vitro Kansetin-Spike binding affinity by SPR and cell infection inhibition ability with pseudovirus and live virus assays. As a result, Kansetin showed dissociation constant KD and half inhibition concentration IC50 at the nanomolar to picomolar level, featuring a competent inhibition effect against the BA.5 sublineage. Conclusively, Kansetin is expected to be a promising therapeutic option against BA.5 and future SARS-CoV-2 sublineages.
Collapse
|
109
|
Luo S, Zhang J, Kreutzberger AJ, Eaton A, Edwards RJ, Jing C, Dai HQ, Sempowski GD, Cronin K, Parks R, Ye AY, Mansouri K, Barr M, Pishesha N, Williams AC, Vieira Francisco L, Saminathan A, Peng H, Batra H, Bellusci L, Khurana S, Alam SM, Montefiori DC, Saunders KO, Tian M, Ploegh H, Kirchhausen T, Chen B, Haynes BF, Alt FW. An antibody from single human V H-rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion. Sci Immunol 2022; 7:eadd5446. [PMID: 35951767 PMCID: PMC9407951 DOI: 10.1126/sciimmunol.add5446] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 Omicron subvariants have generated a worldwide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron subvariants and prepare for new ones, additional means of isolating broad and potent humanized SARS-CoV-2 neutralizing antibodies are desirable. Here, we describe a mouse model in which the primary B cell receptor (BCR) repertoire is generated solely through V(D)J recombination of a human VH1-2 heavy chain (HC) and, substantially, a human Vκ1-33 light chain (LC). Thus, primary humanized BCR repertoire diversity in these mice derives from immensely diverse HC and LC antigen-contact CDR3 sequences generated by nontemplated junctional modifications during V(D)J recombination. Immunizing this mouse model with SARS-CoV-2 (Wuhan-Hu-1) spike protein immunogens elicited several VH1-2/Vκ1-33-based neutralizing antibodies that bound RBD in a different mode from each other and from those of many prior patient-derived VH1-2-based neutralizing antibodies. Of these, SP1-77 potently and broadly neutralized all SARS-CoV-2 variants through BA.5. Cryo-EM studies revealed that SP1-77 bound RBD away from the receptor-binding motif via a CDR3-dominated recognition mode. Lattice light-sheet microscopy-based studies showed that SP1-77 did not block ACE2-mediated viral attachment or endocytosis but rather blocked viral-host membrane fusion. The broad and potent SP1-77 neutralization activity and nontraditional mechanism of action suggest that it might have therapeutic potential. Likewise, the SP1-77 binding epitope may inform vaccine strategies. Last, the type of humanized mouse models that we have described may contribute to identifying therapeutic antibodies against future SARS-CoV-2 variants and other pathogens.
Collapse
Affiliation(s)
- Sai Luo
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alex J.B. Kreutzberger
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Changbin Jing
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Aimee Chapdelaine Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas Vieira Francisco
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anand Saminathan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Himanshu Batra
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hidde Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
110
|
Fendler A, Shepherd STC, Au L, Wu M, Harvey R, Wilkinson KA, Schmitt AM, Tippu Z, Shum B, Farag S, Rogiers A, Carlyle E, Edmonds K, Del Rosario L, Lingard K, Mangwende M, Holt L, Ahmod H, Korteweg J, Foley T, Barber T, Emslie-Henry A, Caulfield-Lynch N, Byrne F, Deng D, Kjaer S, Song OR, Queval CJ, Kavanagh C, Wall EC, Carr EJ, Caidan S, Gavrielides M, MacRae JI, Kelly G, Peat K, Kelly D, Murra A, Kelly K, O'Flaherty M, Shea RL, Gardner G, Murray D, Popat S, Yousaf N, Jhanji S, Tatham K, Cunningham D, Van As N, Young K, Furness AJS, Pickering L, Beale R, Swanton C, Gandhi S, Gamblin S, Bauer DLV, Kassiotis G, Howell M, Nicholson E, Walker S, Wilkinson RJ, Larkin J, Turajlic S. Functional immune responses against SARS-CoV-2 variants of concern after fourth COVID-19 vaccine dose or infection in patients with blood cancer. Cell Rep Med 2022; 3:100781. [PMID: 36240755 PMCID: PMC9513326 DOI: 10.1016/j.xcrm.2022.100781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886), we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralizing antibody titers (NAbTs) using a live virus microneutralization assay against wild-type (WT), Delta, and Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titers and T cell responses after the fourth vaccine dose increased compared with that after the third vaccine dose. Patients who received B cell-depleting therapies within the 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination.
Collapse
Affiliation(s)
- Annika Fendler
- Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Scott T C Shepherd
- Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Lewis Au
- Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Mary Wu
- COVID Surveillance Unit, The Francis Crick Institute, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Katalin A Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Wellcome Center for Infectious Disease Research in Africa, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Andreas M Schmitt
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Zayd Tippu
- Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Benjamin Shum
- Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Sheima Farag
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Aljosja Rogiers
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Eleanor Carlyle
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Kim Edmonds
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Lyra Del Rosario
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Karla Lingard
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Mary Mangwende
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Lucy Holt
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Hamid Ahmod
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Justine Korteweg
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Tara Foley
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Taja Barber
- Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | | | - Fiona Byrne
- Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Daqi Deng
- Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Svend Kjaer
- Structural Biology Scientific Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ok-Ryul Song
- High Throughput Screening Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Christophe J Queval
- High Throughput Screening Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Caitlin Kavanagh
- COVID Surveillance Unit, The Francis Crick Institute, London NW1 1AT, UK
| | - Emma C Wall
- High Throughput Screening Laboratory, The Francis Crick Institute, London NW1 1AT, UK; University College London Hospitals NHS Foundation Trust Biomedical Research Centre, London WC1E 6BT, UK
| | - Edward J Carr
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simon Caidan
- Safety, Health & Sustainability, The Francis Crick Institute, London NW1 1AT, UK
| | - Mike Gavrielides
- Scientific Computing Scientific Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - James I MacRae
- Metabolomics Scientific Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Gavin Kelly
- Department of Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Kema Peat
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Denise Kelly
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Aida Murra
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Kayleigh Kelly
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Molly O'Flaherty
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Robyn L Shea
- Department of Pathology, The Royal Marsden NHS Foundation Trust, London NW1 1AT, UK; Translational Cancer Biochemistry Laboratory, The Institute of Cancer Research, London SW7 3RP, UK
| | - Gail Gardner
- Department of Pathology, The Royal Marsden NHS Foundation Trust, London NW1 1AT, UK
| | - Darren Murray
- Department of Pathology, The Royal Marsden NHS Foundation Trust, London NW1 1AT, UK
| | - Sanjay Popat
- Lung Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Nadia Yousaf
- Lung Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; Acute Oncology Service, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Shaman Jhanji
- Anaesthetics, Perioperative Medicine and Pain Department, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Kate Tatham
- Anaesthetics, Perioperative Medicine and Pain Department, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - David Cunningham
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - Nicholas Van As
- Clincal Oncology Unit, The Royal Marsden NHS Foundation Trust, London NW1 1AT, UK
| | - Kate Young
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Andrew J S Furness
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Lisa Pickering
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Division of Medicine, University College London, London NW1 2PG, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK; University College London Cancer Institute, London WC1E 6DD, UK
| | - Sonia Gandhi
- Neurodegeneration Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Steve Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David L V Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Emma Nicholson
- Haemato-oncology Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; Haemato-oncology Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Susanna Walker
- Anaesthetics, Perioperative Medicine and Pain Department, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Robert J Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Wellcome Center for Infectious Disease Research in Africa, University of Cape Town, Observatory 7925, Republic of South Africa; Department of Infectious Disease, Imperial College London, London W2 0NN, UK
| | - James Larkin
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London SW7 3RP, UK
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
111
|
Zhu Y, Hu Y, Liu N, Chong H, He Y. Potent inhibition of diverse Omicron sublineages by SARS-CoV-2 fusion-inhibitory lipopeptides. Antiviral Res 2022; 208:105445. [PMID: 36265805 PMCID: PMC9574594 DOI: 10.1016/j.antiviral.2022.105445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
The emergence and rapid spreading of SARS-CoV-2 variants of concern (VOCs) have posed a great challenge to the efficacy of vaccines and therapeutic antibodies, calling for antivirals that can overcome viral evasion. We recently reported that SARS-CoV-2 fusion-inhibitory lipopeptides, IPB02V3 and IPB24, possessed the potent activities against divergent VOCs, including Alpha, Beta, Gamma, Delta, and the initial Omicron strain (B.1.1.529); however, multiple Omicron sublineages have emerged and BA.4/5 is now becoming predominant globally. In this study, we focused on characterizing the functionality of the spike (S) proteins derived from Omicron sublineages and their susceptibility to the inhibition of IPB02V3 and IPB24. We first found that the S proteins of BA.2, BA.2.12.1, BA.3, and BA.4/5 exhibited significantly increased cell fusion capacities compared to BA.1, whereas the pseudoviruses of BA.2.12.1, BA.3, and BA.4/5 had significantly increased infectivity relative to BA.1 or BA.2. Next, we verified that IPB02V3 and IPB24 also maintained their very high potent activities in inhibiting diverse Omicron sublineages, even with enhanced potencies relative to the inhibition on ancestral virus. Moreover, we demonstrated that evolved Omicron mutations in the inhibitor-binding heptad repeat 1 (HR1) site could impair the S protein-driven cell fusogenicity and infectivity, but none of single or combined mutations affected the antiviral activity of IPB02V3 and IPB24. Therefore, we believe that viral fusion inhibitors possess high potential to be developed as effective drugs for fighting SARS-CoV-2 variants including diverse Omicron sublineages.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yue Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
112
|
Hvidt AK, Baerends EAM, Søgaard OS, Stærke NB, Raben D, Reekie J, Nielsen H, Johansen IS, Wiese L, Benfield TL, Iversen KK, Mustafa AB, Juhl MR, Petersen KT, Ostrowski SR, Lindvig SO, Rasmussen LD, Schleimann MH, Andersen SD, Juhl AK, Dietz LL, Andreasen SR, Lundgren J, Østergaard L, Tolstrup M. Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines. Front Med (Lausanne) 2022; 9:994160. [PMID: 36262278 PMCID: PMC9574042 DOI: 10.3389/fmed.2022.994160] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 12/20/2022] Open
Abstract
The SARS-CoV-2 pandemic has, as of July 2022, infected more than 550 million people and caused over 6 million deaths across the world. COVID-19 vaccines were quickly developed to protect against severe disease, hospitalization and death. In the present study, we performed a direct comparative analysis of four COVID-19 vaccines: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford/AstraZeneca) and Ad26.COV2.S (Johnson & Johnson/Janssen), following primary and booster vaccination. We focused on the vaccine-induced antibody-mediated immune response against multiple SARS-CoV-2 variants: wildtype, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.1.529 (Omicron). The analysis included the quantification of total IgG levels against SARS-CoV-2 Spike, as well as the quantification of antibody neutralization titers. Furthermore, the study assessed the high-throughput ACE2 competition assay as a surrogate for the traditional pseudovirus neutralization assay. The results demonstrated marked differences in antibody-mediated immune responses. The lowest Spike-specific IgG levels and antibody neutralization titers were induced by one dose of the Ad26.COV2.S vaccine, intermediate levels by two doses of the BNT162b2 vaccine, and the highest levels by two doses of the mRNA-1273 vaccine or heterologous vaccination of one dose of the ChAdOx1 vaccine and a subsequent mRNA vaccine. The study also demonstrated that accumulation of SARS-CoV-2 Spike protein mutations was accompanied by a marked decline in antibody neutralization capacity, especially for B.1.1.529. Administration of a booster dose was shown to significantly increase Spike-specific IgG levels and antibody neutralization titers, erasing the differences between the vaccine-induced antibody-mediated immune response between the four vaccines. The findings of this study highlight the importance of booster vaccines and the potential inclusion of future heterologous vaccination strategies for broad protection against current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Astrid K. Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,*Correspondence: Astrid K. Hvidt,
| | - Eva A. M. Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Eva A. M. Baerends,
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B. Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas L. Benfield
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K. Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Deparment of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Ahmed B. Mustafa
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria R. Juhl
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T. Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Sisse R. Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Immunology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Line D. Rasmussen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marianne H. Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sidsel D. Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K. Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L. Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe R. Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
113
|
Favresse J, Gillot C, Bayart J, David C, Simon G, Wauthier L, Closset M, Dogné J, Douxfils J. Vaccine-induced binding and neutralizing antibodies against Omicron 6 months after a homologous BNT162b2 booster. J Med Virol 2022; 95:e28164. [PMID: 36131356 PMCID: PMC9538323 DOI: 10.1002/jmv.28164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Evidence about the long-term persistence of the booster-mediated immunity against Omicron is mandatory for pandemic management and deployment of vaccination strategies. A total of 155 healthcare professionals (104 COVID-19 naive and 51 with a history of SARS-CoV-2 infection) received a homologous BNT162b2 booster. Binding antibodies against the spike protein and neutralizing antibodies against Omicron were measured at several time points before and up to 6 months after the booster. Geometric mean titers of measured antibodies were correlated to vaccine efficacy (VE) against symptomatic disease. Compared to the highest response, a significant 10.2- and 11.5-fold decrease in neutralizing titers was observed after 6 months in participants with and without history of SARS-CoV-2 infection. A corresponding 2.5- and 2.9-fold decrease in binding antibodies was observed. The estimated T1/2 of neutralizing antibodies in participants with and without history of SARS-CoV-2 infection was 42 (95% confidence interval [CI]: 25-137) and 36 days (95% CI: 25-65). Estimated T1/2 were longer for binding antibodies: 168 (95% CI: 116-303) and 139 days (95% CI: 113-180), respectively. Both binding and neutralizing antibodies were strongly correlated to VE (r = 0.83 and 0.89). However, binding and neutralizing antibodies were modestly correlated, and a high proportion of subjects (36.7%) with high binding antibody titers (i.e., >8434 BAU/ml) did not have neutralizing activity. A considerable decay of the humoral response was observed 6 months after the booster, and was strongly correlated with VE. Our study also shows that commercial assays available in clinical laboratories might require adaptation to better predict neutralization in the Omicron era.
Collapse
Affiliation(s)
- Julien Favresse
- Department of Laboratory MedicineClinique St‐Luc BougeNamurBelgium,Department of Pharmacy, Namur Research Institute for LIfe SciencesUniversity of NamurNamurBelgium
| | - Constant Gillot
- Department of Pharmacy, Namur Research Institute for LIfe SciencesUniversity of NamurNamurBelgium
| | - Jean‐Louis Bayart
- Department of Laboratory MedicineClinique St‐PierreOttignies‐Louvain‐la‐NeuveBelgium
| | - Clara David
- Qualiblood s.a.Rue du Séminaire 20ANamurBelgium
| | - Germain Simon
- Department of Laboratory MedicineClinique St‐PierreOttignies‐Louvain‐la‐NeuveBelgium
| | - Loris Wauthier
- Department of Laboratory MedicineClinique St‐Luc BougeNamurBelgium
| | - Mélanie Closset
- Department of Laboratory MedicineUniversité catholique de Louvain, CHU UCL Namur, YvoirNamurBelgium
| | - Jean‐Michel Dogné
- Department of Pharmacy, Namur Research Institute for LIfe SciencesUniversity of NamurNamurBelgium
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for LIfe SciencesUniversity of NamurNamurBelgium,Qualiblood s.a.Rue du Séminaire 20ANamurBelgium
| |
Collapse
|
114
|
Zappa M, Verdecchia P, Spanevello A, Angeli F. Structural evolution of severe acute respiratory syndrome coronavirus 2: Implications for adhesivity to angiotensin-converting enzyme 2 receptors and vaccines. Eur J Intern Med 2022; 104:33-36. [PMID: 35985948 PMCID: PMC9372025 DOI: 10.1016/j.ejim.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS and Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, Italy
| | - Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, Italy.
| |
Collapse
|
115
|
Aggarwal A, Akerman A, Milogiannakis V, Silva MR, Walker G, Stella AO, Kindinger A, Angelovich T, Waring E, Amatayakul-Chantler S, Roth N, Manni S, Hauser T, Barnes T, Condylios A, Yeang M, Wong M, Jean T, Foster CSP, Christ D, Hoppe AC, Munier ML, Darley D, Churchill M, Stark DJ, Matthews G, Rawlinson WD, Kelleher AD, Turville SG. SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. EBioMedicine 2022; 84:104270. [PMID: 36130476 PMCID: PMC9482529 DOI: 10.1016/j.ebiom.2022.104270] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. The introduction of global vaccine programs has contributed to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, Omicron BA.1 emerged, with substantially altered genetic differences and clinical effects from other variants of concern. Shortly after dominating global spread in early 2022, BA.1 was supplanted by the genetically distinct Omicron lineage BA.2. A sub-lineage of BA.2, designated BA.5, presently has an outgrowth advantage over BA.2 and other BA.2 sub-lineages. Here we study the neutralisation of Omicron BA.1, BA.2 and BA.5 and pre-Omicron variants using a range of vaccine and convalescent sera and therapeutic monoclonal antibodies using a live virus neutralisation assay. Using primary nasopharyngeal swabs, we also tested the relative fitness of BA.5 compared to pre-Omicron and Omicron viral lineages in their ability to use the ACE2-TMPRSS2 pathway. METHODS Using low passage clinical isolates of Clade A.2.2, Beta, Delta, BA.1, BA.2 and BA.5, we determined humoral neutralisation in vitro in vaccinated and convalescent cohorts, using concentrated human IgG pooled from thousands of plasma donors, and licensed monoclonal antibody therapies. We then determined infectivity to particle ratios in primary nasopharyngeal samples and expanded low passage isolates in a genetically engineered ACE2/TMPRSS2 cell line in the presence and absence of the TMPRSS2 inhibitor Nafamostat. FINDINGS Peak responses to 3 doses of BNT162b2 vaccine were associated with a 9-fold reduction in neutralisation for Omicron lineages BA.1, BA.2 and BA.5. Concentrated pooled human IgG from convalescent and vaccinated donors and BNT162b2 vaccination with BA.1 breakthrough infections were associated with greater breadth of neutralisation, although the potency was still reduced 7-fold across all Omicron lineages. Testing of clinical grade antibodies revealed a 14.3-fold reduction using Evusheld and 16.8-fold reduction using Sotrovimab for the BA.5. Whilst the infectivity of BA.1 and BA.2 was attenuated in ACE2/TMPRSS2 entry, BA.5 was observed to be equivalent to that of an early 2020 circulating clade and had greater sensitivity to the TMPRSS2 inhibitor Nafamostat. INTERPRETATION Observations support all Omicron variants to significantly escape neutralising antibodies across a range of vaccination and/or convalescent responses. Potency of therapeutic monoclonal antibodies is also reduced and differs across Omicron lineages. The key difference of BA.5 from other Omicron sub-variants is the reversion in tropism back to using the well-known ACE2-TMPRSS2 pathway, utilised efficiently by pre-Omicron lineages. Monitoring if these changes influence transmission and/or disease severity will be key for ongoing tracking and management of Omicron waves globally. FUNDING This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT).
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Anouschka Akerman
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | | | - Mariana Ruiz Silva
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Gregory Walker
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | | | - Andrea Kindinger
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Thomas Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Emily Waring
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | | | - Nathan Roth
- Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Sandro Manni
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Hauser
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Barnes
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Anna Condylios
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Malinna Yeang
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Maureen Wong
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Tyra Jean
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Charles S P Foster
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Mee Ling Munier
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - David Darley
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Melissa Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Damien J Stark
- Molecular Diagnostic Medicine Laboratory, Sydpath, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Gail Matthews
- The Kirby Institute, University of New South Wales, New South Wales, Australia; St Vincent's Hospital, Sydney, New South Wales, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, New South Wales, Australia; St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, New South Wales, Australia.
| |
Collapse
|
116
|
Aggarwal A, Akerman A, Milogiannakis V, Silva MR, Walker G, Stella AO, Kindinger A, Angelovich T, Waring E, Amatayakul-Chantler S, Roth N, Manni S, Hauser T, Barnes T, Condylios A, Yeang M, Wong M, Jean T, Foster CSP, Christ D, Hoppe AC, Munier ML, Darley D, Churchill M, Stark DJ, Matthews G, Rawlinson WD, Kelleher AD, Turville SG. SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. EBioMedicine 2022; 84:104270. [PMID: 36130476 DOI: 10.1101/2021.12.14.21267772] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 09/02/2022] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. The introduction of global vaccine programs has contributed to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, Omicron BA.1 emerged, with substantially altered genetic differences and clinical effects from other variants of concern. Shortly after dominating global spread in early 2022, BA.1 was supplanted by the genetically distinct Omicron lineage BA.2. A sub-lineage of BA.2, designated BA.5, presently has an outgrowth advantage over BA.2 and other BA.2 sub-lineages. Here we study the neutralisation of Omicron BA.1, BA.2 and BA.5 and pre-Omicron variants using a range of vaccine and convalescent sera and therapeutic monoclonal antibodies using a live virus neutralisation assay. Using primary nasopharyngeal swabs, we also tested the relative fitness of BA.5 compared to pre-Omicron and Omicron viral lineages in their ability to use the ACE2-TMPRSS2 pathway. METHODS Using low passage clinical isolates of Clade A.2.2, Beta, Delta, BA.1, BA.2 and BA.5, we determined humoral neutralisation in vitro in vaccinated and convalescent cohorts, using concentrated human IgG pooled from thousands of plasma donors, and licensed monoclonal antibody therapies. We then determined infectivity to particle ratios in primary nasopharyngeal samples and expanded low passage isolates in a genetically engineered ACE2/TMPRSS2 cell line in the presence and absence of the TMPRSS2 inhibitor Nafamostat. FINDINGS Peak responses to 3 doses of BNT162b2 vaccine were associated with a 9-fold reduction in neutralisation for Omicron lineages BA.1, BA.2 and BA.5. Concentrated pooled human IgG from convalescent and vaccinated donors and BNT162b2 vaccination with BA.1 breakthrough infections were associated with greater breadth of neutralisation, although the potency was still reduced 7-fold across all Omicron lineages. Testing of clinical grade antibodies revealed a 14.3-fold reduction using Evusheld and 16.8-fold reduction using Sotrovimab for the BA.5. Whilst the infectivity of BA.1 and BA.2 was attenuated in ACE2/TMPRSS2 entry, BA.5 was observed to be equivalent to that of an early 2020 circulating clade and had greater sensitivity to the TMPRSS2 inhibitor Nafamostat. INTERPRETATION Observations support all Omicron variants to significantly escape neutralising antibodies across a range of vaccination and/or convalescent responses. Potency of therapeutic monoclonal antibodies is also reduced and differs across Omicron lineages. The key difference of BA.5 from other Omicron sub-variants is the reversion in tropism back to using the well-known ACE2-TMPRSS2 pathway, utilised efficiently by pre-Omicron lineages. Monitoring if these changes influence transmission and/or disease severity will be key for ongoing tracking and management of Omicron waves globally. FUNDING This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT).
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Anouschka Akerman
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | | | - Mariana Ruiz Silva
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Gregory Walker
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | | | - Andrea Kindinger
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Thomas Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Emily Waring
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | | | - Nathan Roth
- Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Sandro Manni
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Hauser
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Barnes
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Anna Condylios
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Malinna Yeang
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Maureen Wong
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Tyra Jean
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Charles S P Foster
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Mee Ling Munier
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - David Darley
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Melissa Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Damien J Stark
- Molecular Diagnostic Medicine Laboratory, Sydpath, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Gail Matthews
- The Kirby Institute, University of New South Wales, New South Wales, Australia; St Vincent's Hospital, Sydney, New South Wales, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, New South Wales, Australia; St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, New South Wales, Australia.
| |
Collapse
|
117
|
Gong SY, Ding S, Benlarbi M, Chen Y, Vézina D, Marchitto L, Beaudoin-Bussières G, Goyette G, Bourassa C, Bo Y, Medjahed H, Levade I, Pazgier M, Côté M, Richard J, Prévost J, Finzi A. Temperature Influences the Interaction between SARS-CoV-2 Spike from Omicron Subvariants and Human ACE2. Viruses 2022; 14:2178. [PMID: 36298733 PMCID: PMC9607596 DOI: 10.3390/v14102178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 continues to infect millions of people worldwide. The subvariants arising from the variant-of-concern (VOC) Omicron include BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, and BA.5. All possess multiple mutations in their Spike glycoprotein, notably in its immunogenic receptor-binding domain (RBD), and present enhanced viral transmission. The highly mutated Spike glycoproteins from these subvariants present different degrees of resistance to recognition and cross-neutralisation by plasma from previously infected and/or vaccinated individuals. We have recently shown that the temperature affects the interaction between the Spike and its receptor, the angiotensin converting enzyme 2 (ACE2). The affinity of RBD for ACE2 is significantly increased at lower temperatures. However, whether this is also observed with the Spike of Omicron and sub-lineages is not known. Here we show that, similar to other variants, Spikes from Omicron sub-lineages bind better the ACE2 receptor at lower temperatures. Whether this translates into enhanced transmission during the fall and winter seasons remains to be determined.
Collapse
Affiliation(s)
- Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
118
|
Marzi R, Bassi J, Silacci-Fregni C, Bartha I, Muoio F, Culap K, Sprugasci N, Lombardo G, Saliba C, Cameroni E, Cassotta A, Low JS, Walls AC, McCallum M, Tortorici MA, Bowen JE, Dellota EA, Dillen JR, Czudnochowski N, Pertusini L, Terrot T, Lepori V, Tarkowski M, Riva A, Biggiogero M, Pellanda AF, Garzoni C, Ferrari P, Ceschi A, Giannini O, Havenar-Daughton C, Telenti A, Arvin A, Virgin HW, Sallusto F, Veesler D, Lanzavecchia A, Corti D, Piccoli L. Maturation of SARS-CoV-2 Spike-specific memory B cells drives resilience to viral escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.30.509852. [PMID: 36203553 PMCID: PMC9536037 DOI: 10.1101/2022.09.30.509852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Roberta Marzi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Jessica Bassi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Istvan Bartha
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Francesco Muoio
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Culap
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Gloria Lombardo
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Christian Saliba
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | | | - Josh R Dillen
- Vir Biotechnology, San Francisco, CA, United States of America
| | | | - Laura Pertusini
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Tatiana Terrot
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | | | - Maciej Tarkowski
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Agostino Riva
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Maira Biggiogero
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | | | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Paolo Ferrari
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Clinical School, University of New South Wales, Sydney, Australia
| | - Alessandro Ceschi
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Science of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | | | - Amalio Telenti
- Vir Biotechnology, San Francisco, CA, United States of America
| | - Ann Arvin
- Vir Biotechnology, San Francisco, CA, United States of America
| | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States of America
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | | | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| |
Collapse
|
119
|
Rudi E, Martin Aispuro P, Zurita E, Gonzalez Lopez Ledesma M, Bottero D, Malito J, Gabrielli M, Gaillard E, Stuible M, Durocher Y, Gamarnik A, Wigdorovitz A, Hozbor D. Immunological study of COVID-19 vaccine candidate based on recombinant spike trimer protein from different SARS-CoV-2 variants of concern. Front Immunol 2022; 13:1020159. [PMID: 36248791 PMCID: PMC9560800 DOI: 10.3389/fimmu.2022.1020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The emergency of new SARS-CoV-2 variants that feature increased immune escape marks an urgent demand for better vaccines that will provide broader immunogenicity. Here, we evaluated the immunogenic capacity of vaccine candidates based on the recombinant trimeric spike protein (S) of different SARS-CoV-2 variants of concern (VOC), including the ancestral Wuhan, Beta and Delta viruses. In particular, we assessed formulations containing either single or combined S protein variants. Our study shows that the formulation containing the single S protein from the ancestral Wuhan virus at a concentration of 2µg (SW2-Vac 2µg) displayed in the mouse model the highest IgG antibody levels against all the three (Wuhan, Beta, and Delta) SARS-CoV-2 S protein variants tested. In addition, this formulation induced significantly higher neutralizing antibody titers against the three viral variants when compared with authorized Gam-COVID-Vac-rAd26/rAd5 (Sputnik V) or ChAdOx1 (AstraZeneca) vaccines. SW2-Vac 2µg was also able to induce IFN-gamma and IL-17, memory CD4 populations and follicular T cells. Used as a booster dose for schedules performed with different authorized vaccines, SW2-Vac 2µg vaccine candidate also induced higher levels of total IgG and IgG isotypes against S protein from different SARS-CoV-2 variants in comparison with those observed with homologous 3-dose schedule of Sputnik V or AstraZeneca. Moreover, SW2-Vac 2µg booster induced broadly strong neutralizing antibody levels against the three tested SARS-CoV-2 variants. SW2-Vac 2µg booster also induced CD4+ central memory, CD4+ effector and CD8+ populations. Overall, the results demonstrate that SW2-Vac 2 µg is a promising formulation for the development of a next generation COVID-19 vaccine.
Collapse
Affiliation(s)
- Erika Rudi
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | | | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Juan Malito
- INCUINTA INTA, CONICET, HURLINGHAM, INTA Castelar, Buenos Aires, Argentina
| | - Magali Gabrielli
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Matthew Stuible
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | | | - Andrés Wigdorovitz
- INCUINTA INTA, CONICET, HURLINGHAM, INTA Castelar, Buenos Aires, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| |
Collapse
|
120
|
Omicron spike protein: a clue for viral entry and immune evasion. Signal Transduct Target Ther 2022; 7:339. [PMID: 36171200 PMCID: PMC9517995 DOI: 10.1038/s41392-022-01193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/08/2022] Open
|
121
|
Alsoussi WB, Malladi SK, Zhou JQ, Liu Z, Ying B, Kim W, Schmitz AJ, Lei T, Horvath SC, Sturtz AJ, McIntire KM, Evavold B, Han F, Scheaffer SM, Fox IF, Parra-Rodriguez L, Nachbagauer R, Nestorova B, Chalkias S, Farnsworth CW, Klebert MK, Pusic I, Strnad BS, Middleton WD, Teefey SA, Whelan SP, Diamond MS, Paris R, O’Halloran JA, Presti RM, Turner JS, Ellebedy AH. SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.22.509040. [PMID: 36172127 PMCID: PMC9516848 DOI: 10.1101/2022.09.22.509040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses of these vaccines and the development of new variant-derived ones 1-4 . SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells (MBCs) 5-9 . It remains unclear, however, whether the additional doses induce germinal centre (GC) reactions where reengaged B cells can further mature and whether variant-derived vaccines can elicit responses to novel epitopes specific to such variants. Here, we show that boosting with the original SARS- CoV-2 spike vaccine (mRNA-1273) or a B.1.351/B.1.617.2 (Beta/Delta) bivalent vaccine (mRNA-1273.213) induces robust spike-specific GC B cell responses in humans. The GC response persisted for at least eight weeks, leading to significantly more mutated antigen-specific MBC and bone marrow plasma cell compartments. Interrogation of MBC-derived spike-binding monoclonal antibodies (mAbs) isolated from individuals boosted with either mRNA-1273, mRNA-1273.213, or a monovalent Omicron BA.1-based vaccine (mRNA-1273.529) revealed a striking imprinting effect by the primary vaccination series, with all mAbs (n=769) recognizing the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted approach, we isolated mAbs that recognized the spike protein of the SARS-CoV-2 Omicron (BA.1) but not the original SARS-CoV-2 spike from the mRNA-1273.529 boosted individuals. The latter mAbs were less mutated and recognized novel epitopes within the spike protein, suggesting a naïve B cell origin. Thus, SARS-CoV-2 boosting in humans induce robust GC B cell responses, and immunization with an antigenically distant spike can overcome the antigenic imprinting by the primary vaccination series.
Collapse
Affiliation(s)
- Wafaa B. Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Sameer K. Malladi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Baoling Ying
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Stephen C. Horvath
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Alexandria J. Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Katherine M. McIntire
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Birk Evavold
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Fangjie Han
- Department of Emergency Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Suzanne M. Scheaffer
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Isabella F. Fox
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Luis Parra-Rodriguez
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | | | | | | | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael K. Klebert
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St. Louis, MO, USA
| | - Iskra Pusic
- Division of Oncology, Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Benjamin S. Strnad
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Sharlene A. Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| | | | - Jane A. O’Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St. Louis, MO, USA
| | - Rachel M. Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| |
Collapse
|
122
|
Farrell AG, Dadonaite B, Greaney AJ, Eguia R, Loes AN, Franko NM, Logue J, Carreño JM, Abbad A, Chu HY, Matreyek KA, Bloom JD. Receptor-Binding Domain (RBD) Antibodies Contribute More to SARS-CoV-2 Neutralization When Target Cells Express High Levels of ACE2. Viruses 2022; 14:2061. [PMID: 36146867 PMCID: PMC9504593 DOI: 10.3390/v14092061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/23/2022] Open
Abstract
Neutralization assays are experimental surrogates for the effectiveness of infection- or vaccine-elicited polyclonal antibodies and therapeutic monoclonal antibodies targeting SARS-CoV-2. However, the measured neutralization can depend on the details of the experimental assay. Here, we systematically assess how ACE2 expression in target cells affects neutralization by antibodies to different spike epitopes in lentivirus pseudovirus neutralization assays. For high ACE2-expressing target cells, receptor-binding domain (RBD) antibodies account for nearly all neutralizing activity in polyclonal human sera. However, for lower ACE2-expressing target cells, antibodies targeting regions outside the RBD make a larger (although still modest) contribution to serum neutralization. These serum-level results are mirrored for monoclonal antibodies: N-terminal domain (NTD) antibodies and RBD antibodies that do not compete for ACE2 binding incompletely neutralize on high ACE2-expressing target cells, but completely neutralize on cells with lower ACE2 expression. Our results show that the ACE2 expression level in the target cells is an important experimental variable, and that high ACE2 expression emphasizes the role of a subset of RBD-directed antibodies.
Collapse
Affiliation(s)
- Ariana Ghez Farrell
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Rachel Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrea N. Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Nicholas M. Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Jennifer Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anass Abbad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Kenneth A. Matreyek
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
123
|
Danis F, Rabani AE, Subhani F, Yasmin S, Koul SS. COVID‐19: Vaccine‐induced immune thrombotic thrombocytopenia (VITT). Eur J Haematol 2022; 109:619-632. [PMID: 36030503 PMCID: PMC9538855 DOI: 10.1111/ejh.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Salman Shafi Koul
- Pakistan Institute of Medical Sciences, Ibn‐e‐Sina Road, G‐8/3 G 8/3 G‐8 Islamabad Pakistan
| |
Collapse
|
124
|
Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D. Analysis of anti-Omicron neutralizing antibody titers in different vaccinated and unvaccinated convalescent plasma sources. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.12.24.21268317. [PMID: 35982681 PMCID: PMC9387146 DOI: 10.1101/2021.12.24.21268317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The latest SARS-CoV-2 variant of concern Omicron, with its immune escape from therapeutic anti-Spike monoclonal antibodies and WA-1 vaccine-elicited sera, demonstrates the continued relevance of COVID-19 convalescent plasma (CCP) therapies. Lessons learnt from previous usage of CCP suggests focusing on early outpatients and immunocompromised recipients, with high neutralizing antibody (nAb) titer units. In this analysis we systematically reviewed Omicron-neutralizing plasma activity data, and found that approximately 47% (424/902) of CCP from unvaccinated pre-Omicron donors neutralizes Omicron BA.1 with a very low geomean of geometric mean titers for 50% neutralization GM(GMT50) of about 13, representing a more than 20-fold reduction from WA-1 neutralization. Two doses of mRNA vaccines in nonconvalescent subjects had a similar 50% percent neutralization with Omicron BA.1 neutralization GM(GMT(50)) of about 27. However, plasma from vaccinees recovered from either previous pre-Omicron variants of concern infection, Omicron BA.1 infection, or third-dose uninfected vaccinees was nearly 100% neutralizing against Omicron BA.1, BA.2 and BA.4/5 with GM(GMT(50)) all over 189, 10 times higher than pre-Omicron CCP. Fully vaccinated and post-BA.1 plasma (Vax-CCP) had GM(GMT50) over 450 for BA.4/5 and over 1500 for BA.1 and BA.2. These findings have implications for both CCP stocks collected in prior pandemic periods and plans to restart CCP collections. Thus, Vax-CCP provides an effective tool to combat ongoing variants that defeat therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- David J Sullivan
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21218, USA
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Michael J. Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21218, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
125
|
Aparicio B, Ruiz M, Casares N, Silva L, Egea J, Pérez P, Albericio G, Esteban M, García-Arriaza J, Lasarte JJ, Sarobe P. Enhanced cross-recognition of SARS-CoV-2 Omicron variant by peptide vaccine-induced antibodies. Front Immunol 2022; 13:1044025. [PMID: 36761163 PMCID: PMC9902865 DOI: 10.3389/fimmu.2022.1044025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Current vaccines against SARS-CoV-2, based on the original Wuhan sequence, induce antibodies with different degrees of cross-recognition of new viral variants of concern. Despite potent responses generated in vaccinated and infected individuals, the Omicron (B.1.1.529) variant causes breakthrough infections, facilitating viral transmission. We previously reported a vaccine based on a cyclic peptide containing the 446-488 S1 sequence (446-488cc) of the SARS-CoV-2 spike (S) protein from Wuhan isolate. To provide the best immunity against Omicron, here we compared Omicron-specific immunity induced by a Wuhan-based 446-488cc peptide, by a Wuhan-based recombinant receptor-binding domain (RBD) vaccine and by a new 446-488cc peptide vaccine based on the Omicron sequence. Antibodies induced by Wuhan peptide 446-488cc in three murine strains not only recognized the Wuhan and Omicron 446-488 peptides similarly, but also Wuhan and Omicron RBD protein variants. By contrast, antibodies induced by the Wuhan recombinant RBD vaccine showed a much poorer cross-reactivity for the Omicron RBD despite similar recognition of Wuhan and Omicron peptide variants. Finally, although the Omicron-based 446-488cc peptide vaccine was poorly immunogenic in mice due to the loss of T cell epitopes, co-immunization with Omicron peptide 446-488cc and exogenous T cell epitopes induced strong cross-reactive antibodies that neutralized Omicron SARS-CoV-2 virus. Since mutations occurring within this sequence do not alter T cell epitopes in humans, these results indicate the robust immunogenicity of 446-488cc-based peptide vaccines that induce antibodies with a high cross-recognition capacity against Omicron, and suggest that this sequence could be included in future vaccines targeting the Omicron variant.
Collapse
Affiliation(s)
- Belén Aparicio
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Noelia Casares
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Leyre Silva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Josune Egea
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Patricia Pérez
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Guillermo Albericio
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Juan J Lasarte
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Pablo Sarobe
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|