101
|
Aarsman MEG, Piette A, Fraipont C, Vinkenvleugel TMF, Nguyen-Distèche M, den Blaauwen T. Maturation of the Escherichia coli divisome occurs in two steps. Mol Microbiol 2005; 55:1631-45. [PMID: 15752189 DOI: 10.1111/j.1365-2958.2005.04502.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, FtsQ, FtsW, PBP3 and FtsN arrive at their destination was determined by immuno- and GFP-fluorescence microscopy of steady state grown cells at a variety of growth rates. Consistently, a time delay of 14-21 min, depending on the growth rate, between Z-ring formation and the mid cell recruitment of proteins down stream of FtsK was found. We suggest a two-step model for bacterial division in which the Z-ring is involved in the switch from cylindrical to polar peptidoglycan synthesis, whereas the much later localizing cell division proteins are responsible for the modification of the envelope shape into that of two new poles.
Collapse
Affiliation(s)
- Mirjam E G Aarsman
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
Cell division in bacteria is mediated by the septal ring, a collection of about a dozen (known) proteins that localize to the division site, where they direct assembly of the division septum. The foundation of the septal ring is a polymer of the tubulin-like protein FtsZ. Recently, experiments using fluorescence recovery after photobleaching have revealed that the Z ring is extremely dynamic. FtsZ subunits exchange in and out of the ring on a time scale of seconds even while the overall morphology of the ring appears static. These findings, together with in vitro studies of purified FtsZ, suggest that the rate-limiting step in turnover of FtsZ polymers is GTP hydrolysis. Another component of the septal ring, FtsK, is involved in coordinating chromosome segregation with cell division. Recent studies have revealed that FtsK is a DNA translocase that facilitates decatenation of sister chromosomes by TopIV and resolution of chromosome dimers by the XerCD recombinase. Finally, two murein hydrolases, AmiC and EnvC, have been shown to localize to the septal ring of Escherichia coli, where they play an important role in separation of daughter cells.
Collapse
Affiliation(s)
- David S Weiss
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
103
|
Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 2005; 121:235-45. [PMID: 15851030 DOI: 10.1016/j.cell.2005.02.015] [Citation(s) in RCA: 570] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 02/03/2005] [Accepted: 02/10/2005] [Indexed: 11/16/2022]
Abstract
Gram-negative bacteria have an outer membrane (OM) that functions as a barrier to protect the cell from toxic compounds such as antibiotics and detergents. The OM is a highly asymmetric bilayer composed of phospholipids, glycolipids, and proteins. Assembly of this essential organelle occurs outside the cytoplasm in an environment that lacks obvious energy sources such as ATP, and the mechanisms involved are poorly understood. We describe the identification of a multiprotein complex required for the assembly of proteins in the OM of Escherichia coli. We also demonstrate genetic interactions between genes encoding components of this protein assembly complex and imp, which encodes a protein involved in the assembly of lipopolysaccharides (LPS) in the OM. These genetic interactions suggest a role for YfgL, one of the lipoprotein components of the protein assembly complex, in a homeostatic control mechanism that coordinates the overall OM assembly process.
Collapse
Affiliation(s)
- Tao Wu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
104
|
Henrichs T, Mikhaleva N, Conz C, Deuerling E, Boyd D, Zelazny A, Bibi E, Ban N, Ehrmann M. Target-directed proteolysis at the ribosome. Proc Natl Acad Sci U S A 2005; 102:4246-51. [PMID: 15784745 PMCID: PMC555484 DOI: 10.1073/pnas.0408520102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Target directed proteolysis allows specific processing of proteins in vivo. This method uses tobacco etch virus (TEV) NIa protease that recognizes a seven-residue consensus sequence. Because of its specificity, proteins engineered to contain a cleavage site are proteolysed, whereas other proteins remain unaffected. Therefore, this approach can be used to study the structure and function of target proteins in their natural environment within living cells. One application is the conditional inactivation of essential proteins, which is based on the concept that a target containing a recognition site can be inactivated by coexpressed TEV protease. We have previously identified one site in the secretion factor SecA that tolerated a TEV protease site insert. Coexpression of TEV protease in the cytoplasm led to incomplete cleavage and a mild secretion defect. To improve the efficiency of proteolysis, TEV protease was attached to the ribosome. We show here that cleaving SecA under these conditions is one way of increasing the efficiency of target directed proteolysis. The implications of recruiting novel biological activities to ribosomes are discussed.
Collapse
Affiliation(s)
- Tanja Henrichs
- School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Goehring NW, Gueiros-Filho F, Beckwith J. Premature targeting of a cell division protein to midcell allows dissection of divisome assembly in Escherichia coli. Genes Dev 2005; 19:127-37. [PMID: 15630023 PMCID: PMC540231 DOI: 10.1101/gad.1253805] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cell division in Escherichia coli requires the recruitment of at least 10 essential proteins to the bacterial midcell. Recruitment of these proteins follows a largely linear dependency pathway in which depletion of one cell division protein leads to the absence from the division site of "downstream" proteins in the pathway. Analysis of events that underlie this pathway is complicated by the fact that a protein's ability to recruit "downstream" proteins is dependent on its own recruitment by "upstream" proteins. Hence, one cannot separate the individual contributions of various upstream proteins to any specific recruitment step. Here we present a method--premature targeting--for bypassing the normal localization requirements of a cell division protein and apply it to FtsQ, a protein recruited midway through the pathway. We fused FtsQ to the FtsZ-binding protein ZapA such that FtsQ was targeted to FtsZ rings independently of proteins FtsA and FtsK, which are normally required for FtsQ localization. Analysis of the resulting ZapA-FtsQ fusion suggests that FtsQ associates with a large complex of cell division proteins and that premature targeting of FtsQ can restore localization of this complex under conditions in which neither FtsQ nor the associated proteins would normally be localized.
Collapse
Affiliation(s)
- Nathan W Goehring
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
106
|
Abromaitis S, Faucher S, Béland M, Curtiss R, Daigle F. The presence of thetetgene from cloning vectors impairsSalmonellasurvival in macrophages. FEMS Microbiol Lett 2005; 242:305-12. [PMID: 15621452 DOI: 10.1016/j.femsle.2004.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 11/09/2004] [Indexed: 11/16/2022] Open
Abstract
Cloning, mutagenesis and complementation of virulence factors are key steps to understand the mechanisms of bacterial pathogenesis and cloning vectors are routinely utilized for these processes. We have investigated the effect of the presence of commonly used cloning vectors on the survival of the intracellular bacterial pathogen Salmonella during macrophage infection. We demonstrate that the presence of the pSC101 derived tetracycline resistance gene on plasmids causes a lower survival rate of Salmonella in macrophages. The decrease in survival caused by the presence of the tet gene was not due to a higher susceptibility to gentamicin, a growth defect, or to increased sensitivity to acid. Higher susceptibility to hydrogen peroxide was observed in vitro for strain containing plasmid with the tet gene when the strains were grown at high densities but not when they were grown at low densities. Our findings demonstrate that the use of the tet gene for mutation or complementation can have deleterious effects and should thus be carefully considered.
Collapse
|
107
|
Abstract
Iron is an essential element for most organisms, including bacteria. The oxidized form is insoluble, and the reduced form is highly toxic for most macromolecules and, in biological systems, is generally sequestrated by iron- and heme-carrier proteins. Thus, despite its abundance on earth, there is practically no free iron available for bacteria whatever biotope they colonize. To fulfill their iron needs, bacteria have multiple iron acquisition systems, reflecting the diversity of their potential biotopes. The iron/heme acquisition systems in bacteria have one of two general mechanisms. The first involves direct contact between the bacterium and the exogenous iron/heme sources. The second mechanism relies on molecules (siderophores and hemophores) synthesized and released by bacteria into the extracellular medium; these molecules scavenge iron or heme from various sources. Recent genetic, biochemical, and crystallographic studies have allowed substantial progress in describing molecular mechanisms of siderophore and hemophore interactions with the outer membrane receptors, transport through the inner membrane, iron storage, and regulation of genes encoding biosynthesis and uptake proteins.
Collapse
Affiliation(s)
- Cécile Wandersman
- Unité des Membranes Bactériennes, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
108
|
Bächler C, Schneider P, Bähler P, Lustig A, Erni B. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR. EMBO J 2004; 24:283-93. [PMID: 15616579 PMCID: PMC545809 DOI: 10.1038/sj.emboj.7600517] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 11/22/2004] [Indexed: 11/09/2022] Open
Abstract
Dihydroxyacetone (Dha) kinases are a sequence-conserved family of enzymes, which utilize either ATP (in animals, plants, bacteria) or the bacterial phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) as a source of high-energy phosphate. The PTS-dependent kinase of Escherichia coli consists of three subunits: DhaK contains the Dha binding site, DhaL contains ADP as cofactor for the double displacement of phosphate from DhaM to Dha, and DhaM provides a phospho-histidine relay between the PTS and DhaL::ADP. DhaR is a transcription activator belonging to the AAA+ family of enhancer binding proteins. It stimulates transcription of the dhaKLM operon from a sigma70 promoter and autorepresses dhaR transcription. Genetic and biochemical studies indicate that the enzyme subunits DhaL and DhaK act antagonistically as coactivator and corepressor of the transcription activator by mutually exclusive binding to the sensing domain of DhaR. In the presence of Dha, DhaL is dephosphorylated and DhaL::ADP displaces DhaK and stimulates DhaR activity. In the absence of Dha, DhaL::ADP is converted by the PTS to DhaL::ATP, which does not bind to DhaR.
Collapse
Affiliation(s)
- Christoph Bächler
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | - Philipp Schneider
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | - Priska Bähler
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | - Ariel Lustig
- Division of Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Bernhard Erni
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
- Departement für Chemie und Biochemie, Universität Bern, Freiestr. 3, 3012 Bern, Switzerland. Tel.: +41 31 631 4346; Fax: +41 31 631 4887; E-mail:
| |
Collapse
|
109
|
Corbin BD, Geissler B, Sadasivam M, Margolin W. Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay. J Bacteriol 2004; 186:7736-44. [PMID: 15516588 PMCID: PMC524888 DOI: 10.1128/jb.186.22.7736-7744.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsA, a member of the ATPase superfamily that includes actin and bacterial actin homologs, is essential for cell division of Escherichia coli and is recruited to the Z ring. In turn, recruitment of later essential division proteins to the Z ring is dependent on FtsA. In a polar recruitment assay, we found that FtsA can recruit at least two late proteins, FtsI and FtsN, to the cell poles independently of Z rings. Moreover, a unique structural domain of FtsA, subdomain 1c, which is divergent in the other ATPase superfamily members, is sufficient for this recruitment but not required for the ability of FtsA to localize to Z rings. Surprisingly, targeting the 1c subdomain to the Z ring by fusing it to FtsZ could partially suppress a thermosensitive ftsA mutation. These results suggest that subdomain 1c of FtsA is a completely independent functional domain with an important role in interacting with a septation protein subassembly.
Collapse
Affiliation(s)
- Brian D Corbin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
110
|
Li Y, Dabrazhynetskaya A, Youngren B, Austin S. The role of Par proteins in the active segregation of the P1 plasmid. Mol Microbiol 2004; 53:93-102. [PMID: 15225306 DOI: 10.1111/j.1365-2958.2004.04111.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The parS centromere-like site promotes active P1 plasmid segregation in the presence of P1 ParA and ParB proteins. At the modest growth rate used here, time-lapse and still photomicroscopy shows that the plasmid copies are clustered as a focus at the Escherichia coli cell centre. Just before cell division, the focus is actively divided and ejects bidirectionally into opposite halves of the dividing cell. In the absence of the wild-type parS binding protein ParB, a focus was formed, but generally did not go to the cell centre. The randomly placed focus did not divide and was inherited by one daughter cell only. In the absence of ParA, foci formed and frequently fixed to the cell centre. However, they failed to divide or eject and were left at the new cell pole of one cell at division. Thus, ParB appears to be required for recognition of the plasmid and its attachment to the cell centre, and ParA is required for focus division and energetic ejection from the cell centre. The ATPase active site mutation, parAK122E, blocked ejection. Mutant parAM314I ejected weakly, and the daughter foci took two generations to reach a new cell centre. This explains the novel alternation of segregation and missegregation in successive generations seen in time-lapse images of this mutant.
Collapse
Affiliation(s)
- Yongfang Li
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, CCR, NCI-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
111
|
Shiba Y, Yokoyama Y, Aono Y, Kiuchi T, Kusaka J, Matsumoto K, Hara H. Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J Bacteriol 2004; 186:6526-35. [PMID: 15375134 PMCID: PMC516613 DOI: 10.1128/jb.186.19.6526-6535.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB'-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis.
Collapse
Affiliation(s)
- Yasuhiro Shiba
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
112
|
Buddelmeijer N, Beckwith J. A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. Mol Microbiol 2004; 52:1315-27. [PMID: 15165235 DOI: 10.1111/j.1365-2958.2004.04044.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three membrane proteins required for cell division in Escherichia coli, FtsQ, FtsL and FtsB, localize to the cell septum. FtsL and FtsB, which each contain a leucine zipper-like sequence, are dependent on each other for this localization, and each of them is dependent on FtsQ. However, FtsQ is found at the cell division site in the absence of FtsL and FtsB. FtsQ, in turn, requires FtsK for its localization. Here, we show that FtsL, FtsB and FtsQ form a complex in vivo. Strikingly, this complex forms in the absence of FtsK, which is required for the localization of all three proteins to the mid-cell. These findings indicate that the FtsL, FtsB, FtsQ interactions can take place in cells before movement to the mid-cell and that migration to this position might occur only after the formation of the complex. Evidence indicating the regions of the three proteins involved in complex formation is presented. These findings provide the first example of preassembly of a subcomplex of cell division proteins before their localization to the septal region.
Collapse
Affiliation(s)
- Nienke Buddelmeijer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
113
|
Biville F, Cwerman H, Létoffé S, Rossi MS, Drouet V, Ghigo JM, Wandersman C. Haemophore-mediated signalling in Serratia marcescens: a new mode of regulation for an extra cytoplasmic function (ECF) sigma factor involved in haem acquisition. Mol Microbiol 2004; 53:1267-77. [PMID: 15306027 DOI: 10.1111/j.1365-2958.2004.04207.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacterial extra cytoplasmic function (ECF) sigma factors control a wide range of cell envelope activities including iron and haem uptake systems. Sigma activity is usually inhibited by membrane-bound antisigma. An extra cytoplasmic signal modulates sigma-antisigma interactions and thereby leads to the transcription of the target operon. Sigma and antisigma genes generally belong to one autoregulated operon. However, ECF sigma and antisigma genes involved in iron acquisition, also called iron starvation ECF, are non-autoregulated exceptions to this rule. We fully reconstituted the has signalling cascade of Serratia marcescens in Escherichia coli. Binding of the haem-loaded haemophore to the outer membrane receptor, HasR, inactivates the antisigma HasS, turning on HasI and thereby allowing has operon transcription. Deletion of the HasR N-terminal extension, present in all characterized outer membrane receptors endowed with signal transduction capacity, abolished the inducing activity but not the transport activity. Induction required the TonB-ExbB-ExbD complex. HasI, like the other iron starvation sigma, is iron repressed but not autoregulated. We found an entirely new regulation for the antisigma hasS gene, the transcription of which is HasI dependent. We suggest that the has system is both activated and repressed by the availability of external haem. When there is enough haem, the HasS antisigma activity is turned off and HasI induces the transcription of hasS. This leads to the storage of inactive HasS molecules which become active when HasR is not occupied by holo-haemophore ligand molecules: as soon as there is a haem shortage transcription is turned off. Positive autoregulation of ECF sigma and antisigma genes is usually considered as a mechanism for amplifying a perceived signal. However, our findings suggest, on the contrary, that antisigma regulation allows fine-tuning to the external signal. The biological significance of ECF sigma and antisigma autoregulation may need to be reconsidered.
Collapse
Affiliation(s)
- Francis Biville
- Unité des Membranes Bactériennes Institut Pasteur, (CNRS URA 2172), 25 rue du Dr Roux, Paris CEDEX 15, France
| | | | | | | | | | | | | |
Collapse
|
114
|
Ortenberg R, Gon S, Porat A, Beckwith J. Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:7439-44. [PMID: 15123823 PMCID: PMC409937 DOI: 10.1073/pnas.0401965101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strain of Escherichia coli missing three members of the thioredoxin superfamily, thioredoxins 1 and 2 and glutaredoxin 1, is unable to grow, a phenotype presumed to be due to the inability of cells to reduce the essential enzyme ribonucleotide reductase. Two classes of mutations can restore growth to such a strain. First, we have isolated a collection of mutations in the gene for the protein glutaredoxin 3 that suppress the growth defect. Remarkably, all eight independent mutations alter the same amino acid, methionine-43, changing it to valine, isoleucine, or leucine. From the position of the amino acid changes and their effects, we propose that these alterations change the protein so that its properties are closer to those of glutaredoxin 1. The second means of suppressing the growth defects of the multiply mutant strain was by mutations in the DNA replication genes, dnaA and dnaN. These mutations substantially increase the expression of ribonucleotide reductase, most likely by altering the interaction of the regulatory protein DnaA with the ribonucleotide reductase promoter. Our results suggest that this increase in the concentration of ribonucleotide reductase in the cell allows more effective interaction with glutaredoxin 3, thus restoring an effective pool of deoxyribonucleotides. Our studies present direct evidence that ribonucleotide reductase is the only essential enzyme that requires the three reductive proteins missing in our strains. Our results also suggest an unexpected regulatory interaction between the DnaA and DnaN proteins.
Collapse
Affiliation(s)
- Ron Ortenberg
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
115
|
Schmidt KL, Peterson ND, Kustusch RJ, Wissel MC, Graham B, Phillips GJ, Weiss DS. A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J Bacteriol 2004; 186:785-93. [PMID: 14729705 PMCID: PMC321481 DOI: 10.1128/jb.186.3.785-793.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsE and FtsX have homology to the ABC transporter superfamily of proteins and appear to be widely conserved among bacteria. Early work implicated FtsEX in cell division in Escherichia coli, but this was subsequently challenged, in part because the division defects in ftsEX mutants are often salt remedial. Strain RG60 has an ftsE::kan null mutation that is polar onto ftsX. RG60 is mildly filamentous when grown in standard Luria-Bertani medium (LB), which contains 1% NaCl, but upon shift to LB with no NaCl growth and division stop. We found that FtsN localizes to potential division sites, albeit poorly, in RG60 grown in LB with 1% NaCl. We also found that in wild-type E. coli both FtsE and FtsX localize to the division site. Localization of FtsX was studied in detail and appeared to require FtsZ, FtsA, and ZipA, but not the downstream division proteins FtsK, FtsQ, FtsL, and FtsI. Consistent with this, in media lacking salt, FtsA and ZipA localized independently of FtsEX, but the downstream proteins did not. Finally, in the absence of salt, cells depleted of FtsEX stopped dividing before any change in growth rate (mass increase) was apparent. We conclude that FtsEX participates directly in the process of cell division and is important for assembly or stability of the septal ring, especially in salt-free media.
Collapse
Affiliation(s)
- Kari L Schmidt
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Arends SJR, Weiss DS. Inhibiting cell division in Escherichia coli has little if any effect on gene expression. J Bacteriol 2004; 186:880-4. [PMID: 14729718 PMCID: PMC321490 DOI: 10.1128/jb.186.3.880-884.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarrays were used to compare gene expression in dividing and nondividing (filamentous) cultures of Escherichia coli. Although cells from these cultures differed profoundly in morphology, their gene expression profiles were nearly identical. These results extend previous evidence that there is no division checkpoint in E. coli, and progression through the cell cycle is not regulated by the transcription of different genes during different parts of the cell cycle.
Collapse
Affiliation(s)
- S J Ryan Arends
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
117
|
Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A. Multistability in the lactose utilization network of Escherichia coli. Nature 2004; 427:737-40. [PMID: 14973486 DOI: 10.1038/nature02298] [Citation(s) in RCA: 642] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2003] [Accepted: 12/16/2003] [Indexed: 11/09/2022]
Abstract
Multistability, the capacity to achieve multiple internal states in response to a single set of external inputs, is the defining characteristic of a switch. Biological switches are essential for the determination of cell fate in multicellular organisms, the regulation of cell-cycle oscillations during mitosis and the maintenance of epigenetic traits in microbes. The multistability of several natural and synthetic systems has been attributed to positive feedback loops in their regulatory networks. However, feedback alone does not guarantee multistability. The phase diagram of a multistable system, a concise description of internal states as key parameters are varied, reveals the conditions required to produce a functional switch. Here we present the phase diagram of the bistable lactose utilization network of Escherichia coli. We use this phase diagram, coupled with a mathematical model of the network, to quantitatively investigate processes such as sugar uptake and transcriptional regulation in vivo. We then show how the hysteretic response of the wild-type system can be converted to an ultrasensitive graded response. The phase diagram thus serves as a sensitive probe of molecular interactions and as a powerful tool for rational network design.
Collapse
Affiliation(s)
- Ertugrul M Ozbudak
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
118
|
Wissel MC, Weiss DS. Genetic analysis of the cell division protein FtsI (PBP3): amino acid substitutions that impair septal localization of FtsI and recruitment of FtsN. J Bacteriol 2004; 186:490-502. [PMID: 14702319 PMCID: PMC305773 DOI: 10.1128/jb.186.2.490-502.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsI (also called PBP3) of Escherichia coli is a transpeptidase required for synthesis of peptidoglycan in the division septum and is one of several proteins that localize to the septal ring. FtsI comprises a small cytoplasmic domain, a transmembrane helix, a noncatalytic domain of unknown function, and a catalytic (transpeptidase) domain. The last two domains reside in the periplasm. We used PCR to randomly mutagenize ftsI, ligated the products into a green fluorescent protein fusion vector, and screened approximately 7,500 transformants for gfp-ftsI alleles that failed to complement an ftsI null mutant. Western blotting and penicillin-binding assays were then used to weed out proteins that were unstable, failed to insert into the cytoplasmic membrane, or were defective in catalysis. The remaining candidates were tested for septal localization and ability to recruit another division protein, FtsN, to the septal ring. Mutant proteins severely defective in localization to the septal ring all had lesions in one of three amino acids-R23, L39, or Q46-that are in or near the transmembrane helix and implicate this region of FtsI in septal localization. Mutant FtsI proteins defective in recruitment of FtsN all had lesions in one of eight residues in the noncatalytic domain. The most interesting of these mutants had lesions at G57, S61, L62, or R210. Although separated by approximately 150 residues in the primary sequence, these amino acids are close together in the folded protein and might constitute a site of FtsI-FtsN interaction.
Collapse
Affiliation(s)
- Mark C Wissel
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
119
|
Létoffé S, Debarbieux L, Izadi N, Delepelaire P, Wandersman C. Ligand delivery by haem carrier proteins: the binding of Serratia marcescens haemophore to its outer membrane receptor is mediated by two distinct peptide regions. Mol Microbiol 2003; 50:77-88. [PMID: 14507365 DOI: 10.1046/j.1365-2958.2003.03686.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haem is involved in essential processes. It is toxic and thus is not found free in living organisms but almost entirely sequestered by haem carrier proteins. We investigated the mechanisms of haem transfer between the proteins of a bacterial haem acquisition system involving haemophores. Haemophores are secreted by several Gram-negative bacteria and are able to extract haem (assimilated as an iron source) from haemoproteins and deliver it to specific outer membrane receptors. The Serratia marcescens haemophore (HasA) is folded into a globular form and tyrosine and histidine are involved in haem ligation. Interaction with the receptor is of high affinity (5 nM) and does not involve haem. Identification and study of mutants with altered binding properties led to the description of two regions of the haemophore that bind to the receptor. They consist of residues involved in two beta strands located on the same side of HasA. Each region is sufficient for high affinity binding. The synthetic peptide corresponding to one beta strand competes with the corresponding haemophore region for binding to the receptor, suggesting that the two binding regions are independent binding sites. We propose a model for haem release and transfer to the receptor.
Collapse
Affiliation(s)
- Sylvie Létoffé
- Unité des Membranes Bactériennes, Institut Pasteur (CNRS URA2172) 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
120
|
Cronan JE. Cosmid-based system for transient expression and absolute off-to-on transcriptional control of Escherichia coli genes. J Bacteriol 2003; 185:6522-9. [PMID: 14594824 PMCID: PMC262116 DOI: 10.1128/jb.185.22.6522-6529.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cosmids are plasmids that contain the phage lambda sequences (cos) required for packaging of the phage DNA into the virion. Induction of a lambda prophage in an Escherichia coli strain carrying a cosmid results in lysates containing phage particles that are filled with cosmid DNA. However, the lysates also contain a large excess of infectious phage particles which complicate use of the packaged cosmids. I report that cosmids packaged by induction of a strain carrying a prophage with an altered cos region results in lysates containing very high levels (>10(10)/ml) of particles that contain cosmid DNA together with very few infectious phage particles. These lysates can be used to transduce cosmid DNA into all of the cells of a growing culture with minimal physiological disturbance. When the cosmid carries a conditionally active origin of replication, transductional introduction of the cosmid under nonreplicative conditions provides a system of transient expression. Transient expression has been used to make a recA strain temporarily recombination proficient and to temporarily introduce a site-specific recombinase. Transductional introduction of a cosmid also allows absolute off-to-on transcriptional control of nonessential genes. Two examples are given showing that when a strain carrying a null mutation in the gene of interest is transduced with a packaged cosmid carrying a functional copy of that gene, the expression of the gene rapidly goes from absolutely off to high-level expression. Additional possible uses of in vivo-packaged cosmids are proposed.
Collapse
Affiliation(s)
- John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|
121
|
Hand NJ, Silhavy TJ. Null mutations in a Nudix gene, ygdP, implicate an alarmone response in a novel suppression of hybrid jamming. J Bacteriol 2003; 185:6530-9. [PMID: 14594825 PMCID: PMC262091 DOI: 10.1128/jb.185.22.6530-6539.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2003] [Accepted: 08/18/2003] [Indexed: 11/20/2022] Open
Abstract
Induction of the toxic LamB-LacZ protein fusion, Hyb42-1, leads to a lethal generalized protein export defect. The prlF1 suppressor causes hyperactivation of the cytoplasmic Lon protease and relieves the inducer sensitivity of Hyb42-1. Since prlF1 does not cause a detectable change in the stability or level of the hybrid protein, we conducted a suppressor screen, seeking factors genetically downstream of lon with prlF1-like phenotypes. Two independent insertions in the ygdP open reading frame relieve the toxicity of the fusion protein and share two additional properties with prlF1: cold sensitivity and the ability to suppress the temperature sensitivity of a degP null mutation. Despite these similarities, ygdP does not appear to act in the same genetic pathway as prlF1 and lon, suggesting a fundamental link between the phenotypes. We speculate that the common properties of the suppressors relate to secretion defects. The ygdP gene (also known as nudH) has been shown to encode a Nudix protein that acts as a dinucleotide oligophosphate (alarmone) hydrolase. Our results suggest that loss of ygdP function leads to the induction of an alarmone-mediated response that affects secretion. Using an epitope-tagged ygdP construct, we present evidence that this response is sensitive to secretion-related stress and is regulated by differential proteolysis of YgdP in a self-limiting manner.
Collapse
Affiliation(s)
- Nicholas J Hand
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
122
|
Brandon LD, Goehring N, Janakiraman A, Yan AW, Wu T, Beckwith J, Goldberg MB. IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Mol Microbiol 2003; 50:45-60. [PMID: 14507362 DOI: 10.1046/j.1365-2958.2003.03674.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric localization of proteins is essential to many biological functions of bacteria. Shigella IcsA, an outer membrane protein, is localized to the old pole of the bacillus, where it mediates assembly of a polarized actin tail during infection of mammalian cells. Actin tail assembly provides the propulsive force for intracellular movement and intercellular dissemination. Localization of IcsA to the pole is independent of the amino-terminal signal peptide (Charles, M., Perez, M., Kobil, J.H., and Goldberg, M.B., 2001, Proc Natl Acad Sci USA 98: 9871-9876) suggesting that IcsA targeting occurs in the bacterial cytoplasm and that its secretion across the cytoplasmic membrane occurs only at the pole. Here, we characterize the mechanism by which IcsA is secreted across the cytoplasmic membrane. We present evidence that IcsA requires the SecA ATPase and the SecYEG membrane channel (translocon) for secretion. Our data suggest that YidC is not required for IcsA secretion. Furthermore, we show that polar localization of IcsA is independent of SecA. Finally, we demonstrate that while IcsA requires the SecYEG translocon for secretion, components of this apparatus are uniformly distributed within the membrane. Based on these data, we propose a model for coordinate polar targeting and secretion of IcsA at the bacterial pole.
Collapse
Affiliation(s)
- Lauren D Brandon
- Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Dubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, Babitzke P. CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 2003; 185:4450-60. [PMID: 12867454 PMCID: PMC165747 DOI: 10.1128/jb.185.15.4450-4460.2003] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CsrA is a global regulator that binds to two sites in the glgCAP leader transcript, thereby blocking ribosome access to the glgC Shine-Dalgarno sequence. The upstream CsrA binding site (GCACACGGAU) was used to search the Escherichia coli genomic sequence for other genes that might be regulated by CsrA. cstA contained an exact match that overlapped its Shine-Dalgarno sequence. cstA was previously shown to be induced by carbon starvation and to encode a peptide transporter. Expression of a cstA'-'lacZ translational fusion in wild-type and csrA mutant strains was examined. Expression levels in the csrA mutant were approximately twofold higher when cells were grown in Luria broth (LB) and 5- to 10-fold higher when LB was supplemented with glucose. It was previously shown that cstA is regulated by the cyclic AMP (cAMP)-cAMP receptor protein complex and transcribed by Esigma(70). We investigated the influence of sigma(S) on cstA expression and found that a sigma(S) deficiency resulted in a threefold increase in cstA expression in wild-type and csrA mutant strains; however, CsrA-dependent regulation was retained. The mechanism of CsrA-mediated cstA regulation was also examined in vitro. Cross-linking studies demonstrated that CsrA is a homodimer. Gel mobility shift results showed that CsrA binds specifically to cstA RNA, while coupled-transcription-translation and toeprint studies demonstrated that CsrA regulates CstA synthesis by inhibiting ribosome binding to cstA transcripts. RNA footprint and boundary analyses revealed three or four CsrA binding sites, one of which overlaps the cstA Shine-Dalgarno sequence, as predicted. These results establish that CsrA regulates translation of cstA by sterically interfering with ribosome binding.
Collapse
Affiliation(s)
- Ashok K Dubey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, Baker CS, Georgellis D, Babitzke P, Romeo T. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 2003; 48:657-70. [PMID: 12694612 DOI: 10.1046/j.1365-2958.2003.03459.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small untranslated RNAs (sRNAs) perform a variety of important functions in bacteria. The 245 nucleotide sRNA of Escherichia coli, CsrC, was discovered using a genetic screen for factors that regulate glycogen biosynthesis. CsrC RNA binds multiple copies of CsrA, a protein that post-transcriptionally regulates central carbon flux, biofilm formation and motility in E. coli. CsrC antagonizes the regulatory effects of CsrA, presumably by sequestering this protein. The discovery of CsrC is intriguing, in that a similar sRNA, CsrB, performs essentially the same function. Both sRNAs possess similar imperfect repeat sequences (18 in CsrB, nine in CsrC), primarily localized in the loops of predicted hairpins, which may serve as CsrA binding elements. Transcription of csrC increases as the culture approaches the stationary phase of growth and is indirectly activated by CsrA via the response regulator UvrY. Because CsrB and CsrC antagonize CsrA activity and depend on CsrA for their synthesis, a csrB null mutation causes a modest compensatory increase in CsrC levels and vice versa. Homologues of csrC are apparent in several Enterobacteriaceae. The regulatory and evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- Thomas Weilbacher
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Ventre I, Ledgham F, Prima V, Lazdunski A, Foglino M, Sturgis JN. Dimerization of the quorum sensing regulator RhlR: development of a method using EGFP fluorescence anisotropy. Mol Microbiol 2003; 48:187-98. [PMID: 12657054 DOI: 10.1046/j.1365-2958.2003.03422.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Of considerable interest in the biology of pathogenic bacteria are the mechanisms of intercellular signalling that can lead to the formation of persistent infections. In this article, we have examined the intracellular behaviour of a Pseudomonas aeruginosa quorum sensing regulator RhlR believed to be important in this process. We have further examined the modulation of this behaviour in response to various auto-inducers. For these measurements, we have developed an assay based on the fluorescence anisotropy of EGFP fusion proteins that we use to measure protein-protein interactions in vivo. We show that the transcriptional regulator, RhlR, expressed as an EGFP fusion protein in Escherichia coli, forms a homodimer. This homodimer can be dissociated into monomers by the auto-inducer N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL) whereas N-(butanoyl)-l-homoserine lactone (C4-HSL) has little effect. These observations are of particular interest as RhlR modulation of gene expression depends on the presence of C4-HSL, whereas 3O-C12-HSL modulates the expression of genes regulated by LasR. These observations thus provide a framework for understanding the regulatory network that links the various different QS regulators in P. aeruginosa. Furthermore, the technique we have developed should permit the study of numerous protein/protein or protein/nucleic acid interactions in vivo and so shed light on natural protein function.
Collapse
Affiliation(s)
- Isabelle Ventre
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, UPR9027, IBSM/CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
126
|
Stewart V, Bledsoe PJ. Synthetic lac operator substitutions for studying the nitrate- and nitrite-responsive NarX-NarL and NarQ-NarP two-component regulatory systems of Escherichia coli K-12. J Bacteriol 2003; 185:2104-11. [PMID: 12644479 PMCID: PMC151514 DOI: 10.1128/jb.185.7.2104-2111.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NarX and NarQ sensor-histidine kinases control phosphorylation of the NarL and NarP response regulators in response to the respiratory oxidants nitrate and nitrite. Target operon transcription is activated by the Fnr protein in response to anaerobiosis, and it is further activated and/or repressed by the phospho-NarL and phospho-NarP proteins, which bind to heptamer DNA sequences. The location and arrangement of heptamers vary widely among different target operon control regions. We have constructed a series of monocopy lac operon control region constructs in which the primary operator O1-lac has been replaced by 7-2-7 heptamer pairs from the nrfA, nirB, napF, and fdnG operon control regions. These constructs provide tools for dissecting various aspects of ligand interactions with sensor-kinases, sensor interactions with response regulators, and phospho-response regulator interactions with DNA targets. Expression of the lacZ gene from these constructs was repressed to various degrees by nitrate and nitrite. In response to nitrate, the nrfA and nirB operon 7-2-7 heptamer pairs at operator O1 each mediated greater than 100-fold repression of lacZ gene expression, whereas the napF operon 7-2-7 heptamer pair mediated approximately tenfold repression. Introduction of narL, narP, narX, and narQ null alleles in various combinations allowed the in vivo interactions between different sensor-regulator pairs to be evaluated and compared.
Collapse
Affiliation(s)
- Valley Stewart
- Section of Microbiology, University of California, Davis, California 95616-8665, USA.
| | | |
Collapse
|
127
|
Cantwell BJ, Draheim RR, Weart RB, Nguyen C, Stewart RC, Manson MD. CheZ phosphatase localizes to chemoreceptor patches via CheA-short. J Bacteriol 2003; 185:2354-61. [PMID: 12644507 PMCID: PMC151485 DOI: 10.1128/jb.185.7.2354-2361.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the conditions required for polar localization of the CheZ phosphatase by using a CheZ-green fluorescent protein fusion protein that, when expressed from a single gene in the chromosome, restored chemotaxis to a DeltacheZ strain. Localization was observed in wild-type, DeltacheZ, DeltacheYZ, and DeltacheRB cells but not in cells with cheA, cheW, or all chemoreceptor genes except aer deleted. Cells making only CheA-short (CheA(S)) or CheA lacking the P2 domain also retained normal localization, whereas cells producing only CheA-long or CheA missing the P1 and P2 domains did not. We conclude that CheZ localization requires the truncated C-terminal portion of the P1 domain present in CheA(S). Missense mutations targeting residues 83 through 120 of CheZ also abolished localization. Two of these mutations do not disrupt chemotaxis, indicating that they specifically prevent interaction with CheA(S) while leaving other activities of CheZ intact.
Collapse
Affiliation(s)
- Brian J Cantwell
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
128
|
Fröderberg L, Houben E, Samuelson JC, Chen M, Park SK, Phillips GJ, Dalbey R, Luirink J, De Gier JWL. Versatility of inner membrane protein biogenesis in Escherichia coli. Mol Microbiol 2003; 47:1015-27. [PMID: 12581356 DOI: 10.1046/j.1365-2958.2003.03346.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To further our understanding of inner membrane protein (IMP) biogenesis in Escherichia coli, we have accomplished the widest in vivo IMP assembly screen so far. The biogenesis of a set of model IMPs covering most IMP structures possible has been studied in a variety of signal recognition particle (SRP), Sec and YidC mutant strains. We show that the assembly of the complete set of model IMPs is assisted (i.e. requires the aid of proteinaceous factors), and that the requirements for assembly of the model IMPs into the inner membrane differ significantly from each other. This indicates that IMP assembly is much more versatile than previously thought.
Collapse
Affiliation(s)
- Linda Fröderberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Den Blaauwen T, Aarsman MEG, Vischer NOE, Nanninga N. Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol Microbiol 2003; 47:539-47. [PMID: 12519203 DOI: 10.1046/j.1365-2958.2003.03316.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The localization of penicillin-binding protein 2 (PBP2) in Escherichia coli has been studied using a functional green fluorescent protein (GFP)-PBP2 fusion protein. PBP2 localized in the bacterial envelope in a spot-like pattern and also at mid-cell during cell division. PBP2 disappeared from mid-cell just before separation of the two daughter cells. It localized with a preference for the cylindrical part of the bacterium in comparison with the old cell poles, which are known to be inert with respect to peptidoglycan synthesis. In contrast to subunits of the divisome, PBP2 failed to localize at mid-cell when PBP3 was inhibited by the specific antibiotic aztreonam. Therefore, despite its dependency on active PBP3 for localization at mid-cell, it seems not to be an integral part of the divisome. Cells grown for approximately half a mass doubling time in the presence of the PBP2 inhibitor mecillinam synthesized nascent cell poles with an increased diameter, indicating that PBP2 is required for the maintenance of the correct diameter of the new cell pole.
Collapse
Affiliation(s)
- Tanneke Den Blaauwen
- Swammerdam Institute for Life sciences, Kruislaan 316, 1098 SM Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
130
|
Abstract
In Gram-negative bacteria, all components of the outer membrane are synthesized in the cytoplasm or the cytoplasmic leaflet of the inner membrane and must thus traverse the inner membrane and the periplasm on the way to their final destination. In this study, we show Imp/OstA to have characteristics typical for proteins involved in envelope biogenesis. Imp is essential and forms a high-molecular-weight disulphide-bonded complex in the outer membrane. Upon depletion of Imp, lipids and outer membrane proteins appear in a novel membrane fraction with higher density than the outer membrane. We propose Imp to be part of a targeting/usher system for components of the outer membrane.
Collapse
Affiliation(s)
- Martin Braun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
131
|
Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 2002; 184:5130-40. [PMID: 12193630 PMCID: PMC135316 DOI: 10.1128/jb.184.18.5130-5140.2002] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global regulator CsrA (carbon storage regulator) is an RNA binding protein that coordinates central carbon metabolism, activates flagellum biosynthesis and motility, and represses biofilm formation in Escherichia coli. CsrA activity is antagonized by the untranslated RNA CsrB, to which it binds and forms a globular ribonucleoprotein complex. CsrA indirectly activates csrB transcription, in an apparent autoregulatory mechanism. In the present study, we elucidate the intermediate regulatory circuitry of this system. Mutations affecting the BarA/UvrY two-component signal transduction system decreased csrB transcription but did not affect csrA'-'lacZ expression. The uvrY defect was severalfold more severe than that of barA. Both csrA and uvrY were required for optimal barA expression. The latter observation suggests an autoregulatory loop for UvrY. Ectopic expression of uvrY suppressed the csrB-lacZ expression defects caused by uvrY, csrA, or barA mutations; csrA suppressed csrA or barA defects; and barA complemented only the barA mutation. Purified UvrY protein stimulated csrB-lacZ expression approximately sixfold in S-30 transcription-translation reactions, revealing a direct effect of UvrY on csrB transcription. Disruption of sdiA, which encodes a LuxR homologue, decreased the expression of uvrY'-'lacZ and csrB-lacZ fusions but did not affect csrA'-'lacZ. The BarA/UvrY system activated biofilm formation. Ectopic expression of uvrY stimulated biofilm formation by a csrB-null mutant, indicative of a CsrB-independent role for UvrY in biofilm development. Collectively, these results demonstrate that uvrY resides downstream from csrA in a signaling pathway for csrB and that CsrA stimulates UvrY-dependent activation of csrB expression by BarA-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Kazushi Suzuki
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
Clonal populations of cells exhibit substantial phenotypic variation. Such heterogeneity can be essential for many biological processes and is conjectured to arise from stochasticity, or noise, in gene expression. We constructed strains of Escherichia coli that enable detection of noise and discrimination between the two mechanisms by which it is generated. Both stochasticity inherent in the biochemical process of gene expression (intrinsic noise) and fluctuations in other cellular components (extrinsic noise) contribute substantially to overall variation. Transcription rate, regulatory dynamics, and genetic factors control the amplitude of noise. These results establish a quantitative foundation for modeling noise in genetic networks and reveal how low intracellular copy numbers of molecules can fundamentally limit the precision of gene regulation.
Collapse
Affiliation(s)
- Michael B Elowitz
- Laboratory of Cancer Biology, Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
133
|
Sandt CH, Hopper JE, Hill CW. Activation of prophage eib genes for immunoglobulin-binding proteins by genes from the IbrAB genetic island of Escherichia coli ECOR-9. J Bacteriol 2002; 184:3640-8. [PMID: 12057959 PMCID: PMC135156 DOI: 10.1128/jb.184.13.3640-3648.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four distinct Escherichia coli immunoglobulin-binding (eib) genes, each of which encodes a surface-exposed protein that binds immunoglobulins in a nonimmune manner, are carried by separate prophages in E. coli reference (ECOR) strain ECOR-9. Each eib gene was transferred to test E. coli strains, both in the form of multicopy recombinant plasmids and as lysogenized prophage. The derived lysogens express little or no Eib protein, in sharp contrast to the parental lysogen, suggesting that ECOR-9 has an expression-enhancing activity that the derived lysogens lack. Supporting this hypothesis, we cloned from ECOR-9 overlapping genes, ibrA and ibrB (designation is derived from "immunoglobulin-binding regulator"), which together activated eib expression in the derived lysogens. The proteins encoded by ibrA and ibrB are very similar to uncharacterized proteins encoded by genes of Salmonella enterica serovar Typhi and E. coli O157:H7 (in a prophage-like element of the Sakai strain and in two O islands of strain EDL933). The genomic segment containing ibrA and ibrB has been designated the IbrAB island. It contains regions of homology to the Shiga toxin-converting prophage, Stx2, as well as genes homologous to phage antirepressor genes. The left boundary between the IbrAB island and the chromosomal framework is located near min 35.8 of the E. coli K-12 genome. Homology to IbrAB was found in certain other ECOR strains, including the other five eib-positive strains and most strains of the phylogenetic group B2. Sequencing of a 1.1-kb portion of ibrAB revealed that the other eib-positive strains diverge by </=0.1% from ECOR-9, whereas eib-negative ECOR-47 diverges by 16%.
Collapse
Affiliation(s)
- Carol H Sandt
- Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
134
|
Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 2002; 44:1599-610. [PMID: 12067347 DOI: 10.1046/j.1365-2958.2002.02982.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The carbon storage regulatory system of Escherichia coli controls the expression of genes involved in carbohydrate metabolism and cell motility. CsrA binding to glgCAP transcripts inhibits glycogen metabolism by promoting glgCAP mRNA decay. CsrB RNA functions as an antagonist of CsrA by sequestering this protein and preventing its action. In this paper, we elucidate further the mechanism of CsrA-mediated glgC regulation. Results from gel shift assays demonstrate that several molecules of CsrA can bind to each glgC transcript. RNA footprinting studies indicate that CsrA binds to the glgCAP leader transcript at two positions. One of these sites overlaps the glgC Shine-Dalgarno sequence, whereas the other CsrA target is located further upstream in an RNA hairpin. Results from toeprint and cell-free translation experiments indicate that bound CsrA prevents ribosome binding to the glgC Shine-Dalgarno sequence and that this reduces GlgC synthesis. The effect of two deletions in the upstream binding site was examined. Both of these deletions reduced, but did not eliminate, CsrA binding in vitro and CsrA-dependent regulation in vivo. Our findings establish that bound CsrA inhibits initiation of glgC translation, thereby reducing glycogen biosynthesis. This inhibition of translation probably contributes to destabilization of the glgC transcript that was observed previously.
Collapse
Affiliation(s)
- Carol S Baker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
135
|
Buddelmeijer N, Judson N, Boyd D, Mekalanos JJ, Beckwith J. YgbQ, a cell division protein in Escherichia coli and Vibrio cholerae, localizes in codependent fashion with FtsL to the division site. Proc Natl Acad Sci U S A 2002; 99:6316-21. [PMID: 11972052 PMCID: PMC122946 DOI: 10.1073/pnas.092128499] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
YgbQ is a cell division protein in Escherichia coli and Vibrio cholerae. In E. coli the ygbQ gene was discovered as a result of a computer search of the E. coli genome designed to find potential interacting partners for cell division protein FtsL. In V. cholerae, ygbQ was identified as an essential gene by using a transposon that fuses genes to an arabinose promoter. The role of YgbQ in cell division is supported by the following. Cells depleted of YgbQ in both organisms form long filaments, but DNA segregation is not affected. YgbQ localizes to the constriction site in wild-type E. coli cells. Localization of E. coli YgbQ to the constriction site depends on cell division proteins FtsQ and FtsL but not FtsW and FtsI, placing YgbQ in the sequential dependency order of proteins localizing to the division site. Localization of green fluorescent protein-FtsL also depends on YgbQ, indicating that FtsL and YgbQ colocalize to the division site in E. coli. Our results show colocalization of proteins to the bacterial midcell in E. coli and raise the possibility that these proteins interact in a coiled-coil structure.
Collapse
Affiliation(s)
- Nienke Buddelmeijer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
136
|
Corbin BD, Yu XC, Margolin W. Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J 2002; 21:1998-2008. [PMID: 11953319 PMCID: PMC125965 DOI: 10.1093/emboj/21.8.1998] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The MinCDE proteins help to select cell division sites in normal cylindrical Escherichia coli by oscillating along the long axis, preventing unwanted polar divisions. To determine how the Min system might function in cells with multiple potential division planes, we investigated its role in a round-cell rodA mutant. Round cells lacking MinCDE were viable, but growth, morphology and positioning of cell division sites were abnormal relative to Min+ cells. In round cells with a long axis, such as those undergoing cell division, green fluorescent protein (GFP) fusions to MinD almost always oscillated parallel to the long axis. However, perfect spheres or irregularly shaped cells exhibited MinD movement to and from multiple sites on the cell surface. A MinE-GFP fusion exhibited similar behavior. These results indicate that the Min proteins can potentially localize anywhere in the cell but tend to move a certain maximum distance from their previous assembly site, thus favoring movement along the cell's long axis. A new model for the spatial control of division planes by the Min system in round cells is proposed.
Collapse
Affiliation(s)
| | | | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA
Corresponding author e-mail:
| |
Collapse
|
137
|
Chen JC, Minev M, Beckwith J. Analysis of ftsQ mutant alleles in Escherichia coli: complementation, septal localization, and recruitment of downstream cell division proteins. J Bacteriol 2002; 184:695-705. [PMID: 11790739 PMCID: PMC139535 DOI: 10.1128/jb.184.3.695-705.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2001] [Accepted: 11/06/2001] [Indexed: 11/20/2022] Open
Abstract
FtsQ, a 276-amino-acid, bitopic membrane protein, is one of the nine proteins known to be essential for cell division in gram-negative bacterium Escherichia coli. To define residues in FtsQ critical for function, we performed random mutagenesis on the ftsQ gene and identified four alleles (ftsQ2, ftsQ6, ftsQ15, and ftsQ65) that fail to complement the ftsQ1(Ts) mutation at the restrictive temperature. Two of the mutant proteins, FtsQ6 and FtsQ15, are functional at lower temperatures but are unable to localize to the division site unless wild-type FtsQ is depleted, suggesting that they compete poorly with the wild-type protein for septal targeting. The other two mutants, FtsQ2 and FtsQ65, are nonfunctional at all temperatures tested and have dominant-negative effects when expressed in an ftsQ1(Ts) strain at the permissive temperature. FtsQ2 and FtsQ65 localize to the division site in the presence or absence of endogenous FtsQ, but they cannot recruit downstream cell division proteins, such as FtsL, to the septum. These results suggest that FtsQ2 and FtsQ65 compete efficiently for septal targeting but fail to promote the further assembly of the cell division machinery. Thus, we have separated the localization ability of FtsQ from its other functions, including recruitment of downstream cell division proteins, and are beginning to define regions of the protein responsible for these distinct capabilities.
Collapse
Affiliation(s)
- Joseph C Chen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
138
|
Mercer KLN, Weiss DS. The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol 2002; 184:904-12. [PMID: 11807049 PMCID: PMC134820 DOI: 10.1128/jb.184.4.904-912.2002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Accepted: 11/11/2001] [Indexed: 11/20/2022] Open
Abstract
The bacterial cell division protein FtsW has been suggested to perform two functions: stabilize the FtsZ cytokinetic ring, and facilitate septal peptidoglycan synthesis by the transpeptidase FtsI (penicillin-binding protein 3). We show here that depleting Escherichia coli cells of FtsW had little effect on the abundance of FtsZ rings but abrogated recruitment of FtsI to potential division sites. Analysis of FtsW localization confirmed and extended these results; septal localization of FtsW required FtsZ, FtsA, FtsQ, and FtsL but not FtsI. Thus, FtsW is a late recruit to the division site and is essential for subsequent recruitment of its cognate transpeptidase FtsI but not for stabilization of FtsZ rings. We suggest that a primary function of FtsW homologues--which are found in almost all bacteria and appear to work in conjunction with dedicated transpeptidases involved in division, elongation, or sporulation--is to recruit their cognate transpeptidases to the correct subcellular location.
Collapse
Affiliation(s)
- Keri L N Mercer
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
139
|
Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 2002; 184:290-301. [PMID: 11741870 PMCID: PMC134780 DOI: 10.1128/jb.184.1.290-301.2002] [Citation(s) in RCA: 320] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of microbial research, the regulatory mechanisms of biofilm development remain poorly defined and those of dispersal are unknown. Here we establish that the RNA binding global regulatory protein CsrA (carbon storage regulator) of Escherichia coli K-12 serves as both a repressor of biofilm formation and an activator of biofilm dispersal under a variety of culture conditions. Ectopic expression of the E. coli K-12 csrA gene repressed biofilm formation by related bacterial pathogens. A csrA knockout mutation enhanced biofilm formation in E. coli strains that were defective for extracellular, surface, or regulatory factors previously implicated in biofilm formation. In contrast, this csrA mutation did not affect biofilm formation by a glgA (glycogen synthase) knockout mutant. Complementation studies with glg genes provided further genetic evidence that the effects of CsrA on biofilm formation are mediated largely through the regulation of intracellular glycogen biosynthesis and catabolism. Finally, the expression of a chromosomally encoded csrA'-'lacZ translational fusion was dynamically regulated during biofilm formation in a pattern consistent with its role as a repressor. We propose that global regulation of central carbon flux by CsrA is an extremely important feature of E. coli biofilm development.
Collapse
Affiliation(s)
- Debra W Jackson
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107-2699, USA
| | | | | | | | | | | |
Collapse
|
140
|
Haldimann A, Wanner BL. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 2001; 183:6384-93. [PMID: 11591683 PMCID: PMC100134 DOI: 10.1128/jb.183.21.6384-6393.2001] [Citation(s) in RCA: 465] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a series of powerful and versatile conditional-replication, integration, and modular (CRIM) plasmids. CRIM plasmids can be replicated at medium or high copy numbers in different hosts for making gene (or mutant) libraries. They can be integrated in single copies into the chromosomes of Escherichia coli and related bacteria to study gene function under normal physiological conditions. They can be excised from the chromosome, e.g., to verify that phenotypes are caused by their presence. Furthermore, they can be retrieved singly or en masse for subsequent molecular analyses. CRIM plasmids are integrated into the chromosome by site-specific recombination at one of five different phage attachment sites. Integrants are selected as antibiotic-resistant transformations. Since CRIM plasmids encode different forms of resistance, several can be used together in the same cell for stable expression of complex metabolic or regulatory pathways from diverse sources. Following integration, integrants are stably maintained in the absence of antibiotic selection. Each CRIM plasmid has a polylinker or one of several promoters for ectopic expression of the inserted DNA. Their modular design allows easy construction of new variants with different combinations of features. We also report a series of easily curable, low-copy-number helper plasmids encoding all the requisite Int proteins alone or with the respective Xis protein. These helper plasmids facilitate integration, excision ("curing"), or retrieval of the CRIM plasmids.
Collapse
Affiliation(s)
- A Haldimann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
141
|
Phillips GJ. Green fluorescent protein--a bright idea for the study of bacterial protein localization. FEMS Microbiol Lett 2001; 204:9-18. [PMID: 11682170 DOI: 10.1111/j.1574-6968.2001.tb10854.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Use of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for protein and DNA localization has provided sensitive, new approaches for studying the organization of the bacterial cell, leading to new insights into diverse cellular processes. GFP has many characteristics that make it useful for localization studies in bacteria, primarily its ability to fluoresce when fused to target polypeptides without the addition of exogenously added substrates. As an alternative to immunofluorescence microscopy, the expression of gfp gene fusions has been used to probe the function of cellular components fundamental for DNA replication, translation, protein export, and signal transduction, that heretofore have been difficult to study in living cells. Moreover, protein and DNA localization can now be monitored in real time, revealing that several proteins important for cell division, development and sporulation are dynamically localized throughout the cell cycle. The use of additional GFP variants that permit the labeling of multiple components within the same cell, and the use of GFP for genetic screens, should continue to make this a valuable tool for addressing complex questions about the bacterial cell.
Collapse
Affiliation(s)
- G J Phillips
- Department of Microbiology, 207 Science I Building, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
142
|
Chen JC, Beckwith J. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol Microbiol 2001; 42:395-413. [PMID: 11703663 DOI: 10.1046/j.1365-2958.2001.02640.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During cell division in Gram-negative bacteria, the cell envelope invaginates and constricts at the septum, eventually severing the cell into two compartments, and separating the replicated genetic materials. In Escherichia coli, at least nine essential gene products participate directly in septum formation: FtsA, FtsI, FtsL, FtsK, FtsN, FtsQ, FtsW, FtsZ and ZipA. All nine proteins have been localized to the septal ring, an equatorial ring structure at the division site. We used translational fusions to green fluorescent protein (GFP) to demonstrate that FtsQ, FtsL and FtsI localize to potential division sites in filamentous cells depleted of FtsN, but not in those depleted of FtsK. We also constructed translational fusions of FtsZ, FtsA, FtsQ, FtsL and FtsI to enhanced cyan or yellow fluorescent protein (ECFP or EYFP respectively), GFP variants with different fluorescence spectra. Examination of cells expressing different combinations of the fusions indicated that FtsA, FtsQ, FtsL and FtsI co-localize with FtsZ in filaments depleted of FtsN. These localization results support the model that E. coli cell division proteins assemble sequentially as a multimeric complex at the division site: first FtsZ, then FtsA and ZipA independently of each other, followed successively by FtsK, FtsQ, FtsL, FtsW, FtsI and FtsN.
Collapse
Affiliation(s)
- J C Chen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
143
|
Gudapaty S, Suzuki K, Wang X, Babitzke P, Romeo T. Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. J Bacteriol 2001; 183:6017-27. [PMID: 11567002 PMCID: PMC99681 DOI: 10.1128/jb.183.20.6017-6027.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The global regulator CsrA (carbon storage regulator) of Escherichia coli is a small RNA binding protein that represses various metabolic pathways and processes that are induced in the stationary phase of growth, while it activates certain exponential phase functions. Both repression and activation by CsrA involve posttranscriptional mechanisms, in which CsrA binding to mRNA leads to decreased or increased transcript stability, respectively. CsrA also binds to a small untranslated RNA, CsrB, forming a ribonucleoprotein complex, which antagonizes CsrA activity. We have further examined the regulatory interactions of CsrA and CsrB RNA. The 5' end of the CsrB transcript was mapped, and a csrB::cam null mutant was constructed. CsrA protein and CsrB RNA levels were estimated throughout the growth curves of wild-type and isogenic csrA, csrB, rpoS, or csrA rpoS mutant strains. CsrA levels exhibited modest or negligible effects of these mutations. The intracellular concentration of CsrA exceeded the total CsrA-binding capacity of intracellular CsrB RNA. In contrast, CsrB levels were drastically decreased (~10-fold) in the csrA mutants. CsrB transcript stability was unaffected by csrA. The expression of a csrB-lacZ transcriptional fusion containing the region from -242 to +4 bp of the csrB gene was decreased ~20-fold by a csrA::kanR mutation in vivo but was unaffected by CsrA protein in vitro. These results reveal a significant, though most likely indirect, role for CsrA in regulating csrB transcription. Furthermore, our findings suggest that CsrA mediates an intriguing form of autoregulation, whereby its activity, but not its levels, is modulated through effects on an RNA antagonist, CsrB.
Collapse
Affiliation(s)
- S Gudapaty
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, 76107-2699, USA
| | | | | | | | | |
Collapse
|
144
|
Abstract
Gram-negative bacterial proteins secreted by ABC exporters carry a secretion signal in their carboxylic extremities. This characteristic suggests that the polypeptide needs to be fully synthesized before it can be secreted and, therefore, presumably may fold at least in part before its secretion. We investigated the relationship between folding and secretion using HasA, a hemoprotein of Serratia marcescens secreted into the extracellular medium by a dedicated Has ABC exporter. We first demonstrated that when HasA is sequestered in the cytoplasm it can acquire its tertiary structure, as assessed from its capacity to bind heme. The cytoplasmic pool of HasA cannot be secreted and inhibits the secretion of newly synthesized molecules. HasA folding in the cytoplasm was independent of either its capacity to bind heme or the presence of SecB, although SecB is essential for HasA secretion. Our findings indicate a strong coupling between synthesis and secretion in the type I secretion pathway.
Collapse
Affiliation(s)
| | - Cécile Wandersman
- Unité des Membranes Bactériennes, Institut Pasteur, 25 Rue du Dr Roux, 75024 Paris Cedex 15, France
Corresponding author e-mail:
| |
Collapse
|
145
|
Shimizu-Kadota M. A method to maintain introduced DNA sequences stably and safely on the bacterial chromosome: application of prophage integration and subsequent designed excision. J Biotechnol 2001; 89:73-9. [PMID: 11472801 DOI: 10.1016/s0168-1656(01)00287-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
By application of prophage integration and subsequent intended excision, a method to maintain an introduced DNA sequence stably onto a bacterial chromosome has been proposed. Recently-constructed integration plasmids using Campbell-type prophage integration system in Lactobacillus casei strain Shirota and its temperate phage phi FSW was modified for this purpose and a chloramphenicol (Cm)-resistance gene was used as a model passenger DNA. On the integration plasmid having an erythromycin (Em)-resistance gene as a selection marker, N- and C-terminally-truncated Cm-resistance genes were inserted into both sides of the attP of phi FSW, within which the site-specific recombination took place with the attB of phi FSW on the recipient chromosome through the phi FSW integrase. Primary integrants of the modified plasmid (integration-excision vector) exhibiting Em-resistant and Cm-sensitive phenotype generated Em-sensitive and Cm-resistant derivatives under the nonselective conditions. Sequence analyses showed that one copy of the complete Cm-resistance gene resided at the attachment site on the host chromosome and the other vector-derived sequences were excised probably by endogenous homologous recombination in the host cells to derive final integrants. The Cm-resistant phenotype of the final integrants was stable for more than 50 generations under non-selective conditions. Frequency of the homologous recombination suggests that negative selection is also adoptable. Thus, this method using the integration-excision vector gives a stable and safe derivatives of the strain and is likely to be applicable to various bacteria, since Campbell-type prophage integration system and homologous recombination are prevalent among bacteria.
Collapse
Affiliation(s)
- M Shimizu-Kadota
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan.
| |
Collapse
|
146
|
Gumbiner-Russo LM, Lombardo MJ, Ponder RG, Rosenberg SM. The TGV transgenic vectors for single-copy gene expression from the Escherichia coli chromosome. Gene 2001; 273:97-104. [PMID: 11483365 DOI: 10.1016/s0378-1119(01)00565-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmid-based cloning and expression of genes in Escherichia coli can have several problems: plasmid destabilization; toxicity of gene products; inability to achieve complete repression of gene expression; non-physiological overexpression of the cloned gene; titration of regulatory proteins; and the requirement for antibiotic selection. We describe a simple system for cloning and expression of genes in single copy in the E. coli chromosome, using a non-antibiotic selection for transgene insertion. The transgene is inserted into a vector containing homology to the chromosomal region flanking the attachment site for phage lambda. This vector is then linearized and introduced into a recombination-proficient E. coli strain carrying a temperature-sensitive lambda prophage. Selection for replacement of the prophage with the transgene is performed at high temperature. Once in the chromosome, transgenes can be moved into other lysogenic E. coli strains using standard phage-mediated transduction techniques, selecting against a resident prophage. Additional vector constructs provide an arabinose-inducible promoter (P(BAD)), P(BAD) plus a translation-initiation sequence, and optional chloramphenicol-, tetracycline-, or kanamycin-resistance cassettes. These Transgenic E. coli Vectors (TGV) allow drug-free, single-copy expression of genes from the E. coli chromosome, and are useful for genetic studies of gene function.
Collapse
Affiliation(s)
- L M Gumbiner-Russo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | | | | |
Collapse
|
147
|
Cadieux N, Bradbeer C, Kadner RJ. Sequence changes in the ton box region of BtuB affect its transport activities and interaction with TonB protein. J Bacteriol 2000; 182:5954-61. [PMID: 11029413 PMCID: PMC94727 DOI: 10.1128/jb.182.21.5954-5961.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uptake of cobalamins by the transporter protein BtuB in the outer membrane of Escherichia coli requires the proton motive force and the transperiplasmic protein TonB. The Ton box sequence near the amino terminus of BtuB is conserved among all TonB-dependent transporters and is the only known site of mutations that confer a transport-defective phenotype which can be suppressed by certain substitutions at residue 160 in TonB. The crystallographic structures of the TonB-dependent transporter FhuA revealed that the region near the Ton box, which itself was not resolved, is exposed to the periplasmic space and undergoes an extensive shift in position upon binding of substrate. Site-directed disulfide bonding in intact cells has been used to show that the Ton box of BtuB and residues around position 160 of TonB approach each other in a highly oriented and specific manner to form BtuB-TonB heterodimers that are stimulated by the presence of transport substrate. Here, replacement of Ton box residues with proline or cysteine revealed that residue side chain recognition is not important for function, although replacement with proline at four of the seven Ton box positions impaired cobalamin transport. The defect in cobalamin utilization resulting from the L8P substitution was suppressed by cysteine substitutions in adjacent residues in BtuB or in TonB. This suppression did not restore active transport of cobalamins but may allow each transporter to function at most once. The uncoupled proline substitutions in BtuB markedly affected the pattern of disulfide bonding to TonB, both increasing the extent of cross-linking and shifting the pairs of residues that can be joined. Cross-linking of BtuB and TonB in the presence of the BtuB V10P substitution became independent of the presence of substrate, indicating an additional distortion of the exposure of the Ton box in the periplasmic space. TonB action thus requires a specific orientation for functional contact with the Ton box, and changes in the conformation of this region block transport by preventing substrate release and repeated transport cycles.
Collapse
Affiliation(s)
- N Cadieux
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0734, USA
| | | | | |
Collapse
|
148
|
Misra R, CastilloKeller M, Deng M. Overexpression of protease-deficient DegP(S210A) rescues the lethal phenotype of Escherichia coli OmpF assembly mutants in a degP background. J Bacteriol 2000; 182:4882-8. [PMID: 10940032 PMCID: PMC111368 DOI: 10.1128/jb.182.17.4882-4888.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replacement of OmpF's conserved carboxy-terminal phenylalanine with dissimilar amino acids severely impaired its assembly into stable trimers. In some instances, interactions of mutant proteins with the outer membrane were also affected, as judged by their hypersensitivity phenotype. Synthesis of all mutant OmpF proteins elevated the expression of periplasmic protease DegP, and synthesis of most of them made its presence obligatory for cell viability. These results showed a critical role for DegP in the event of aberrant outer membrane protein assembly. The lethal phenotype of mutant OmpF proteins in a degP null background was eliminated when a protease-deficient DegP(S210A) protein was overproduced. Our data showed that this rescue from lethality and a subsequent increase in mutant protein levels in the envelope did not lead to the proper assembly of the mutant proteins in the outer membrane. Rather, a detergent-soluble and thermolabile OmpF species resembling monomers accumulated in the mutants, and to a lesser extent in the parental strain, when DegP(S210A) was overproduced. Interestingly, this also led to the localization of a significant amount of mutant polypeptides to the inner membrane, where DegP(S210A) also fractionated. These results suggested that the DegP(S210A)-mediated rescue from toxicity involved preferential sequestration of misfolded OmpF monomers from the normal assembly pathway.
Collapse
Affiliation(s)
- R Misra
- Department of Microbiology, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | |
Collapse
|
149
|
Tian H, Boyd D, Beckwith J. A mutant hunt for defects in membrane protein assembly yields mutations affecting the bacterial signal recognition particle and Sec machinery. Proc Natl Acad Sci U S A 2000; 97:4730-5. [PMID: 10781078 PMCID: PMC18301 DOI: 10.1073/pnas.090087297] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe an Escherichia coli genetic screen that yields mutations affecting two different cellular processes: disulfide bond formation and membrane protein assembly. The mutants defective in disulfide bond formation include additional classes of dsbA and dsbB mutations. The membrane protein assembly defective mutants contain a mutation in the secA operon and three mutations in the ffs gene, which encodes 4.5S RNA. These latter mutations are the only ones to be isolated in a gene encoding a component of the bacterial signal recognition particle by screening in vivo for defects in membrane protein insertion. A sensitive method for examining membrane protein localization shows that the ffs and secA locus mutations affect membrane assembly of the polytopic membrane protein, MalF. The ffs mutations also affect the membrane insertion of the FtsQ and the AcrB proteins. Although both the ffs and the secA locus mutations interfere with membrane protein assembly, only the latter also reduces export of a protein containing a cleavable signal sequence.
Collapse
Affiliation(s)
- H Tian
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|