101
|
Francese R, Civra A, Donalisio M, Volpi N, Capitani F, Sottemano S, Tonetto P, Coscia A, Maiocco G, Moro GE, Bertino E, Lembo D. Anti-Zika virus and anti-Usutu virus activity of human milk and its components. PLoS Negl Trop Dis 2020; 14:e0008713. [PMID: 33027261 PMCID: PMC7571670 DOI: 10.1371/journal.pntd.0008713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/19/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
The benefits of human milk are mediated by multiple nutritional, trophic, and immunological components, able to promote infant's growth, maturation of its immature gut, and to confer protection against infections. Despite these widely recognized properties, breast-feeding represents an important mother-to-child transmission route of some viral infections. Different studies show that some flaviviruses can occasionally be detected in breast milk, but their transmission to the newborn is still controversial. The aim of this study is to investigate the antiviral activity of human milk (HM) in its different stages of maturation against two emerging flaviviruses, namely Zika virus (ZIKV) and Usutu virus (USUV) and to verify whether HM-derived extracellular vesicles (EVs) and glycosaminoglycans (GAGs) contribute to the milk protective effect. Colostrum, transitional and mature milk samples were collected from 39 healthy donors. The aqueous fractions were tested in vitro with specific antiviral assays and EVs and GAGs were derived and characterized. HM showed antiviral activity against ZIKV and USUV at all the stages of lactation with no significant differences in the activity of colostrum, transitional or mature milk. Mechanism of action studies demonstrated that colostrum does not inactivate viral particles, but it hampers the binding of both flaviviruses to cells. We also demonstrated that HM-EVs and HM-GAGs contribute, at least in part, to the anti-ZIKV and anti-USUV action of HM. This study discloses the intrinsic antiviral activity of HM against ZIKV and USUV and demonstrates the contribution of two bioactive components in mediating its protective effect. Since the potential infectivity of HM during ZIKV and USUV infection is still unclear, these data support the World Health Organization recommendations about breast-feeding during ZIKV infection and could contribute to producing new guidelines for a possible USUV epidemic.
Collapse
Affiliation(s)
- Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Capitani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Sottemano
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Paola Tonetto
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Giulia Maiocco
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Guido E. Moro
- Italian Association of Human Milk Banks (AIBLUD), Milan, Italy
| | - Enrico Bertino
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| |
Collapse
|
102
|
O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21:585-606. [PMID: 32457507 PMCID: PMC7249041 DOI: 10.1038/s41580-020-0251-y] [Citation(s) in RCA: 1007] [Impact Index Per Article: 251.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.
Collapse
Affiliation(s)
- Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
103
|
Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909125. [PMID: 32952493 PMCID: PMC7494127 DOI: 10.1002/adfm.201909125] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 05/05/2023]
Abstract
The therapeutic benefits of mesenchymal stromal cell (MSC) transplantation have been attributed to their secreted factors, including extracellular vesicles (EVs) and soluble factors. The potential of employing the MSC secretome as an alternative acellular approach to cell therapy is being investigated in various tissue injury indications, but EVs administered via bolus injections are rapidly sequestered and cleared. However, biomaterials offer delivery platforms to enhance EV retention rates and healing efficacy. In this review, we highlight the mechanisms underpinning the therapeutic effects of MSC-EVs and soluble factors as effectors of immunomodulation and tissue regeneration, conferred primarily via their nucleic acid and protein contents. We discuss how manipulating the cell culture microenvironment or genetic modification of MSCs can further augment the potency of their secretions. The most recent advances in the development of EV-functionalized biomaterials that mediate enhanced angiogenesis and cell survival, while attenuating inflammation and fibrosis, are presented. Finally, some technical challenges to be considered for the clinical translation of biomaterials carrying MSC-secreted bioactive cargo are discussed.
Collapse
Affiliation(s)
- Meadhbh Á Brennan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
104
|
Bischofsberger M, Winkelmann F, Rabes A, Reisinger EC, Sombetzki M. Pathogen-host interaction mediated by vesicle-based secretion in schistosomes. PROTOPLASMA 2020; 257:1277-1287. [PMID: 32462473 PMCID: PMC7449993 DOI: 10.1007/s00709-020-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/15/2020] [Indexed: 05/07/2023]
Abstract
As part of the parasite's excretory/secretory system, extracellular vesicles (EVs) represent a potent communication tool of schistosomes with their human host to strike the balance between their own survival in a hostile immunological environment and a minimal damage to the host tissue. Their cargo consists of functional proteins, lipids, and nucleic acids that facilitate biological processes like migration, nutrient acquisition, or reproduction. The most important impact of the vesicle-mediated communication, however, is the promotion of the parasite survival via mimicking host protein function and directly or indirectly modulating the immune response of the host. Overcoming this shield of immunological adaption in the schistosome-host relation is the aim of current research activities in this field and crucial for the development of a reliable anti-schistosomal therapy. Not least because of their prospective use in clinical applications, research on EVs is now a rapidly expanding field. We herein focus on the current state of knowledge of vesicle-based communication of schistosomes and discussing the role of EVs in facilitating biological processes and immune modulatory properties of EVs considering the different life stages of the parasite.
Collapse
Affiliation(s)
- Miriam Bischofsberger
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Franziska Winkelmann
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Anne Rabes
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Emil C Reisinger
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Martina Sombetzki
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
105
|
Brenna S, Altmeppen HC, Mohammadi B, Rissiek B, Schlink F, Ludewig P, Krisp C, Schlüter H, Failla AV, Schneider C, Glatzel M, Puig B, Magnus T. Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake. J Extracell Vesicles 2020; 9:1809065. [PMID: 32944194 PMCID: PMC7480459 DOI: 10.1080/20013078.2020.1809065] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.
Collapse
Affiliation(s)
- Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florence Schlink
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Ludewig
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
106
|
Corbeil D, Santos MF, Karbanová J, Kurth T, Rappa G, Lorico A. Uptake and Fate of Extracellular Membrane Vesicles: Nucleoplasmic Reticulum-Associated Late Endosomes as a New Gate to Intercellular Communication. Cells 2020; 9:cells9091931. [PMID: 32825578 PMCID: PMC7563309 DOI: 10.3390/cells9091931] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular membrane vesicles (EVs) are emerging as new vehicles in intercellular communication, but how the biological information contained in EVs is shared between cells remains elusive. Several mechanisms have been described to explain their release from donor cells and the initial step of their uptake by recipient cells, which triggers a cellular response. Yet, the intracellular routes and subcellular fate of EV content upon internalization remain poorly characterized. This is particularly true for EV-associated proteins and nucleic acids that shuttle to the nucleus of host cells. In this review, we will describe and discuss the release of EVs from donor cells, their uptake by recipient cells, and the fate of their cargoes, focusing on a novel intracellular route wherein small GTPase Rab7+ late endosomes containing endocytosed EVs enter into nuclear envelope invaginations and deliver their cargo components to the nucleoplasm of recipient cells. A tripartite protein complex composed of (VAMP)-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3), and Rab7 is essential for the transfer of EV-derived components to the nuclear compartment by orchestrating the particular localization of late endosomes in the nucleoplasmic reticulum.
Collapse
Affiliation(s)
- Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (J.K.)
- Correspondence: (D.C.); (A.L.); Tel.: +49-(0)351-463-40118 (D.C.); +1-(702)-777-3942 (A.L.); Fax: +49-(0)351-463-40244 (D.C.); +1-(702)-777-1758 (A.L.)
| | - Mark F. Santos
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA; (M.F.S.); (G.R.)
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (J.K.)
| | - Thomas Kurth
- Center for Regenerative Therapies Dresden and CMCB, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; (T.K.)
| | - Germana Rappa
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA; (M.F.S.); (G.R.)
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA; (M.F.S.); (G.R.)
- Mediterranean Institute of Oncology, Via Penninazzo, 11, 95029 Viagrande, Italy
- Correspondence: (D.C.); (A.L.); Tel.: +49-(0)351-463-40118 (D.C.); +1-(702)-777-3942 (A.L.); Fax: +49-(0)351-463-40244 (D.C.); +1-(702)-777-1758 (A.L.)
| |
Collapse
|
107
|
Kumar A, Kodidela S, Tadrous E, Cory TJ, Walker CM, Smith AM, Mukherjee A, Kumar S. Extracellular Vesicles in Viral Replication and Pathogenesis and Their Potential Role in Therapeutic Intervention. Viruses 2020; 12:E887. [PMID: 32823684 PMCID: PMC7472073 DOI: 10.3390/v12080887] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) have shown their potential as a carrier of molecular information, and they have been involved in physiological functions and diseases caused by viral infections. Virus-infected cells secrete various lipid-bound vesicles, including endosome pathway-derived exosomes and microvesicles/microparticles that are released from the plasma membrane. They are released via a direct outward budding and fission of plasma membrane blebs into the extracellular space to either facilitate virus propagation or regulate the immune responses. Moreover, EVs generated by virus-infected cells can incorporate virulence factors including viral protein and viral genetic material, and thus can resemble noninfectious viruses. Interactions of EVs with recipient cells have been shown to activate signaling pathways that may contribute to a sustained cellular response towards viral infections. EVs, by utilizing a complex set of cargos, can play a regulatory role in viral infection, both by facilitating and suppressing the infection. EV-based antiviral and antiretroviral drug delivery approaches provide an opportunity for targeted drug delivery. In this review, we summarize the literature on EVs, their associated involvement in transmission in viral infections, and potential therapeutic implications.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Erene Tadrous
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Theodore James Cory
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Crystal Martin Walker
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Amber Marie Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ahona Mukherjee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| |
Collapse
|
108
|
Elashiry M, Elashiry MM, Elsayed R, Rajendran M, Auersvald C, Zeitoun R, Rashid MH, Ara R, Meghil MM, Liu Y, Arbab AS, Arce RM, Hamrick M, Elsalanty M, Brendan M, Pacholczyk R, Cutler CW. Dendritic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease in vivo. J Extracell Vesicles 2020; 9:1795362. [PMID: 32944183 PMCID: PMC7480413 DOI: 10.1080/20013078.2020.1795362] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic bone degenerative diseases represent a major threat to the health and well-being of the population, particularly those with advanced age. This study isolated exosomes (EXO), natural nano-particles, from dendritic cells, the “directors” of the immune response, to examine the immunobiology of DC EXO in mice, and their ability to reprogram immune cells responsible for experimental alveolar bone loss in vivo. Distinct DC EXO subtypes including immune-regulatory (regDC EXO), loaded with TGFB1 and IL10 after purification, along with immune stimulatory (stimDC EXO) and immune “null” immature (iDCs EXO) unmodified after purification, were delivered via I.V. route or locally into the soft tissues overlying the alveolar bone. Locally administrated regDC EXO showed high affinity for inflamed sites, and were taken up by both DCs and T cells in situ. RegDC EXO-encapsulated immunoregulatory cargo (TGFB1 and IL10) was protected from proteolytic degradation. Moreover, maturation of recipient DCs and induction of Th17 effectors was suppressed by regDC EXO, while T-regulatory cell recruitment was promoted, resulting in inhibition of bone resorptive cytokines and reduction in osteoclastic bone loss. This work is the first demonstration of DC exosome-based therapy for a degenerative alveolar bone disease and provides the basis for a novel treatment strategy.
Collapse
Affiliation(s)
- Mahmoud Elashiry
- Department of Periodontics, Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA
| | - Mohamed M Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA, Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Mythily Rajendran
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Carol Auersvald
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Rana Zeitoun
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Department of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Mohammad H Rashid
- Department of Biochemistry & Molecular Biology, Georgia Cancer Center, Augusta, GA, USA
| | - Roxan Ara
- Department of Biochemistry & Molecular Biology, Georgia Cancer Center, Augusta, GA, USA
| | - Mohamed M Meghil
- Department of Periodontics, Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, GA, USA
| | - Ali S Arbab
- Department of Biochemistry & Molecular Biology, Georgia Cancer Center, Augusta, GA, USA
| | - Roger M Arce
- Department of Periodontics and Oral Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, GA, USA
| | - Mohammed Elsalanty
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Marshall Brendan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, GA, USA
| | - Rafal Pacholczyk
- Georgia Cancer Center, Augusta, GA, USA.,Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, GA, USA
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| |
Collapse
|
109
|
Goda T, Miyahara Y, Ishihara K. Phospholipid-mimicking cell-penetrating polymers: principles and applications. J Mater Chem B 2020; 8:7633-7641. [PMID: 32720672 DOI: 10.1039/d0tb01520b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the interactions of eukaryotic cellular membranes with nanomaterials is required to construct efficient and safe nanomedicines and molecular bioengineering. Intracellular uptake of nanocarriers by active endocytosis limits the intracellular distribution to the endosomal compartment, impairing the intended biological actions of the cargo molecules. Nonendocytic intracellular migration is another route for nanomaterials with cationic or amphiphilic properties to evade the barrier function of the lipid bilayer plasma membranes. Direct transport of nanomaterials into cells is efficient, but this may cause cytotoxic or biocidal effects by temporarily disrupting the biological membrane barrier. We have recently discovered that nonendocytic internalization of synthetic amphipathic polymer-based nanoaggregates that mimic the structure of natural phospholipids can occur without inducing cytotoxicity. Analysis using a proton leakage assay indicated that the polymer enters cells by amphiphilicity-induced membrane fusion rather than by transmembrane pore formation. These noncytotoxic cell-penetrating polymers may find applications in drug delivery systems, gene transfection, cell therapies, and biomolecular engineering.
Collapse
Affiliation(s)
- Tatsuro Goda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.
| | | | | |
Collapse
|
110
|
Iša P, Pérez-Delgado A, Quevedo IR, López S, Arias CF. Rotaviruses Associate with Distinct Types of Extracellular Vesicles. Viruses 2020; 12:v12070763. [PMID: 32708544 PMCID: PMC7411906 DOI: 10.3390/v12070763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
Rotaviruses are the leading cause of viral gastroenteritis among children under five years of age. Rotavirus cell entry has been extensively studied; however, rotavirus cell release is still poorly understood. Specifically, the mechanism by which rotaviruses leave the cell before cell lysis is not known. Previous works have found rotavirus proteins and viral particles associated with extracellular vesicles secreted by cells. These vesicles have been shown to contain markers of exosomes; however, in a recent work they presented characteristics more typical of microparticles, and they were associated with an increase in the infectivity of the virus. In this work, we purified different types of vesicles from rotavirus-infected cells. We analyzed the association of virus with these vesicles and their possible role in promotion of rotavirus infection. We confirmed a non-lytic rotavirus release from the two cell lines tested, and observed a notable stimulation of vesicle secretion following rotavirus infection. A fraction of the secreted viral particles present in the cell supernatant was protected from protease treatment, possibly through its association with membranous vesicles; the more pronounced association of the virus was with fractions corresponding to cell membrane generated microvesicles. Using electron microscopy, we found different size vesicles with particles resembling rotaviruses associated from both- the outside and the inside. The viral particles inside the vesicles were refractory to neutralization with a potent rotavirus neutralizing monoclonal antibody, and were able to infect cells even without trypsin activation. The association of rotavirus particles with extracellular vesicles suggests these might have a role in virus spread.
Collapse
Affiliation(s)
- Pavel Iša
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico; (A.P.-D.); (S.L.); (C.F.A.)
- Correspondence: ; Tel.: +52-777-3291612
| | - Arianna Pérez-Delgado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico; (A.P.-D.); (S.L.); (C.F.A.)
| | - Iván R. Quevedo
- Departamento de Ingeniería Química Industrial y de Alimentos, Universidad Iberoamericana, Ciudad de México CP 01219, Mexico;
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico; (A.P.-D.); (S.L.); (C.F.A.)
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico; (A.P.-D.); (S.L.); (C.F.A.)
| |
Collapse
|
111
|
Xiao Y, Driedonks T, Witwer KW, Wang Q, Yin H. How does an RNA selfie work? EV-associated RNA in innate immunity as self or danger. J Extracell Vesicles 2020; 9:1793515. [PMID: 32944182 PMCID: PMC7480420 DOI: 10.1080/20013078.2020.1793515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Innate immunity is a first line of defence against danger. Exogenous pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) trigger innate immune responses through well-understood cellular pathways. In contrast, endogenous damage-associated molecular patterns (DAMPs) convey “danger signals” via their (mis)localization or modification. Both MAMPs and DAMPs are often communicated on or within extracellular vesicles (EVs). Despite growing evidence for the importance of EVs and their cargo in modulating innate immune responses, in some cases, it is unclear how EV-transported molecules are sensed as abnormal. In particular, EVs constitutively carry RNA, which is also abundant in the cytoplasm. How, then, would RNA convey a danger signal as a cargo of EVs? In this Perspective, we offer some thoughts on how EV-associated RNAs might raise the alarm for innate immune responses – or silence them.
Collapse
Affiliation(s)
- Yu Xiao
- Zhujiang Hospital, Laboratory of Medicine Center, Southern Medical University, Guangzhou, Guangdong, China
| | - Tom Driedonks
- Department of Molecular and Comparative Pathobiology, Baltimore, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Baltimore, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Qian Wang
- Zhujiang Hospital, Laboratory of Medicine Center, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Yin
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
112
|
Mohan A, Agarwal S, Clauss M, Britt NS, Dhillon NK. Extracellular vesicles: novel communicators in lung diseases. Respir Res 2020; 21:175. [PMID: 32641036 PMCID: PMC7341477 DOI: 10.1186/s12931-020-01423-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The lung is the organ with the highest vascular density in the human body. It is therefore perceivable that the endothelium of the lung contributes significantly to the circulation of extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies. In addition to the endothelium, EVs may arise from alveolar macrophages, fibroblasts and epithelial cells. Because EVs harbor cargo molecules, such as miRNA, mRNA, and proteins, these intercellular communicators provide important insight into the health and disease condition of donor cells and may serve as useful biomarkers of lung disease processes. This comprehensive review focuses on what is currently known about the role of EVs as markers and mediators of lung pathologies including COPD, pulmonary hypertension, asthma, lung cancer and ALI/ARDS. We also explore the role EVs can potentially serve as therapeutics for these lung diseases when released from healthy progenitor cells, such as mesenchymal stem cells.
Collapse
Affiliation(s)
- Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Matthias Clauss
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicholas S Britt
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
113
|
Abstract
Exosomes are small, single-membrane, secreted organelles of ∼30 to ∼200 nm in diameter that have the same topology as the cell and are enriched in selected proteins, lipids, nucleic acids, and glycoconjugates. Exosomes contain an array of membrane-associated, high-order oligomeric protein complexes, display pronounced molecular heterogeneity, and are created by budding at both plasma and endosome membranes. Exosome biogenesis is a mechanism of protein quality control, and once released, exosomes have activities as diverse as remodeling the extracellular matrix and transmitting signals and molecules to other cells. This pathway of intercellular vesicle traffic plays important roles in many aspects of human health and disease, including development, immunity, tissue homeostasis, cancer, and neurodegenerative diseases. In addition, viruses co-opt exosome biogenesis pathways both for assembling infectious particles and for establishing host permissiveness. On the basis of these and other properties, exosomes are being developed as therapeutic agents in multiple disease models.
Collapse
Affiliation(s)
- D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
114
|
Exosome mimicry by a HAVCR1-NPC1 pathway of endosomal fusion mediates hepatitis A virus infection. Nat Microbiol 2020; 5:1096-1106. [PMID: 32541946 PMCID: PMC7483988 DOI: 10.1038/s41564-020-0740-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cell-to-cell communication by exosomes controls normal and pathogenic processes1,2. Viruses can spread in exosomes and thereby avoid immune recognition3. While biogenesis, binding and uptake of exosomes are well characterized4,5, delivery of exosome cargo into the cytoplasm is poorly understood3. We report that the phosphatidylserine receptor HAVCR1 (refs. 6,7) and the cholesterol transporter NPC1 (ref. 8) participate in cargo delivery from exosomes of hepatitis A virus (HAV)-infected cells (exo-HAV) by clathrin-mediated endocytosis. Using CRISPR-Cas9 knockout technology, we show that these two lipid receptors, which interact in the late endosome9, are necessary for the membrane fusion and delivery of RNA from exo-HAV into the cytoplasm. The HAVCR1-NPC1 pathway, which Ebola virus exploits to infect cells9, mediates HAV infection by exo-HAV, which indicates that viral infection via this exosome mimicry mechanism does not require an envelope glycoprotein. The capsid-free viral RNA in the exosome lumen, but not the endosomal uncoating of HAV particles contained in the exosomes, is mainly responsible for exo-HAV infectivity as assessed by methylene blue inactivation of non-encapsidated RNA. In contrast to exo-HAV, infectivity of HAV particles is pH-independent and requires HAVCR1 or another as yet unidentified receptor(s) but not NPC1. Our findings show that envelope-glycoprotein-independent fusion mechanisms are shared by exosomes and viruses, and call for a reassessment of the role of envelope glycoproteins in infection.
Collapse
|
115
|
Bello-Morales R, Ripa I, López-Guerrero JA. Extracellular Vesicles in Viral Spread and Antiviral Response. Viruses 2020; 12:E623. [PMID: 32521696 PMCID: PMC7354624 DOI: 10.3390/v12060623] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Viral spread by both enveloped and non-enveloped viruses may be mediated by extracellular vesicles (EVs), including microvesicles (MVs) and exosomes. These secreted vesicles have been demonstrated to be an efficient mechanism that viruses can use to enter host cells, enhance spread or evade the host immune response. However, the complex interplay between viruses and EVs gives rise to antagonistic biological tasks-to benefit the viruses, enhancing infection and interfering with the immune system or to benefit the host, by mediating anti-viral responses. Exosomes from cells infected with herpes simplex type 1 (HSV-1) may transport viral and host transcripts, proteins and innate immune components. This virus may also use MVs to expand its tropism and evade the host immune response. This review aims to describe the current knowledge about EVs and their participation in viral infection, with a specific focus on the role of exosomes and MVs in herpesvirus infections, particularly that of HSV-1.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
116
|
Murdica V, Giacomini E, Makieva S, Zarovni N, Candiani M, Salonia A, Vago R, Viganò P. In vitro cultured human endometrial cells release extracellular vesicles that can be uptaken by spermatozoa. Sci Rep 2020; 10:8856. [PMID: 32483153 PMCID: PMC7264351 DOI: 10.1038/s41598-020-65517-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/05/2020] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from different parts of the male reproductive tract can be internalized by human spermatozoa affecting their maturation and regulating their functions. Here we demonstrate that EVs derived from the female tract can be uptaken by sperm and affect their competence. Primary endometrial cells release EVs with a diameter between 50 and 350 nm and bear the standard vesicle and exosome marker proteins CD63, CD9, TSG101 and ALIX. The uptake of dye-labelled endometrial cell-derived EVs by spermatozoa, quantified as fluorescence intensity, was significantly higher when EVs were derived from cells in the proliferative phase. Vital, motile fluorescent sperm could be appreciated after a 48-hour co-incubation with endometrial cells previously labelled with the Vybrant™ DiO dye. EV internalization by sperm was blocked at 4 °C and by incubation with filipin, suggesting an energy-dependent process probably attributable to the lipid-raft domain mediated-endocytosis. Sperm ability to undergo capacitation and acrosome reaction was stimulated by endometrial cell-derived EVs as manifested by the increased protein tyrosine phosphorylation and evident reactivity when stimulated with a calcium ionophore. Based on these findings, EVs exchange may be suggested as an emerging way through which female reproductive tract cells can interact with the passing spermatozoa.
Collapse
Affiliation(s)
- Valentina Murdica
- Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Elisa Giacomini
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milano, 20132, Italy
| | - Sofia Makieva
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milano, 20132, Italy
| | | | - Massimo Candiani
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milano, 20132, Italy
| | - Andrea Salonia
- Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, 20132, Italy.,Università Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Riccardo Vago
- Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, 20132, Italy. .,Università Vita-Salute San Raffaele, Milan, 20132, Italy.
| | - Paola Viganò
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milano, 20132, Italy.
| |
Collapse
|
117
|
Extracellular vesicles for tumor targeting delivery based on five features principle. J Control Release 2020; 322:555-565. [DOI: 10.1016/j.jconrel.2020.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
118
|
Dogrammatzis C, Waisner H, Kalamvoki M. Cloaked Viruses and Viral Factors in Cutting Edge Exosome-Based Therapies. Front Cell Dev Biol 2020; 8:376. [PMID: 32528954 PMCID: PMC7264115 DOI: 10.3389/fcell.2020.00376] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) constitute a heterogeneous group of vesicles released by all types of cells that play a major role in intercellular communication. The field of EVs started gaining attention since it was realized that these vesicles are not waste bags, but they carry specific cargo and they communicate specific messages to recipient cells. EVs can deliver different types of RNAs, proteins, and lipids from donor to recipient cells and they can influence recipient cell functions, despite their limited capacity for cargo. EVs have been compared to viruses because of their size, cell entry pathways, and biogenesis and to viral vectors because they can be loaded with desired cargo, modified, and re-targeted. These properties along with the fact that EVs are stable in body fluids, they can be produced and purified in large quantities, they can cross the blood-brain barrier, and autologous EVs do not appear to cause major adverse effects, have rendered them attractive for therapeutic use. Here, we discuss the potential for therapeutic use of EVs derived from virus infected cells or EVs carrying viral factors. We have focused on six major concepts: (i) the role of EVs in virus-based oncolytic therapy or virus-based gene delivery approaches; (ii) the potential use of EVs for developing viral vaccines or optimizing already existing vaccines; (iii) the role of EVs in delivering RNAs and proteins in the context of viral infections and modulating the microenvironment of infection; (iv) how to take advantage of viral features to design effective means of EV targeting, uptake, and cargo packaging; (v) the potential of EVs in antiviral drug delivery; and (vi) identification of novel antiviral targets based on EV biogenesis factors hijacked by viruses for assembly and egress. It has been less than a decade since more attention was given to EV research and some interesting concepts have already been developed. In the coming years, additional information on EV biogenesis, how they are hijacked and utilized by pathogens, and their impact on the microenvironment of infection is expected to indicate avenues to optimize existing therapeutic tools and develop novel approaches.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
119
|
Li S, Wu Y, Ding F, Yang J, Li J, Gao X, Zhang C, Feng J. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. NANOSCALE 2020; 12:10854-10862. [PMID: 32396590 DOI: 10.1039/d0nr00523a] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most metastatic and recurrent subtype of all breast cancers. Owing to the lack of therapeutic targets, chemotherapy and surgical intervention are the only treatments for TNBC. However, the effectiveness of chemotherapeutics is limited by its shortcomings such as poor targeting, easy removal and high toxicity. Recently, exosomes have attracted more and more attention as a drug delivery system. As endogenous vesicles, exosomes ensure low immunogenicity, nontoxicity, and long blood circulation time. In addition, immune cell-derived exosomes can mimic the immune cell to target tumor cells. Herein, we developed a macrophage-derived exosome-coated poly(lactic-co-glycolic acid) nanoplatform for targeted chemotherapy of TNBC. To further improve the tumor targetability, the surface of the exosome was modified with a peptide to target the mesenchymal-epithelial transition factor (c-Met), which is overexpressed by TNBC cells. The results showed that the engineered exosome-coated nanoparticles significantly improved the cellular uptake efficiency and the antitumor efficacy of doxorubicin. In vivo study demonstrated that the nanocarriers exhibited remarkable tumor-targeting efficacy, led to increased inhibition of tumor growth and induced intense tumor apoptosis. These results indicated that the engineered macrophage exosome-coated nanoparticles were a promising drug delivery strategy for TNBC treatment.
Collapse
Affiliation(s)
- Sha Li
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China and Medical College, Anhui University of Science and Technology, 168 Taifeng Road, Huainan, 232001, China
| | - Yijing Wu
- Zhiyuan College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fei Ding
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Jing Li
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China and Shanghai University of Medicine & Health Sciences affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Xihui Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Jing Feng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China and Shanghai University of Medicine & Health Sciences affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| |
Collapse
|
120
|
Shandilya S, Rani P, Onteru SK, Singh D. Natural ligand-receptor mediated loading of siRNA in milk derived exosomes. J Biotechnol 2020; 318:1-9. [PMID: 32361020 DOI: 10.1016/j.jbiotec.2020.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/17/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022]
Abstract
siRNA based therapeutics have become the next frontier in molecular medicine. Though exosomes emerge as a promising drug delivery vehicle for siRNAs, significant hurdle remains in finding safe and effective loading methods. Traditional methods of loading exogenous siRNAs in exosomes are marked by certain limitations like siRNA aggregation, toxicity to the cells and their high experimental cost. As an electroporation and lipofection free approach, we show that the molecular conjugate of bovine lactoferrin with polyl-l-ysine electrostatically interacts with negatively charged siRNA, wherein lactoferrin as a ligand is captured by the GAPDH present in exosomes, loading siRNA in an effortless manner. This method exhibited transfection efficiency, colocalization percentage and colocalization threshold similar to electroporation. Furthermore, efficient uptake of exosomes loaded with siRNA via conjugate in recipient cells was observed. Our current study univocally establishes chemical free and non-mechanical method for the encapsulation and intercellular delivery of siRNA for wider therapeutic applications.
Collapse
Affiliation(s)
- Shruti Shandilya
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Payal Rani
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
121
|
Joshi B, de Beer MA, Giepmans BNG, Zuhorn IS. Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes. ACS NANO 2020; 14:4444-4455. [PMID: 32282185 PMCID: PMC7199215 DOI: 10.1021/acsnano.9b10033] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/13/2020] [Indexed: 05/22/2023]
Abstract
Extracellular vesicles (EVs), such as exosomes, can mediate long-distance communication between cells by delivering biomolecular cargo. It is speculated that EVs undergo back-fusion at multivesicular bodies (MVBs) in recipient cells to release their functional cargo. However, direct evidence is lacking. Tracing the cellular uptake of EVs with high resolution as well as acquiring direct evidence for the release of EV cargo is challenging mainly because of technical limitations. Here, we developed an analytical methodology, combining state-of-the-art molecular tools and correlative light and electron microscopy, to identify the intracellular site for EV cargo release. GFP was loaded inside EVs through the expression of GFP-CD63, a fusion of GFP to the cytosolic tail of CD63, in EV producer cells. In addition, we genetically engineered a cell line which expresses anti-GFP fluobody that specifically recognizes the EV cargo (GFP). Incubation of anti-GFP fluobody-expressing cells with GFP-CD63 EVs resulted in the formation of fluobody punctae, designating cytosolic exposure of GFP. Endosomal damage was not observed in EV acceptor cells. Ultrastructural analysis of the underlying structures at GFP/fluobody double-positive punctae demonstrated that EV cargo release occurs from endosomes/lysosomes. Finally, we show that neutralization of endosomal pH and cholesterol accumulation in endosomes leads to blockage of EV cargo exposure. In conclusion, we report that a fraction of internalized EVs fuse with the limiting membrane of endosomes/lysosomes in an acidification-dependent manner, which results in EV cargo exposure to the cell cytosol.
Collapse
Affiliation(s)
- Bhagyashree
S. Joshi
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Marit A. de Beer
- Department
of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Ben N. G. Giepmans
- Department
of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Inge S. Zuhorn
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
122
|
Dekel E, Abou Karam P, Ohana-Daniel Y, Biton M, Regev-Rudzki N, Porat Z. Antibody-Free Labeling of Malaria-Derived Extracellular Vesicles Using Flow Cytometry. Biomedicines 2020; 8:E98. [PMID: 32349226 PMCID: PMC7277110 DOI: 10.3390/biomedicines8050098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound structures that are believed to play a major role in intercellular communication by allowing cells to exchange proteins and genetic cargo between them. In particular, pathogens, such as the malaria parasite Plasmodium (P.) falciparum, utilize EVs to promote their growth and to alter their host's response. Thus, better characterization of these secreted organelles will enhance our understanding of the cellular processes that govern EVs' biology and pathological functions. Here we present a method that utilizes a high-end flow cytometer system to characterize small EVs, i.e., with a diameter less than 200 nm. Using this method, we could evaluate different parasite-derived EV populations according to their distinct cargo by using antibody-free labeling. It further allows to closely monitor a sub-population of vesicles carrying parasitic DNA cargo. This ability paves the way to conducting a more 'educated' analysis of the various EV cargo components.
Collapse
Affiliation(s)
- Elya Dekel
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (E.D.); (P.A.K.); (Y.O.-D.); (M.B.)
| | - Paula Abou Karam
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (E.D.); (P.A.K.); (Y.O.-D.); (M.B.)
| | - Yael Ohana-Daniel
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (E.D.); (P.A.K.); (Y.O.-D.); (M.B.)
| | - Mirit Biton
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (E.D.); (P.A.K.); (Y.O.-D.); (M.B.)
| | - Neta Regev-Rudzki
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (E.D.); (P.A.K.); (Y.O.-D.); (M.B.)
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
123
|
Qin B, Zhang Q, Hu XM, Mi TY, Yu HY, Liu SS, Zhang B, Tang M, Huang JF, Xiong K. How does temperature play a role in the storage of extracellular vesicles? J Cell Physiol 2020; 235:7663-7680. [PMID: 32324279 DOI: 10.1002/jcp.29700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) contain specific proteins, lipids, and nucleic acids that can be passed to other cells as signal molecules to alter their function. However, there are many problems and challenges in the conversion and clinical application of EVs. Storage and protection of EVs is one of the issues that need further research. To adapt to potential clinical applications, this type of problem must be solved. This review summarizes the storage practices of EVs in recent years, and explains the impact of temperature on the quality and stability of EVs during storage based on current research, and explains the potential mechanisms involved in this effect as much as possible.
Collapse
Affiliation(s)
- Bo Qin
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tuo-Yang Mi
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hai-Yang Yu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shen-Shen Liu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Mu Tang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
124
|
Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SEL, Vader P. Extracellular vesicles as drug delivery systems: Why and how? Adv Drug Deliv Rev 2020; 159:332-343. [PMID: 32305351 DOI: 10.1016/j.addr.2020.04.004] [Citation(s) in RCA: 631] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Over the past decades, a multitude of synthetic drug delivery systems has been developed and introduced to the market. However, applications of such systems are limited due to inefficiency, cytotoxicity and/or immunogenicity. At the same time, the field of natural drug carrier systems has grown rapidly. One of the most prominent examples of such natural carriers are extracellular vesicles (EVs). EVs are cell-derived membranous particles which play important roles in intercellular communication. EVs possess a number of characteristics that qualify them as promising vehicles for drug delivery. In order to take advantage of these attributes, an in-depth understanding of why EVs are such unique carrier systems and how we can exploit their qualities is pivotal. Here, we review unique EV features that are relevant for drug delivery and highlight emerging strategies to make use of those features for drug loading and targeted delivery.
Collapse
|
125
|
Shao L, Zhang Y, Pan X, Liu B, Liang C, Zhang Y, Wang Y, Yan B, Xie W, Sun Y, Shen Z, Yu XY, Li Y. Knockout of beta-2 microglobulin enhances cardiac repair by modulating exosome imprinting and inhibiting stem cell-induced immune rejection. Cell Mol Life Sci 2020; 77:937-952. [PMID: 31312880 PMCID: PMC11104803 DOI: 10.1007/s00018-019-03220-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Allogeneic human umbilical mesenchymal stem cells (alloUMSC) are convenient cell source for stem cell-based therapy. However, immune rejection is a major obstacle for clinical application of alloUMSC for cardiac repair after myocardial infarction (MI). The immune rejection is due to the presence of human leukocyte antigen (HLA) class I molecule which is increased during MI. The aim of this study was to knockout HLA light chain β2-microglobulin (B2M) in UMSC to enhance stem cell engraftment and survival after transplantation. METHODS AND RESULTS We developed an innovative strategy using CRISPR/Cas9 to generate UMSC with B2M deletion (B2M-UMSC). AlloUMSC injection induced CD8+ T cell-mediated immune rejection in immune competent rats, whereas no CD8+ T cell-mediated killing against B2M-UMSC was observed even when the cells were treated with IFN-γ. Moreover, we demonstrate that UMSC-derived exosomes can inhibit cardiac fibrosis and restore cardiac function, and exosomes derived from B2M-UMSC are more efficient than those derived from UMSC, indicating that the beneficial effect of exosomes can be enhanced by modulating exosome's imprinting. Mechanistically, microRNA sequencing identifies miR-24 as a major component of the exosomes from B2M-UMSCs. Bioinformatics analysis identifies Bim as a putative target of miR-24. Loss-of-function studies at the cellular level and gain-of-function approaches in exosomes show that the beneficial effects of B2M-UMSCs are mediated by the exosome/miR-24/Bim pathway. CONCLUSION Our findings demonstrate that modulation of exosome's imprinting via B2M knockout is an efficient strategy to prevent the immune rejection of alloUMSCs. This study paved the way to the development of new strategies for tissue repair and regeneration without the need for HLA matching.
Collapse
Affiliation(s)
- Lianbo Shao
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yu Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xiangbin Pan
- Department of Cardiac Surgery, Fuwai Hospital, Beijing, 100037, People's Republic of China
| | - Bin Liu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Yuqing Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yanli Wang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Bing Yan
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wenping Xie
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yi Sun
- Fuwai Yunnan Cardiovascular Hospital, Kunming, 650302, Yunnan, People's Republic of China
| | - Zhenya Shen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xi-Yong Yu
- Guangzhou Medical University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
126
|
Martínez-Rojas PP, Quiroz-García E, Monroy-Martínez V, Agredano-Moreno LT, Jiménez-García LF, Ruiz-Ordaz BH. Participation of Extracellular Vesicles from Zika-Virus-Infected Mosquito Cells in the Modification of Naïve Cells' Behavior by Mediating Cell-to-Cell Transmission of Viral Elements. Cells 2020; 9:cells9010123. [PMID: 31947958 PMCID: PMC7016930 DOI: 10.3390/cells9010123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
To date, no safe vaccine or antivirals for Zika virus (ZIKV) infection have been found. The pathogenesis of severe Zika, where host and viral factors participate, remains unclear. For the control of Zika, it is important to understand how ZIKV interacts with different host cells. Knowledge of the targeted cellular pathways which allow ZIKV to productively replicate and/or establish prolonged viral persistence contributes to novel vaccines and therapies. Monocytes and endothelial vascular cells are the main ZIKV targets. During the infection process, cells are capable of releasing extracellular vesicles (EVs). EVs are mediators of intercellular communication. We found that mosquito EVs released from ZIKV-infected (C6/36) cells carry viral RNA and ZIKV-E protein and are able to infect and activate naïve mosquito and mammalian cells. ZIKV C6/36 EVs promote the differentiation of naïve monocytes and induce a pro-inflammatory state with tumor necrosis factor-alpha (TNF-α) mRNA expression. ZIKV C6/36 EVs participate in endothelial vascular cell damage by inducing coagulation (TF) and inflammation (PAR-1) receptors at the endothelial surface of the cell membranes and promote a pro-inflammatory state with increased endothelial permeability. These data suggest that ZIKV C6/36 EVs may contribute to the pathogenesis of ZIKV infection in human hosts.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Rojas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Elizabeth Quiroz-García
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Verónica Monroy-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Blanca H. Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
- Correspondence: or ; Tel.: +521-55-56228931
| |
Collapse
|
127
|
Teng F, Fussenegger M. Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2003505. [PMID: 33437589 PMCID: PMC7788585 DOI: 10.1002/advs.202003505] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Indexed: 05/14/2023]
Abstract
Extracellular vesicles (EVs) are biocompatible, nano-sized secreted vesicles containing many types of biomolecules, including proteins, RNAs, DNAs, lipids, and metabolites. Their low immunogenicity and ability to functionally modify recipient cells by transferring diverse bioactive constituents make them an excellent candidate for a next-generation drug delivery system. Here, the recent advances in EV biology and emerging strategies of EV bioengineering are summarized, and the prospects for clinical translation of bioengineered EVs and the challenges to be overcome are discussed.
Collapse
Affiliation(s)
- Fei Teng
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
- Faculty of ScienceUniversity of BaselMattenstrasse 26BaselCH‐4058Switzerland
| |
Collapse
|
128
|
Pocsfalvi G, Mammadova R, Ramos Juarez AP, Bokka R, Trepiccione F, Capasso G. COVID-19 and Extracellular Vesicles: An Intriguing Interplay. Kidney Blood Press Res 2020; 45:661-670. [PMID: 32957112 PMCID: PMC7573892 DOI: 10.1159/000511402] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The outbreak of severe acute respiratory syndrome β-coronavirus 2 (SARS-CoV-2) has the potential to become a long-lasting global health crisis. The number of people infected with the novel coronavirus has surpassed 22 million globally, resulting in over 700,000 deaths with more than 15 million people having recovered (https://covid19.who.int). Enormous efforts are underway for rapid vaccine and treatment developments. Amongst the many ways of tackling the novel coronavirus disease 2019 (COVID-19) pandemic, extracellular vesicles (EVs) are emerging. SUMMARY EVs are lipid bilayer-enclosed structures secreted from all types of cells, including those lining the respiratory tract. They have established roles in lung immunity and are involved in the pathogenesis of various lung diseases, including viral infection. In this review, we point out the roles and possible contribution of EVs in viral infections, as well as ongoing EV-based approaches for the treatment of COVID-19, including clinical trials. Key Messages: EVs share structural similarities to viruses and recent findings demonstrate that viruses exploit EVs for cellular exit and EVs exploit viral entry mechanisms for cargo delivery. Moreover, EV-virus interplay could be exploited for future antiviral drug and vaccine development. EV-based therapies, especially the mesenchymal stem cell-derived EVs, are being intensively studied for the treatment of COVID-19.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy,
| | - Ramila Mammadova
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ana Paulina Ramos Juarez
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ramesh Bokka
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
- Biogem Research Institute, Ariano Irpino, Avellino, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
- Biogem Research Institute, Ariano Irpino, Avellino, Italy
| |
Collapse
|
129
|
Abstract
Exosomes are nanosized vesicles secreted by nearly all types of cells and play important roles in intercellular communication. Given their unique and important pharmacological properties, exosomes have been emerging as a new class of cell-free therapeutics. Herein, we describe exosomes developed against epidermal growth factor receptor (EGFR), a key factor in epithelial malignancies, involved in enhanced tumor growth, invasion, and metastasis. The exosomes are genetically modified for displaying two distinct types of monoclonal antibodies on the exosome surface, resulting in novel synthetic multivalent antibodies retargeted exosomes (SMART-Exos) that can simultaneously target tumor-associated human EGFR and T-cell surface CD3 receptor. By redirecting and activating T cells toward attacking EGFR-expressing cancer cells, the designed SMART-Exos exhibit highly potent and specific antitumor activity. In this chapter, the methodologies are outlined for generating and using SMART-Exos for cancer immunotherapy.
Collapse
Affiliation(s)
- Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA. .,Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA. .,Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
130
|
Abstract
Extracellular vesicles (EVs) are secreted membrane vesicles, derived from endosomes or from the plasma membrane, which have been isolated from most cell types and biological fluids. Although EVs are highly heterogeneous and their classification is complex, two major categories can be distinguished: microvesicles (MVs), which derive from the shedding of the plasma membrane, and exosomes, which correspond to intraluminal vesicles released to the extracellular milieu upon fusion of multivesicular bodies (MVBs) with the plasma membrane. Cells infected with viruses may secrete MVs containing viral proteins, RNAs and, in some instances, infectious virions. A recent study carried out by our laboratory has shown that MVs released by cells infected with HSV-1 contained virions and were endocytosed by naïve cells leading to a productive infection. This suggests that HSV-1 may use MVs for spreading, expanding its tropism and evading the host immune response. Here we describe in detail the methods used to isolate and analyse the MVs released from HSV-1-infected cells.
Collapse
|
131
|
Kratzer B, Hofer S, Zabel M, Pickl WF. All the small things: How virus-like particles and liposomes modulate allergic immune responses. Eur J Immunol 2019; 50:17-32. [PMID: 31799700 PMCID: PMC6973265 DOI: 10.1002/eji.201847810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/15/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Recent years have seen a dramatic increase in the range of applications of virus‐like nanoparticle (VNP)‐ and liposome‐based antigen delivery systems for the treatment of allergies. These platforms rely on a growing number of inert virus‐backbones or distinct lipid formulations and intend to engage the host's innate and/or adaptive immune system by virtue of their co‐delivered immunogens. Due to their particulate nature, VNP and liposomal preparations are also capable of breaking tolerance against endogenous cytokines, Igs, and their receptors, allowing for the facile induction of anti‐cytokine, anti‐IgE, or anti‐FcεR antibodies in the host. We here discuss the “pros and cons” of inducing such neutralizing autoantibodies. Moreover, we cover another major theme of the last years, i.e., the engineering of non‐anaphylactogenic particles and the elucidation of the parameters relevant for the specific trafficking and processing of such particles in vivo. Finally, we put the various technical advances in VNP‐ and liposome‐research into (pre‐)clinical context by referring and critically discussing the relevant studies performed to treat allergic diseases.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Sandra Hofer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| |
Collapse
|
132
|
Zhang Y, Wang Y, Shao L, Pan X, Liang C, Liu B, Zhang Y, Xie W, Yan B, Liu F, Yu XY, Li Y. Knockout of beta-2 microglobulin reduces stem cell-induced immune rejection and enhances ischaemic hindlimb repair via exosome/miR-24/Bim pathway. J Cell Mol Med 2019; 24:695-710. [PMID: 31729180 PMCID: PMC6933348 DOI: 10.1111/jcmm.14778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022] Open
Abstract
Generating universal human umbilical mesenchymal stem cells (UMSCs) without immune rejection is desirable for clinical application. Here we developed an innovative strategy using CRISPR/Cas9 to generate B2M‐UMSCs in which human leucocyte antigen (HLA) light chain β2‐microglobulin (B2M) was deleted. The therapeutic potential of B2M‐UMSCs was examined in a mouse ischaemic hindlimb model. We show that B2M‐UMSCs facilitated perfusion recovery and enhanced running capability, without inducing immune rejection. The beneficial effect was mediated by exosomes. Mechanistically, microRNA (miR) sequencing identified miR‐24 as a major component of the exosomes originating from B2M‐UMSCs. We identified Bim as a potential target of miR‐24 through bioinformatics analysis, which was further confirmed by loss‐of‐function and gain‐of‐function approaches. Taken together, our data revealed that knockout of B2M is a convenient and efficient strategy to prevent UMSCs‐induced immune rejection, and it provides a universal clinical‐scale cell source for tissue repair and regeneration without the need for HLA matching in the future.
Collapse
Affiliation(s)
- Yuqing Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanli Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lianbo Shao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangbin Pan
- Department of Cardiac Surgery, Fuwai Hospital, Beijing, China
| | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bin Liu
- Department of Cardiology, Second Hospital of Jilin University, Jilin, China
| | - Yu Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenping Xie
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Yan
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Liu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi-Yong Yu
- Guangzhou Medical University, Guangzhou, China
| | - Yangxin Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
133
|
Mechanisms of extracellular vesicle uptake in stressed retinal pigment epithelial cell monolayers. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165608. [PMID: 31740401 DOI: 10.1016/j.bbadis.2019.165608] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Extracellular vesicles (EVs) can mediate long-distance communication in polarized RPE monolayers. Specifically, EVs from oxidatively stressed donor cells (stress EVs) rapidly reduced barrier function (transepithelial resistance, TER) in naïve recipient monolayers, when compared to control EVs. This effect on TER was dependent on dynamin-mediated EV uptake, which occurred rapidly with EVs from oxidatively stressed donor cells. Here, we further determined molecular mechanisms involved in uptake of EVs by naïve RPE cells. METHODS RPE cells were grown as monolayers in media supplemented with 1% FBS followed by transfer to FBS-free media. Cultures were used to collect control or stress EVs upon treatment with H2O2, others served as naïve recipient cells. In recipient monolayers, TER was used to monitor EV-uptake-based activity, live-cell imaging confirmed uptake. EV surface proteins were quantified by protein chemistry. RESULTS Clathrin-independent, lipid raft-mediated internalization was excluded as an uptake mechanism. Known ligand-receptor interactions involved in clathrin-dependent endocytosis include integrins and proteoglycans. Desialylated glycans and integrin-receptors on recipient cells were necessary for EV uptake and subsequent reduction of TER in recipient cells. Protein quantifications confirmed elevated levels of ligands and neuraminidase on stress EVs. However, control EVs could confer activity in the TER assay if exogenous neuraminidase or additional ligand was provided. CONCLUSIONS In summary, while EVs from both stressed cells and control contain cargo to communicate stress messages to naive RPE cells, stress EVs contain surface ligands that confer rapid uptake by recipient cells. We propose that EVs potentially contribute to RPE dysfunction in aging and disease.
Collapse
|
134
|
Abstract
Exosomes and ectosomes, two distinct types of extracellular vesicles generated by all types of cell, play key roles in intercellular communication. The formation of these vesicles depends on local microdomains assembled in endocytic membranes for exosomes and in the plasma membrane for ectosomes. These microdomains govern the accumulation of proteins and various types of RNA associated with their cytosolic surface, followed by membrane budding inward for exosome precursors and outward for ectosomes. A fraction of endocytic cisternae filled with vesicles - multivesicular bodies - are later destined to undergo regulated exocytosis, leading to the extracellular release of exosomes. In contrast, the regulated release of ectosomes follows promptly after their generation. These two types of vesicle differ in size - 50-150 nm for exosomes and 100-500 nm for ectosomes - and in the mechanisms of assembly, composition, and regulation of release, albeit only partially. For both exosomes and ectosomes, the surface and luminal cargoes are heterogeneous when comparing vesicles released by different cell types or by single cells in different functional states. Upon release, the two types of vesicle navigate through extracellular fluid for varying times and distances. Subsequently, they interact with recognized target cells and undergo fusion with endocytic or plasma membranes, followed by integration of vesicle membranes into their fusion membranes and discharge of luminal cargoes into the cytosol, resulting in changes to cellular physiology. After fusion, exosome/ectosome components can be reassembled in new vesicles that are then recycled to other cells, activating effector networks. Extracellular vesicles also play critical roles in brain and heart diseases and in cancer, and are useful as biomarkers and in the development of innovative therapeutic approaches.
Collapse
|
135
|
Shelke GV, Yin Y, Jang SC, Lässer C, Wennmalm S, Hoffmann HJ, Li L, Gho YS, Nilsson JA, Lötvall J. Endosomal signalling via exosome surface TGFβ-1. J Extracell Vesicles 2019; 8:1650458. [PMID: 31595182 PMCID: PMC6764367 DOI: 10.1080/20013078.2019.1650458] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/24/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles such as exosomes convey biological messages between cells, either by surface-to-surface interaction or by shuttling of bioactive molecules to a recipient cell's cytoplasm. Here we show that exosomes released by mast cells harbour both active and latent transforming growth factor β-1 (TGFβ-1) on their surfaces. The latent form of TGFβ-1 is associated with the exosomes via heparinase-II and pH-sensitive elements. These vesicles traffic to the endocytic compartment of recipient human mesenchymal stem cells (MSCs) within 60 min of exposure. Further, the exosomes-associated TGFβ-1 is retained within the endosomal compartments at the time of signalling, which results in prolonged cellular signalling compared to free-TGFβ-1. These exosomes induce a migratory phenotype in primary MSCs involving SMAD-dependent pathways. Our results show that mast cell-derived exosomes are decorated with latent TGFβ-1 and are retained in recipient MSC endosomes, influencing recipient cell migratory phenotype. We conclude that exosomes can convey signalling within endosomes by delivering bioactive surface ligands to this intracellular compartment.
Collapse
Affiliation(s)
- Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yanan Yin
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Wennmalm
- Royal Institute of Technology-KTH, Department of Applied Physics, Experimental Biomolecular Physics Group, SciLife Laboratory, Solna, Sweden
| | - Hans Jürgen Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of respiratory and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Li Li
- Department of Laboratory Medicine, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jonas Andreas Nilsson
- Department of Surgery, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
136
|
Pinto DO, DeMarino C, Pleet ML, Cowen M, Branscome H, Al Sharif S, Jones J, Dutartre H, Lepene B, Liotta LA, Mahieux R, Kashanchi F. HTLV-1 Extracellular Vesicles Promote Cell-to-Cell Contact. Front Microbiol 2019; 10:2147. [PMID: 31620104 PMCID: PMC6759572 DOI: 10.3389/fmicb.2019.02147] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus-1 (HTLV-1) is a neglected and incurable retrovirus estimated to infect 5 to 10 million worldwide. Specific indigenous Australian populations report infection rates of more than 40%, suggesting a potential evolution of the virus with global implications. HTLV-1 causes adult T-cell leukemia/lymphoma (ATLL), and a neurological disease named HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Even though HTLV-1 transmission primarily occurs from cell-to-cell, there is still a gap of knowledge regarding the mechanisms of viral spread and disease progression. We have recently shown that Extracellular Vesicles (EVs) ubiquitously produced by cells may be used by HTLV-1 to transport viral proteins and RNA, and elicit adverse effects on recipient uninfected cells. The viral proteins Tax and HBZ are involved in disease progression and impairment of autophagy in infected cells. Here, we show that activation of HTLV-1 via ionizing radiation (IR) causes a significant increase of intracellular Tax, but not EV-associated Tax. Also, lower density EVs from HTLV-1-infected cells, separated by an Iodixanol density gradient, are positive for gp61+++/Tax+++/HBZ+ proteins (HTLV-1 EVs). We found that HTLV-1 EVs are not infectious when tested in multiple cell lines. However, these EVs promote cell-to-cell contact of uninfected cells, a phenotype which was enhanced with IR, potentially promoting viral spread. We treated humanized NOG mice with HTLV-1 EVs prior to infection and observed an increase in viral RNA synthesis in mice compared to control (EVs from uninfected cells). Proviral DNA levels were also quantified in blood, lung, spleen, liver, and brain post-treatment with HTLV-1 EVs, and we observed a consistent increase in viral DNA levels across all tissues, especially the brain. Finally, we show direct implications of EVs in viral spread and disease progression and suggest a two-step model of infection including the release of EVs from donor cells and recruitment of recipient cells as well as an increase in recipient cell-to-cell contact promoting viral spread.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Jennifer Jones
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Helene Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | | | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
137
|
Xu J, Wang Y, Hsu CY, Gao Y, Meyers CA, Chang L, Zhang L, Broderick K, Ding C, Peault B, Witwer K, James AW. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife 2019; 8:e48191. [PMID: 31482845 PMCID: PMC6764819 DOI: 10.7554/elife.48191] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
The vascular wall is a source of progenitor cells that are able to induce skeletal repair, primarily by paracrine mechanisms. Here, the paracrine role of extracellular vesicles (EVs) in bone healing was investigated. First, purified human perivascular stem cells (PSCs) were observed to induce mitogenic, pro-migratory, and pro-osteogenic effects on osteoprogenitor cells while in non-contact co-culture via elaboration of EVs. PSC-derived EVs shared mitogenic, pro-migratory, and pro-osteogenic properties of their parent cell. PSC-EV effects were dependent on surface-associated tetraspanins, as demonstrated by EV trypsinization, or neutralizing antibodies for CD9 or CD81. Moreover, shRNA knockdown in recipient cells demonstrated requirement for the CD9/CD81 binding partners IGSF8 and PTGFRN for EV bioactivity. Finally, PSC-EVs stimulated bone repair, and did so via stimulation of skeletal cell proliferation, migration, and osteodifferentiation. In sum, PSC-EVs mediate the same tissue repair effects of perivascular stem cells, and represent an 'off-the-shelf' alternative for bone tissue regeneration.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Ching-Yun Hsu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yongxing Gao
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | | | - Leslie Chang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Leititia Zhang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
- Department of Oral and Maxillofacial Surgery, School of StomatologyChina Medical UniversityShenyangChina
| | | | - Catherine Ding
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
| | - Bruno Peault
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
- Centre For Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Kenneth Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins UniversityBaltimoreUnited States
- Department of NeurologyJohns Hopkins UniversityBaltimoreUnited States
| | | |
Collapse
|
138
|
Urbanelli L, Buratta S, Tancini B, Sagini K, Delo F, Porcellati S, Emiliani C. The Role of Extracellular Vesicles in Viral Infection and Transmission. Vaccines (Basel) 2019; 7:vaccines7030102. [PMID: 31466253 PMCID: PMC6789493 DOI: 10.3390/vaccines7030102] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been found to be released by any type of cell and can be retrieved in every circulating body fluid, namely blood (plasma, serum), saliva, milk, and urine. EVs were initially considered a cellular garbage disposal tool, but later it became evident that they are involved in intercellular signaling. There is evidence that viruses can use EV endocytic routes to enter uninfected cells and hijack the EV secretory pathway to exit infected cells, thus illustrating that EVs and viruses share common cell entry and biogenesis mechanisms. Moreover, EVs play a role in immune response against viral pathogens. EVs incorporate and spread both viral and host factors, thereby prompting or inhibiting immune responses towards them via a multiplicity of mechanisms. The involvement of EVs in immune responses, and their potential use as agents modulating viral infection, will be examined. Although further studies are needed, the engineering of EVs could package viral elements or host factors selected for their immunostimulatory properties, to be used as vaccines or tolerogenic tools in autoimmune diseases.
Collapse
Affiliation(s)
- Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
139
|
Crenshaw BJ, Jones LB, Bell CR, Kumar S, Matthews QL. Perspective on Adenoviruses: Epidemiology, Pathogenicity, and Gene Therapy. Biomedicines 2019; 7:E61. [PMID: 31430920 PMCID: PMC6784011 DOI: 10.3390/biomedicines7030061] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
Human adenoviruses are large (150 MDa) doubled-stranded DNA viruses that cause respiratory infections. These viruses are particularly pathogenic in healthy and immune-compromised individuals, and currently, no adenovirus vaccine is available for the general public. The purpose of this review is to describe (i) the epidemiology and pathogenicity of human adenoviruses, (ii) the biological role of adenovirus vectors in gene therapy applications, and (iii) the potential role of exosomes in adenoviral infections.
Collapse
Affiliation(s)
- Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Leandra B Jones
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
140
|
Wang J, Wang Y, Tang L, Garcia RC. Extracellular Vesicles in Mycobacterial Infections: Their Potential as Molecule Transfer Vectors. Front Immunol 2019; 10:1929. [PMID: 31474995 PMCID: PMC6703136 DOI: 10.3389/fimmu.2019.01929] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles are membrane-bound structures released by living cells and present in body fluids. Their composition includes proteins, lipids, carbohydrates, and nucleic acids and are involved in transfers between cells. Extracellular vesicles can deliver molecules to cells and tissues even if distant. As a consequence, they have a role in information transmission and in the modulation of the biological function of recipient cells. Among other things, they are involved in antigen presentation and the induction of secretion events by immune cells. Thus, extracellular vesicles participate in the regulation of immune responses during infections. We will discuss their potential as effectors and disease biomarkers concerning only mycobacterial infections.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Wang
- Department of Biochemistry and Molecular Biology, School of Life Science, Central South University, Changsha, China
| | - Lijun Tang
- Department of Biochemistry and Molecular Biology, School of Life Science, Central South University, Changsha, China
| | | |
Collapse
|
141
|
Isenberg JS, Adams JC. No postage required: extracellular vesicles deliver the message. Am J Physiol Cell Physiol 2019; 317:C153-C154. [PMID: 30995107 DOI: 10.1152/ajpcell.00108.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Josephine C Adams
- Department of Biochemistry, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
142
|
Cerezo-Magaña M, Bång-Rudenstam A, Belting M. The pleiotropic role of proteoglycans in extracellular vesicle mediated communication in the tumor microenvironment. Semin Cancer Biol 2019; 62:99-107. [PMID: 31276785 DOI: 10.1016/j.semcancer.2019.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
Abstract
Compartmental exchange between cells through extracellular vesicles (EVs), including exosomes and microvesicles, has emerged as a central mechanism that coordinates the complex communication between malignant and stromal cells during tumor initiation and evolution. Some of the most critical processes of EV-mediated communication, including EV biogenesis and EV uptake, can be mediated by heparan sulfate proteoglycans (HSPGs) that reside on the surface of producer and recipient cells as well as on EVs. With interestingly similar, HSPG-dependent, pathways as the ones exploited by some viruses, EVs may, in an evolutionary perspective, be viewed as endogenous counterparts of viral particles. Cancer cell-derived EVs exert their protumorigenic effects by direct interactions of biologically active surface molecules, by transfer of proteins and nucleic acids into recipient cells or by transfer of metabolites that can be utilized as an energy source by the recipient cell. Here, we discuss the pleiotropic role of the HSPG family in these different contexts of EV communication with a specific focus on tumor development. We propose EV-associated PGs as dynamic reservoirs and chaperones of signaling molecules with potential implications in ligand exchange between EVs and tumor target cells. The protumorigenic consequences of EV mediated communication through HSPG should motivate the development of therapeutic approaches targeting EV-HSPG interactions as a novel strategy in cancer treatment.
Collapse
Affiliation(s)
- M Cerezo-Magaña
- Department of Clinical Sciences, Lund, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - A Bång-Rudenstam
- Department of Clinical Sciences, Lund, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - M Belting
- Department of Clinical Sciences, Lund, Section of Oncology and Pathology, Lund University, Lund, Sweden; Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
143
|
Ressel S, Rosca A, Gordon K, Buck AH. Extracellular RNA in viral-host interactions: Thinking outside the cell. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1535. [PMID: 30963709 PMCID: PMC6617787 DOI: 10.1002/wrna.1535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
Small RNAs and their associated RNA interference (RNAi) pathways underpin diverse mechanisms of gene regulation and genome defense across all three kingdoms of life and are integral to virus-host interactions. In plants, fungi and many animals, an ancestral RNAi pathway exists as a host defense mechanism whereby viral double-stranded RNA is processed to small RNAs that enable recognition and degradation of the virus. While this antiviral RNAi pathway is not generally thought to be present in mammals, other RNAi mechanisms can influence infection through both viral- and host-derived small RNAs. Furthermore, a burgeoning body of data suggests that small RNAs in mammals can function in a non-cell autonomous manner to play various roles in cell-to-cell communication and disease through their transport in extracellular vesicles. While vesicular small RNAs have not been proposed as an antiviral defense pathway per se, there is increasing evidence that the export of host- or viral-derived RNAs from infected cells can influence various aspects of the infection process. This review discusses the current knowledge of extracellular RNA functions in viral infection and the technical challenges surrounding this field of research. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adelina Rosca
- Department of VirologyCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
144
|
Delivery of microRNAs by Extracellular Vesicles in Viral Infections: Could the News be Packaged? Cells 2019; 8:cells8060611. [PMID: 31216738 PMCID: PMC6627707 DOI: 10.3390/cells8060611] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are released by various cells and recently have attracted attention because they constitute a refined system of cell-cell communication. EVs deliver a diverse array of biomolecules including messenger RNAs (mRNAs), microRNAs (miRNAs), proteins and lipids, and they can be used as potential biomarkers in normal and pathological conditions. The cargo of EVs is a snapshot of the donor cell profile; thus, in viral infections, EVs produced by infected cells could be a central player in disease pathogenesis. In this context, miRNAs incorporated into EVs can affect the immune recognition of viruses and promote or restrict their replication in target cells. In this review, we provide an updated overview of the roles played by EV-delivered miRNAs in viral infections and discuss the potential consequences for the host response. The full understanding of the functions of EVs and miRNAs can turn into useful biomarkers for infection detection and monitoring and/or uncover potential therapeutic targets.
Collapse
|
145
|
Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019; 11:eaav8521. [PMID: 31092696 PMCID: PMC7104415 DOI: 10.1126/scitranslmed.aav8521] [Citation(s) in RCA: 602] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are nanometer-sized, lipid membrane-enclosed vesicles secreted by most, if not all, cells and contain lipids, proteins, and various nucleic acid species of the source cell. EVs act as important mediators of intercellular communication that influence both physiological and pathological conditions. Given their ability to transfer bioactive components and surmount biological barriers, EVs are increasingly being explored as potential therapeutic agents. EVs can potentiate tissue regeneration, participate in immune modulation, and function as potential alternatives to stem cell therapy, and bioengineered EVs can act as delivery vehicles for therapeutic agents. Here, we cover recent approaches and advances of EV-based therapies.
Collapse
Affiliation(s)
- Oscar P B Wiklander
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
- Evox Therapeutics Limited, Medawar Centre, Robert Robinson Avenue, Oxford OX4 4HG, UK
| | - Meadhbh Á Brennan
- Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- INSERM UMR 1238, PhyOS, Faculty of Medicine, Université de Nantes, 44034 Nantes cedex 1, France
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
- Evox Therapeutics Limited, Medawar Centre, Robert Robinson Avenue, Oxford OX4 4HG, UK
| |
Collapse
|
146
|
Stanimirovic DB, Sandhu JK, Costain WJ. Emerging Technologies for Delivery of Biotherapeutics and Gene Therapy Across the Blood-Brain Barrier. BioDrugs 2019; 32:547-559. [PMID: 30306341 PMCID: PMC6290705 DOI: 10.1007/s40259-018-0309-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibody, immuno- and gene therapies developed for neurological indications face a delivery challenge posed by various anatomical and physiological barriers within the central nervous system (CNS); most notably, the blood–brain barrier (BBB). Emerging delivery technologies for biotherapeutics have focused on trans-cellular pathways across the BBB utilizing receptor-mediated transcytosis (RMT). ‘Traditionally’ targeted RMT receptors, transferrin receptor (TfR) and insulin receptor (IR), are ubiquitously expressed and pose numerous translational challenges during development, including species differences and safety risks. Recent advances in antibody engineering technologies and discoveries of RMT targets and BBB-crossing antibodies that are more BBB-selective have combined to create a new preclinical pipeline of BBB-crossing biotherapeutics with improved efficacy and safety. Novel BBB-selective RMT targets and carrier antibodies have exposed additional opportunities for re-targeting gene delivery vectors or nanocarriers for more efficient brain delivery. Emergence and refinement of core technologies of genetic engineering and editing as well as biomanufacturing of viral vectors and cell-derived products have de-risked the path to the development of systemic gene therapy approaches for the CNS. In particular, brain-tropic viral vectors and extracellular vesicles have recently expanded the repertoire of brain delivery strategies for biotherapeutics. Whereas protein biotherapeutics and bispecific antibodies enabled for BBB transcytosis are rapidly heading towards clinical trials, systemic gene therapy approaches for CNS will likely remain in research phase for the foreseeable future. The promise and limitations of these emerging cross-BBB delivery technologies are further discussed in this article.
Collapse
Affiliation(s)
- Danica B Stanimirovic
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada.
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| | - Will J Costain
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| |
Collapse
|
147
|
Demarta‐Gatsi C, Rivkin A, Di Bartolo V, Peronet R, Ding S, Commere P, Guillonneau F, Bellalou J, Brûlé S, Abou Karam P, Cohen SR, Lagache T, Janse CJ, Regev‐Rudzki N, Mécheri S. Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses. Cell Microbiol 2019; 21:e13021. [DOI: 10.1111/cmi.13021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Claudia Demarta‐Gatsi
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | - Anna Rivkin
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Vincenzo Di Bartolo
- Institut Pasteur, Lymphocyte Cell Biology Unit, Department of ImmunologyINSERM U1221 Paris France
| | - Roger Peronet
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | - Shuai Ding
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | | | - François Guillonneau
- 3P5 proteomics Facility of the Université Paris DescartesInstitut Cochin Paris France
| | - Jacques Bellalou
- Platform of Recombinant ProteinsC2RT—Institut Pasteur Paris France
| | - Sébastien Brûlé
- Platform of Molecular BiophysicsInstitut Pasteur Paris France
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Sidney R. Cohen
- Department of Chemical Research SupportWeizmann Institute of Science Rehovot Israel
| | - Thibault Lagache
- Department of Biological SciencesColumbia University New York New York
| | - Chris J. Janse
- Leiden Malaria Research Group, ParasitologyLeiden University Medical Center (LUMC) Leiden The Netherlands
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Salaheddine Mécheri
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| |
Collapse
|
148
|
Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019; 144:90-111. [PMID: 31419450 PMCID: PMC6986687 DOI: 10.1016/j.addr.2019.08.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
The complexity of nanoscale interactions between biomaterials and cells has limited the realization of the ultimate vision of nanotechnology in diagnostics and therapeutics. As such, significant effort has been devoted to advancing our understanding of the biophysical interactions of the myriad nanoparticles. Endocytosis of nanomedicine has drawn tremendous interest in the last decade. Here, we highlight the ever-present barriers to efficient intracellular delivery of nanoparticles as well as the current advances and strategies deployed to breach these barriers. We also introduce new barriers that have been largely overlooked such as the glycocalyx and macromolecular crowding. Additionally, we draw attention to the potential complications arising from the disruption of the newly discovered functions of the lysosomes. Novel strategies of exploiting the inherent intracellular defects in disease states to enhance delivery and the use of exosomes for bioanalytics and drug delivery are explored. Furthermore, we discuss the advances in imaging techniques like electron microscopy, super resolution fluorescence microscopy, and single particle tracking which have been instrumental in our growing understanding of intracellular pathways and nanoparticle trafficking. Finally, we advocate for the push towards more intravital analysis of nanoparticle transport phenomena using the multitude of techniques available to us. Unraveling the underlying mechanisms governing the cellular barriers to delivery and biological interactions of nanoparticles will guide the innovations capable of breaching these barriers.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
149
|
Shapiro JA. No genome is an island: toward a 21st century agenda for evolution. Ann N Y Acad Sci 2019; 1447:21-52. [DOI: 10.1111/nyas.14044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/02/2019] [Indexed: 12/21/2022]
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular BiologyUniversity of Chicago Chicago Illinois
| |
Collapse
|
150
|
Extracellular vesicles: exosomes, microparticles, their parts, and their targets to enable their biomanufacturing and clinical applications. Curr Opin Biotechnol 2019; 60:89-98. [PMID: 30851486 DOI: 10.1016/j.copbio.2019.01.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are membrane vesicles, the submicron-size microparticles and the nanometer-size exosomes, that carry RNAs, proteins and lipids from their parent cells. EV generation takes place under cellular activation or stress. Cells use EVs to communicate with other cells by delivering signals through their content and surface proteins. Beyond diagnostic and discovery applications, EVs are excellent candidates for enabling safe and potent cell and gene therapies, especially those requiring strong target specificity. Here we examine EVs, their engineering and applications by dissecting mechanistic and engineering aspects of their components that endow them with their unique capabilities: their cargo and membranes proteins. Both EV cargo and membranes can be independently engineered and used for various applications. We review early efforts for their biomanufacturing.
Collapse
|