101
|
Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 2018; 43:1779-1788. [PMID: 29760409 PMCID: PMC6006368 DOI: 10.1038/s41386-018-0073-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by social deficits and repetitive behaviors. Genetic screening has identified synaptic, transcriptional, and chromatin genes disrupted in autistic patients. Haploinsufficiency of Shank3, which encodes a scaffold protein at glutamatergic synapses, is causally linked to autism. Using a Shank3-deficient mouse model that exhibits prominent autism-like phenotypes, we have found that histone acetylation in the prefrontal cortex (PFC) is abnormally low, which can be reversed by MS-275 (also known as Entinostat, SNDX-275), a class I histone deacetylase (HDAC) inhibitor that is selectively potent in PFC. A brief (3-day) treatment with MS-275 (i.p.) led to the sustained (11 days) rescue of autistic social preference deficits in Shank3-deficient mice, without altering locomotion, motor coordination, anxiety, or the increased grooming. MS-275 treatment also rescued the diminished NMDAR surface expression and NMDAR function induced by Shank3 deficiency. Moreover, F-actin at synapses was restored and the transcription of actin regulators was elevated by MS-275 treatment of Shank3-deficient mice, which may contribute to the recovery of actin-based NMDAR synaptic delivery. Taken together, these results suggest that MS-275 treatment could normalize the aberrant epigenetic regulation of genes, leading to the amelioration of synaptic and social deficits associated with autism.
Collapse
|
102
|
Zhao YT, Kwon DY, Johnson BS, Fasolino M, Lamonica JM, Kim YJ, Zhao BS, He C, Vahedi G, Kim TH, Zhou Z. Long genes linked to autism spectrum disorders harbor broad enhancer-like chromatin domains. Genome Res 2018; 28:933-942. [PMID: 29848492 PMCID: PMC6028126 DOI: 10.1101/gr.233775.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Genetic variants associated with autism spectrum disorders (ASDs) are enriched in genes encoding synaptic proteins and chromatin regulators. Although the role of synaptic proteins in ASDs is widely studied, the mechanism by which chromatin regulators contribute to ASD risk remains poorly understood. Upon profiling and analyzing the transcriptional and epigenomic features of genes expressed in the cortex, we uncovered a unique set of long genes that contain broad enhancer-like chromatin domains (BELDs) spanning across their entire gene bodies. Analyses of these BELD genes show that they are highly transcribed with frequent RNA polymerase II (Pol II) initiation and low Pol II pausing, and they exhibit frequent chromatin-chromatin interactions within their gene bodies. These BELD features are conserved from rodents to humans, are enriched in genes involved in synaptic function, and appear post-natally concomitant with synapse development. Importantly, we find that BELD genes are highly implicated in neurodevelopmental disorders, particularly ASDs, and that their expression is preferentially down-regulated in individuals with idiopathic autism. Finally, we find that the transcription of BELD genes is particularly sensitive to alternations in ASD-associated chromatin regulators. These findings suggest that the epigenomic regulation of BELD genes is important for post-natal cortical development and lend support to a model by which mutations in chromatin regulators causally contribute to ASDs by preferentially impairing BELD gene transcription.
Collapse
Affiliation(s)
- Ying-Tao Zhao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Deborah Y Kwon
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Brian S Johnson
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Maria Fasolino
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Janine M Lamonica
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Yoon Jung Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
103
|
Parenting a Child with ASD: Comparison of Parenting Style Between ASD, Anxiety, and Typical Development. J Autism Dev Disord 2018. [PMID: 28634706 DOI: 10.1007/s10803-017-3210-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parenting children with ASD has a complex history. Given parents' increasingly pivotal role in children's treatment, it is critical to consider parental style and behaviours. This study (1) compares parenting style of parents of children with ASD, parents of children with anxiety disorders, and parents of typically developing (TD) children and (2) investigates contributors to parenting style within and between groups. Parents of children with anxiety had a distinct parenting style compared to ASD and TD parents. Unique relationships between child symptoms and parenting behaviours emerged across the three groups. Understanding factors that impact parenting between and within clinical groups can guide the development of interventions better tailored to support the needs of parents, particularly parents of children with ASD.
Collapse
|
104
|
Horder J, Petrinovic MM, Mendez MA, Bruns A, Takumi T, Spooren W, Barker GJ, Künnecke B, Murphy DG. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatry 2018; 8:106. [PMID: 29802263 PMCID: PMC5970172 DOI: 10.1038/s41398-018-0155-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/04/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental syndrome with a high human and economic burden. The pathophysiology of ASD is largely unclear, thus hampering development of pharmacological treatments for the core symptoms of the disorder. Abnormalities in glutamate and GABA signaling have been hypothesized to underlie ASD symptoms, and may form a therapeutic target, but it is not known whether these abnormalities are recapitulated in humans with ASD, as well as in rodent models of the disorder. We used translational proton magnetic resonance spectroscopy ([1H]MRS) to compare glutamate and GABA levels in adult humans with ASD and in a panel of six diverse rodent ASD models, encompassing genetic and environmental etiologies. [1H]MRS was performed in the striatum and the medial prefrontal cortex, of the humans, mice, and rats in order to allow for direct cross-species comparisons in specific cortical and subcortical brain regions implicated in ASD. In humans with ASD, glutamate concentration was reduced in the striatum and this was correlated with the severity of social symptoms. GABA levels were not altered in either brain region. The reduction in striatal glutamate was recapitulated in mice prenatally exposed to valproate, and in mice and rats carrying Nlgn3 mutations, but not in rodent ASD models with other etiologies. Our findings suggest that glutamate/GABA abnormalities in the corticostriatal circuitry may be a key pathological mechanism in ASD; and may be linked to alterations in the neuroligin-neurexin signaling complex.
Collapse
Affiliation(s)
- Jamie Horder
- 0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Marija M. Petrinovic
- 0000 0004 0374 1269grid.417570.0Roche Pharma Research & Early Development, Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland ,0000 0001 2322 6764grid.13097.3cPresent Address: Department of Forensic and Neurodevelopmental Sciences, and The Sackler Institute for Translational Development, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Maria A. Mendez
- 0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Andreas Bruns
- 0000 0004 0374 1269grid.417570.0Roche Pharma Research & Early Development, Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Toru Takumi
- grid.474690.8RIKEN Brain Science Institute, Wako, Japan
| | - Will Spooren
- 0000 0004 0374 1269grid.417570.0Roche Pharma Research & Early Development, Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Gareth J. Barker
- 0000 0001 2322 6764grid.13097.3cCentre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Basil Künnecke
- 0000 0004 0374 1269grid.417570.0Roche Pharma Research & Early Development, Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Declan G. Murphy
- 0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK ,grid.415717.1Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK ,0000 0001 2322 6764grid.13097.3cSackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF United Kingdom
| |
Collapse
|
105
|
Eissa N, Al-Houqani M, Sadeq A, Ojha SK, Sasse A, Sadek B. Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder. Front Neurosci 2018; 12:304. [PMID: 29867317 PMCID: PMC5964170 DOI: 10.3389/fnins.2018.00304] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
Autistic Spectrum Disorder (ASD) is a complex neurodevelopmental brain disorder characterized by two core behavioral symptoms, namely impairments in social communication and restricted/repetitive behavior. The molecular mechanisms underlying ASD are not well understood. Recent genetic as well as non-genetic animal models contributed significantly in understanding the pathophysiology of ASD, as they establish autism-like behavior in mice and rats. Among the genetic causes, several chromosomal mutations including duplications or deletions could be possible causative factors of ASD. In addition, the biochemical basis suggests that several brain neurotransmitters, e.g., dopamine (DA), serotonin (5-HT), gamma-amino butyric acid (GABA), acetylcholine (ACh), glutamate (Glu) and histamine (HA) participate in the onset and progression of ASD. Despite of convincible understanding, risperidone and aripiprazole are the only two drugs available clinically for improving behavioral symptoms of ASD following approval by Food and Drug Administration (FDA). Till date, up to our knowledge there is no other drug approved for clinical usage specifically for ASD symptoms. However, many novel drug candidates and classes of compounds are underway for ASD at different phases of preclinical and clinical drug development. In this review, the diversity of numerous aetiological factors and the alterations in variety of neurotransmitter generation, release and function linked to ASD are discussed with focus on drugs currently used to manage neuropsychiatric symptoms related to ASD. The review also highlights the clinical development of drugs with emphasis on their pharmacological targets aiming at improving core symptoms in ASD.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Al-Houqani
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adel Sadeq
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
106
|
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Mol Psychiatry 2018; 23:1356-1367. [PMID: 28416808 PMCID: PMC5984103 DOI: 10.1038/mp.2017.39] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 12/12/2022]
Abstract
Synapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1-/y) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction.
Collapse
|
107
|
Selimbeyoglu A, Kim CK, Inoue M, Lee SY, Hong ASO, Kauvar I, Ramakrishnan C, Fenno LE, Davidson TJ, Wright M, Deisseroth K. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci Transl Med 2018; 9:9/401/eaah6733. [PMID: 28768803 PMCID: PMC5723386 DOI: 10.1126/scitranslmed.aah6733] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/30/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022]
Abstract
Alterations in the balance between neuronal excitation and inhibition (E:I balance) have been implicated in the neural circuit activity-based processes that contribute to autism phenotypes. We investigated whether acutely reducing E:I balance in mouse brain could correct deficits in social behavior. We used mice lacking the CNTNAP2 gene, which has been implicated in autism, and achieved a temporally precise reduction in E:I balance in the medial prefrontal cortex (mPFC) either by optogenetically increasing the excitability of inhibitory parvalbumin (PV) neurons or decreasing the excitability of excitatory pyramidal neurons. Surprisingly, both of these distinct, real-time, and reversible optogenetic modulations acutely rescued deficits in social behavior and hyperactivity in adult mice lacking CNTNAP2 Using fiber photometry, we discovered that native mPFC PV neuronal activity differed between CNTNAP2 knockout and wild-type mice. During social interactions with other mice, PV neuron activity increased in wild-type mice compared to interactions with a novel object, whereas this difference was not observed in CNTNAP2 knockout mice. Together, these results suggest that real-time modulation of E:I balance in the mouse prefrontal cortex can rescue social behavior deficits reminiscent of autism phenotypes.
Collapse
Affiliation(s)
| | - Christina K Kim
- Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Soo Yeun Lee
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Alice S O Hong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Isaac Kauvar
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lief E Fenno
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Thomas J Davidson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Matthew Wright
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
108
|
Howsmon DP, Adams JB, Kruger U, Geis E, Gehn E, Hahn J. Erythrocyte fatty acid profiles in children are not predictive of autism spectrum disorder status: a case control study. Biomark Res 2018; 6:12. [PMID: 29568526 PMCID: PMC5853097 DOI: 10.1186/s40364-018-0125-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/27/2018] [Indexed: 01/27/2023] Open
Abstract
Biomarkers promise biomolecular explanations as well as reliable diagnostics, stratification, and treatment strategies that have the potential to help mitigate the effects of disorders. While no reliable biomarker has yet been found for autism spectrum disorder (ASD), fatty acids have been investigated as potential biomarkers because of their association with brain development and neural functions. However, the ability of fatty acids to classify individuals with ASD from age/gender-matched neurotypical (NEU) peers has largely been ignored in favor of investigating population-level differences. Contrary to existing work, this classification task between ASD and NEU cohorts is the main focus of this work. The data presented herein suggest that fatty acids do not allow for classification at the individual level.
Collapse
Affiliation(s)
- Daniel P Howsmon
- 1Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA.,2Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA.,5Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, 78712 TX USA
| | - James B Adams
- 3School for Engineering of Matter, Transport, and Energy, Arizona State University, PO Box: 876106, Tempe, 85281 AZ USA
| | - Uwe Kruger
- 4Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA
| | - Elizabeth Geis
- 3School for Engineering of Matter, Transport, and Energy, Arizona State University, PO Box: 876106, Tempe, 85281 AZ USA
| | - Eva Gehn
- 3School for Engineering of Matter, Transport, and Energy, Arizona State University, PO Box: 876106, Tempe, 85281 AZ USA
| | - Juergen Hahn
- 1Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA.,2Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA.,4Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA
| |
Collapse
|
109
|
Qin L, Ma K, Wang ZJ, Hu Z, Matas E, Wei J, Yan Z. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci 2018. [PMID: 29531362 PMCID: PMC5876144 DOI: 10.1038/s41593-018-0110-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Haploinsufficiency of the SHANK3 gene is causally linked to autism spectrum disorder (ASD), and ASD-associated genes are also enriched for chromatin remodelers. Here we found that brief treatment with romidepsin, a highly potent class I histone deacetylase (HDAC) inhibitor, alleviated social deficits in Shank3-deficient mice, which persisted for ~3 weeks. HDAC2 transcription was upregulated in these mice, and knockdown of HDAC2 in prefrontal cortex also rescued their social deficits. Nuclear localization of β-catenin, a Shank3-binding protein that regulates cell adhesion and transcription, was increased in Shank3-deficient mice, which induced HDAC2 upregulation and social deficits. At the downstream molecular level, romidepsin treatment elevated the expression and histone acetylation of Grin2a and actin-regulatory genes and restored NMDA-receptor function and actin filaments in Shank3-deficient mice. Taken together, these findings highlight an epigenetic mechanism underlying social deficits linked to Shank3 deficiency, which may suggest potential therapeutic strategies for ASD patients bearing SHANK3 mutations.
Collapse
Affiliation(s)
- Luye Qin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Emmanuel Matas
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Wei
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
110
|
Uddin M, Unda BK, Kwan V, Holzapfel NT, White SH, Chalil L, Woodbury-Smith M, Ho KS, Harward E, Murtaza N, Dave B, Pellecchia G, D’Abate L, Nalpathamkalam T, Lamoureux S, Wei J, Speevak M, Stavropoulos J, Hope KJ, Doble BW, Nielsen J, Wassman ER, Scherer SW, Singh KK. OTUD7A Regulates Neurodevelopmental Phenotypes in the 15q13.3 Microdeletion Syndrome. Am J Hum Genet 2018; 102:278-295. [PMID: 29395074 PMCID: PMC5985537 DOI: 10.1016/j.ajhg.2018.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 12/28/2022] Open
Abstract
Copy-number variations (CNVs) are strong risk factors for neurodevelopmental and psychiatric disorders. The 15q13.3 microdeletion syndrome region contains up to ten genes and is associated with numerous conditions, including autism spectrum disorder (ASD), epilepsy, schizophrenia, and intellectual disability; however, the mechanisms underlying the pathogenesis of 15q13.3 microdeletion syndrome remain unknown. We combined whole-genome sequencing, human brain gene expression (proteome and transcriptome), and a mouse model with a syntenic heterozygous deletion (Df(h15q13)/+ mice) and determined that the microdeletion results in abnormal development of cortical dendritic spines and dendrite outgrowth. Analysis of large-scale genomic, transcriptomic, and proteomic data identified OTUD7A as a critical gene for brain function. OTUD7A was found to localize to dendritic and spine compartments in cortical neurons, and its reduced levels in Df(h15q13)/+ cortical neurons contributed to the dendritic spine and dendrite outgrowth deficits. Our results reveal OTUD7A as a major regulatory gene for 15q13.3 microdeletion syndrome phenotypes that contribute to the disease mechanism through abnormal cortical neuron morphological development.
Collapse
|
111
|
Wang P, Zhao D, Lachman HM, Zheng D. Enriched expression of genes associated with autism spectrum disorders in human inhibitory neurons. Transl Psychiatry 2018; 8:13. [PMID: 29317598 PMCID: PMC5802446 DOI: 10.1038/s41398-017-0058-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/13/2017] [Accepted: 10/09/2017] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is highly heritable but genetically heterogeneous. The affected neural circuits and cell types remain unclear and may vary at different developmental stages. By analyzing multiple sets of human single cell transcriptome profiles, we found that ASD candidates showed relatively enriched gene expression in neurons, especially in inhibitory neurons. ASD candidates were also more likely to be the hubs of the co-expression gene module that is highly expressed in inhibitory neurons, a feature not detected for excitatory neurons. In addition, we found that upregulated genes in multiple ASD cortex samples were enriched with genes highly expressed in inhibitory neurons, suggesting a potential increase of inhibitory neurons and an imbalance in the ratio between excitatory and inhibitory neurons in ASD brains. Furthermore, the downstream targets of several ASD candidates, such as CHD8, EHMT1 and SATB2, also displayed enriched expression in inhibitory neurons. Taken together, our analyses of single cell transcriptomic data suggest that inhibitory neurons may be a major neuron subtype affected by the disruption of ASD gene networks, providing single cell functional evidence to support the excitatory/inhibitory (E/I) imbalance hypothesis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
112
|
Abstract
Some studies suggest that prenatal infection increases risk of autism spectrum disorders (ASDs). This study was undertaken in a prospective cohort in Norway to examine whether we could find evidence to support an association of the prenatal occurrence of fever, a common manifestation of infection, with ASD risk. Prospective questionnaires provided maternal exposure data; case status was established from clinical assessments and registry linkages. In a large, prospectively ascertained cohort of pregnant mothers and their offspring, we examined infants born ⩾32 weeks for associations between fever exposure in each trimester and ASD risk using logistic regression. Maternal exposure to second-trimester fever was associated with increased ASD risk, adjusting for presence of fever in other trimesters and confounders (adjusted odds ratio (aOR), 1.40; 95% confidence interval, 1.09-1.79), with a similar, but nonsignificant, point estimate in the first trimester. Risk increased markedly with exposure to three or more fever episodes after 12 weeks' gestation (aOR, 3.12; 1.28-7.63). ASD risk appears to increase with maternal fever, particularly in the second trimester. Risk magnified dose dependently with exposure to multiple fevers after 12 weeks' gestation. Our findings support a role for gestational maternal infection and innate immune responses to infection in the pathogenesis of at least some cases of ASD.
Collapse
|
113
|
|
114
|
Eapen V, Nicholls L, Spagnol V, Mathew NE. Current status of biological treatment options in Autism Spectrum Disorder. Asian J Psychiatr 2017; 30:1-10. [PMID: 28704714 DOI: 10.1016/j.ajp.2017.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
Autism Spectrum Disorders (ASDs) are characterised by deficits in social communication and restricted and repetitive behaviours. With an onset in early childhood, ASDs are thought to be heterogeneous, both genetically and clinically. This has led to the notion that "autism" is "autisms", however, there has been limited progress in understanding the different subgroups and the unique pathogenesis that would then allow targeted intervention. Although existing treatments are mainly symptom focussed, research is beginning to unravel the underlying genetic and molecular pathways, structural and functional neuronal circuitry involvement and the associated neurochemicals. This paper will review selected biological models with regard to pharmacological targets while also covering some of the non-pharmacological treatments such as neuro-stimulation.
Collapse
Affiliation(s)
- Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Academic Unit of Child Psychiatry South West Sydney and Ingham Institute, Liverpool Hospital, Sydney, NSW, Australia.
| | - Laura Nicholls
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Vanessa Spagnol
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Nisha E Mathew
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
115
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
116
|
Perturbed Wnt signaling leads to neuronal migration delay, altered interhemispheric connections and impaired social behavior. Nat Commun 2017; 8:1158. [PMID: 29079819 PMCID: PMC5660087 DOI: 10.1038/s41467-017-01046-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Perturbed neuronal migration and circuit development have been implicated in the pathogenesis of neurodevelopmental diseases; however, the direct steps linking these developmental errors to behavior alterations remain unknown. Here we demonstrate that Wnt/C-Kit signaling is a key regulator of glia-guided radial migration in rat somatosensory cortex. Transient downregulation of Wnt signaling in migrating, callosal projection neurons results in delayed positioning in layer 2/3. Delayed neurons display reduced neuronal activity with impaired afferent connectivity causing permanent deficit in callosal projections. Animals with these defects exhibit altered somatosensory function with reduced social interactions and repetitive movements. Restoring normal migration by overexpressing the Wnt-downstream effector C-Kit or selective chemogenetic activation of callosal projection neurons during a critical postnatal period prevents abnormal interhemispheric connections as well as behavioral alterations. Our findings identify a link between defective canonical Wnt signaling, delayed neuronal migration, deficient interhemispheric connectivity and abnormal social behavior analogous to autistic characteristics in humans. Functional consequence of transient delay in neuronal migration is unclear. This study shows that Wnt/C-Kit signaling regulates radial migration in rat somatosensory cortex, and that transient delay of L2/3 neuronal migration leads to interhemispheric connectivity alteration and abnormal social behavior.
Collapse
|
117
|
Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity. J Neurosci 2017; 37:10917-10931. [PMID: 28978667 DOI: 10.1523/jneurosci.1005-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022] Open
Abstract
Genetic perturbations of the transcription factor Forkhead Box P1 (FOXP1) are causative for severe forms of autism spectrum disorder that are often comorbid with intellectual disability. Recent work has begun to reveal an important role for FoxP1 in brain development, but the brain-region-specific contributions of Foxp1 to autism and intellectual disability phenotypes have yet to be determined fully. Here, we describe Foxp1 conditional knock-out (Foxp1cKO) male and female mice with loss of Foxp1 in the pyramidal neurons of the neocortex and the CA1/CA2 subfields of the hippocampus. Foxp1cKO mice exhibit behavioral phenotypes that are of potential relevance to autism spectrum disorder, including hyperactivity, increased anxiety, communication impairments, and decreased sociability. In addition, Foxp1cKO mice have gross deficits in learning and memory tasks of relevance to intellectual disability. Using a genome-wide approach, we identified differentially expressed genes in the hippocampus of Foxp1cKO mice associated with synaptic function and development. Furthermore, using magnetic resonance imaging, we uncovered a significant reduction in the volumes of both the entire hippocampus as well as individual hippocampal subfields of Foxp1cKO mice. Finally, we observed reduced maintenance of LTP in area CA1 of the hippocampus in these mutant mice. Together, these data suggest that proper expression of Foxp1 in the pyramidal neurons of the forebrain is important for regulating gene expression pathways that contribute to specific behaviors reminiscent of those seen in autism and intellectual disability. In particular, Foxp1 regulation of gene expression appears to be crucial for normal hippocampal development, CA1 plasticity, and spatial learning.SIGNIFICANCE STATEMENT Loss-of-function mutations in the transcription factor Forkhead Box P1 (FOXP1) lead to autism spectrum disorder and intellectual disability. Understanding the potential brain-region-specific contributions of FOXP1 to disease-relevant phenotypes could be a critical first step in the management of patients with these mutations. Here, we report that Foxp1 conditional knock-out (Foxp1cKO) mice with loss of Foxp1 in the neocortex and hippocampus display autism and intellectual-disability-relevant behaviors. We also show that these phenotypes correlate with changes in both the genomic and physiological profiles of the hippocampus in Foxp1cKO mice. Our work demonstrates that brain-region-specific FOXP1 expression may relate to distinct, clinically relevant phenotypes.
Collapse
|
118
|
Abstract
Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.
Collapse
|
119
|
Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1. J Neurosci 2017; 37:10541-10553. [PMID: 28951447 DOI: 10.1523/jneurosci.2679-16.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 01/23/2023] Open
Abstract
Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex.SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity.
Collapse
|
120
|
Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017; 80:115-155. [PMID: 28159610 PMCID: PMC6947924 DOI: 10.1016/j.neubiorev.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marten Onnink
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yan Shi
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janneke Dammers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
121
|
Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp Neurol 2017; 299:252-265. [PMID: 28774750 DOI: 10.1016/j.expneurol.2017.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022]
Abstract
Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD.
Collapse
Affiliation(s)
- M D Bauman
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; California National Primate Research Center, University of California, Davis, USA.
| | - C M Schumann
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
122
|
Genome-wide association analysis identifies common variants influencing infant brain volumes. Transl Psychiatry 2017; 7:e1188. [PMID: 28763065 PMCID: PMC5611727 DOI: 10.1038/tp.2017.159] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Genome-wide association studies (GWAS) of adolescents and adults are transforming our understanding of how genetic variants impact brain structure and psychiatric risk, but cannot address the reality that psychiatric disorders are unfolding developmental processes with origins in fetal life. To investigate how genetic variation impacts prenatal brain development, we conducted a GWAS of global brain tissue volumes in 561 infants. An intronic single-nucleotide polymorphism (SNP) in IGFBP7 (rs114518130) achieved genome-wide significance for gray matter volume (P=4.15 × 10-10). An intronic SNP in WWOX (rs10514437) neared genome-wide significance for white matter volume (P=1.56 × 10-8). Additional loci with small P-values included psychiatric GWAS associations and transcription factors expressed in developing brain. Genetic predisposition scores for schizophrenia and ASD, and the number of genes impacted by rare copy number variants (CNV burden) did not predict global brain tissue volumes. Integration of these results with large-scale neuroimaging GWAS in adolescents (PNC) and adults (ENIGMA2) suggests minimal overlap between common variants impacting brain volumes at different ages. Ultimately, by identifying genes contributing to adverse developmental phenotypes, it may be possible to adjust adverse trajectories, preventing or ameliorating psychiatric and developmental disorders.
Collapse
|
123
|
Subramanian K, Brandenburg C, Orsati F, Soghomonian JJ, Hussman JP, Blatt GJ. Basal ganglia and autism - a translational perspective. Autism Res 2017; 10:1751-1775. [PMID: 28730641 DOI: 10.1002/aur.1837] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022]
Abstract
The basal ganglia are a collection of nuclei below the cortical surface that are involved in both motor and non-motor functions, including higher order cognition, social interactions, speech, and repetitive behaviors. Motor development milestones that are delayed in autism such as gross motor, fine motor and walking can aid in early diagnosis of autism. Neuropathology and neuroimaging findings in autism cases revealed volumetric changes and altered cell density in select basal ganglia nuclei. Interestingly, in autism, both the basal ganglia and the cerebellum are impacted both in their motor and non-motor domains and recently, found to be connected via the pons through a short disynaptic pathway. In typically developing individuals, the basal ganglia plays an important role in: eye movement, movement coordination, sensory modulation and processing, eye-hand coordination, action chaining, and inhibition control. Genetic models have proved to be useful toward understanding cellular and molecular changes at the synaptic level in the basal ganglia that may in part contribute to these autism-related behaviors. In autism, basal ganglia functions in motor skill acquisition and development are altered, thus disrupting the normal flow of feedback to the cortex. Taken together, there is an abundance of emerging evidence that the basal ganglia likely plays critical roles in maintaining an inhibitory balance between cortical and subcortical structures, critical for normal motor actions and cognitive functions. In autism, this inhibitory balance is disturbed thus impacting key pathways that affect normal cortical network activity. Autism Res 2017, 10: 1751-1775. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Habit learning, action selection and performance are modulated by the basal ganglia, a collection of groups of neurons located below the cerebral cortex in the brain. In autism, there is emerging evidence that parts of the basal ganglia are structurally and functionally altered disrupting normal information flow. The basal ganglia through its interconnected circuits with the cerebral cortex and the cerebellum can potentially impact various motor and cognitive functions in the autism brain.
Collapse
Affiliation(s)
| | - Cheryl Brandenburg
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, MD, 21201
| | - Fernanda Orsati
- Program on Supports, Hussman Institute for Autism, Catonsville, MD, 21228
| | | | - John P Hussman
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, MD, 21201.,Program on Supports, Hussman Institute for Autism, Catonsville, MD, 21228
| | - Gene J Blatt
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, MD, 21201
| |
Collapse
|
124
|
Fernández M, Mollinedo-Gajate I, Peñagarikano O. Neural Circuits for Social Cognition: Implications for Autism. Neuroscience 2017; 370:148-162. [PMID: 28729065 DOI: 10.1016/j.neuroscience.2017.07.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/01/2017] [Accepted: 07/07/2017] [Indexed: 12/28/2022]
Abstract
Social neuroscience, the study of the neurobiological basis of social behavior, has become a major area of current research in behavioral neuroscience and psychiatry, since many psychiatric disorders are characterized by social deficits. Social behavior refers to the behavioral response with regard to socially relevant information, and requires the perception and integration of social cues through a complex cognition process (i.e. social cognition) that involves attention, memory, motivation and emotion. Neurobiological and molecular mechanisms underlying social behavior are highly conserved across species, and inter- and intra-specific variability observed in social behavior can be explained to large extent by differential activity of this conserved neural network. Human functional magnetic resonance imaging (fMRI) studies have greatly informed about the brain structures and their connectivity networks that are important for social cognition. Animal research has been crucial for identifying specific circuits and molecular mechanisms that modulate this structural network. From a molecular neurobiology perspective, activity in these brain structures is coordinated by neuronal circuits modulated by several neurotransmitters and neuromodulators. Thus, quantitative variation in the levels, release and/or receptor density of these molecules could affect the observed behavioral response. The present review presents an overall framework of the components of the social brain circuitry and its modulation. By integrating multiple research approaches, from human fMRI studies to animal models we can start shedding light into how dysfunction in these circuits could lead to disorders of social-functioning such as Autism.
Collapse
Affiliation(s)
- Marta Fernández
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Irene Mollinedo-Gajate
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Biomedical Research Networking Center in Mental Health (CIBERSAM), Spain
| | - Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Biomedical Research Networking Center in Mental Health (CIBERSAM), Spain.
| |
Collapse
|
125
|
Yenkoyan K, Grigoryan A, Fereshetyan K, Yepremyan D. Advances in understanding the pathophysiology of autism spectrum disorders. Behav Brain Res 2017; 331:92-101. [DOI: 10.1016/j.bbr.2017.04.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
126
|
Schroeder JC, Reim D, Boeckers TM, Schmeisser MJ. Genetic Animal Models for Autism Spectrum Disorder. Curr Top Behav Neurosci 2017; 30:311-324. [PMID: 26602248 DOI: 10.1007/7854_2015_407] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autism spectrum disorder (ASD) affects approximately 1 % of the human population and has a strong genetic component. Hence, the recent discovery of major "ASD genes" has subsequently resulted in the generation of several genetic animal models of ASD. Careful analysis of behavioral phenotypes and characterization of the underlying neurobiological mechanisms in these models should further help us to identify novel therapeutic targets and develop more effective strategies in the future to ameliorate or even reverse core symptoms and comorbidities of ASD. In this review, we will focus on the mutant mouse as animal model and outline how to characterize both behavioral and neurobiological phenotypes in this organism. We will further discuss a selection of major ASD mutant mouse lines. Our conclusions will finally address the current goals and perspectives in the field to obtain a more comprehensive and possibly also converging picture of ASD pathogenesis, which could be most useful for the desired bench-to-bedside strategy of translational medicine for this complex disorder.
Collapse
Affiliation(s)
- Jan C Schroeder
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.
- Department of Neurology, Ulm University, Ulm, Germany.
| |
Collapse
|
127
|
Kamp-Becker I, Poustka L, Bachmann C, Ehrlich S, Hoffmann F, Kanske P, Kirsch P, Krach S, Paulus FM, Rietschel M, Roepke S, Roessner V, Schad-Hansjosten T, Singer T, Stroth S, Witt S, Wermter AK. Study protocol of the ASD-Net, the German research consortium for the study of Autism Spectrum Disorder across the lifespan: from a better etiological understanding, through valid diagnosis, to more effective health care. BMC Psychiatry 2017; 17:206. [PMID: 28577550 PMCID: PMC5455122 DOI: 10.1186/s12888-017-1362-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/19/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a severe, lifelong neurodevelopmental disorder with early onset that places a heavy burden on affected individuals and their families. Due to the need for highly specialized health, educational and vocational services, ASD is a cost-intensive disorder, and strain on health care systems increases with increasing age of the affected individual. METHODS The ASD-Net will study Germany's largest cohort of patients with ASD over the lifespan. By combining methodological expertise from all levels of clinical research, the ASD-Net will follow a translational approach necessary to identify neurobiological pathways of different phenotypes and their appropriate identification and treatment. The work of the ASD-Net will be organized into three clusters concentrating on diagnostics, therapy and health economics. In the diagnostic cluster, data from a large, well-characterized sample (N = 2568) will be analyzed to improve the efficiency of diagnostic procedures. Pattern classification methods (machine learning) will be used to identify algorithms for screening purposes. In a second step, the developed algorithm will be tested in an independent sample. In the therapy cluster, we will unravel how an ASD-specific social skills training with concomitant oxytocin administration can modulate behavior through neurobiological pathways. For the first time, we will characterize long-term effects of a social skills training combined with oxytocin treatment on behavioral and neurobiological phenotypes. Also acute effects of oxytocin will be investigated to delineate general and specific effects of additional oxytocin treatment in order to develop biologically plausible models for symptoms and successful therapeutic interventions in ASD. Finally, in the health economics cluster, we will assess service utilization and ASD-related costs in order to identify potential needs and cost savings specifically tailored to Germany. The ASD-Net has been established as part of the German Research Network for Mental Disorders, funded by the BMBF (German Federal Ministry of Education and Research). DISCUSSION The highly integrated structure of the ASD-Net guarantees sustained collaboration of clinicians and researchers to alleviate individual distress, harm, and social disability of patients with ASD and reduce costs to the German health care system. TRIAL REGISTRATION Both clinical trials of the ASD-Net are registered in the German Clinical Trials Register: DRKS00008952 (registered on August 4, 2015) and DRKS00010053 (registered on April 8, 2016).
Collapse
Affiliation(s)
- Inge Kamp-Becker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Clinic, Philipps-University Marburg, Marburg, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Child and Adolescent Psychiatry/Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | | | - Stefan Ehrlich
- Department of Child & Adolescent Psychiatry, Medical Faculty of the Technical University Dresden, Dresden, Germany
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Falk Hoffmann
- Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Philipp Kanske
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Kirsch
- Department of Clinical Psychology Central Institute of Mental Health, Mannheim, Germany
| | - Sören Krach
- Department for Psychiatry and Psychotherapy, University Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Frieder Michel Paulus
- Department for Psychiatry and Psychotherapy, University Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Stefan Roepke
- Department of Psychiatry, Campus Benjamin Franklin, Charité - Medical Faculty Berlin, Berlin, Germany
| | - Veit Roessner
- Department of Child & Adolescent Psychiatry, Medical Faculty of the Technical University Dresden, Dresden, Germany
| | - Tanja Schad-Hansjosten
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Tania Singer
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sanna Stroth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Clinic, Philipps-University Marburg, Marburg, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Anne-Kathrin Wermter
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Clinic, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
128
|
Delineating the Common Biological Pathways Perturbed by ASD's Genetic Etiology: Lessons from Network-Based Studies. Int J Mol Sci 2017; 18:ijms18040828. [PMID: 28420080 PMCID: PMC5412412 DOI: 10.3390/ijms18040828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/26/2022] Open
Abstract
In recent decades it has become clear that Autism Spectrum Disorder (ASD) possesses a diverse and heterogeneous genetic etiology. Aberrations in hundreds of genes have been associated with ASD so far, which include both rare and common variations. While one may expect that these genes converge on specific common molecular pathways, which drive the development of the core ASD characteristics, the task of elucidating these common molecular pathways has been proven to be challenging. Several studies have combined genetic analysis with bioinformatical techniques to uncover molecular mechanisms that are specifically targeted by autism-associated genetic aberrations. Recently, several analysis have suggested that particular signaling mechanisms, including the Wnt and Ca2+/Calmodulin-signaling pathways are often targeted by autism-associated mutations. In this review, we discuss several studies that determine specific molecular pathways affected by autism-associated mutations, and then discuss more in-depth into the biological roles of a few of these pathways, and how they may be involved in the development of ASD. Considering that these pathways may be targeted by specific pharmacological intervention, they may prove to be important therapeutic targets for the treatment of ASD.
Collapse
|
129
|
Autism-like behavior in the BTBR mouse model of autism is improved by propofol. Neuropharmacology 2017; 118:175-187. [PMID: 28341205 DOI: 10.1016/j.neuropharm.2017.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that is characterized by symptoms of impaired social interactions, restricted interests and repetitive behaviors. Recent studies in humans and animal-models suggest that reduced GABAergic neurotransmission in the brain may underlie autism-related behavioral symptoms. It has been shown that propofol, a commonly used anesthetic, facilitates γ-aminobutyric acid-mediated inhibitory synaptic transmission. The present study investigated whether propofol improved autistic phenotypes in BTBR T + Itpr3tf/J (BTBR) mice, a model of idiopathic autism. We found that i.p. injection of propofol in BTBR mice significantly improved aspects of social approach and repetitive behaviors without affecting reciprocal social interactions and without any detrimental effects in C57BL/6J mice. The ability of propofol to improve autistic phenotypes in BTBR mice through GABAergic neurotransmission suggests a potential pharmacological target for interventions to treat symptoms of autism.
Collapse
|
130
|
Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, Park BY, Snyder NW, Schendel D, Volk H, Windham GC, Newschaffer C. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health 2017; 38:81-102. [PMID: 28068486 PMCID: PMC6566093 DOI: 10.1146/annurev-publhealth-031816-044318] [Citation(s) in RCA: 565] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with lifelong impacts. Genetic and environmental factors contribute to ASD etiology, which remains incompletely understood. Research on ASD epidemiology has made significant advances in the past decade. Current prevalence is estimated to be at least 1.5% in developed countries, with recent increases primarily among those without comorbid intellectual disability. Genetic studies have identified a number of rare de novo mutations and gained footing in the areas of polygenic risk, epigenetics, and gene-by-environment interaction. Epidemiologic investigations focused on nongenetic factors have established advanced parental age and preterm birth as ASD risk factors, indicated that prenatal exposure to air pollution and short interpregnancy interval are potential risk factors, and suggested the need for further exploration of certain prenatal nutrients, metabolic conditions, and exposure to endocrine-disrupting chemicals. We discuss future challenges and goals for ASD epidemiology as well as public health implications.
Collapse
Affiliation(s)
- Kristen Lyall
- A.J. Drexel Autism Institute, Philadelphia, Pennsylvania 19104;
| | - Lisa Croen
- Kaiser Permanente Division of Research, Oakland, California 94612
| | - Julie Daniels
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, North Carolina 27599
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, Pennsylvania 19104
- Department of Medical Epidemiology and Biostatistics and Department of Public Health Sciences, Karolinska Institute, SE 171-77 Stockholm, Sweden
| | - Bo Y Park
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | - Diana Schendel
- Department of Economics and Business, National Centre for Register-Based Research, Aarhus University, DK-8210 Aarhus, Denmark
- Department of Public Health, Section for Epidemiology, Aarhus University, DK-8000 Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Heather Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Gayle C Windham
- California Department of Public Health, Division of Environmental and Occupational Disease Control, Richmond, California 94805
| | | |
Collapse
|
131
|
Krishnan V, Stoppel DC, Nong Y, Johnson MA, Nadler MJS, Ozkaynak E, Teng BL, Nagakura I, Mohammad F, Silva MA, Peterson S, Cruz TJ, Kasper EM, Arnaout R, Anderson MP. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1. Nature 2017; 543:507-512. [PMID: 28297715 PMCID: PMC5364052 DOI: 10.1038/nature21678] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
Abstract
Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant autism linked to increased gene dosages of UBE3A, which both possesses ubiquitin-ligase and transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus down-regulates glutamatergic synapse organizer cerebellin-1 (Cbln1) that is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases of UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA) where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activations of, or Cbln1 restorations in VTA glutamatergic neurons rescues sociability deficits induced by Ube3a and/or seizures. Our results suggest a gene × seizure interaction in VTA glutamatergic neurons that impairs sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - David C Stoppel
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Yi Nong
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Mark A Johnson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Monica J S Nadler
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Ekim Ozkaynak
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Brian L Teng
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Ikue Nagakura
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Fahim Mohammad
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Michael A Silva
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Sally Peterson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Tristan J Cruz
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Ekkehard M Kasper
- Department of Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Ramy Arnaout
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Division of Clinical Informatics, Department of Internal Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthew P Anderson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.,Boston Children's Hospital Intellectual and Developmental Disabilities Research Center, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
132
|
The emergence of autism spectrum disorder: insights gained from studies of brain and behaviour in high-risk infants. Curr Opin Psychiatry 2017; 30:85-91. [PMID: 28009726 PMCID: PMC5915621 DOI: 10.1097/yco.0000000000000312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW We review studies of infants at risk for autism spectrum disorder (ASD), proposing that the earliest manifestations of disrupted brain development can shed light on prebehavioural markers of risk and mechanisms underlying the heterogeneity of ASD. RECENT FINDINGS Prospective, longitudinal studies of infants at risk for ASD have revealed that behavioural signs of ASD are generally not observed until the second year of life. The developmental signs within the first year are often subtle and rooted in processes outside the core diagnostic domains of ASD, such as motor and visual perceptual function. However, studies examining early brain development and function have identified a myriad of atypicalities within the first year that are associated with risk for ASD. SUMMARY Longitudinal studies of high-risk infants provide a unique opportunity to identify and quantify the sources of the atypical development and developmental heterogeneity of ASD. Integration of assays of behaviour and brain in the first year of life, expansion of the definition of high risk, and coordinated efforts in multisite investigations to adequately power integrative studies will lead to new insights into mechanisms of atypical development and, ultimately, the ideal timing and target for interventions that aim to attenuate delays or impairments.
Collapse
|
133
|
Tian Y, Wang L, Jia M, Lu T, Ruan Y, Wu Z, Wang L, Liu J, Zhang D. Association of oligodendrocytes differentiation regulator gene DUSP15 with autism. World J Biol Psychiatry 2017; 18:143-150. [PMID: 27223645 DOI: 10.1080/15622975.2016.1178395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Autism is a pervasive neurodevelopmental disorder with high heritability. Genetic factors play crucial roles in the aetiology of autism. Dual specificity phosphatase 15 (DUSP15) has been recognised as a key regulator gene for oligodendrocytes differentiation. A previous study detected one de novo missense variant (p.Thr107Met) with probable deleterious function in exon 6 of DUSP15 among patients with autism. Therefore, we sequenced this mutation in autistic children and performed an association analysis between DUSP15 polymorphisms and autism. METHODS We performed a case-control study between 255 children affected with autism and 427 healthy controls. Four tag-single nucleotide polymorphisms (SNPs) were selected. These SNPs and the previously reported mutation in exon 6 of DUSP15 were genotyped via Sanger sequencing. RESULTS Our results showed that rs3746599 was significantly associated with autism under allelic, additive and dominant models, respectively (χ2 = 9.699, P = 0.0018; χ2 = 16.224, P = 0.001; χ2 = 7.198, P = 0.007). The association remained significant after Bonferroni correction and permutation tests (n = 10,000). We did not detect the missense variant p.Thr107Met reported in previous studies. However, a de novo missense variant of DUSP15 (p.Ala56Thr) with a probable disease-causing effect was detected in one autistic child while absent in healthy controls. CONCLUSIONS Our findings initially suggest that DUSP15 might be a susceptibility gene for autism in Chinese Han population.
Collapse
Affiliation(s)
- Ye Tian
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Lifang Wang
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Meixiang Jia
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Tianlan Lu
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Yanyan Ruan
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Zhiliu Wu
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Linyan Wang
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Jing Liu
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Dai Zhang
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China.,d PKU-IDG/McGovern Institute for Brain Research, Peking University , Beijing , PR China
| |
Collapse
|
134
|
Athanasiu L, Giddaluru S, Fernandes C, Christoforou A, Reinvang I, Lundervold AJ, Nilsson LG, Kauppi K, Adolfsson R, Eriksson E, Sundet K, Djurovic S, Espeseth T, Nyberg L, Steen VM, Andreassen OA, Le Hellard S. A genetic association study of CSMD1 and CSMD2 with cognitive function. Brain Behav Immun 2017; 61:209-216. [PMID: 27890662 DOI: 10.1016/j.bbi.2016.11.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023] Open
Abstract
The complement cascade plays a role in synaptic pruning and synaptic plasticity, which seem to be involved in cognitive functions and psychiatric disorders. Genetic variants in the closely related CSMD1 and CSMD2 genes, which are implicated in complement regulation, are associated with schizophrenia. Since patients with schizophrenia often show cognitive impairments, we tested whether variants in CSMD1 and CSMD2 are also associated with cognitive functions per se. We took a discovery-replication approach, using well-characterized Scandinavian cohorts. A total of 1637 SNPs in CSMD1 and 206 SNPs in CSMD2 were tested for association with cognitive functions in the NCNG sample (Norwegian Cognitive NeuroGenetics; n=670). Replication testing of SNPs with p-value<0.001 (7 in CSMD1 and 3 in CSMD2) was carried out in the TOP sample (Thematically Organized Psychosis; n=1025) and the BETULA sample (Betula Longitudinal Study on aging, memory and dementia; n=1742). Finally, we conducted a meta-analysis of these SNPs using all three samples. The previously identified schizophrenia marker in CSMD1 (SNP rs10503253) was also included. The strongest association was observed between the CSMD1 SNP rs2740931 and performance in immediate episodic memory (p-value=5×10-6, minor allele A, MAF 0.48-0.49, negative direction of effect). This association reached the study-wide significance level (p⩽1.2×10-5). SNP rs10503253 was not significantly associated with cognitive functions in our samples. In conclusion, we studied n=3437 individuals and found evidence that a variant in CSMD1 is associated with cognitive function. Additional studies of larger samples with cognitive phenotypes will be needed to further clarify the role of CSMD1 in cognitive phenotypes in health and disease.
Collapse
Affiliation(s)
- Lavinia Athanasiu
- NORMENT - K.G. Jebsen Center for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway; NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sudheer Giddaluru
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Carla Fernandes
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Andrea Christoforou
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ivar Reinvang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, Jonas Lies vei 91, Bergen, Norway; K. G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen 5009, Norway
| | - Lars-Göran Nilsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Aging Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kauppi
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umea University, 90187 Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umea University, SE 901 85 Umeå, Sweden
| | - Elias Eriksson
- Department of Pharmacology, Institute of Physiology and Neuroscience, Sahlgrenska Academy, Göteborg University, SE 405 30 Göteborg, Sweden
| | - Kjetil Sundet
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Thomas Espeseth
- NORMENT - K.G. Jebsen Center for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umea University, 90187 Umeå, Sweden; Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden
| | - Vidar M Steen
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Stephanie Le Hellard
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
135
|
Peñagarikano O. Oxytocin in animal models of autism spectrum disorder. Dev Neurobiol 2017; 77:202-213. [DOI: 10.1002/dneu.22449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/30/2016] [Accepted: 09/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Olga Peñagarikano
- Department of Pharmacology, School of Medicine; University of the Basque Country; Sarriena s/n Leioa 48940 Spain
- Center for Biomedical Research Network in Mental Health (CIBERSAM), ISCIII; Spain
| |
Collapse
|
136
|
Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 2017; 595:489-503. [PMID: 27641441 PMCID: PMC5233671 DOI: 10.1113/jp273106] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022] Open
Abstract
There is a growing realisation that the gut-brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age-related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long-term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics.
Collapse
Affiliation(s)
- Timothy G. Dinan
- APC Microbiome InstituteUniversity College CorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkIreland
| | - John F. Cryan
- APC Microbiome InstituteUniversity College CorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkIreland
| |
Collapse
|
137
|
Abstract
Autism Spectrum Disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders that are diagnosed solely on the basis of behaviour. A large body of work has reported neuroanatomical differences between individuals with ASD and neurotypical controls. Despite the huge clinical and genetic heterogeneity that typifies autism, some of these anatomical features appear to be either present in most cases or so dramatically altered in some that their presence is now reasonably well replicated in a number of studies. One such finding is the tendency towards overgrowth of the frontal cortex during the early postnatal period. Although these reports have been focused primarily on the presumed pathological anatomy, they are providing us with important insights into normal brain anatomy and are stimulating new ideas and hypotheses about the normal trajectory of brain development and the function of specific anatomical brain structures. The use of model systems that include genetic model organisms such as the mouse and, more recently, human induced pluripotent stem cell-derived brain organoids to model normal and pathological human cortical development, is proving particularly informative. Here we review some of the neuroanatomical alterations reported in autism, with a particular focus on well-validated findings and recent advances in the field, and ask what these observations can tell us about normal and abnormal brain development.
Collapse
Affiliation(s)
- Alex P. A. Donovan
- Department of Craniofacial Development and Stem Cell Biology, and MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - M. Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, and MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
138
|
Jalbrzikowski M, Ahmed KH, Patel A, Jonas R, Kushan L, Chow C, Bearden CE. Categorical versus dimensional approaches to autism-associated intermediate phenotypes in 22q11.2 microdeletion syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:53-65. [PMID: 28367513 PMCID: PMC5373800 DOI: 10.1016/j.bpsc.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND 22q11.2 Microdeletion syndrome (22q11DS) is associated with elevated rates of autism spectrum disorders (ASDs), although the diagnosis is controversial. In order to determine whether there is a biological substrate of ASD in 22q11DS, we examined neurocognitive and structural neuroanatomic differences between those with 22q11DS and an ASD diagnosis (22q11DS-ASD+) and those with 22q11DS without ASD (22q11DS-ASD-); we then determined whether these differences were better characterized within a categorical or dimensional framework. METHODS We collected multiple neurocognitive measures and high-resolution T1-weighted scans on 116 individuals (29 22q11DS-ASD+, 32 22q11DS-ASD-, 55 typically developing controls) between 6 and 26 years of age. Measures of subcortical volume, cortical thickness (CT), and surface area were extracted using the FreeSurfer image analysis suite. Group differences in neurocognitive and neuroanatomic measures were assessed; regression analyses were then performed to determine whether a categorical or dimensional measure of ASD was a better predictor of neurocognitive impairment and/or neuroanatomic abnormalities observed in 22q11DS-ASD+. RESULTS In comparison to 22q11DS-ASD-, 22q11DS-ASD+ participants exhibited decreased bilateral hippocampal CT and decreased right amygdala volumes. Those with 22q11DS-ASD+ also showed slowed processing speed and impairments in visuospatial and facial memory. Neurocognitive impairments fit a dimensional model of ASD, whereas reductions in parahippocampal CT were best explained by a categorical measure of ASD. CONCLUSIONS A combination of categorical and dimensional measures of ASD may provide the most comprehensive understanding of ASDs in 22q11DS.
Collapse
Affiliation(s)
| | - Khwaja Hamzah Ahmed
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
| | - Arati Patel
- University of Southern California, Keck School of Medicine
| | - Rachel Jonas
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
- University of California, Los Angeles, Interdepartmental Neuroscience Program
| | - Leila Kushan
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
| | - Carolyn Chow
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
| | - Carrie E. Bearden
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
- University of California, Los Angeles, Department of Psychology
| |
Collapse
|
139
|
Fetal origins of autism spectrum disorders: the non-associated maternal factors. Future Sci OA 2016; 2:FSO114. [PMID: 28031961 PMCID: PMC5137904 DOI: 10.4155/fsoa-2015-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/19/2016] [Indexed: 11/17/2022] Open
Abstract
Aim: Several population-based studies have been conducted to determine whether maternal exposures are involved in the pathophysiology of autism spectrum disorder (ASD). We review these studies and describe the factors not associated with increased risk for ASD development. Methods: We identified studies describing associations between maternal exposures and ASD development. These studies include the Childhood Autism Risks from Genetics and the Environment, Nurses’ Health Study II, and the Swedish population registry. Results: Factors not associated with ASD development include Type 2 and gestational diabetes, chronic hypertension, fever treated with antipyretic medication, autoimmune disease and short interpregnancy intervals. Conclusion: There is increasing evidence that maternal exposures are involved in the pathophysiology of ASD in the developing fetus. Lay Abstract: Autism spectrum disorder currently affects one in 68 children in the USA, with up to one in 42 boys. Its underlying etiology is largely unknown. Although autism was once considered a childhood disease, efforts for early detection led to the realization that it might originate at a much earlier stage, namely fetal life. Several maternal risk factors have recently been studied to establish associations with autism in the offspring. In this review, we present the maternal risk factors that were not found to have such associations.
Collapse
|
140
|
A developmental neuroscience approach to the search for biomarkers in autism spectrum disorder. Curr Opin Neurol 2016; 29:123-9. [PMID: 26953849 DOI: 10.1097/wco.0000000000000298] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The delineation of biomarkers in autism spectrum disorder (ASD) offers a promising approach to inform precision-medicine-based approaches to ASD diagnosis and treatment and to move toward a mechanistic description of the disorder. However, biomarkers with sufficient sensitivity or specificity for clinical application in ASD are yet to be realized. Here, we review recent evidence for early, low-level alterations in brain and behavior development that may offer promising avenues for biomarker development in ASD. RECENT FINDINGS Accumulating evidence suggests that signs associated with ASD may unfold in a manner that maps onto the hierarchical organization of brain development. Genetic and neuroimaging evidence points towards perturbations in brain development early in life, and emerging evidence indicates that sensorimotor development may be among the earliest emerging signs associated with ASD, preceding social and cognitive impairment. SUMMARY The search for biomarkers of risk, prediction and stratification in ASD may be advanced through a developmental neuroscience approach that looks outside of the core signs of ASD and considers the bottom-up nature of brain development alongside the dynamic nature of development over time. We provide examples of assays that could be incorporated in studies to target low-level circuits.
Collapse
|
141
|
Gokoolparsadh A, Sutton GJ, Charamko A, Green NFO, Pardy CJ, Voineagu I. Searching for convergent pathways in autism spectrum disorders: insights from human brain transcriptome studies. Cell Mol Life Sci 2016; 73:4517-4530. [PMID: 27405608 PMCID: PMC11108267 DOI: 10.1007/s00018-016-2304-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 01/07/2023]
Abstract
Autism spectrum disorder (ASD) is one of the most heritable neuropsychiatric conditions. The complex genetic landscape of the disorder includes both common and rare variants at hundreds of genetic loci. This marked heterogeneity has thus far hampered efforts to develop genetic diagnostic panels and targeted pharmacological therapies. Here, we give an overview of the current literature on the genetic basis of ASD, and review recent human brain transcriptome studies and their role in identifying convergent pathways downstream of the heterogeneous genetic variants. We also discuss emerging evidence on the involvement of non-coding genomic regions and non-coding RNAs in ASD.
Collapse
Affiliation(s)
- Akira Gokoolparsadh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Gavin J Sutton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Alexiy Charamko
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Nicole F Oldham Green
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Christopher J Pardy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia.
| |
Collapse
|
142
|
Yoshizaki K, Furuse T, Kimura R, Tucci V, Kaneda H, Wakana S, Osumi N. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders. PLoS One 2016; 11:e0166665. [PMID: 27855195 PMCID: PMC5113965 DOI: 10.1371/journal.pone.0166665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.
Collapse
Affiliation(s)
- Kaichi Yoshizaki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tamio Furuse
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Valter Tucci
- Department of Neuroscience and Brain Technologies. Istituto Italiano di Tecnologia, Genova, Italy
| | - Hideki Kaneda
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
143
|
Kwan V, Meka D, White S, Hung C, Holzapfel N, Walker S, Murtaza N, Unda B, Schwanke B, Yuen R, Habing K, Milsom C, Hope K, Truant R, Scherer S, Calderon de Anda F, Singh K. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants. Cell Rep 2016; 17:1892-1904. [DOI: 10.1016/j.celrep.2016.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/02/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022] Open
|
144
|
Johansen A, Rosti RO, Musaev D, Sticca E, Harripaul R, Zaki M, Çağlayan AO, Azam M, Sultan T, Froukh T, Reis A, Popp B, Ahmed I, John P, Ayub M, Ben-Omran T, Vincent JB, Gleeson JG, Abou Jamra R. Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual Disability Accompanied by Epilepsy and Autistic Features. Am J Hum Genet 2016; 99:912-916. [PMID: 27616480 DOI: 10.1016/j.ajhg.2016.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022] Open
Abstract
The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-containing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features.
Collapse
|
145
|
Brain oscillations and connectivity in autism spectrum disorders (ASD): new approaches to methodology, measurement and modelling. Neurosci Biobehav Rev 2016; 71:601-620. [PMID: 27720724 DOI: 10.1016/j.neubiorev.2016.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022]
Abstract
Although atypical social behaviour remains a key characterisation of ASD, the presence of sensory and perceptual abnormalities has been given a more central role in recent classification changes. An understanding of the origins of such aberrations could thus prove a fruitful focus for ASD research. Early neurocognitive models of ASD suggested that the study of high frequency activity in the brain as a measure of cortical connectivity might provide the key to understanding the neural correlates of sensory and perceptual deviations in ASD. As our review shows, the findings from subsequent research have been inconsistent, with a lack of agreement about the nature of any high frequency disturbances in ASD brains. Based on the application of new techniques using more sophisticated measures of brain synchronisation, direction of information flow, and invoking the coupling between high and low frequency bands, we propose a framework which could reconcile apparently conflicting findings in this area and would be consistent both with emerging neurocognitive models of autism and with the heterogeneity of the condition.
Collapse
|
146
|
DeWitt JJ, Grepo N, Wilkinson B, Evgrafov OV, Knowles JA, Campbell DB. Impact of the Autism-Associated Long Noncoding RNA MSNP1AS on Neuronal Architecture and Gene Expression in Human Neural Progenitor Cells. Genes (Basel) 2016; 7:genes7100076. [PMID: 27690106 PMCID: PMC5083915 DOI: 10.3390/genes7100076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 01/26/2023] Open
Abstract
We previously identified the long noncoding RNA (lncRNA) MSNP1AS (moesin pseudogene 1, antisense) as a functional element revealed by genome wide significant association with autism spectrum disorder (ASD). MSNP1AS expression was increased in the postmortem cerebral cortex of individuals with ASD and particularly in individuals with the ASD-associated genetic markers on chromosome 5p14.1. Here, we mimicked the overexpression of MSNP1AS observed in postmortem ASD cerebral cortex in human neural progenitor cell lines to determine the impact on neurite complexity and gene expression. ReNcell CX and SK-N-SH were transfected with an overexpression vector containing full-length MSNP1AS. Neuronal complexity was determined by the number and length of neuronal processes. Gene expression was determined by strand-specific RNA sequencing. MSNP1AS overexpression decreased neurite number and neurite length in both human neural progenitor cell lines. RNA sequencing revealed changes in gene expression in proteins involved in two biological processes: protein synthesis and chromatin remodeling. These data indicate that overexpression of the ASD-associated lncRNA MSNP1AS alters the number and length of neuronal processes. The mechanisms by which MSNP1AS overexpression impacts neuronal differentiation may involve protein synthesis and chromatin structure. These same biological processes are also implicated by rare mutations associated with ASD, suggesting convergent mechanisms.
Collapse
Affiliation(s)
- Jessica J DeWitt
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Nicole Grepo
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Oleg V Evgrafov
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - James A Knowles
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Daniel B Campbell
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
147
|
Peter S, ten Brinke MM, Stedehouder J, Reinelt CM, Wu B, Zhou H, Zhou K, Boele HJ, Kushner SA, Lee MG, Schmeisser MJ, Boeckers TM, Schonewille M, Hoebeek FE, De Zeeuw CI. Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nat Commun 2016; 7:12627. [PMID: 27581745 PMCID: PMC5025785 DOI: 10.1038/ncomms12627] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Loss-of-function mutations in the gene encoding the postsynaptic scaffolding protein SHANK2 are a highly penetrant cause of autism spectrum disorders (ASD) involving cerebellum-related motor problems. Recent studies have implicated cerebellar pathology in the aetiology of ASD. Here we evaluate the possibility that cerebellar Purkinje cells (PCs) represent a critical locus of ASD-like pathophysiology in mice lacking Shank2. Absence of Shank2 impairs both PC intrinsic plasticity and induction of long-term potentiation at the parallel fibre to PC synapse. Moreover, inhibitory input onto PCs is significantly enhanced, most prominently in the posterior lobe where simple spike (SS) regularity is most affected. Using PC-specific Shank2 knockouts, we replicate alterations of SS regularity in vivo and establish cerebellar dependence of ASD-like behavioural phenotypes in motor learning and social interaction. These data highlight the importance of Shank2 for PC function, and support a model by which cerebellar pathology is prominent in certain forms of ASD.
Collapse
Affiliation(s)
- Saša Peter
- Netherlands Institute for Neuroscience, Amsterdam 1105 CA, Netherlands
| | | | | | - Claudia M. Reinelt
- Institute for Anatomy and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Bin Wu
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Haibo Zhou
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Min Goo Lee
- Yonsei University College of Medicine, Seoul 120–752, Korea
| | - Michael J. Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm 89081, Germany
- Department of Neurology, Ulm University, Ulm 89081, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm 89081, Germany
| | | | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam 1105 CA, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| |
Collapse
|
148
|
Altered Cortical Dynamics and Cognitive Function upon Haploinsufficiency of the Autism-Linked Excitatory Synaptic Suppressor MDGA2. Neuron 2016; 91:1052-1068. [DOI: 10.1016/j.neuron.2016.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022]
|
149
|
Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016; 22:345-61. [PMID: 27050589 DOI: 10.1038/nm.4071] [Citation(s) in RCA: 530] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies.
Collapse
|
150
|
Abstract
Abstract
ASD research is at an important crossroads. The ASD diagnosis is important for assigning a child to early behavioral intervention and explaining a child’s condition. But ASD research has not provided a diagnosis-specific medical treatment, or a consistent early predictor, or a unified life course. If the ASD diagnosis also lacks biological and construct validity, a shift away from studying ASD-defined samples would be warranted. Consequently, this paper reviews recent findings for the neurobiological validity of ASD, the construct validity of ASD diagnostic criteria, and the construct validity of ASD spectrum features. The findings reviewed indicate that the ASD diagnosis lacks biological and construct validity. The paper concludes with proposals for research going forward.
Collapse
|