101
|
Novak N, Cabanillas B. Viruses and asthma: the role of common respiratory viruses in asthma and its potential meaning for SARS-CoV-2. Immunology 2020; 161:83-93. [PMID: 32687609 PMCID: PMC7405154 DOI: 10.1111/imm.13240] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Viral infections and atopic diseases are closely related and contribute to each other. The physiological deficiencies and immune mechanisms that underlie atopic diseases can result in a suboptimal defense against multiple viruses, and promote a suitable environment for their proliferation and dissemination. Viral infections, on the other hand, can induce per se several immunological mechanisms involved in allergic inflammation capable to promote the initiation or exacerbation of atopic diseases such as atopic asthma. In a world that is affected more and more by factors that significantly impact the prevalence of atopic diseases, coronavirus disease 2019 (COVID-19) induced by the novel coronavirus severe acute respiratory syndrome (SARS-CoV-2) is having an unprecedented impact with still unpredictable consequences. Therefore, it is of crucial importance to revise the available scientific literature regarding the association between common respiratory viruses and asthma, as well as the newly emerging data about the molecular mechanisms of SARS-CoV-2 infection and its possible relation with asthma, to better understand the interrelation between common viruses and asthma and its potential meaning on the current global pandemic of COVID-19.
Collapse
Affiliation(s)
- Natalija Novak
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Beatriz Cabanillas
- Department of Allergy, Research Institute Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
102
|
Xi Y, Upham JW. Plasmacytoid dendritic cells and asthma: a review of current knowledge. Expert Rev Respir Med 2020; 14:1095-1106. [PMID: 32726181 DOI: 10.1080/17476348.2020.1803741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION While medications are available to treat asthma symptoms and control inflammation, no treatments can cure asthma, and efforts to develop primary prevention strategies or improved exacerbation management are limited by incomplete knowledge of the mechanisms responsible for asthma development and progression. Plasmacytoid dendritic cells (pDC) are involved in anti-viral host defense and immune regulation, and increasing evidence suggests a role for pDC in asthma pathogenesis. AREAS COVERED We undertook a literature search using PubMed for articles including the phrase 'plasmacytoid dendritic cells and asthma' published from 2015 to 2020. We reviewed the remarkable progress made over the past 5 years in understanding the role of pDC in asthma pathogenesis and how pDC regulate anti-viral immune function. This review highlights key recent findings in asthma pathogenesis and virus-triggered asthma exacerbations; pDC biology and functionality; how pDC regulate the immune response; and pDC function in asthma. EXPERT OPTION A deeper understanding of pDC function provides an important foundation for future pDC-targeted therapies that might prevent and treat asthma.
Collapse
Affiliation(s)
- Yang Xi
- The Lung and Allergy Research Centre, the University of Queensland Diamantina Institute, Translational Research Institute , Brisbane, QLD, Australia
| | - John W Upham
- The Lung and Allergy Research Centre, the University of Queensland Diamantina Institute, Translational Research Institute , Brisbane, QLD, Australia.,Department of Respiratory Medicine, Princess Alexandra Hospital , Brisbane, QLD, Australia
| |
Collapse
|
103
|
Sokulsky LA, Garcia-Netto K, Nguyen TH, Girkin JLN, Collison A, Mattes J, Kaiko G, Liu C, Bartlett NW, Yang M, Foster PS. A Critical Role for the CXCL3/CXCL5/CXCR2 Neutrophilic Chemotactic Axis in the Regulation of Type 2 Responses in a Model of Rhinoviral-Induced Asthma Exacerbation. THE JOURNAL OF IMMUNOLOGY 2020; 205:2468-2478. [PMID: 32948685 DOI: 10.4049/jimmunol.1901350] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/22/2020] [Indexed: 11/19/2022]
Abstract
Rhinovirus (RV) infections in asthmatic patients are often associated with asthma exacerbation, characterized by worsened airways hyperreactivity and increased immune cell infiltration to the airways. The C-X-C chemokines, CXCL3 and CXCL5, regulate neutrophil trafficking to the lung via CXCR2, and their expression in the asthmatic lung is associated with steroid-insensitive type 2 inflammatory signatures. Currently, the role of CXCL3 and CXCL5 in regulating neutrophilic and type 2 responses in viral-induced asthma exacerbation is unknown. Inhibition of CXCL3 or CXCL5 with silencing RNAs in a mouse model of RV-induced exacerbation of asthma attenuated the accumulation of CXCR2+ neutrophils, eosinophils, and innate lymphoid cells in the lung and decreased production of type 2 regulatory factors IL-25, IL-33, IL-5, IL-13, CCL11, and CCL24. Suppression of inflammation was associated with decreased airways hyperreactivity, mucus hypersecretion, and collagen deposition. Similar results were obtained by employing RC-3095, which has been shown to bind to CXCR2, or by depletion of neutrophils. Our data demonstrate that CXCL3 and CXCL5 may be critical in the perpetuation of RV-induced exacerbation of asthma through the recruitment of CXCR2-positive neutrophils and by promoting type 2 inflammation. Targeting the CXCL3/CXCL5/CXCR2 axis may provide a new therapeutic approach to attenuating RV-induced exacerbations of asthma.
Collapse
Affiliation(s)
- Leon A Sokulsky
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Keilah Garcia-Netto
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Jason L N Girkin
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Adam Collison
- Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia.,Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, The University of Newcastle, Callaghan 2308, Australia
| | - Joerg Mattes
- Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia.,Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, The University of Newcastle, Callaghan 2308, Australia.,Paediatric Respiratory and Sleep Medicine Department, Newcastle Children's Hospital, Kaleidoscope, New Lambton Heights 2305, Australia; and
| | - Gerard Kaiko
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha 410083, Hunan, China
| | - Nathan W Bartlett
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia; .,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia; .,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| |
Collapse
|
104
|
Henderson I, Caiazzo E, McSharry C, Guzik TJ, Maffia P. Why do some asthma patients respond poorly to glucocorticoid therapy? Pharmacol Res 2020; 160:105189. [PMID: 32911071 PMCID: PMC7672256 DOI: 10.1016/j.phrs.2020.105189] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
Glucocorticosteroids are the first-line therapy for controlling airway inflammation in asthma. They bind intracellular glucocorticoid receptors to trigger increased expression of anti-inflammatory genes and suppression of pro-inflammatory gene activation in asthmatic airways. In the majority of asthma patients, inhaled glucocorticoids are clinically efficacious, improving lung function and preventing exacerbations. However, 5–10 % of the asthmatic population respond poorly to high dose inhaled and then systemic glucocorticoids. These patients form a category of severe asthma associated with poor quality of life, increased morbidity and mortality, and constitutes a major societal and health care burden. Inadequate therapeutic responses to glucocorticoid treatment is also reported in other inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease; however, asthma represents the most studied steroid-refractory disease. Several cellular and molecular events underlying glucocorticoid resistance in asthma have been identified involving abnormalities of glucocorticoid receptor signaling pathways. These events have been strongly related to immunological dysregulation, genetic, and environmental factors such as cigarette smoking or respiratory infections. A better understanding of the multiple mechanisms associated with glucocorticoid insensitivity in asthma phenotypes could improve quality of life for people with asthma but would also provide transferrable knowledge for other inflammatory diseases. In this review, we provide an update on the molecular mechanisms behind steroid-refractory asthma. Additionally, we discuss some therapeutic options for treating those asthmatic patients who respond poorly to glucocorticoid therapy.
Collapse
Affiliation(s)
- Ishbel Henderson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elisabetta Caiazzo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, University of Naples Federico II, Naples, Italy; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
105
|
Chałubiński M, Gajewski A, Kowalski ML. The relationship between human coronaviruses, asthma and allergy-An unresolved dilemma. Clin Exp Allergy 2020; 50:1122-1126. [PMID: 32762099 PMCID: PMC7436768 DOI: 10.1111/cea.13718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/27/2020] [Indexed: 12/27/2022]
Abstract
Human coronaviruses (HCoVs) such as HCoV‐229E or OC43 are responsible for mild upper airway infections, whereas highly pathogenic HCoVs, including SARS‐CoV, MERS‐CoV and SARS‐CoV‐2, often evoke acute, heavy pneumonias. They tend to induce immune responses based on interferon and host inflammatory cytokine production and promotion of T1 immune profile. Less is known about their effect on T2‐type immunity. Unlike human rhinoviruses (HRV) and Respiratory Syncytial Virus (RSV), HCoVs are not considered as a dominant risk factor of severe exacerbations of asthma, mostly T2‐type chronic inflammatory disease. The relationship between coronaviruses and T2‐type immunity, especially in asthma and allergy, is not well understood. This review aims to summarize currently available knowledge about the relationship of HCoVs, including novel SARS‐CoV‐2, with asthma and allergic inflammation.
Collapse
Affiliation(s)
- Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
106
|
Martin MJ, Beasley R, Harrison TW. Towards a personalised treatment approach for asthma attacks. Thorax 2020; 75:1119-1129. [PMID: 32839286 DOI: 10.1136/thoraxjnl-2020-214692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022]
Abstract
Asthma attacks (exacerbations) are common, accounting for over 90 000 UK hospital admissions per annum. They kill nearly 1500 people per year in the UK, have significant associated direct and indirect costs and lead to accelerated and permanent loss of lung function. The recognition of asthma as a heterogeneous condition with multiple phenotypes has revolutionised the approach to the long-term management of the condition, with greater emphasis on personalised treatment and the introduction of the treatable traits concept. In contrast asthma attacks are poorly defined and understood and our treatment approach consists of bronchodilators and systemic corticosteroids. This review aims to explore the current limitations in the description, assessment and management of asthma attacks. We will outline the risk factors for attacks, strategies to modify this risk and describe the recognised characteristics of attacks as a first step towards the development of an approach for phenotyping and personalising the treatment of these critically important events. By doing this, we hope to gradually improve asthma attack treatment and reduce the adverse effects associated with recurrent courses of corticosteroids.
Collapse
Affiliation(s)
- Matthew J Martin
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Tim W Harrison
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
| |
Collapse
|
107
|
Corren J. New Targeted Therapies for Uncontrolled Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:1394-1403. [PMID: 31076057 DOI: 10.1016/j.jaip.2019.03.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Mechanistic studies have improved our understanding of molecular and cellular components involved in asthma and our ability to treat severe patients. An mAb directed against IgE (omalizumab) has become an established add-on therapy for patients with uncontrolled allergic asthma and mAbs specific for IL-5 (reslizumab, mepolizumab), IL-5R (benralizumab), and IL-4R (dupilumab) have been approved as add-on treatments for uncontrolled eosinophilic (type 2) asthma. While these medications have proven highly effective, some patients with severe allergic and/or eosinophilic asthma, as well as most patients with severe non-type-2 disease, have poorly controlled disease. Agents that have recently been evaluated in clinical trials include an antibody directed against thymic stromal lymphopoietin, small molecule antagonists to the chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) and the receptor for stem cell factor on mast cells (KIT), and a DNA enzyme directed at GATA3. Antibodies to IL-33 and its receptor, ST2, are being evaluated in ongoing clinical studies. In addition, a number of antagonists directed against other potential targets are under consideration for future trials, including IL-25, IL-6, TNF-like ligand 1A, CD6, and activated cell adhesion molecule (ALCAM). Clinical data from ongoing and future trials will be important in determining whether these new medications will offer benefits in place of or in addition to existing therapies for asthma.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule/immunology
- Anti-Asthmatic Agents/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Asthma/drug therapy
- Asthma/immunology
- Asthma/physiopathology
- Cytokines/antagonists & inhibitors
- Cytokines/immunology
- DNA, Catalytic/therapeutic use
- Eosinophils/immunology
- GATA3 Transcription Factor
- Humans
- Imatinib Mesylate/therapeutic use
- Indoleacetic Acids/therapeutic use
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Interleukin-6/immunology
- Lymphocytes/immunology
- Mast Cells/immunology
- Molecular Targeted Therapy
- Omalizumab/therapeutic use
- Proto-Oncogene Proteins c-kit/antagonists & inhibitors
- Proto-Oncogene Proteins c-kit/immunology
- Pyridines/therapeutic use
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Receptors, Interleukin-17/antagonists & inhibitors
- Receptors, Interleukin-17/immunology
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/immunology
- Ribonucleases/therapeutic use
- Th2 Cells/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 15/antagonists & inhibitors
- Tumor Necrosis Factor Ligand Superfamily Member 15/immunology
Collapse
Affiliation(s)
- Jonathan Corren
- Departments of Medicine and Pediatrics, Division of Allergy and Clinical Immunology, David Geffen School of Medicine at UCLA, Los Angeles, Calif.
| |
Collapse
|
108
|
Jimenez-Valdes RJ, Can UI, Niemeyer BF, Benam KH. Where We Stand: Lung Organotypic Living Systems That Emulate Human-Relevant Host-Environment/Pathogen Interactions. Front Bioeng Biotechnol 2020; 8:989. [PMID: 32903497 PMCID: PMC7438438 DOI: 10.3389/fbioe.2020.00989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Lung disorders such as chronic obstructive pulmonary disease (COPD) and lower respiratory tract infections (LRTIs) are leading causes of death in humans globally. Cigarette smoking is the principal risk factor for the development of COPD, and LRTIs are caused by inhaling respiratory pathogens. Thus, a thorough understanding of host–environment/pathogen interactions is crucial to developing effective preventive and therapeutic modalities against these disorders. While animal models of human pulmonary conditions have been widely utilized, they suffer major drawbacks due to inter-species differences, hindering clinical translation. Here we summarize recent advances in generating complex 3D culture systems that emulate the microarchitecture and pathophysiology of the human lung, and how these platforms have been implemented for studying exposure to environmental factors, airborne pathogens, and therapeutic agents.
Collapse
Affiliation(s)
- Rocio J Jimenez-Valdes
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Uryan I Can
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian F Niemeyer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kambez H Benam
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Bioengineering, University of Colorado Denver, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
109
|
Abstract
Although, as the major organ of gas exchange, the lung is considered a nonlymphoid organ, an interconnected network of lung-resident innate cells, including epithelial cells, dendritic cells, macrophages, and natural killer cells is crucial for its protection. These cells provide defense against a daily assault by airborne bacteria, viruses, and fungi, as well as prevent the development of cancer, allergy, and the outgrowth of commensals. Our understanding of this innate immune environment has recently changed with the discovery of a family of innate lymphoid cells (ILCs): ILC1s, ILC2s, and ILC3s. All lack adaptive antigen receptors but can provide a substantial and rapid source of IFN-γ, IL-5 and IL-13, and IL-17A or IL-22, respectively. Their ability to afford immediate protection to the lung and to influence subsequent adaptive immune responses highlights the importance of understanding ILC-regulated immunity for the design of future therapeutic interventions.
Collapse
Affiliation(s)
- Jillian L Barlow
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| |
Collapse
|
110
|
Ganjian H, Rajput C, Elzoheiry M, Sajjan U. Rhinovirus and Innate Immune Function of Airway Epithelium. Front Cell Infect Microbiol 2020; 10:277. [PMID: 32637363 PMCID: PMC7316886 DOI: 10.3389/fcimb.2020.00277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Airway epithelial cells, which lines the respiratory mucosa is in direct contact with the environment. Airway epithelial cells are the primary target for rhinovirus and other inhaled pathogens. In response to rhinovirus infection, airway epithelial cells mount both pro-inflammatory responses and antiviral innate immune responses to clear the virus efficiently. Some of the antiviral responses include the expression of IFNs, endoplasmic reticulum stress induced unfolded protein response and autophagy. Airway epithelial cells also recruits other innate immune cells to establish antiviral state and resolve the inflammation in the lungs. In patients with chronic lung disease, these responses may be either defective or induced in excess leading to deficient clearing of virus and sustained inflammation. In this review, we will discuss the mechanisms underlying antiviral innate immunity and the dysregulation of some of these mechanisms in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Haleh Ganjian
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Charu Rajput
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Manal Elzoheiry
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Umadevi Sajjan
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
- Department of Physiology, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| |
Collapse
|
111
|
Cameron L, Palikhe NS, Laratta C, Vliagoftis H. Elevated Circulating Th2 Cells in Women With Asthma and Psychological Morbidity: A New Asthma Endotype? Clin Ther 2020; 42:1015-1031. [PMID: 32482491 DOI: 10.1016/j.clinthera.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Psychological stress shifts the immune system toward the production of T-helper (Th)-2-mediated cytokines and eosinophilia, increases the risks for both asthma and depression, and can precipitate asthma exacerbations. Th2-mediated inflammation is a characteristic of allergic asthma. We have shown that the levels of CD4+ Th2 cells in the peripheral blood of patients with asthma are associated with severity and/or control of the disease. To improve our understanding of the interactions between stress and asthma symptoms, we evaluated the effects of psychological comorbidity on Th2-mediated inflammation in patients with asthma. METHODS Sixty-six asthmatic patients were recruited from the University of Alberta Asthma Clinic after they gave informed consent. Stress-related effects on asthma and psychological morbidity were assessed using the Asthma Control Questionnaire, completed by the patients at recruitment. Venous blood was collected at recruitment and Th2-mediated immunity evaluated by flow cytometry, quantitative real-time reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. FINDINGS Patients with stress-triggered asthma (n = 12) had higher percentage of CD4+ T cells (P = 0.006) and Th2 cells (CD4+CRTh2+ T cells; P = 0.002) in peripheral blood compared to patients with asthma who did not experience stress-related worsening of disease (n = 54). The same was true when we analyzed patients with any form of psychological comorbidity (n = 19) compared to those without psychological comorbidities (n = 47). These differences were evident among women, but not among men. Women with psychological comorbidity also required higher doses of inhaled and oral corticosteroids compared to those without psychological comorbidity. IMPLICATIONS Asthma involving psychological morbidity associates with an elevated level of circulating Th2 cells and increased corticosteroid usage, and may be more prevalent in women. Larger-scale prospective studies are required for assessing whether these women constitute a new endotype of Th2-high asthma responsive to treatments aimed to improve psychological comorbidities.
Collapse
Affiliation(s)
- Lisa Cameron
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada.
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Cheryl Laratta
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
112
|
Altman MC, Beigelman A, Ciaccio C, Gern JE, Heymann PW, Jackson DJ, Kennedy JL, Kloepfer K, Lemanske RF, McWilliams LM, Muehling L, Nance C, Peebles RS. Evolving concepts in how viruses impact asthma: A Work Group Report of the Microbes in Allergy Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2020; 145:1332-1344. [PMID: 31926183 PMCID: PMC7577409 DOI: 10.1016/j.jaci.2019.12.904] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Over the past decade, there have been substantial advances in our understanding about how viral infections regulate asthma. Important lessons have been learned from birth cohort studies examining viral infections and subsequent asthma and from understanding the relationships between host genetics and viral infections, the contributions of respiratory viral infections to patterns of immune development, the impact of environmental exposure on the severity of viral infections, and how the viral genome influences host immune responses to viral infections. Further, there has been major progress in our knowledge about how bacteria regulate host immune responses in asthma pathogenesis. In this article, we also examine the dynamics of bacterial colonization of the respiratory tract during viral upper respiratory tract infection, in addition to the relationship of the gut and respiratory microbiomes with respiratory viral infections. Finally, we focus on potential interventions that could decrease virus-induced wheezing and asthma. There are emerging therapeutic options to decrease the severity of wheezing exacerbations caused by respiratory viral infections. Primary prevention is a major goal, and a strategy toward this end is considered.
Collapse
Affiliation(s)
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology & Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo; Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Tel Aviv University, Petach Tikvah, Israel
| | - Christina Ciaccio
- Allergy/Immunology and Pediatric Pulmonology and Sleep Medicine, University of Chicago School of Medicine, Chicago, Ill
| | - James E Gern
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Peter W Heymann
- Department of Pediatrics, University of Virginia Medical Center, Charlottesville, Va
| | - Daniel J Jackson
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Joshua L Kennedy
- Division of Allergy/Immunology, Departments of Pediatrics and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Ark
| | - Kirsten Kloepfer
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind
| | - Robert F Lemanske
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | - Lyndsey Muehling
- Department of Medicine, University of Virginia Medical Center, Charlottesville, Va
| | - Christy Nance
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Immunology/Pathology, Baylor College of Medicine, Houston, Tex
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
113
|
Nikonova A, Khaitov M, Jackson DJ, Traub S, Trujillo-Torralbo MB, Kudlay DA, Dvornikov AS, Del-Rosario A, Valenta R, Stanciu LA, Khaitov R, Johnston SL. M1-like macrophages are potent producers of anti-viral interferons and M1-associated marker-positive lung macrophages are decreased during rhinovirus-induced asthma exacerbations. EBioMedicine 2020; 54:102734. [PMID: 32279057 PMCID: PMC7152663 DOI: 10.1016/j.ebiom.2020.102734] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Macrophages (Mф) can be M1/M2 polarized by Th1/2 signals, respectively. M2-like Mф are thought to be important in asthma pathogenesis, and M1-like in anti-infective immunity, however their roles in virus-induced asthma exacerbations are unknown. Our objectives were (i) to assess polarised Mф phenotype responses to rhinovirus (RV) infection in vitro and (ii) to assess Mф phenotypes in healthy subjects and people with asthma before and during experimental RV infection in vivo. METHODS We investigated characteristics of polarized/unpolarized human monocyte-derived Mф (MDM, from 3-6 independent donors) in vitro and evaluated frequencies of M1/M2-like bronchoalveolar lavage (BAL) Mф in experimental RV-induced asthma exacerbation in 7 healthy controls and 17 (at baseline) and 18 (at day 4 post infection) people with asthma. FINDINGS We observed in vitro: M1-like but not M2-like or unpolarized MDM are potent producers of type I and III interferons in response to RV infection (P<0.0001), and M1-like are more resistant to RV infection (P<0.05); compared to M1-like, M2-like MDM constitutively produced higher levels of CCL22/MDC (P = 0.007) and CCL17/TARC (P<0.0001); RV-infected M1-like MDM were characterized as CD14+CD80+CD197+ (P = 0.002 vs M2-like, P<0.0001 vs unpolarized MDM). In vivo we found reduced percentages of M1-like CD14+CD80+CD197+ BAL Mф in asthma during experimental RV16 infection compared to baseline (P = 0.024). INTERPRETATION Human M1-like BAL Mф are likely important contributors to anti-viral immunity and their numbers are reduced in patients with allergic asthma during RV-induced asthma exacerbations. This mechanism may be one explanation why RV-triggered clinical and pathologic outcomes are more severe in allergic patients than in healthy subjects. FUNDING ERC FP7 Advanced grant 233015, MRC Centre Grant G1000758, Asthma UK grant 08-048, NIHR Biomedical Research Centre funding scheme, NIHR BRC Centre grant P26095, the Predicta FP7 Collaborative Project grant 260895, RSF grant 19-15-00272, Megagrant No 14.W03.31.0024.
Collapse
Affiliation(s)
- Alexandra Nikonova
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Norfolk Place, London W2 1PG, United Kingdom; NRC Institute of Immunology FMBA, Kashirskoe shosse 24, 115478 Moscow, Russian Federation; Mechnikov Research Institute for Vaccines and Sera, M. Kazenny per., 5A, 105064 Moscow, Russian Federation.
| | - Musa Khaitov
- NRC Institute of Immunology FMBA, Kashirskoe shosse 24, 115478 Moscow, Russian Federation.
| | - David J Jackson
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom; Imperial College Healthcare NHS Trust, Norfolk Place, London W2 1PG, United Kingdom; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Norfolk Place, London W2 1PG, United Kingdom.
| | - Stephanie Traub
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Norfolk Place, London W2 1PG, United Kingdom.
| | - Maria-Belen Trujillo-Torralbo
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom; Imperial College Healthcare NHS Trust, Norfolk Place, London W2 1PG, United Kingdom
| | - Dmitriy A Kudlay
- NRC Institute of Immunology FMBA, Kashirskoe shosse 24, 115478 Moscow, Russian Federation
| | - Anton S Dvornikov
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, 117513 Moscow, Russian Federation.
| | - Ajerico Del-Rosario
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom; Imperial College Healthcare NHS Trust, Norfolk Place, London W2 1PG, United Kingdom.
| | - Rudolf Valenta
- NRC Institute of Immunology FMBA, Kashirskoe shosse 24, 115478 Moscow, Russian Federation; Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Luminita A Stanciu
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Norfolk Place, London W2 1PG, United Kingdom.
| | - Rahim Khaitov
- NRC Institute of Immunology FMBA, Kashirskoe shosse 24, 115478 Moscow, Russian Federation.
| | - Sebastian L Johnston
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom; Imperial College Healthcare NHS Trust, Norfolk Place, London W2 1PG, United Kingdom; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Norfolk Place, London W2 1PG, United Kingdom.
| |
Collapse
|
114
|
Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis. Ann Allergy Asthma Immunol 2020; 124:333-341. [PMID: 32007569 PMCID: PMC11784937 DOI: 10.1016/j.anai.2020.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To review the latest discoveries on airway epithelial cell diversity and remodeling in type 2 inflammation, including nasal polyposis. DATA SOURCES Reviews and primary research manuscripts were identified from PubMed, Google, and Bioarchives, using the search words airway epithelium, nasal polyposis, or chronic rhinosinusitis with nasal polyposis AND basal cell, ciliated cell, secretory cell, goblet cell, neuroendocrine cell, pulmonary neuroendocrine cell, ionocyte, brush cell, solitary chemosensory cell, microvillus cell, or tuft cell. STUDY SELECTIONS Studies were selected based on novelty and likely relevance to airway epithelial innate immune functions or the pathobiology of type 2 inflammation. RESULTS Airway epithelial cells are more diverse than previously appreciated, with specialized subsets, including ionocytes, solitary chemosensory cells, and neuroendocrine cells that contribute to important innate immune functions. In chronic rhinosinusitis with nasal polyposis, the composition of the epithelium is significantly altered. Loss of ciliated cells and submucosal glands and an increase in basal airway epithelial progenitors leads to loss of innate immune functions and an expansion of proinflammatory potential. Type 2 cytokines play a major role in driving this process. CONCLUSION Airway epithelial remodeling in chronic rhinosinusitis is extensive, leading to loss of innate immune function and enhanced proinflammatory potential. The mechanisms driving airway remodeling and its sequelae deserve further attention before restitution of epithelial differentiation can be considered a reasonable therapeutic target.
Collapse
Affiliation(s)
- Lora G Bankova
- Division of Allergy and Clinical Immunology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
115
|
Tan KS, Lim RL, Liu J, Ong HH, Tan VJ, Lim HF, Chung KF, Adcock IM, Chow VT, Wang DY. Respiratory Viral Infections in Exacerbation of Chronic Airway Inflammatory Diseases: Novel Mechanisms and Insights From the Upper Airway Epithelium. Front Cell Dev Biol 2020; 8:99. [PMID: 32161756 PMCID: PMC7052386 DOI: 10.3389/fcell.2020.00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
Respiratory virus infection is one of the major sources of exacerbation of chronic airway inflammatory diseases. These exacerbations are associated with high morbidity and even mortality worldwide. The current understanding on viral-induced exacerbations is that viral infection increases airway inflammation which aggravates disease symptoms. Recent advances in in vitro air-liquid interface 3D cultures, organoid cultures and the use of novel human and animal challenge models have evoked new understandings as to the mechanisms of viral exacerbations. In this review, we will focus on recent novel findings that elucidate how respiratory viral infections alter the epithelial barrier in the airways, the upper airway microbial environment, epigenetic modifications including miRNA modulation, and other changes in immune responses throughout the upper and lower airways. First, we reviewed the prevalence of different respiratory viral infections in causing exacerbations in chronic airway inflammatory diseases. Subsequently we also summarized how recent models have expanded our appreciation of the mechanisms of viral-induced exacerbations. Further we highlighted the importance of the virome within the airway microbiome environment and its impact on subsequent bacterial infection. This review consolidates the understanding of viral induced exacerbation in chronic airway inflammatory diseases and indicates pathways that may be targeted for more effective management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Liyu Lim
- Infectious Disease Research and Training Office, National Centre for Infectious Diseases, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vivian Jiayi Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Fang Lim
- Division of Respiratory and Critical Care Medicine, National University Hospital, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kian Fan Chung
- Airway Disease, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Airway Disease, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
116
|
Gern JE, Lee WM, Swenson CA, Nakagome K, Lee I, Wolff M, Grindle K, Sigelman S, Liggett SB, Togias A, Evans M, Denlinger L, Gangnon R, Bochkov YA, Crisafi G. Development of a Rhinovirus Inoculum Using a Reverse Genetics Approach. J Infect Dis 2020; 220:187-194. [PMID: 30383246 PMCID: PMC6581892 DOI: 10.1093/infdis/jiy629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/31/2018] [Indexed: 11/12/2022] Open
Abstract
Background Experimental inoculation is an important tool for common cold and asthma research. Producing rhinovirus (RV) inocula from nasal secretions has required prolonged observation of the virus donor to exclude extraneous pathogens. We produced a RV-A16 inoculum using reverse genetics and determined the dose necessary to cause moderate colds in seronegative volunteers. Methods The consensus sequence of RV-A16 from a previous inoculum was cloned, and inoculum virus was produced using reverse genetics techniques. After safety testing, volunteers were inoculated with either RV-A16 (n = 26) or placebo (n = 10), Jackson cold scores were recorded, and nasal secretions were tested for shedding of RV-A16 ribonucleic acid. Results The reverse genetics process produced infectious virus that was neutralized by specific antisera and had a mutation rate similar to conventional virus growth techniques. The 1000 median tissue culture infectious dose (TCID50) dose produced moderate colds in most individuals with effects similar to that of a previously tested conventional RV-A16 inoculum. Conclusions Reverse genetics techniques produced a RV-A16 inoculum that can cause clinical colds in seronegative volunteers, and they also serve as a stable source of virus for laboratory use. The recombinant production procedures eliminate the need to derive seed virus from nasal secretions, thus precluding introduction of extraneous pathogens through this route.
Collapse
Affiliation(s)
| | | | | | | | - Iris Lee
- Departments of Pediatrics and Medicine
| | | | | | - Steven Sigelman
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockford, MD
| | - Stephen B Liggett
- Department of Internal Medicine and Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa FL
| | - Alkis Togias
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockford, MD
| | | | | | | | | | | |
Collapse
|
117
|
Voskamp AL, Kormelink TG, van Wijk RG, Hiemstra PS, Taube C, de Jong EC, Smits HH. Modulating local airway immune responses to treat allergic asthma: lessons from experimental models and human studies. Semin Immunopathol 2020; 42:95-110. [PMID: 32020335 PMCID: PMC7066288 DOI: 10.1007/s00281-020-00782-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
With asthma affecting over 300 million individuals world-wide and estimated to affect 400 million by 2025, developing effective, long-lasting therapeutics is essential. Allergic asthma, where Th2-type immunity plays a central role, represents 90% of child and 50% of adult asthma cases. Research based largely on animal models of allergic disease have led to the generation of a novel class of drugs, so-called biologicals, that target essential components of Th2-type inflammation. Although highly efficient in subclasses of patients, these biologicals and other existing medication only target the symptomatic stage of asthma and when therapy is ceased, a flare-up of the disease is often observed. Therefore, it is suggested to target earlier stages in the inflammatory cascade underlying allergic airway inflammation and to focus on changing and redirecting the initiation of type 2 inflammatory responses against allergens and certain viral agents. This focus on upstream aspects of innate immunity that drive development of Th2-type immunity is expected to have longer-lasting and disease-modifying effects, and may potentially lead to a cure for asthma. This review highlights the current understanding of the contribution of local innate immune elements in the development and maintenance of inflammatory airway responses and discusses available leads for successful targeting of those pathways for future therapeutics.
Collapse
Affiliation(s)
- A L Voskamp
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands
| | - T Groot Kormelink
- Department of Experimental Immunology, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - R Gerth van Wijk
- Department of Internal Medicine, Section Allergology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - C Taube
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrklinik, Essen, Germany
| | - E C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
118
|
Jartti T, Bønnelykke K, Elenius V, Feleszko W. Role of viruses in asthma. Semin Immunopathol 2020; 42:61-74. [PMID: 31989228 PMCID: PMC7066101 DOI: 10.1007/s00281-020-00781-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022]
Abstract
Respiratory viral infections are the most important triggers of asthma exacerbations. Rhinovirus (RV), the common cold virus, is clearly the most prevalent pathogen constantly circulating in the community. This virus also stands out from other viral factors due to its large diversity (about 170 genotypes), very effective replication, a tendency to create Th2-biased inflammatory environment and association with specific risk genes in people predisposed to asthma development (CDHR3). Decreased interferon responses, disrupted airway epithelial barrier, environmental exposures (including biased airway microbiome), and nutritional deficiencies (low in vitamin D and fish oil) increase risk to RV and other virus infections. It is intensively debated whether viral illnesses actually cause asthma. Respiratory syncytial virus (RSV) is the leading causative agent of bronchiolitis, whereas RV starts to dominate after 1 year of age. Breathing difficulty induced by either of these viruses is associated with later asthma, but the risk is higher for those who suffer from severe RV-induced wheezing. The asthma development associated with these viruses has unique mechanisms, but in general, RV is a risk factor for later atopic asthma, whereas RSV is more likely associated with later non-atopic asthma. Treatments that inhibit inflammation (corticosteroids, omalizumab) effectively decrease RV-induced wheezing and asthma exacerbations. The anti-RSV monoclonal antibody, palivizumab, decreases the risk of severe RSV illness and subsequent recurrent wheeze. A better understanding of personal and environmental risk factors and inflammatory mechanisms leading to asthma is crucial in developing new strategies for the prevention and treatment of asthma.
Collapse
Affiliation(s)
- Tuomas Jartti
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Varpu Elenius
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, The Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
119
|
Ualiyeva S, Hallen N, Kanaoka Y, Ledderose C, Matsumoto I, Junger W, Barrett N, Bankova L. Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Sci Immunol 2020; 5:5/43/eaax7224. [PMID: 31953256 PMCID: PMC7176051 DOI: 10.1126/sciimmunol.aax7224] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
Chemosensory epithelial cells (EpCs) are specialized cells that promote innate type 2 immunity and protective neurally mediated reflexes in the airway. Their effector programs and modes of activation are not fully understood. Here, we define the transcriptional signature of two choline acetyltransferase-expressing nasal EpC populations. They are found in the respiratory and olfactory mucosa and express key chemosensory cell genes including the transcription factor Pou2f3, the cation channel Trpm5, and the cytokine Il25 Moreover, these cells share a core transcriptional signature with chemosensory cells from intestine, trachea and thymus, and cluster with tracheal brush cells (BrCs) independently from other respiratory EpCs, indicating that they are part of the brush/tuft cell family. Both nasal BrC subsets express high levels of transcripts encoding cysteinyl leukotriene (CysLT) biosynthetic enzymes. In response to ionophore, unfractionated nasal BrCs generate CysLTs at levels exceeding that of the adjacent hematopoietic cells isolated from naïve mucosa. Among activating receptors, BrCs express the purinergic receptor P2Y2. Accordingly, the epithelial stress signal ATP and aeroallergens that elicit ATP release trigger BrC CysLT generation, which is mediated by the P2Y2 receptor. ATP- and aeroallergen-elicited CysLT generation in the nasal lavage is reduced in mice lacking Pou2f3, a requisite transcription factor for BrC development. Last, aeroallergen-induced airway eosinophilia is reduced in BrC-deficient mice. These results identify a previously undescribed BrC sensor and effector pathway leading to generation of lipid mediators in response to luminal signals. Further, they suggest that BrC sensing of local damage may provide an important sentinel immune function.
Collapse
Affiliation(s)
- S. Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - N. Hallen
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Y. Kanaoka
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - C. Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - W. Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - N.A. Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - L.G. Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
120
|
Kim JH, Jang YS, Kim HI, Park JY, Park SH, Hwang YI, Jang SH, Jung KS, Park HS, Park CS. Activation of Transient Receptor Potential Melastatin Family Member 8 (TRPM8) Receptors Induces Proinflammatory Cytokine Expressions in Bronchial Epithelial Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:684-700. [PMID: 32400133 PMCID: PMC7224991 DOI: 10.4168/aair.2020.12.4.684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Purpose Cold air is a major environmental factor that exacerbates asthma. Transient receptor potential melastatin family member 8 (TRPM8) is a cold-sensing channel expressed in the airway epithelium. However, its role in airway inflammation remains unknown. We investigated the role of TRPM8 in innate immune responses in bronchial epithelial cells and asthmatic subjects. Methods The TRPM8 mRNA and protein expression on BEAS2B human bronchial epithelial cells was examined by real-time polymerase chain reaction (PCR), immunofluorescence staining and western blotting. Additionally, interleukin (IL)-4, IL-6, IL-8, IL-13, IL-25 and thymic stromal lymphopoietin (TSLP) levels before and after menthol, dexamethasone and N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl) piperazine-1-carboxamide (BCTC) treatments were measured via real-time PCR. TRPM8 protein levels in the supernatants of induced sputum from asthmatic subjects and normal control subjects were measured using enzyme-linked immunosorbent assay, and mRNA levels in sputum cell lysates were measured using real-time PCR. Results Treatment with up to 2 mM menthol dose-dependently increased TRPM8 mRNA and protein in BEAS2B cells compared to untreated cells (P < 0.001) and concomitantly increased IL-25 and TSLP mRNA (P < 0.05), but not IL-33 mRNA. BCTC (10 μM) significantly abolished menthol-induced up-regulation of TRPM8 mRNA and protein and IL-25 and TSLP mRNA (P < 0.01). TRPM8 protein levels were higher in the supernatants of induced sputum from asthmatic subjects (n = 107) than in those from healthy controls (n = 19) (P < 0.001), and IL-25, TSLP and IL-33 mRNA levels were concomitantly increased (P < 0.001). Additionally, TRPM8 mRNA levels correlated strongly with those of IL-25 and TSLP (P < 0.001), and TRPM8 protein levels were significantly higher in bronchodilator-responsive asthmatic subjects than in nonresponders. Conclusions TRPM8 may be involved in the airway epithelial cell innate immune response and a molecular target for the treatment of asthma.
Collapse
Affiliation(s)
- Joo Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea.
| | - Young Sook Jang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Hwan Il Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Ji Young Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Sung Hoon Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Yong Il Hwang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Seung Hun Jang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Ki Suck Jung
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Lung Research Institute of Hallym University College of Medicine, Anyang, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Disease, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
121
|
Orimo K, Saito H, Matsumoto K, Morita H. Innate Lymphoid Cells in the Airways: Their Functions and Regulators. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:381-398. [PMID: 32141254 PMCID: PMC7061164 DOI: 10.4168/aair.2020.12.3.381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Since the airways are constantly exposed to various pathogens and foreign antigens, various kinds of cells in the airways—including structural cells and immune cells—interact to form a precise defense system against pathogens and antigens that involve both innate immunity and acquired immunity. Accumulating evidence suggests that innate lymphoid cells (ILCs) play critical roles in the maintenance of tissue homeostasis, defense against pathogens and the pathogenesis of inflammatory diseases, especially at body surface mucosal sites such as the airways. ILCs are activated mainly by cytokines, lipid mediators and neuropeptides that are produced by surrounding cells, and they produce large amounts of cytokines that result in inflammation. In addition, ILCs can change their phenotype in response to stimuli from surrounding cells, which enables them to respond promptly to microenvironmental changes. ILCs exhibit substantial heterogeneity, with different phenotypes and functions depending on the organ and type of inflammation, presumably because of differences in microenvironments. Thus, ILCs may be a sensitive detector of microenvironmental changes, and analysis of their phenotype and function at local sites may enable us to better understand the microenvironment in airway diseases. In this review, we aimed to identify molecules that either positively or negatively influence the function and/or plasticity of ILCs and the sources of the molecules in the airways in order to examine the pathophysiology of airway inflammatory diseases and facilitate the issues to be solved.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
122
|
Abstract
Natural killer (NK) cells are important innate effectors for their defense against pathogens and tumors without the need of prior sensitization. Along with the growing understanding of basic NK cell biology, it has been widely accepted that NK cells are a heterogeneous population of innate lymphoid cell (ILC) family. Apart from the conventional NK cell (cNK) subset that circulates throughout the body, some non-lymphoid tissues contain tissue-resident NK (trNK) cell subsets, and the composition of NK cell subsets varies greatly with different locations. Except for cNK cells, other ILCs are known as tissue-resident cells. In this review, we summarize the unique properties of trNK cells, discuss their lineage relationship with other ILCs, and highlight recent advances in our understanding of the functions of trNK cells and other ILCs.
Collapse
|
123
|
Hinks TSC, Hoyle RD, Gelfand EW. CD8 + Tc2 cells: underappreciated contributors to severe asthma. Eur Respir Rev 2019; 28:28/154/190092. [PMID: 31748421 PMCID: PMC6887553 DOI: 10.1183/16000617.0092-2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/22/2023] Open
Abstract
The complexity of asthma is underscored by the number of cell types and mediators implicated in the pathogenesis of this heterogeneous syndrome. Type 2 CD4+ T-cells (Th2) and more recently, type 2 innate lymphoid cells dominate current descriptions of asthma pathogenesis. However, another important source of these type 2 cytokines, especially interleukin (IL)-5 and IL-13, are CD8+ T-cells, which are increasingly proposed to play an important role in asthma pathogenesis, because they are abundant and are comparatively insensitive to corticosteroids. Many common triggers of asthma exacerbations are mediated via corticosteroid-resistant pathways involving neutrophils and CD8+ T-cells. Extensive murine data reveal the plasticity of CD8+ T-cells and their capacity to enhance airway inflammation and airway dysfunction. In humans, Tc2 cells are predominant in fatal asthma, while in stable state, severe eosinophilic asthma is associated with greater numbers of Tc2 than Th2 cells in blood, bronchoalveolar lavage fluid and bronchial biopsies. Tc2 cells strongly express CRTH2, the receptor for prostaglandin D2, the cysteinyl leukotriene receptor 1 and the leukotriene B4 receptor. When activated, these elicit Tc2 cell chemotaxis and production of chemokines and type 2 and other cytokines, resulting directly or indirectly in eosinophil recruitment and survival. These factors position CD8+ Tc2 cells as important and underappreciated effector cells contributing to asthma pathogenesis. Here, we review recent advances and new insights in understanding the pro-asthmatic functions of CD8+ T-cells in eosinophilic asthma, especially corticosteroid-resistant asthma, and the molecular mechanisms underlying their pathologic effector function. Alongside Th2 and ILC2 cells, CD8+ T-cells are a cellular source of type 2 cytokines. We review recent findings and insights into the pathologic effector functions of type 2 CD8+ T-cells in eosinophilic asthma, especially steroid-resistant disease.http://bit.ly/2KbVGL2
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine Experimental Medicine, University of Oxford, Oxford, UK
| | - Ryan D Hoyle
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine Experimental Medicine, University of Oxford, Oxford, UK
| | - Erwin W Gelfand
- Division of Cell Biology, Dept of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
124
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 410] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
125
|
Altman MC, Lai Y, Nolin JD, Long S, Chen CC, Piliponsky AM, Altemeier WA, Larmore M, Frevert CW, Mulligan MS, Ziegler SF, Debley JS, Peters MC, Hallstrand TS. Airway epithelium-shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling. J Clin Invest 2019; 129:4979-4991. [PMID: 31437129 PMCID: PMC6819127 DOI: 10.1172/jci126402] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Asthma is a heterogeneous syndrome that has been subdivided into physiologic phenotypes and molecular endotypes. The most specific phenotypic manifestation of asthma is indirect airway hyperresponsiveness (AHR), and a prominent molecular endotype is the presence of type 2 inflammation. The underlying basis for type 2 inflammation and its relationship to AHR are incompletely understood. We assessed the expression of type 2 cytokines in the airways of subjects with and without asthma who were extensively characterized for AHR. Using quantitative morphometry of the airway wall, we identified a shift in mast cells from the submucosa to the airway epithelium specifically associated with both type 2 inflammation and indirect AHR. Using ex vivo modeling of primary airway epithelial cells in organotypic coculture with mast cells, we show that epithelial-derived IL-33 uniquely induced type 2 cytokines in mast cells, which regulated the expression of epithelial IL33 in a feed-forward loop. This feed-forward loop was accentuated in epithelial cells derived from subjects with asthma. These results demonstrate that type 2 inflammation and indirect AHR in asthma are related to a shift in mast cell infiltration to the airway epithelium, and that mast cells cooperate with epithelial cells through IL-33 signaling to regulate type 2 inflammation.
Collapse
Affiliation(s)
| | - Ying Lai
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - James D. Nolin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sydney Long
- Division of Allergy and Infectious Diseases and
| | - Chien-Chang Chen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - William A. Altemeier
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Megan Larmore
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Michael S. Mulligan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Steven F. Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Jason S. Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michael C. Peters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, UCSF, San Francisco, California, USA
| | - Teal S. Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
126
|
Wadhwa R, Dua K, Adcock IM, Horvat JC, Kim RY, Hansbro PM. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev 2019; 28:28/153/190096. [PMID: 31636089 DOI: 10.1183/16000617.0096-2019] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/19/2019] [Indexed: 01/04/2023] Open
Abstract
Severe steroid-resistant asthma is clinically important, as patients with this form of the disease do not respond to mainstay corticosteroid therapies. The heterogeneity of this form of asthma and poor understanding of the pathological mechanisms involved hinder the identification of therapeutic targets and the development of more effective therapies. A major limiting factor in the understanding of severe steroid-resistant asthma is the existence of multiple endotypes represented by different immunological and inflammatory phenotypes, particularly in adults. Several clinical and experimental studies have revealed associations between specific respiratory infections and steroid-resistant asthma in adults. Here, we discuss recent findings from other authors as well as our own studies that have developed novel experimental models for interrogating the association between respiratory infections and severe steroid-resistant asthma. These models have enabled the identification of new therapies using macrolides, as well as several novel disease mechanisms, including the microRNA-21/phosphoinositide 3-kinase/histone deacetylase 2 axis and NLRP3 inflammasomes, and highlight the potential of these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia.,Both authors contributed equally
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Both authors contributed equally
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Faculty of Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
127
|
Mikhail I, Grayson MH. Asthma and viral infections: An intricate relationship. Ann Allergy Asthma Immunol 2019; 123:352-358. [PMID: 31276807 PMCID: PMC7111180 DOI: 10.1016/j.anai.2019.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To synthesize available data related to the complex associations among viral infections, atopy, and asthma. DATA SOURCES Key historical articles, articles highlighted in our recent review of most significant recent asthma advancements, and findings from several birth cohorts related to asthma and viral infections were reviewed. In addition, PubMed was searched for review articles and original research related to the associations between viral infection and asthma, using the search words asthma, viral infections, atopy, development of asthma, rhinovirus (RV), and respiratory syncytial virus (RSV). STUDY SELECTIONS Articles were selected based on novelty and relevance to our topic of interest, the role of asthma and viral infections, and possible mechanisms to explain the association. RESULTS There is a large body of evidence demonstrating a link between early viral infections (especially RV and RSV) and asthma inception and exacerbations. RV-induced wheezing is an important risk factor for asthma only when atopy is present, with much evidence supporting the idea that sensitization is a risk factor for early RV-induced wheezing, which in turn is a risk factor for asthma. RSV, on the other hand, is a more important risk factor for nonatopic asthma, with severe infections conferring greater risk. CONCLUSION There are important differences in the development of atopic and nonatopic asthma, with several proposed mechanisms explaining the association between viral infections and the development of asthma and asthma exacerbations. Understanding these complex associations is important for developing asthma prevention strategies and targeted asthma therapies.
Collapse
Affiliation(s)
- Irene Mikhail
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
128
|
Bankova LG, Dwyer DF, Yoshimoto E, Ualiyeva S, McGinty JW, Raff H, von Moltke J, Kanaoka Y, Frank Austen K, Barrett NA. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation. Sci Immunol 2019; 3:3/28/eaat9453. [PMID: 30291131 DOI: 10.1126/sciimmunol.aat9453] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Respiratory epithelial cells (EpCs) orchestrate airway mucosal inflammation in response to diverse environmental stimuli, but how distinct EpC programs are regulated remains poorly understood. Here, we report that inhalation of aeroallergens leads to expansion of airway brush cells (BrCs), specialized chemosensory EpCs and the dominant epithelial source of interleukin-25 (IL-25). BrC expansion was attenuated in mice lacking either LTC4 synthase, the biosynthetic enzyme required for cysteinyl leukotriene (CysLT) generation, or the EpC receptor for leukotriene E4 (LTE4), CysLT3R. LTE4 inhalation was sufficient to elicit CysLT3R-dependent BrC expansion in the murine airway through an IL-25-dependent but STAT6-independent signaling pathway. Last, blockade of IL-25 attenuated both aeroallergen and LTE4-elicited CysLT3R-dependent type 2 lung inflammation. These results demonstrate that CysLT3R senses the endogenously generated lipid ligand LTE4 and regulates airway BrC number and function.
Collapse
Affiliation(s)
- Lora G Bankova
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Daniel F Dwyer
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eri Yoshimoto
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Saltanat Ualiyeva
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - John W McGinty
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hannah Raff
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Yoshihide Kanaoka
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - K Frank Austen
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nora A Barrett
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
129
|
Allinne J, Scott G, Lim WK, Birchard D, Erjefält JS, Sandén C, Ben LH, Agrawal A, Kaur N, Kim JH, Kamat V, Fury W, Huang T, Stahl N, Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. IL-33 blockade affects mediators of persistence and exacerbation in a model of chronic airway inflammation. J Allergy Clin Immunol 2019; 144:1624-1637.e10. [PMID: 31562870 DOI: 10.1016/j.jaci.2019.08.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/15/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Severe inflammatory airway diseases are associated with inflammation that does not resolve, leading to structural changes and an overall environment primed for exacerbations. OBJECTIVE We sought to identify and inhibit pathways that perpetuate this heightened inflammatory state because this could lead to therapies that allow for a more quiescent lung that is less predisposed to symptoms and exacerbations. METHODS Using prolonged exposure to house dust mite in mice, we developed a mouse model of persistent and exacerbating airway disease characterized by a mixed inflammatory phenotype. RESULTS We show that lung IL-33 drives inflammation and remodeling beyond the type 2 response classically associated with IL-33 signaling. IL-33 blockade with an IL-33 neutralizing antibody normalized established inflammation and improved remodeling of both the lung epithelium and lung parenchyma. Specifically, IL-33 blockade normalized persisting and exacerbating inflammatory end points, including eosinophilic, neutrophilic, and ST2+CD4+ T-cell infiltration. Importantly, we identified a key role for IL-33 in driving lung remodeling because anti-IL-33 also re-established the presence of ciliated cells over mucus-producing cells and decreased myofibroblast numbers, even in the context of continuous allergen exposure, resulting in improved lung function. CONCLUSION Overall, this study shows that increased IL-33 levels drive a self-perpetuating amplification loop that maintains the lung in a state of lasting inflammation and remodeled tissue primed for exacerbations. Thus IL-33 blockade might ameliorate symptoms and prevent exacerbations by quelling persistent inflammation and airway remodeling.
Collapse
Affiliation(s)
| | | | | | | | - Jonas S Erjefält
- Unit of Airway Inflammation, Lund University, Lund, Sweden; Medetect AB, Lund, Sweden
| | | | | | | | | | | | | | - Wen Fury
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | - Neil Stahl
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | | | | | | |
Collapse
|
130
|
Southworth T, Pattwell C, Khan N, Mowbray SF, Strieter RM, Erpenbeck VJ, Singh D. Increased type 2 inflammation post rhinovirus infection in patients with moderate asthma. Cytokine 2019; 125:154857. [PMID: 31557636 DOI: 10.1016/j.cyto.2019.154857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
Abstract
Rhinovirus (RV) infections are a major cause of exacerbations in patients with asthma. Experimental RV challenges can provide insight into the pathophysiology of viral exacerbations. Previous reports, investigating mild or moderate asthma patients, have shown an upregulation in type 2 inflammation post RV infection, however, studies specifically involving asthma patients taking inhaled corticosteroids have concentrated on symptoms and lung function, rather than the inflammatory response. Eleven moderate asthma patients were inoculated with RV. Cold symptoms and asthma control were assessed at baseline and post infection. Nasal epithelial lining fluid and bronchial alveolar lavage (BAL) fluid were collected at baseline and 4 days post infection for assessment of inflammatory proteins. Patients suffered increased cold symptoms and decreased asthma control within 7 days of infection. Antiviral mechanisms were induced following inoculation, with increases in interferon -α, β, γ and λ, as well as CXCL10 and CXCL11. Type 2 inflammatory cytokines were also significantly elevated post RV infection in both nasal and bronchial samples. In BAL, epithelial derived IL-25 and IL-33 levels strongly correlated with Th2 cytokines, IL-4, IL-5 and IL-13. We show how experimental rhinovirus challenge regulates lung and nasal biomarkers in asthma patients taking inhaled corticosteroids. These biomarkers could be used to evaluate the effects of novel drugs for asthma.
Collapse
Affiliation(s)
- Thomas Southworth
- University of Manchester & Medicines Evaluation Unit, Manchester, UK.
| | | | | | - Sarah F Mowbray
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | - Dave Singh
- University of Manchester & Medicines Evaluation Unit, Manchester, UK
| |
Collapse
|
131
|
McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 Family of Cytokines in Health and Disease. Immunity 2019; 50:892-906. [PMID: 30995505 DOI: 10.1016/j.immuni.2019.03.021] [Citation(s) in RCA: 958] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The interleukin 17 (IL-17) family of cytokines contains 6 structurally related cytokines, IL-17A through IL-17F. IL-17A, the prototypical member of this family, just passed the 25th anniversary of its discovery. Although less is known about IL-17B-F, IL-17A (commonly known as IL-17) has received much attention for its pro-inflammatory role in autoimmune disease. Over the past decade, however, it has become clear that the functions of IL-17 are far more nuanced than simply turning on inflammation. Accumulating evidence indicates that IL-17 has important context- and tissue-dependent roles in maintaining health during response to injury, physiological stress, and infection. Here, we discuss the functions of the IL-17 family, with a focus on the balance between the pathogenic and protective roles of IL-17 in cancer and autoimmune disease, including results of therapeutic blockade and novel aspects of IL-17 signal transduction regulation.
Collapse
Affiliation(s)
- Mandy J McGeachy
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Sarah L Gaffen
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
132
|
Claudio E, Wang H, Kamenyeva O, Tang W, Ha HL, Siebenlist U. IL-25 Orchestrates Activation of Th Cells via Conventional Dendritic Cells in Tissue to Exacerbate Chronic House Dust Mite-Induced Asthma Pathology. THE JOURNAL OF IMMUNOLOGY 2019; 203:2319-2327. [PMID: 31511356 DOI: 10.4049/jimmunol.1900254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022]
Abstract
House dust mite (HDM) extract is a common trigger of asthma in humans. Chronic exposure to HDM also induces asthma-like pathology in mice. Allergic responses to HDM and other allergens are linked to release of IL-25, IL-33, and TSLP by epithelial cells; these cytokines, especially IL-33, target innate lymphoid cells type 2 to produce type 2 cytokines. To what extent and by what mechanisms IL-25 contributes to chronic HDM-induced pathology is not well understood. In humans, elevated levels of IL-25 appear to be associated with cases of uncontrolled asthma and exacerbated attacks. In this article, we demonstrate that blockade of IL-25 signaling in either lung conventional dendritic cells or in T cells resulted in similar decreases in production of IL-13 and IL-9 by T cells, reduced mast cell accumulation and tissue remodeling, and improved lung function but had only modest effects on eosinophilia. Stimulation of conventional dendritic cells by IL-25 promoted proximal accumulation of Th cells, and stimulation of Th cells by IL-25 locally promoted IL-13 and IL-9 production. IL-25 made notable contributions to chronic HDM-induced allergic asthma pathology by facilitating clustering and cross-stimulation of different cell types in tissue. Therapeutic targeting of IL-25 in combination with other treatments may be beneficial.
Collapse
Affiliation(s)
- Estefania Claudio
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hongshan Wang
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Olena Kamenyeva
- Biologic Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Wanhu Tang
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hye-Lin Ha
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ulrich Siebenlist
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
133
|
Maeda K, Caldez MJ, Akira S. Innate immunity in allergy. Allergy 2019; 74:1660-1674. [PMID: 30891811 PMCID: PMC6790574 DOI: 10.1111/all.13788] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
Abstract
Innate immune system quickly responds to invasion of microbes and foreign substances through the extracellular and intracellular sensing receptors, which recognize distinctive molecular and structural patterns. The recognition of innate immune receptors leads to the induction of inflammatory and adaptive immune responses by activating downstream signaling pathways. Allergy is an immune-related disease and results from a hypersensitive immune response to harmless substances in the environment. However, less is known about the activation of innate immunity during exposure to allergens. New insights into the innate immune system by sensors and their signaling cascades provide us with more important clues and a framework for understanding allergy disorders. In this review, we will focus on recent advances in the innate immune sensing system.
Collapse
Affiliation(s)
- Kazuhiko Maeda
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| | - Matias J. Caldez
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| | - Shizuo Akira
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| |
Collapse
|
134
|
Acute Severe Asthma in Adolescent and Adult Patients: Current Perspectives on Assessment and Management. J Clin Med 2019; 8:jcm8091283. [PMID: 31443563 PMCID: PMC6780340 DOI: 10.3390/jcm8091283] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Asthma is a chronic airway inflammatory disease that is associated with variable expiratory flow, variable respiratory symptoms, and exacerbations which sometimes require hospitalization or may be fatal. It is not only patients with severe and poorly controlled asthma that are at risk for an acute severe exacerbation, but this has also been observed in patients with otherwise mild or moderate asthma. This review discusses current aspects on the pathogenesis and pathophysiology of acute severe asthma exacerbations and provides the current perspectives on the management of acute severe asthma attacks in the emergency department and the intensive care unit.
Collapse
|
135
|
Custovic A, Belgrave D, Lin L, Bakhsoliani E, Telcian AG, Solari R, Murray CS, Walton RP, Curtin J, Edwards MR, Simpson A, Rattray M, Johnston SL. Cytokine Responses to Rhinovirus and Development of Asthma, Allergic Sensitization, and Respiratory Infections during Childhood. Am J Respir Crit Care Med 2019; 197:1265-1274. [PMID: 29466680 DOI: 10.1164/rccm.201708-1762oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Immunophenotypes of antiviral responses, and their relationship with asthma, allergy, and lower respiratory tract infections, are poorly understood. OBJECTIVES We characterized multiple cytokine responses of peripheral blood mononuclear cells to rhinovirus stimulation, and their relationship with clinical outcomes. METHODS In a population-based birth cohort, we measured 28 cytokines after stimulation with rhinovirus-16 in 307 children aged 11 years. We used machine learning to identify patterns of cytokine responses, and related these patterns to clinical outcomes, using longitudinal models. We also ascertained phytohemagglutinin-induced T-helper cell type 2 (Th2)-cytokine responses (PHA-Th2). MEASUREMENTS AND MAIN RESULTS We identified six clusters of children based on their rhinovirus-16 responses, which were differentiated by the expression of four cytokine/chemokine groups: interferon-related (IFN), proinflammatory (Inflam), Th2-chemokine (Th2-chem), and regulatory (Reg). Clusters differed in their clinical characteristics. Children with an IFNmodInflamhighestTh2-chemhighestReghighest rhinovirus-16-induced pattern had a PHA-Th2low response, and a very low asthma risk (odds ratio [OR], 0.08; 95% confidence interval [CI], 0.01-0.81; P = 0.03). Two clusters had a high risk of asthma and allergic sensitization, but with different trajectories from infancy to adolescence. The IFNlowestInflamhighTh2-chemlowRegmod cluster exhibited a PHA-Th2lowest response and was associated with early-onset asthma and sensitization, and the highest risk of asthma exacerbations (OR, 1.37; 95% CI, 1.07-1.76; P = 0.014) and lower respiratory tract infection hospitalizations (OR, 2.40; 95% CI, 1.26-4.58; P = 0.008) throughout childhood. In contrast, the IFNhighestInflammodTh2-chemmodReghigh cluster with a rhinovirus-16-cytokine pattern was characterized by a PHA-Th2highest response, and a low prevalence of asthma/sensitization in infancy that increased sharply to become the highest among all clusters by adolescence (but with a low risk of asthma exacerbations). CONCLUSIONS Early-onset troublesome asthma with early-life sensitization, later-onset milder allergic asthma, and disease protection are each associated with different patterns of rhinovirus-induced immune responses.
Collapse
Affiliation(s)
- Adnan Custovic
- 1 Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom.,2 MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Danielle Belgrave
- 1 Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Lijing Lin
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eteri Bakhsoliani
- 2 MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,4 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Aurica G Telcian
- 2 MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,4 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Roberto Solari
- 2 MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,4 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Clare S Murray
- 5 Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Ross P Walton
- 2 MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,4 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - John Curtin
- 5 Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Michael R Edwards
- 2 MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,4 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Angela Simpson
- 5 Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Magnus Rattray
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sebastian L Johnston
- 2 MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,4 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
136
|
Ghebre MA, Pang PH, Desai D, Hargadon B, Newby C, Woods J, Rapley L, Cohen SE, Herath A, Gaillard EA, May RD, Brightling CE. Severe exacerbations in moderate-to-severe asthmatics are associated with increased pro-inflammatory and type 1 mediators in sputum and serum. BMC Pulm Med 2019; 19:144. [PMID: 31395050 PMCID: PMC6688375 DOI: 10.1186/s12890-019-0906-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma is a heterogeneous disease and understanding this heterogeneity will enable the realisation of precision medicine. We sought to compare the sputum and serum inflammatory profiles in moderate-to-severe asthma during stable disease and exacerbation events. METHODS We recruited 102 adults and 34 children with asthma. The adults were assessed at baseline, 3, 6, and 12-month follow-up visits. Thirty-seven subjects were assessed at onset of severe exacerbation. Forty sputum mediators and 43 serum mediators were measured. Receiver-operator characteristic (ROC) curves were constructed to identify mediators that distinguish between stable disease and exacerbation events. The strongest discriminating sputum mediators in the adults were validated in the children. RESULTS The mediators that were significantly increased at exacerbations versus stable disease and by ≥1.5-fold were sputum IL-1β, IL-6, IL-6R, IL-18, CXCL9, CXCL10, CCL5, TNFα, TNF-R1, TNF-R2, and CHTR and serum CXCL11. No mediators decreased ≥1.5-fold at exacerbation. The strongest discriminators of an exacerbation in adults (ROC area under the curve [AUC]) were sputum TNF-R2 0.69 (95% CI: 0.60 to 0.78) and IL-6R 0.68 (95% CI: 0.58 to 0.78). Sputum TNF-R2 and IL-6R were also discriminatory in children (ROC AUC 0.85 [95% CI: 0.71 to 0.99] and 0.80 [0.64 to 0.96] respectively). CONCLUSIONS Severe asthma exacerbations are associated with increased pro-inflammatory and Type 1 (T1) immune mediators. In adults, sputum TNF-R2 and IL-6R were the strongest discriminators of an exacerbation, which were verified in children.
Collapse
Affiliation(s)
- Michael A. Ghebre
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP UK
| | - Pee Hwee Pang
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Dhananjay Desai
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP UK
| | - Beverley Hargadon
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP UK
| | - Chris Newby
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP UK
| | - Joanne Woods
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - Laura Rapley
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - Suzanne E. Cohen
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - Athula Herath
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - Erol A. Gaillard
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP UK
| | - Richard D. May
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH UK
- Present address: Camallergy, Cambridge Biomedical Campus, Cambridge, UK
| | - Chris E. Brightling
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP UK
| |
Collapse
|
137
|
Liu G, Betts C, Cunoosamy DM, Åberg PM, Hornberg JJ, Sivars KB, Cohen TS. Use of precision cut lung slices as a translational model for the study of lung biology. Respir Res 2019; 20:162. [PMID: 31324219 PMCID: PMC6642541 DOI: 10.1186/s12931-019-1131-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022] Open
Abstract
Animal models remain invaluable for study of respiratory diseases, however, translation of data generated in genetically homogeneous animals housed in a clean and well-controlled environment does not necessarily provide insight to the human disease situation. In vitro human systems such as air liquid interface (ALI) cultures and organ-on-a-chip models have attempted to bridge the divide between animal models and human patients. However, although 3D in nature, these models struggle to recreate the architecture and complex cellularity of the airways and parenchyma, and therefore cannot mimic the complex cell-cell interactions in the lung. To address this issue, lung slices have emerged as a useful ex vivo tool for studying the respiratory responses to inflammatory stimuli, infection, and novel drug compounds. This review covers the practicality of precision cut lung slice (PCLS) generation and benefits of this ex vivo culture system in modeling human lung biology and disease pathogenesis.
Collapse
Affiliation(s)
- Guanghui Liu
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine Betts
- Pathology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Danen M Cunoosamy
- Bioscience, Respiratory Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Present Address: Sanofi, Cambridge, MA, USA
| | - Per M Åberg
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jorrit J Hornberg
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Taylor S Cohen
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20877, USA.
| |
Collapse
|
138
|
Abstract
Asthma is a genetically and phenotypically complex disease that has a major impact on global health. Signs and symptoms of asthma are caused by the obstruction of airflow through the airways. The epithelium that lines the airways plays a major role in maintaining airway patency and in host defense. The epithelium initiates responses to inhaled or aspirated substances, including allergens, viruses, and bacteria, and epithelial-derived cytokines are important in the recruitment and activation of immune cells in the airway. Changes in the structure and function of the airway epithelium are a prominent feature of asthma. Approximately half of individuals with asthma have evidence of active type 2 immune responses in the airway. In these individuals, epithelial cytokines promote type 2 responses, and responses to type 2 cytokines result in increased epithelial mucus production and other effects that cause airway obstruction. Recent work also implicates other epithelial responses, including interleukin-17, interferon and ER stress responses, that may contribute to asthma pathogenesis and provide new targets for therapy.
Collapse
Affiliation(s)
- Luke R Bonser
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States
| | - David J Erle
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
139
|
Yu S, Leung KM, Kim HY, Umetsu SE, Xiao Y, Albacker LA, Lee HJ, Umetsu DT, Freeman GJ, DeKruyff RH. Blockade of RGMb inhibits allergen-induced airways disease. J Allergy Clin Immunol 2019; 144:94-108.e11. [PMID: 30703386 PMCID: PMC8088837 DOI: 10.1016/j.jaci.2018.12.1022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Allergic asthma causes morbidity in many subjects, and novel precision-directed treatments would be valuable. OBJECTIVE We sought to examine the role of a novel innate molecule, repulsive guidance molecule b (RGMb), in murine models of allergic asthma. METHODS In models of allergic asthma using ovalbumin or cockroach allergen, mice were treated with anti-RGMb or control mAb and examined for airway inflammation and airway hyperreactivity (AHR), a cardinal feature of asthma. The mechanisms by which RGMb causes airways disease were also examined. RESULTS We found that blockade of RGMb by treatment with anti-RGMb mAb effectively blocked the development of airway inflammation and AHR. Importantly, blockade of RGMb completely blocked the development of airway inflammation and AHR, even if treatment occurred only during the challenge (effector) phase. IL-25 played an important role in these models of asthma because IL-25 receptor-deficient mice did not develop disease after sensitization and challenge with allergen. RGMb was expressed primarily by innate cells in the lungs, including bronchial epithelial cells (known producers of IL-25), activated eosinophils, and interstitial macrophages, which in the inflamed lung expressed the IL-25 receptor and produced IL-5 and IL-13. We also found that neogenin, the canonical receptor for RGMb, was expressed by interstitial macrophages and bronchial epithelial cells in the inflamed lung, suggesting that an innate RGMb-neogenin axis might modulate allergic asthma. CONCLUSIONS These results demonstrate an important role for a novel innate pathway in regulating type 2 inflammation in patients with allergic asthma involving RGMb and RGMb-expressing cells, such as interstitial macrophages and bronchial epithelial cells. Moreover, targeting this previously unappreciated innate pathway might provide an important treatment option for allergic asthma.
Collapse
Affiliation(s)
- Sanhong Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass; Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Krystle M Leung
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Hye-Young Kim
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sarah E Umetsu
- Department of Pathology, University of California, San Francisco, Calif
| | - Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Lee A Albacker
- Boston Children's Hospital, Harvard Medical School, Boston, Mass; Immunology Program, Harvard Medical School, Boston, Mass
| | - Hyun-Jun Lee
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Dale T Umetsu
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Rosemarie H DeKruyff
- Boston Children's Hospital, Harvard Medical School, Boston, Mass; Sean N Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, Calif.
| |
Collapse
|
140
|
Stehle C, Hernández DC, Romagnani C. Innate lymphoid cells in lung infection and immunity. Immunol Rev 2019; 286:102-119. [PMID: 30294964 DOI: 10.1111/imr.12712] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
In recent years, innate lymphoid cells (ILCs) have emerged as key mediators of protection and repair of mucosal surfaces during infection. The lung, a dynamic mucosal tissue that is exposed to a plethora of microbes, is a playground for respiratory infection-causing pathogens which are not only a major cause of fatalities worldwide, but are also associated with comorbidities and decreased quality of life. The lung provides a rich microenvironment to study ILCs in the context of innate protection mechanisms within the airways, unraveling their distinct functions not only in health but also in disease. In this review, we discuss how pulmonary ILCs play a role in protection against viral, parasitic, bacterial, and fungal challenge, along with the mechanisms underlying this ILC-mediated immunity.
Collapse
Affiliation(s)
- Christina Stehle
- Innate Immunity, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | | | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum, Berlin, Germany.,Medical Department I, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
141
|
Li Y, Wang R, Liu S, Liu J, Pan W, Li F, Li J, Meng D. Interleukin-25 is upregulated in patients with systemic lupus erythematosus and ameliorates murine lupus by inhibiting inflammatory cytokine production. Int Immunopharmacol 2019; 74:105680. [PMID: 31200339 DOI: 10.1016/j.intimp.2019.105680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
Interleukin-25 (IL-25), an anti-inflammatory member of the IL-17 family of cytokines, has been extensively investigated in multiple autoimmune and inflammatory diseases. However, its pathogenic role in systemic lupus erythematosus (SLE) remains largely unknown. This study aimed to explore the expression and clinical significance of IL-25 in patients with SLE as well as its pathogenic role in lupus-prone MRL/lpr mice. The results showed that IL-25 mRNA and serum levels were increased in patients with SLE compared with those in healthy controls. Higher IL-25 mRNA and serum levels were found in patients with an active disease. IL-25 levels were positively associated with SLEDAI, anti-dsDNA, and IgG but negatively associated with C3 and C4. Ex vivo assay showed that IL-25 could inhibit the production of the inflammatory cytokines IL-1β, IL-17, IL-6, and IFN-γ as well as TNF-α in the peripheral blood mononuclear cells in patients with SLE. In vivo studies revealed that treatment with IL-25 significantly ameliorated lupus symptoms in lupus-prone MRL/lpr mice by suppressing the production of inflammatory cytokines, including IL-1α, IL-1β, IL-6, IL-12p70, IL-17A, and IFN-β. Cumulatively, our results suggest that IL-25 levels are increased in patients with SLE and associated with disease activity; IL-25 plays a potent immunosuppressive role in the pathogenesis of SLE by suppressing the production of inflammatory cytokines. IL-25 could potentially be used as a diagnostic and therapeutic target for SLE treatment.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Rui Wang
- Department of Hematology, Lianshui County People's Hospital, No. 6 Hongri Road, Lianshui, Huai'an 224600, China
| | - Shanshan Liu
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Juan Liu
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Wenyou Pan
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Fang Li
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Ju Li
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Deqian Meng
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China.
| |
Collapse
|
142
|
Impact of Rhinovirus Infections in Children. Viruses 2019; 11:v11060521. [PMID: 31195744 PMCID: PMC6632063 DOI: 10.3390/v11060521] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Rhinovirus (RV) is an RNA virus that causes more than 50% of upper respiratory tract infections in humans worldwide. Together with Respiratory Syncytial Virus, RV is one of the leading causes of viral bronchiolitis in infants and the most common virus associated with wheezing in children aged between one and two years. Because of its tremendous genetic diversity (>150 serotypes), the recurrence of RV infections each year is quite typical. Furthermore, because of its broad clinical spectrum, the clinical variability as well as the pathogenesis of RV infection are nowadays the subjects of an in-depth examination and have been the subject of several studies in the literature. In fact, the virus is responsible for direct cell cytotoxicity in only a small way, and it is now clearer than ever that it may act indirectly by triggering the release of active mediators by structural and inflammatory airway cells, causing the onset and/or the acute exacerbation of asthmatic events in predisposed children. In the present review, we aim to summarize the RV infection's epidemiology, pathogenetic hypotheses, and available treatment options as well as its correlation with respiratory morbidity and mortality in the pediatric population.
Collapse
|
143
|
Hasegawa K, Mansbach JM, Bochkov YA, Gern JE, Piedra PA, Bauer CS, Teach SJ, Wu S, Sullivan AF, Camargo CA. Association of Rhinovirus C Bronchiolitis and Immunoglobulin E Sensitization During Infancy With Development of Recurrent Wheeze. JAMA Pediatr 2019; 173:544-552. [PMID: 30933255 PMCID: PMC6547078 DOI: 10.1001/jamapediatrics.2019.0384] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
IMPORTANCE Rhinovirus infection in early life, particularly with allergic sensitization, is associated with higher risks of developing recurrent wheeze and asthma. While emerging evidence links different rhinovirus species (eg, rhinovirus C) to a higher severity of infection and asthma exacerbation, to our knowledge, little is known about longitudinal associations of rhinovirus C infection during infancy with subsequent morbidities. OBJECTIVE To examine the association of different viruses (respiratory syncytial virus [RSV], rhinovirus species) in bronchiolitis with risks of developing recurrent wheeze. DESIGN, SETTING, AND PARTICIPANTS This multicenter prospective cohort study of infants younger than 1 year who were hospitalized for bronchiolitis was conducted at 17 hospitals across 14 US states during 3 consecutive fall to winter seasons (2011-2014). EXPOSURES Major causative viruses of bronchiolitis, including RSV (reference group) and 3 rhinovirus species (rhinovirus A, B, and C). MAIN OUTCOMES AND MEASURES Development of recurrent wheeze (as defined in national asthma guidelines) by age 3 years. RESULTS This analytic cohort comprised 716 infants who were hospitalized for RSV-only or rhinovirus bronchiolitis. The median age was 2.9 months (interquartile range, 1.6-3.8 months), 541 (76%) had bronchiolitis with RSV only, 85 (12%) had rhinovirus A, 12 (2%) had rhinovirus B, and 78 (11%) had rhinovirus C infection. Overall, 231 (32%) developed recurrent wheeze by age 3 years. In the multivariable Cox model, compared with infants with RSV-only infection, the risk of recurrent wheeze was not significantly different in those with rhinovirus A or B (rhinovirus A: hazard ratio [HR], 1.27; 95% CI, 0.86-1.88; rhinovirus B: HR, 1.39; 95% CI, 0.51-3.77; both P > .10). By contrast, infants with rhinovirus C had a significantly higher risk (HR, 1.58; 95% CI, 1.08-2.32). There was a significant interaction between virus groups and IgE sensitization on the risk of recurrent wheeze (P for interaction < .01). Only infants with both rhinovirus C infection and IgE sensitization (to food or aeroallergens) during infancy had significantly higher risks of recurrent wheeze (HR, 3.03; 95% CI, 1.20-7.61). Furthermore, compared with RSV-only, rhinovirus C infection with IgE sensitization was associated with significantly higher risks of recurrent wheeze with subsequent development of asthma at age 4 years (HR, 4.06; 95% CI, 1.17-14.1). CONCLUSIONS AND RELEVANCE This multicenter cohort study of infants hospitalized for bronchiolitis demonstrated between-virus differences in the risk of developing recurrent wheeze. Infants with rhinovirus C infection, along with IgE sensitization, had the highest risk. This finding was driven by the association with a subtype of recurrent wheeze: children with subsequent development of asthma.
Collapse
Affiliation(s)
- Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jonathan M. Mansbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yury A. Bochkov
- Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - James E. Gern
- Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Cindy S. Bauer
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Arizona
| | - Stephen J. Teach
- Division of Emergency Medicine and Department of Pediatrics, Children’s National Health System, Washington, DC
| | - Susan Wu
- Division of Hospital Medicine, Children's Hospital of Los Angeles, Los Angeles, California
| | - Ashley F. Sullivan
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
144
|
Kennedy JL, Pham S, Borish L. Rhinovirus and Asthma Exacerbations. Immunol Allergy Clin North Am 2019; 39:335-344. [PMID: 31284924 DOI: 10.1016/j.iac.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rhinovirus (RV) is ubiquitous and typically causes only minor upper respiratory symptoms. However, especially in children and adolescent asthmatics, RV is responsible for most exacerbations. This ability of RV to drive exacerbations typically requires the concomitant presence of exposure to a bystander allergen. Susceptibility to RV-mediated exacerbations is also related to the genetic background of the host, which contributes to greater infectivity, more severe infections, altered immune responses, and to greater inflammation and loss of asthma control. Given these responses, there are several treatments available or being developed that should improve the control of exacerbations related to RV infection.
Collapse
Affiliation(s)
- Joshua L Kennedy
- Department of Pediatrics, University of Arkansas for Medical Sciences, 13 Children's Way, Slot 512-13, Little Rock, AR 72202, USA; Department of Internal Medicine, University of Arkansas for Medical Sciences, 13 Children's Way, Slot 512-13, Little Rock, AR 72202, USA; Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Slot 512-13, Little Rock, AR 72202, USA.
| | - Sarah Pham
- Department of Pediatrics, University of Arkansas for Medical Sciences, 13 Children's Way, Slot 512-13, Little Rock, AR 72202, USA
| | - Larry Borish
- Department of Medicine, University of Virginia Health Systems, MR4 Building Room 5041, 409 Lane Road, Charlottesville, VA 22903, USA; Department of Microbiology, University of Virginia Health Systems, MR4 Building Room 5041, 409 Lane Road, Charlottesville, VA 22903, USA; Carter Immunology Center, University of Virginia Health Systems, MR4 Building Room 5041, 409 Lane Road, Charlottesville, VA 22903, USA
| |
Collapse
|
145
|
|
146
|
Paul AGA, Muehling LM, Eccles JD, Woodfolk JA. T cells in severe childhood asthma. Clin Exp Allergy 2019; 49:564-581. [PMID: 30793397 DOI: 10.1111/cea.13374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Severe asthma in children is a debilitating condition that accounts for a disproportionately large health and economic burden of asthma. Reasons for the lack of a response to standard anti-inflammatory therapies remain enigmatic. Work in the last decade has shed new light on the heterogeneous nature of asthma, and the varied immunopathologies of severe disease, which are leading to new treatment approaches for the individual patient. However, most studies to date that explored the immune landscape of the inflamed lower airways have focused on adults. T cells are pivotal to the inception and persistence of inflammatory processes in the diseased lungs, despite a contemporary shift in focus to immune events at the epithelial barrier. This article outlines current knowledge on the types of T cells and related cell types that are implicated in severe asthma. The potential for environmental exposures and other inflammatory cues to condition the immune environment of the lung in early life to favour pathogenic T cells and steroid resistance is discussed. The contributions of T cells and their cytokines to inflammatory processes and treatment resistance are also considered, with an emphasis on new observations in children that argue against conventional type 1 and type 2 T cell paradigms. Finally, the ability for new technologies to revolutionize our understanding of T cells in severe childhood asthma, and to guide future treatment strategies that could mitigate this disease, is highlighted.
Collapse
Affiliation(s)
- Alberta G A Paul
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jacob D Eccles
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Judith A Woodfolk
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
147
|
Hamed A, Preston DC, Eschenbacher W, Khokhar D, Workman L, Steinke JW, Heymann P, Lawrence M, Soto-Quiros M, Platts-Mills TAE, Payne S, Borish L. Nasal IgE production in allergic rhinitis: Impact of rhinovirus infection. Clin Exp Allergy 2019; 49:847-852. [PMID: 30776162 DOI: 10.1111/cea.13372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Rhinovirus (RV) infections exacerbate asthma in part by enhancing an allergic state, and these exacerbations can be mitigated via administration of anti-IgE. OBJECTIVE We investigated the presence of local IgE production in the nose of allergic and non-allergic subjects and assessed whether this was enhanced by RV. METHODS Local production of specific IgE was determined by comparing ratios of specific to total IgE concentrations between nasal and serum samples. Our initial studies were performed in subjects presenting to the emergency department for allergic and non-allergic respiratory complaints. Subsequently, we investigated influences of experimental RV infection on nasal sIgE production in an allergic cohort. RESULTS We found evidence of local sIgE production to Dermatophagoides pteronyssinus in 30.3% and to Blomia tropicalis in 14.6% of allergic subjects. None of the non-allergic subjects demonstrated local IgE. Subjects with active RV infection were more than twice as likely to have local sIgE (45% vs 14%), and subjects with local sIgE being produced were ~3 times more likely to be having an asthma exacerbation. Experimental RV infection was able to induce local sIgE production. CONCLUSION These studies confirm local IgE production in a large subset of allergic subjects and demonstrate that allergic asthmatics with local IgE are more likely to develop an asthma exacerbation when infected with RV. Our RV challenge studies demonstrate that at least some allergic asthmatics can be induced to secrete locally generated IgE in their nasal airway after RV infection.
Collapse
Affiliation(s)
- Ahmed Hamed
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - DeVon C Preston
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Will Eschenbacher
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Dilawar Khokhar
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Lisa Workman
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - John W Steinke
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Peter Heymann
- Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia
| | - Monica Lawrence
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | | | - Thomas A E Platts-Mills
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia.,Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia
| | - Spencer Payne
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia.,Department of Otolaryngology, University of Virginia Health System, Charlottesville, Virginia
| | - Larry Borish
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia.,Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
148
|
Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol 2019; 12:299-311. [PMID: 30664706 PMCID: PMC6436699 DOI: 10.1038/s41385-018-0130-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a recently described subset of innate lymphocytes with important immune and homeostatic functions at multiple tissue sites, especially the lung. These cells expand locally after birth and during postnatal lung maturation and are present in the lung and other peripheral organs. They are modified by a variety of processes and mediate inflammatory responses to respiratory pathogens, inhaled allergens and noxious particles. Here, we review the emerging roles of ILC2s in pulmonary homeostasis and discuss recent and surprising advances in our understanding of how hormones, age, neurotransmitters, environmental challenges, and infection influence ILC2s. We also review how these responses may underpin the development, progression and severity of pulmonary inflammation and chronic lung diseases and highlight some of the remaining challenges for ILC2 biology.
Collapse
|
149
|
Kemter AM, Nagler CR. Influences on allergic mechanisms through gut, lung, and skin microbiome exposures. J Clin Invest 2019; 129:1483-1492. [PMID: 30830878 DOI: 10.1172/jci124610] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In industrialized societies the incidence of allergic diseases like atopic dermatitis, food allergies, and asthma has risen alarmingly over the last few decades. This increase has been attributed, in part, to lifestyle changes that alter the composition and function of the microbes that colonize the skin and mucosal surfaces. Strategies that reverse these changes to establish and maintain a healthy microbiome show promise for the prevention and treatment of allergic disease. In this Review, we will discuss evidence from preclinical and clinical studies that gives insights into how the microbiota of skin, intestinal tract, and airways influence immune responses in the context of allergic sensitization.
Collapse
|
150
|
Increased susceptibility of airway epithelial cells from ataxia-telangiectasia to S. pneumoniae infection due to oxidative damage and impaired innate immunity. Sci Rep 2019; 9:2627. [PMID: 30796268 PMCID: PMC6385340 DOI: 10.1038/s41598-019-38901-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Respiratory disease is a major cause of morbidity and mortality in patients with ataxia-telangiectasia (A-T) who are prone to recurrent sinopulmonary infections, bronchiectasis, pulmonary fibrosis, and pulmonary failure. Upper airway infections are common in patients and S. pneumoniae is associated with these infections. We demonstrate here that the upper airway microbiome in patients with A-T is different from that to healthy controls, with S. pneumoniae detected largely in patients only. Patient-specific airway epithelial cells and differentiated air-liquid interface cultures derived from these were hypersensitive to infection which was at least in part due to oxidative damage since it was partially reversed by catalase. We also observed increased levels of the pro-inflammatory cytokines IL-8 and TNF-α (inflammasome-independent) and a decreased level of the inflammasome-dependent cytokine IL-β in patient cells. Further investigation revealed that the ASC-Caspase 1 signalling pathway was defective in A-T airway epithelial cells. These data suggest that the heightened susceptibility of these cells to S. pneumoniae infection is due to both increased oxidative damage and a defect in inflammasome activation, and has implications for lung disease in these patients.
Collapse
|