101
|
Gullino ML, Gilardi G, Garibaldi A. Ready-to-Eat Salad Crops: A Plant Pathogen's Heaven. PLANT DISEASE 2019; 103:2153-2170. [PMID: 31343378 DOI: 10.1094/pdis-03-19-0472-fe] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ready-to-eat salad sector, also called fresh-cut or bagged salads, is a fast-growing segment of the fresh-food industry. The dynamism and specialization of this sector, together with the lack of adequate crop rotation, the globalization of the seed market, and climate change, are the main causes of the development of many new diseases that cause severe production losses. Newly detected diseases of the most important crops grown (lettuce, wild and cultivated rocket, lamb's lettuce, chicory, endive, basil, spinach, and Swiss chard) are critically discussed. The management of these diseases represents a formidable challenge, since few fungicides are registered on these minor-use crops. An interesting feature of the ready-to-eat salad sector is that most crops are grown under protection, often in soilless systems, which provide an environment helpful to the implementation of innovative control methods. Current trends in disease management are discussed, with special focus on the most sustainable practices.
Collapse
Affiliation(s)
- Maria Lodovica Gullino
- Centre of Competence for the Agro-Environmental Sector (AGROINNOVA), University of Torino. Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giovanna Gilardi
- Centre of Competence for the Agro-Environmental Sector (AGROINNOVA), University of Torino. Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Angelo Garibaldi
- Centre of Competence for the Agro-Environmental Sector (AGROINNOVA), University of Torino. Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
102
|
Montes N, Pagán I. Light Intensity Modulates the Efficiency of Virus Seed Transmission through Modifications of Plant Tolerance. PLANTS (BASEL, SWITZERLAND) 2019; 8:E304. [PMID: 31461899 PMCID: PMC6783938 DOI: 10.3390/plants8090304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Increased light intensity has been predicted as a major consequence of climate change. Light intensity is a critical resource involved in many plant processes, including the interaction with viruses. A central question to plant-virus interactions is understanding the determinants of virus dispersal among plants. However, very little is known on the effect of environmental factors on virus transmission, particularly through seeds. The fitness of seed-transmitted viruses is highly dependent on host reproductive potential, and requires higher virus multiplication in reproductive organs. Thus, environmental conditions that favor reduced virus virulence without controlling its level of within-plant multiplication (i.e., tolerance) may enhance seed transmission. We tested the hypothesis that light intensity conditions that enhance plant tolerance promote virus seed transmission. To do so, we challenged 18 Arabidopsis thaliana accessions with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV) under high and low light intensity. Results indicated that higher light intensity increased TuMV multiplication and/or plant tolerance, which was associated with more efficient seed transmission. Conversely, higher light intensity reduced plant tolerance and CMV multiplication, and had no effect on seed transmission. This work provides novel insights on how environmental factors modulate plant virus transmission and contributes to understand the underlying processes.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, 28668, Boadilla del Monte (Madrid), Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), 28006 Madrid, Spain.
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| |
Collapse
|
103
|
González R, Butković A, Elena SF. Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus. Virus Evol 2019; 5:vez024. [PMID: 31768264 PMCID: PMC6863064 DOI: 10.1093/ve/vez024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV lineages in two radically different host population structures: (1) a metapopulation subdivided into six demes (subpopulations); each one being composed of individuals from only one of six possible A. thaliana ecotypes and (2) a well-mixed population constituted by equal number of plants from the same six A. thaliana ecotypes. These two populations were evolved for twelve serial passages. At the end of the experimental evolution, we found faster adaptation of TuMV to each ecotype in the metapopulation than in the well-mixed heterogeneous host populations. However, viruses evolved in well-mixed populations were more pathogenic and infectious than viruses evolved in the metapopulation. Furthermore, the viruses evolved in the demes showed stronger signatures of local specialization than viruses evolved in the well-mixed populations. These results illustrate how the genetic diversity of hosts in an experimental ecosystem favors the evolution of virulence of a pathogen.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, València 46980, Spain
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, València 46980, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, València 46980, Spain.,The Santa Fe Institute, Santa Fe, 1399 Hyde Park Road, NM 87501, USA
| |
Collapse
|
104
|
Leu M, Haines AM, Check CE, Costante DM, Evans JC, Hollingsworth MA, Ritrovato IT, Rydberg AM, Sandercock AM, Thomas KL, Treakle TC. Temporal analysis of threats causing species endangerment in the United States. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Matthias Leu
- Biology DepartmentCollege of William & Mary Williamsburg Virginia
| | - Aaron M. Haines
- Biology Department, Applied Conservation LabMillersville University Millersville Pennsylvania
| | | | - Delaney M. Costante
- Biology Department, Applied Conservation LabMillersville University Millersville Pennsylvania
| | - Jessica C. Evans
- Biology DepartmentCollege of William & Mary Williamsburg Virginia
| | | | | | | | - Alexander M. Sandercock
- Biology Department, Applied Conservation LabMillersville University Millersville Pennsylvania
| | - Kayli L. Thomas
- Biology Department, Applied Conservation LabMillersville University Millersville Pennsylvania
| | - Tyler C. Treakle
- Biology DepartmentCollege of William & Mary Williamsburg Virginia
| |
Collapse
|
105
|
Martinuzzi S, Allstadt AJ, Pidgeon AM, Flather CH, Jolly WM, Radeloff VC. Future changes in fire weather, spring droughts, and false springs across U.S. National Forests and Grasslands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01904. [PMID: 30980571 DOI: 10.1002/eap.1904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 11/13/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Public lands provide many ecosystem services and support diverse plant and animal communities. In order to provide these benefits in the future, land managers and policy makers need information about future climate change and its potential effects. In particular, weather extremes are key drivers of wildfires, droughts, and false springs, which in turn can have large impacts on ecosystems. However, information on future changes in weather extremes on public lands is lacking. Our goal was to compare historical (1950-2005) and projected mid-century (2041-2070) changes in weather extremes (fire weather, spring droughts, and false springs) on public lands. This case study looked at the lands managed by the U.S. Forest Service across the conterminous United States including 501 ranger district units. We analyzed downscaled projections of daily records from 19 Coupled Model Intercomparison Project 5 General Circulation Models for two climate scenarios, with either medium-low or high CO2 - equivalent concentration (RCPs 4.5 and 8.5). For each ranger district, we estimated: (1) fire potential, using the Keetch-Byram Drought Index; (2) frequency of spring droughts, using the Standardized Precipitation Index; and (3) frequency of false springs, using the extended Spring Indices. We found that future climates could substantially alter weather conditions across Forest Service lands. Under the two climate scenarios, increases in wildfire potential, spring droughts, and false springs were projected in 32-72%, 28-29%, and 13-16% of all ranger districts, respectively. Moreover, a substantial number of ranger districts (17-30%), especially in the Southwestern, Pacific Southwest, and Rocky Mountain regions, were projected to see increases in more than one type of weather extreme, which may require special management attention. We suggest that future changes in weather extremes could threaten the ability of public lands to provide ecosystem services and ecological benefits to society. Overall, our results highlight the value of spatially-explicit weather projections to assess future changes in key weather extremes for land managers and policy makers.
Collapse
Affiliation(s)
- Sebastián Martinuzzi
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Andrew J Allstadt
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, Wisconsin, 53706, USA
- U.S. Fish and Wildlife Service, 5600 West American Boulevard, Bloomington, Minnesota, 55437, USA
| | - Anna M Pidgeon
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Curtis H Flather
- Rocky Mountain Research Station, USDA Forest Service, 240 West Prospect Road, Fort Collins, Colorado, 80526, USA
| | - William M Jolly
- Missoula Fire Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, 5775 Highway 10, Missoula, Montana, 59808, USA
| | - Volker C Radeloff
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, Wisconsin, 53706, USA
| |
Collapse
|
106
|
A V VB, Baresel JP, Weedon O, Finckh MR. Effects of ten years organic and conventional farming on early seedling traits of evolving winter wheat composite cross populations. Sci Rep 2019; 9:9053. [PMID: 31227728 PMCID: PMC6588703 DOI: 10.1038/s41598-019-45300-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/03/2019] [Indexed: 11/27/2022] Open
Abstract
Early vigour traits of wheat composite cross populations (CCPs) based on high yielding (Y) or high quality (Q) or Y*Q varietal intercross evolving under organic or conventional conditions in parallel populations were studied hydroponically. To eliminate storage and year effects, frozen F6, F10, F11 and F15 seeds were multiplied in one field, resulting in the respective Fx.1 generations. This eliminated generation and growing system effects on seed size for the F6.1 F10.1 and F15.1. Due to a severe winter kill affecting the F11, the generation effect persisted, leading to larger seeds and markedly different seedling traits in the F11.1 compared to the F10.1 and F15.1. Seedling traits were similar among parallel populations. Shoot length and weight increased in both systems until the F11.1 across farming systems and remained constant thereafter. Over time, seminal root length and root weight of organic CCPs increased and total- and specific- root length decreased significantly compared to the conventional CCPs. Rooting patterns under organic conditions suggests better ability to reach deeper soil nutrients. In both systems, Q and YQ CCPs were more vigorous than Y CCPs, confirming genetic differences among populations. Overall, heterogeneous populations appear very plastic and selection pressure was stronger in organic systems.
Collapse
Affiliation(s)
- Vijaya Bhaskar A V
- Crops, Environment & Land Use Programme, Crops Research Centre Oak Park, Teagasc, Carlow, R93 XE12, Ireland.
- University of Kassel, Faculty of Organic Agricultural Sciences, Department of Ecological Plant Protection, Nordbahnhofstr. 1a, Witzenhausen, D-37213, Germany.
| | - Jörg Peter Baresel
- Technical University Munich, Institute for Plant Nutrition, Center of Life and Food Sciences Weihenstephan, Freising, 85354, Germany
| | - Odette Weedon
- University of Kassel, Faculty of Organic Agricultural Sciences, Department of Ecological Plant Protection, Nordbahnhofstr. 1a, Witzenhausen, D-37213, Germany
| | - Maria R Finckh
- University of Kassel, Faculty of Organic Agricultural Sciences, Department of Ecological Plant Protection, Nordbahnhofstr. 1a, Witzenhausen, D-37213, Germany
| |
Collapse
|
107
|
Climatic effects on the distribution of ant- and bat fly-associated fungal ectoparasites (Ascomycota, Laboulbeniales). FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
108
|
Cohen SP, Leach JE. Abiotic and biotic stresses induce a core transcriptome response in rice. Sci Rep 2019; 9:6273. [PMID: 31000746 PMCID: PMC6472405 DOI: 10.1038/s41598-019-42731-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/04/2019] [Indexed: 11/26/2022] Open
Abstract
Environmental stresses greatly limit crop yield. With the increase in extreme weather events due to climate change and the constant pressure of diseases and pests, there is an urgent need to develop crop varieties that can tolerate multiple stresses. However, our knowledge of how plants broadly respond to stress is limited. Here, we explore the rice core stress response via meta-analysis of publicly available rice transcriptome data. Our results confirm that rice universally down-regulates photosynthesis in response to both abiotic and biotic stress. Rice also generally up-regulates hormone-responsive genes during stress response, most notably genes in the abscisic acid, jasmonic acid and salicylic acid pathways. We identified several promoter motifs that are likely involved in stress-responsive regulatory mechanisms in rice. With this work, we provide a list of candidate genes to study for improving rice stress tolerance in light of environmental stresses. This work also serves as a proof of concept to show that meta-analysis of diverse transcriptome data is a valid approach to develop robust hypotheses for how plants respond to stress.
Collapse
Affiliation(s)
- Stephen P Cohen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, CO, 80523-1177, Fort Collins, USA.,Cell and Molecular Biology Graduate Program, Colorado State University, CO, 80523-1005, Fort Collins, USA
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, CO, 80523-1177, Fort Collins, USA.
| |
Collapse
|
109
|
Sinha R, Irulappan V, Mohan-Raju B, Suganthi A, Senthil-Kumar M. Impact of drought stress on simultaneously occurring pathogen infection in field-grown chickpea. Sci Rep 2019; 9:5577. [PMID: 30944350 PMCID: PMC6447570 DOI: 10.1038/s41598-019-41463-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
Drought stress and pathogen infection simultaneously occur in the field. In this study, the interaction of these two stresses with chickpea, their individual and combined effect and the net impact on plant growth and yield traits were systematically assessed under field and confined pot experiments. The field experiments were conducted for four consecutive years from 2014-15 to 2017-18 at different locations of India. Different irrigation regimes were maintained to impose mild to severe drought stress, and natural incidence of the pathogen was considered as pathogen stress. We observed an increased incidence of fungal diseases namely, dry root rot (DRR) caused by Rhizoctonia bataticola, black root rot (BRR) caused by Fusarium solani under severe drought stress compared to well-irrigated field condition. Similar to field experiments, pot experiments also showed severe disease symptoms of DRR and BRR in the presence of drought compared to pathogen only stress. Overall, the results from this study not only showed the impact of combined drought and DRR stress but also provided systematic data, first of its kind, for the use of researchers.
Collapse
Affiliation(s)
- Ranjita Sinha
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vadivelmurugan Irulappan
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Basavaiah Mohan-Raju
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Angappan Suganthi
- Agricultural research station and Krishi Vigyan Kendra, Tamil Nadu Agricultural University, Virinjipuram, Vellore, 632104, India.,Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
110
|
|
111
|
Liu X, Ma Z, Cadotte MW, Chen F, He JS, Zhou S. Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. THE NEW PHYTOLOGIST 2019; 221:1574-1584. [PMID: 30325035 DOI: 10.1111/nph.15460] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
The effects of global change on semi-natural and agro-ecosystem functioning have been studied extensively. However, less well understood is how global change will influence fungal diseases, especially in a natural ecosystem. We use data from a 6-yr factorial experiment with warming (simulated using infrared heaters) and altered precipitation treatments in a natural Tibetan alpine meadow ecosystem, from which we tested global change effects on foliar fungal diseases at the population and community levels, and evaluated the importance of direct effects of the treatments and community-mediated (indirect) effects (through changes in plant community composition and competence) of global change on community pathogen load. At the population level, we found warming significantly increased fungal diseases for nine plant species. At the community level, we found that warming significantly increased pathogen load of entire host communities, whereas no significant effect of altered precipitation on community pathogen load was detected. We concluded that warming influences fungal disease prevalence more than precipitation does in a Tibetan alpine meadow. Moreover, our study provides new experimental evidence that increases in disease burden on some plant species and for entire host communities is primarily the direct effects of warming, rather than community-mediated (indirect) effects.
Collapse
Affiliation(s)
- Xiang Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Department of Biological Sciences, University of Toronto-Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Zhiyuan Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 Jiayuguan Road West, Lanzhou, 730020, China
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 5 Yiheyuan Road, Beijing, 100871, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Fei Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jin-Sheng He
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 Jiayuguan Road West, Lanzhou, 730020, China
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 5 Yiheyuan Road, Beijing, 100871, China
| | - Shurong Zhou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
112
|
Hussain M, Khera RA, Iqbal J, Khalid M, Hanif MA. Phytochemicals: Key to Effective Anticancer Drugs. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180626113026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is considered one of the globally top lethal and never-ending public health troubles which affects the humankind population that mainly suffers from bone marrow tumor, breast cancer and lung cancer. Many health professionals and scientists have developed conventional therapies with a number of different modules of medicines obtainable from drugstores to cure diversified cancer disease despite the fact that none of these drugs have been found to be fully effective and safe. So, there is a great potential for the study of medicinal plants to reveal powerful anticancer activities. This coherent review is focused on an extensive investigation of frequently incited therapies through naturally occurring medicinal plants that cover a large number of pharmacological anticancer activities. During recent years, research has been focused on the structural modifications to accomplish anticancer medicines, drugs and complex physical therapies. Nevertheless, all reported therapies crafted improvements in the quality of cancer patients’ life issues however; these efforts are required to be escalated at a large scale and in high level clinical trials. The review covers the literature from 1985-2016.
Collapse
Affiliation(s)
- Munawar Hussain
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Asif Hanif
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
113
|
Li W, Zhang Q, Wang S, Langham MA, Singh D, Bowden RL, Xu SS. Development and characterization of wheat-sea wheatgrass (Thinopyrum junceiforme) amphiploids for biotic stress resistance and abiotic stress tolerance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:163-175. [PMID: 30341494 DOI: 10.1007/s00122-018-3205-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Development of a complete wheat-Thinopyrum junceiforme amphiploid facilitated identification of resistance to multiple pests and abiotic stress derived from the wild species and shed new light on its genome composition. Wheat production is facing numerous challenges from biotic and abiotic stresses. Alien gene transfer has been an effective approach for wheat germplasm enhancement. Thinopyrum junceiforme, also known as sea wheatgrass (SWG), is a distant relative of wheat and a relatively untapped source for wheat improvement. In the present study, we developed a complete amphiploid, 13G819, between emmer wheat and SWG for the first time. Analysis of the chromosome constitution of the wheat-SWG amphiploid by multiple-color genomic in situ hybridization indicated that SWG is an allotetraploid with its J1 genome closely related to Th. bessarabicum and Th. elongatum, and its J2 genome was derived from an unknown source. Two SWG-derived perennial wheat lines, 14F3516 and 14F3536, are partial amphiploids and carry 13 SWG chromosomes of mixed J1 and J2 genome composition, suggesting cytological instability. We challenged the amphiploid 13G819 with various abiotic and biotic stress treatments together with its emmer wheat parent. Compared to its emmer wheat parent, the amphiploid showed high tolerance to waterlogging, manganese toxicity and salinity, low nitrogen and possibly to heat as well. The amphiploid 13G819 is also highly resistant to the wheat streak mosaic virus (temperature insensitive) and Fusarium head blight. All three amphiploids had solid stems, which confer resistance to wheat stem sawflies. All these traits make SWG an excellent source for improving wheat resistance to diseases and insects and tolerance to abiotic stress.
Collapse
Affiliation(s)
- Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, 252 McFadden Biostress Laboratory, Brookings, SD, 57007, USA.
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Qijun Zhang
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Marie A Langham
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dilkaran Singh
- Department of Biology and Microbiology, South Dakota State University, 252 McFadden Biostress Laboratory, Brookings, SD, 57007, USA
| | - Robert L Bowden
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Steven S Xu
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| |
Collapse
|
114
|
Goss M, Mafongoya PL, Gubba A, Jiri O. Farmer Perceptions on Vegetable Diseases and Their Control in Sub-Humid Areas in Zimbabwe. CHANGE AND ADAPTATION IN SOCIO-ECOLOGICAL SYSTEMS 2019. [DOI: 10.1515/cass-2019-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The monoculture vegetable production systems practiced by Zimbabwean farmers has resulted in major disease outbreaks, causing major production constraints. There is need to determine the intensity of pesticides usage and methods of alternative disease management strategies. This study was carried out using 250 randomly selected vegetable farmers by administering questionnaires. The study objectives were to determine farmers’ perceptions on vegetable disease incidence and severity in relation to prevailing weather conditions, and determine common control methods practiced to manage fungal and bacterial disease outbreaks. The results indicated significant increases in fungal and bacterial disease incidence of 84.6% (within community cropping fields) and severity of 73.1% (within individual farmer fields) over the past 5-10 years (P £ 0.05). It also revealed disease incidence being highest [30.8%] during winter (May – July) and rainy months [23.1%] (November – February). Results further indicated 96.2% of the respondents relied on chemical methods, 53.8% used cultural control, and 11.5% used natural control methods. However, none of the farmers used bio-pesticide/biological control methods. In conclusion: farmers are aware of the disease shifts in response to different climate variability but seem unaware of the negative effects of extensive chemical use, nor existence of alternative bio-pesticide/biological disease management strategies.
Collapse
|
115
|
Pepori AL, Michelozzi M, Santini A, Cencetti G, Bonello P, Gonthier P, Sebastiani F, Luchi N. Comparative transcriptional and metabolic responses of Pinus pinea to a native and a non-native Heterobasidion species. TREE PHYSIOLOGY 2019; 39:31-44. [PMID: 30137615 DOI: 10.1093/treephys/tpy086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/31/2018] [Indexed: 05/28/2023]
Abstract
Heterobasidion irregulare is a causal agent of root and butt-rot disease in conifers, and is native to North America. In 1944 it was introduced in central Italy in a Pinus pinea stand, where it shares the same niche with the native species Heterobasidion annosum. The introduction of a non-native pathogen may have significant negative effects on a naïve host tree and the ecosystem in which it resides, requiring a better understanding of the system. We compared the spatio-temporal phenotypic, transcriptional and metabolic host responses to inoculation with the two Heterobasidion species in a large experiment with P. pinea seedlings. Differences in length of lesions at the inoculation site (IS), expression of host genes involved in lignin pathway and in cell rescue and defence, and analysis of terpenes at both IS and 12 cm above the IS (distal site, DS), were assessed at 3, 14 and 35 days post inoculation (dpi). Results clearly showed that both species elicit similar physiological and biochemical responses in P. pinea seedlings. The analysis of host transcripts and total terpenes showed differences between inoculation sites and between pathogen and mock inoculated plants. Both pathogen and mock inoculations induced antimicrobial peptide and phenylalanine ammonia-lyase overexpression at IS beginning at 3 dpi; while at DS all the analysed genes, except for peroxidase, were overexpressed at 14 dpi. A significantly higher accumulation of terpenoids was observed at 14 dpi at IS, and at 35 dpi at DS. The terpene blend at IS showed significant variation among treatments and sampling times, while no significant differences were ever observed in DS tissues. Based on our results, H. irregulare does not seem to have competitive advantages over the native species H. annosum in terms of pathogenicity towards P. pinea trees; this may explain why the non-native species has not widely spread over the 73 years since its putative year of introduction into central Italy.
Collapse
Affiliation(s)
- Alessia Lucia Pepori
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council (IBBR-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Alberto Santini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Gabriele Cencetti
- Institute of Biosciences and Bioresources, National Research Council (IBBR-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, 201 Kottman Hall, 2021 Coffey Rd, Columbus, OH, USA
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, Grugliasco, TO, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Nicola Luchi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| |
Collapse
|
116
|
Nikitin M, Deych K, Grevtseva I, Girsova N, Kuznetsova M, Pridannikov M, Dzhavakhiya V, Statsyuk N, Golikov A. Preserved Microarrays for Simultaneous Detection and Identification of Six Fungal Potato Pathogens with the Use of Real-Time PCR in Matrix Format. BIOSENSORS 2018; 8:E129. [PMID: 30551630 PMCID: PMC6316111 DOI: 10.3390/bios8040129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/11/2023]
Abstract
Fungal diseases of plants are of great economic importance causing 70⁻80% of crop losses associated with microbial plant pathogens. Advanced on-site disease diagnostics is very important to maximize crop productivity. In this study, diagnostic systems have been developed for simultaneous detection and identification of six fungal pathogens using 48-well microarrays (micromatrices) for qPCR. All oligonucleotide sets were tested for their specificity using 59 strains of target and non-target species. Detection limit of the developed test systems varied from 0.6 to 43.5 pg of DNA depending on target species with reproducibility within 0.3-0.7% (standard deviation). Diagnostic efficiency of test systems with stabilized and freeze-dried PCR master-mixes did not significantly differ from that of freshly prepared microarrays, though detection limit increased. Validation of test systems on 30 field samples of potato plants showed perfect correspondence with the results of morphological identification of pathogens. Due to the simplicity of the analysis and the automated data interpretation, the developed microarrays have good potential for on-site use by technician-level personnel, as well as for high-throughput monitoring of fungal potato pathogens.
Collapse
Affiliation(s)
- Maksim Nikitin
- GenBit LLC, Nauchny pr., 20, Bld. 4, Moscow 117246, Russia.
| | - Ksenia Deych
- GenBit LLC, Nauchny pr., 20, Bld. 4, Moscow 117246, Russia.
| | | | - Natalya Girsova
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
| | - Maria Kuznetsova
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
| | - Mikhail Pridannikov
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
- Centre of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect 33, Moscow 119071, Russia.
| | - Vitaly Dzhavakhiya
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
| | - Natalia Statsyuk
- All-Russian Research Institute of Phytopathology, Institute Str., 5, Bolshie Vyazemy 143050, Russia.
| | | |
Collapse
|
117
|
Wood JR, Díaz FP, Latorre C, Wilmshurst JM, Burge OR, Gutiérrez RA. Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile. Sci Rep 2018; 8:17208. [PMID: 30464240 PMCID: PMC6249261 DOI: 10.1038/s41598-018-35299-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/01/2018] [Indexed: 01/17/2023] Open
Abstract
Future climate change has the potential to alter the distribution and prevalence of plant pathogens, which may have significant implications for both agricultural crops and natural plant communities. However, there are few long-term datasets against which modelled predictions of pathogen responses to climate change can be tested. Here, we use 18S metabarcoding of 28 rodent middens (solidified deposits of rodent coprolites and nesting material) from the Central Atacama, spanning the last ca. 49 ka, to provide the first long-term late Quaternary record of change in plant pathogen communities in response to changing climate. Plant pathogen richness was significantly greater in middens deposited during the Central Andean Pluvial Event (CAPE); a period of increased precipitation between 17.5–8.5 ka. Moreover, the occurrence frequency of Pucciniaceae (rust fungi) was significantly greater during the CAPE, and the highest relative abundances for five additional potentially pathogenic taxa also occurred during this period. The results demonstrate the promising potential for ancient DNA analysis of late Quaternary samples to reveal insights into how plant pathogens responded to past climatic and environmental change, which could help predict how pathogens may responded to future change.
Collapse
Affiliation(s)
- Jamie R Wood
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand.
| | - Francisca P Díaz
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile. .,FONDAP Center for Genome Regulation & Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | - Claudio Latorre
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda, 340, Santiago, Chile.,Institute of Ecology and Biodiversity (IEB), Las Palmeras, 3425, Ñuñoa, Santiago, Chile
| | - Janet M Wilmshurst
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand.,School of Environment, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Olivia R Burge
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile.,FONDAP Center for Genome Regulation & Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
118
|
Williams A, Pétriacq P, Beerling DJ, Cotton TEA, Ton J. Impacts of Atmospheric CO 2 and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil Bacteria. FRONTIERS IN PLANT SCIENCE 2018; 9:1493. [PMID: 30405655 PMCID: PMC6204664 DOI: 10.3389/fpls.2018.01493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/25/2018] [Indexed: 05/24/2023]
Abstract
Concerns over rising atmospheric CO2 concentrations have led to growing interest in the effects of global change on plant-microbe interactions. As a primary substrate of plant metabolism, atmospheric CO2 influences below-ground carbon allocation and root exudation chemistry, potentially affecting rhizosphere interactions with beneficial soil microbes. In this study, we have examined the effects of different atmospheric CO2 concentrations on Arabidopsis rhizosphere colonization by the rhizobacterial strain Pseudomonas simiae WCS417 and the saprophytic strain Pseudomonas putida KT2440. Rhizosphere colonization by saprophytic KT2440 was not influenced by sub-ambient (200 ppm) and elevated (1,200 ppm) concentrations of CO2, irrespective of the carbon (C) and nitrogen (N) content of the soil. Conversely, rhizosphere colonization by WCS417 in soil with relatively low C and N content increased from sub-ambient to elevated CO2. Examination of plant responses to WCS417 revealed that plant growth and systemic resistance varied according to atmospheric CO2 concentration and soil-type, ranging from growth promotion with induced susceptibility at sub-ambient CO2, to growth repression with induced resistance at elevated CO2. Collectively, our results demonstrate that the interaction between atmospheric CO2 and soil nutritional status has a profound impact on plant responses to rhizobacteria. We conclude that predictions about plant performance under past and future climate scenarios depend on interactive plant responses to soil nutritional status and rhizobacteria.
Collapse
Affiliation(s)
- Alex Williams
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- P Institute for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Pierre Pétriacq
- P Institute for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- UMR 1332 Fruit Biology and Pathology, INRA-Bordeaux & University of Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle de Bordeaux, INRA – Bordeaux, Villenave d’Ornon, France
| | - David J. Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - T. E. Anne Cotton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- P Institute for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
119
|
Cotton TEA. Arbuscular mycorrhizal fungal communities and global change: an uncertain future. FEMS Microbiol Ecol 2018; 94:5096018. [DOI: 10.1093/femsec/fiy179] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- TE Anne Cotton
- Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, The University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
- Plant Production and Protection (P3) Institute for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, The University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
| |
Collapse
|
120
|
Sicard A, Zeilinger AR, Vanhove M, Schartel TE, Beal DJ, Daugherty MP, Almeida RPP. Xylella fastidiosa: Insights into an Emerging Plant Pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:181-202. [PMID: 29889627 DOI: 10.1146/annurev-phyto-080417-045849] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy. The current threat to Europe and the Mediterranean basin, as well as other world regions, has increased as multiple X. fastidiosa genotypes have now been detected in Italy, France, and Spain. Although X. fastidiosa has been studied in the Americas for more than a century, there are no therapeutic solutions to suppress disease development in infected plants. Furthermore, because X. fastidiosa is an obligatory plant and insect vector colonizer, the epidemiology and dynamics of each pathosystem are distinct. They depend on the ecological interplay of plant, pathogen, and vector and on how interactions are affected by biotic and abiotic factors, including anthropogenic activities and policy decisions. Our goal with this review is to stimulate discussion and novel research by contextualizing available knowledge on X. fastidiosa and how it may be applicable to emerging diseases.
Collapse
Affiliation(s)
- Anne Sicard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
- Biologie et Génétique des Interactions Plant-Parasite, UMR 0385, Centre de Coopération Internationale en Recherche Agronomique pour le Développement-Institut National de la Recherche Agronomique-Montpellier SupAgro, Campus International de Baillarguet, 34398 Montpellier CEDEX 05, France
| | - Adam R Zeilinger
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Mathieu Vanhove
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Tyler E Schartel
- Department of Entomology, University of California, Riverside, California 92521, USA
| | - Dylan J Beal
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Matthew P Daugherty
- Department of Entomology, University of California, Riverside, California 92521, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
121
|
Climate Change, Carbon Dioxide, and Pest Biology, Managing the Future: Coffee as a Case Study. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The challenge of maintaining sufficient food, feed, fiber, and forests, for a projected end of century population of between 9–10 billion in the context of a climate averaging 2–4 °C warmer, is a global imperative. However, climate change is likely to alter the geographic ranges and impacts for a variety of insect pests, plant pathogens, and weeds, and the consequences for managed systems, particularly agriculture, remain uncertain. That uncertainty is related, in part, to whether pest management practices (e.g., biological, chemical, cultural, etc.) can adapt to climate/CO2 induced changes in pest biology to minimize potential loss. The ongoing and projected changes in CO2, environment, managed plant systems, and pest interactions, necessitates an assessment of current management practices and, if warranted, development of viable alternative strategies to counter damage from invasive alien species and evolving native pest populations. We provide an overview of the interactions regarding pest biology and climate/CO2; assess these interactions currently using coffee as a case study; identify the potential vulnerabilities regarding future pest impacts; and discuss possible adaptive strategies, including early detection and rapid response via EDDMapS (Early Detection & Distribution Mapping System), and integrated pest management (IPM), as adaptive means to improve monitoring pest movements and minimizing biotic losses while improving the efficacy of pest control.
Collapse
|
122
|
Hodel RG, Chandler LM, Fahrenkrog AM, Kirst M, Gitzendanner MA, Soltis DE, Soltis PS. Linking genome signatures of selection and adaptation in non-model plants: exploring potential and limitations in the angiosperm Amborella. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:81-89. [PMID: 29694936 DOI: 10.1016/j.pbi.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Selective sweeps may be caused by environmental conditions that select for a gene function or trait at one locus, causing reduced variation at neighboring sites due to linkage, with specific non-selected variants being swept along with the selected variant. For many species, genomic and environmental data are available to test hypotheses that environmental conditions are correlated with selected regions. Most genomic studies relating selection to environment use model organisms or crop species; typically, these studies have genomic data from large numbers of individuals and extensive environmental data. Here, we review studies associating selective sweeps with environment and consider the impediments to successful application of these methods to non-model species. We present an initial investigation into linking genomic regions of selection to environmental conditions in the narrowly distributed, non-model plant Amborella trichopoda (Amborellaceae), the sister species to all other living flowering plants and one of over 2500 plant species endemic to New Caledonia.
Collapse
Affiliation(s)
- Richard Gj Hodel
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Luke M Chandler
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; The Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Annette M Fahrenkrog
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA; The Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; The Genetics Institute, University of Florida, Gainesville, FL 32610, USA; The Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; The Genetics Institute, University of Florida, Gainesville, FL 32610, USA; The Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
123
|
Bennett JA, Klironomos J. Climate, but not trait, effects on plant-soil feedback depend on mycorrhizal type in temperate forests. Ecosphere 2018. [DOI: 10.1002/ecs2.2132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jonathan A. Bennett
- Department of Biology; University of British Columbia - Okanagan Campus; Kelowna British Columbia V1V 1V7 Canada
| | - John Klironomos
- Department of Biology; University of British Columbia - Okanagan Campus; Kelowna British Columbia V1V 1V7 Canada
| |
Collapse
|
124
|
Gilardi G, Gullino ML, Garibaldi A. Emerging foliar and soil-borne pathogens of leafy vegetable crops: a possible threat to Europe. ACTA ACUST UNITED AC 2018. [DOI: 10.1111/epp.12447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- G. Gilardi
- Centre for Innovation in the Agro-Environmental Sector; AGROINNOVA; University of Torino; Largo P. Braccini 2 10095 Grugliasco TO (Italy)
| | - M. L. Gullino
- Centre for Innovation in the Agro-Environmental Sector; AGROINNOVA; University of Torino; Largo P. Braccini 2 10095 Grugliasco TO (Italy)
- Department of Agricultural, Forest and Food Sciences (DISAFA); University of Torino; Largo P. Braccini 2 10095 Grugliasco TO (Italy)
| | - A. Garibaldi
- Centre for Innovation in the Agro-Environmental Sector; AGROINNOVA; University of Torino; Largo P. Braccini 2 10095 Grugliasco TO (Italy)
| |
Collapse
|
125
|
Moragrega C, Puig M, Ruz L, Montesinos E, Llorente I. Epidemiological Features and Trends of Brown Spot of Pear Disease Based on the Diversity of Pathogen Populations and Climate Change Effects. PHYTOPATHOLOGY 2018; 108:223-233. [PMID: 28945144 DOI: 10.1094/phyto-03-17-0079-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brown spot of pear, caused by the fungus Stemphylium vesicarium, is an emerging disease of economic importance in several pear-growing areas in Europe. In recent years, new control strategies combining sanitation practices and fungicide applications according to developed forecasting models have been introduced to manage the disease. However, the pathogenic and saprophytic behavior of this pathogen makes it difficult to manage the disease. In addition, climate change can also result in variations in the severity and geographical distribution of the disease. In this study, ecological and epidemiological aspects of brown spot of pear disease related to inoculum characterization and climate change impact were elucidated. The pathogenic variation in S. vesicarium populations from pear orchards and its relationship to inoculum sources (air samples, leaf debris, and infected host and nonhost tissues) was determined using multivariate analysis. In total, six variables related to infection and disease development on cultivar Conference pear detached leaves of 110 S. vesicarium isolates were analyzed. A high proportion of isolates (42%) were nonpathogenic to pear; 85% of these nonpathogenic isolates were recovered from air samples. Most isolates recovered from lesions (93%) and pseudothecia (83%) were pathogenic to pear. A group of pathogenic isolates rapidly infected cultivar Conference pear leaves resulted in disease increase that followed a monomolecular model, whereas some S. vesicarium isolates required a period of time after inoculation to initiate infection and resulted in disease increase that followed a logistic model. The latter group was mainly composed of isolates recovered from pseudothecia on leaf debris, whereas the former group was mainly composed of isolates recovered from lesions on pear fruit and leaves. The relationship between the source of inoculum and pathogenic/aggressiveness profile was confirmed by principal component analysis. The effect of climate change on disease risk was analyzed in two pear-growing areas of Spain under two scenarios (A2 and B1) and for three periods (2005 to 2009, 2041 to 2060, and 2081 to 2100). Simulations showed that the level of risk predicted by BSPcast model increased to high or very high under the two scenarios and was differentially distributed in the two regions. This study is an example of how epidemiological models can be used to predict not only the onset of infections but also how climate change could affect brown spot of pear. [Formula: see text] Copyright © 2018 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Concepció Moragrega
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Mireia Puig
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Lídia Ruz
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Emilio Montesinos
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Isidre Llorente
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| |
Collapse
|
126
|
Eigenbrode SD, Binns WP, Huggins DR. Confronting Climate Change Challenges to Dryland Cereal Production: A Call for Collaborative, Transdisciplinary Research, and Producer Engagement. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2017.00164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
127
|
Trębicki P, Dáder B, Vassiliadis S, Fereres A. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture. INSECT SCIENCE 2017; 24:975-989. [PMID: 28843026 DOI: 10.1111/1744-7917.12531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 05/02/2023]
Abstract
Carbon dioxide (CO2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions.
Collapse
Affiliation(s)
- Piotr Trębicki
- Biosciences Research, Department of Economic Development Jobs, Transport and Resources (DEDJTR), Horsham, VIC, Australia
| | - Beatriz Dáder
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Campus International de Baillarguet, Montpellier, France
| | - Simone Vassiliadis
- Biosciences Research, DEDJTR, La Trobe University, AgriBio Centre, 5 Ring Road, Bundoora, VIC, Australia
| | | |
Collapse
|
128
|
Hines J, Pabst S, Mueller KE, Blumenthal DM, Cesarz S, Eisenhauer N. Soil‐mediated effects of global change on plant communities depend on plant growth form. Ecosphere 2017. [DOI: 10.1002/ecs2.1996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jes Hines
- Institute of Ecology Friedrich Schiller University Jena Dornburger Strasse 159 07743 JenaGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103 LeipzigGermany
- Institute of Biology Leipzig University Deutscher Platz 5e 04103 LeipzigGermany
| | - Susann Pabst
- Institute of Ecology Friedrich Schiller University Jena Dornburger Strasse 159 07743 JenaGermany
| | - Kevin E. Mueller
- Rangeland Resources and Systems Research Unit USDA Agricultural Research Service Fort Collins Colorado 80526 USA
| | - Dana M. Blumenthal
- Rangeland Resources and Systems Research Unit USDA Agricultural Research Service Fort Collins Colorado 80526 USA
| | - Simone Cesarz
- Institute of Ecology Friedrich Schiller University Jena Dornburger Strasse 159 07743 JenaGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103 LeipzigGermany
- Institute of Biology Leipzig University Deutscher Platz 5e 04103 LeipzigGermany
| | - Nico Eisenhauer
- Institute of Ecology Friedrich Schiller University Jena Dornburger Strasse 159 07743 JenaGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103 LeipzigGermany
- Institute of Biology Leipzig University Deutscher Platz 5e 04103 LeipzigGermany
| |
Collapse
|
129
|
Leandro-Muñoz ME, Tixier P, Germon A, Rakotobe V, Phillips-Mora W, Maximova S, Avelino J. Effects of microclimatic variables on the symptoms and signs onset of Moniliophthora roreri, causal agent of Moniliophthora pod rot in cacao. PLoS One 2017; 12:e0184638. [PMID: 28972981 PMCID: PMC5626025 DOI: 10.1371/journal.pone.0184638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
Moniliophthora Pod Rot (MPR) caused by the fungus Moniliophthora roreri (Cif.) Evans et al., is one of the main limiting factors of cocoa production in Latin America. Currently insufficient information on the biology and epidemiology of the pathogen limits the development of efficient management options to control MPR. This research aims to elucidate MPR development through the following daily microclimatic variables: minimum and maximum temperatures, wetness frequency, average temperature and relative humidity in the highly susceptible cacao clone Pound-7 (incidence = 86% 2008-2013 average). A total of 55 cohorts totaling 2,268 pods of 3-10 cm length, one to two months of age, were tagged weekly. Pods were assessed throughout their lifetime, every one or two weeks, and classified in 3 different categories: healthy, diseased with no sporulation, diseased with sporulating lesions. As a first step, we used Generalized Linear Mixed Models (GLMM) to determine with no a priori the period (when and for how long) each climatic variable was better related with the appearance of symptoms and sporulation. Then the significance of the candidate variables was tested in a complete GLMM. Daily average wetness frequency from day 14 to day 1, before tagging, and daily average maximum temperature from day 4 to day 21, after tagging, were the most explanatory variables of the symptoms appearance. The former was positively linked with the symptoms appearance when the latter exhibited a maximum at 30°C. The most important variables influencing sporulation were daily average minimum temperature from day 35 to day 58 and daily average maximum temperature from day 37 to day 48, both after tagging. Minimum temperature was negatively linked with the sporulation while maximum temperature was positively linked. Results indicated that the fungal microclimatic requirements vary from the early to the late cycle stages, possibly due to the pathogen's long latent period. This information is valuable for development of new conceptual models for MPR and improvement of control methods.
Collapse
Affiliation(s)
- Mariela E. Leandro-Muñoz
- Agroforestry and Sustainable Agriculture Department, Division of Research and Development, Tropical Agricultural Research and Higher Education Center, Turrialba, Cartago, Costa Rica
| | - Philippe Tixier
- Agroforestry and Sustainable Agriculture Department, Division of Research and Development, Tropical Agricultural Research and Higher Education Center, Turrialba, Cartago, Costa Rica
- CIRAD, UPR GECO, Montpellier, France
| | - Amandine Germon
- ENSAIA, Vandoeuvre, France
- CIRAD, UPR Bioagresseurs, Montpellier, France
| | | | - Wilbert Phillips-Mora
- Agroforestry and Sustainable Agriculture Department, Division of Research and Development, Tropical Agricultural Research and Higher Education Center, Turrialba, Cartago, Costa Rica
| | - Siela Maximova
- The Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jacques Avelino
- Agroforestry and Sustainable Agriculture Department, Division of Research and Development, Tropical Agricultural Research and Higher Education Center, Turrialba, Cartago, Costa Rica
- CIRAD, UPR Bioagresseurs, Montpellier, France
- IICA-PROMECAFE, Guatemala, Guatemala
| |
Collapse
|
130
|
Tang X, Cao X, Xu X, Jiang Y, Luo Y, Ma Z, Fan J, Zhou Y. Effects of Climate Change on Epidemics of Powdery Mildew in Winter Wheat in China. PLANT DISEASE 2017; 101:1753-1760. [PMID: 30676927 DOI: 10.1094/pdis-02-17-0168-re] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Powdery mildew is a highly destructive winter wheat pathogen in China. Since the causative agent is sensitive to changing weather conditions, we analyzed climatic records from regions with previous wheat powdery mildew epidemics (1970 to 2012) and investigated the long-term effects of climate change on the percent acreage (PA) of the disease. Then, using PA and the pathogen's temperature requirements, we constructed a multiregression model to predict changes in epidemics during the 2020s, 2050s, and 2080s under representative concentration pathways RCP2.6, RCP4.5, and RCP8.5. Mean monthly air temperature increased from 1970 to 2012, whereas hours of sunshine and relative humidity decreased (P < 0.001). Year-to-year temperature changes were negatively associated with those of PA during oversummering and late spring periods of disease epidemics, whereas positive relationships were noted for other periods, and year-to-year changes in relative humidity were correlated with PA changes in the early spring period of disease epidemics (P < 0.001). Our models also predicted that PA would increase less under RCP2.6 (14.43%) than under RCP4.5 (14.51%) by the 2020s but would be higher by the 2050s and 2080s and would increase least under RCP8.5 (14.37% by the 2020s). Powdery mildew will, thus, pose an even greater threat to China's winter wheat production in the future.
Collapse
Affiliation(s)
- Xiuli Tang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences; and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xueren Cao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193; and Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571001, China
| | - Xiangming Xu
- NIAB East Malling Research, New Road, East Malling, Kent ME19 6BJ, UK
| | - Yuying Jiang
- National Agro-Tech Extension and Service Center, Beijing 100125, China
| | - Yong Luo
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhanhong Ma
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jieru Fan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
131
|
Bosio P, Siciliano I, Gilardi G, Gullino M, Garibaldi A. Verrucarin A and roridin E produced on rocket by Myrothecium roridum under different temperatures and CO2 levels. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2017.2198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The behaviour of Myrothecium roridum, artificially inoculated on cultivated rocket (Eruca sativa), has been evaluated under eight different temperature and CO2 concentration combinations (from 14-18 °C to 26-30 °C and with 400-450 or 800-850 ppm of CO2). The pathogen isolate used for this study was inoculated on rocket and disease severity increased with high temperatures for both CO2 levels. Verrucarin A and roridin E mycotoxins were produced under all the tested temperatures at high CO2 conditions. The maximum level of verrucarin A was found at 14-18 °C and 800-850 ppm of CO2, and the maximum roridin E production was detected at 26-30 °C with 800-850 ppm of CO2. The results obtained in this study show that both the CO2 concentration and the temperature influence disease severity and mycotoxin production in different ways. An increase in temperature, which is favourable for attacks of the pathogen, could induce the spread of M. roridum in temperate regions, and this pathogen could take on even greater importance in the future, considering its ability to produce mycotoxins.
Collapse
Affiliation(s)
- P. Bosio
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - I. Siciliano
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - G. Gilardi
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - M.L. Gullino
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco 10095, Italy
- DISAFA – Department of Agricultural, Forest and Food Science, University of Torino, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - A. Garibaldi
- AGROINNOVA – Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| |
Collapse
|
132
|
Zeilinger AR, Rapacciuolo G, Turek D, Oboyski PT, Almeida RPP, Roderick GK. Museum specimen data reveal emergence of a plant disease may be linked to increases in the insect vector population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:1827-1837. [PMID: 28459124 DOI: 10.1002/eap.1569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/02/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
The emergence rate of new plant diseases is increasing due to novel introductions, climate change, and changes in vector populations, posing risks to agricultural sustainability. Assessing and managing future disease risks depends on understanding the causes of contemporary and historical emergence events. Since the mid-1990s, potato growers in the western United States, Mexico, and Central America have experienced severe yield loss from Zebra Chip disease and have responded by increasing insecticide use to suppress populations of the insect vector, the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). Despite the severe nature of Zebra Chip outbreaks, the causes of emergence remain unknown. We tested the hypotheses that (1) B. cockerelli occupancy has increased over the last century in California and (2) such increases are related to climate change, specifically warmer winters. We compiled a data set of 87,000 museum specimen occurrence records across the order Hemiptera collected between 1900 and 2014. We then analyzed changes in B. cockerelli distribution using a hierarchical occupancy model using changes in background species lists to correct for collecting effort. We found evidence that B. cockerelli occupancy has increased over the last century. However, these changes appear to be unrelated to climate changes, at least at the scale of our analysis. To the extent that species occupancy is related to abundance, our analysis provides the first quantitative support for the hypothesis that B. cockerelli population abundance has increased, but further work is needed to link B. cockerelli population dynamics to Zebra Chip epidemics. Finally, we demonstrate how this historical macro-ecological approach provides a general framework for comparative risk assessment of future pest and insect vector outbreaks.
Collapse
Affiliation(s)
- Adam R Zeilinger
- Berkeley Initiative for Global Change Biology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, California, 94720, USA
- Department of Environmental Science, Policy, and Management, University of California Berkeley, 130 Mulford Hall, Berkeley, California, 94720, USA
| | - Giovanni Rapacciuolo
- Berkeley Initiative for Global Change Biology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, California, 94720, USA
- Stony Brook University, 650 Life Sciences Building, Stony Brook, New York, 11789, USA
| | - Daniel Turek
- Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts, 01267, USA
| | - Peter T Oboyski
- Essig Museum of Entomology, University of California Berkeley, 1101 Valley Life Sciences Building, Berkeley, California, 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy, and Management, University of California Berkeley, 130 Mulford Hall, Berkeley, California, 94720, USA
| | - George K Roderick
- Berkeley Initiative for Global Change Biology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, California, 94720, USA
- Department of Environmental Science, Policy, and Management, University of California Berkeley, 130 Mulford Hall, Berkeley, California, 94720, USA
| |
Collapse
|
133
|
Aoun N, Tauleigne L, Lonjon F, Deslandes L, Vailleau F, Roux F, Berthomé R. Quantitative Disease Resistance under Elevated Temperature: Genetic Basis of New Resistance Mechanisms to Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2017; 8:1387. [PMID: 28878784 PMCID: PMC5572249 DOI: 10.3389/fpls.2017.01387] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/25/2017] [Indexed: 05/18/2023]
Abstract
In the context of climate warming, plants will be facing an increased risk of epidemics as well as the emergence of new highly aggressive pathogen species. Although a permanent increase of temperature strongly affects plant immunity, the underlying molecular mechanisms involved are still poorly characterized. In this study, we aimed to uncover the genetic bases of resistance mechanisms that are efficient at elevated temperature to the Ralstonia solanacearum species complex (RSSC), one of the most harmful phytobacteria causing bacterial wilt. To start the identification of quantitative trait loci (QTLs) associated with natural variation of response to R. solanacearum, we adopted a genome wide association (GWA) mapping approach using 176 worldwide natural accessions of Arabidopsis thaliana inoculated with the R. solanacearum GMI1000 strain. Following two different procedures of root-inoculation (root apparatus cut vs. uncut), plants were grown either at 27 or 30°C, with the latter temperature mimicking a permanent increase in temperature. At 27°C, the RPS4/RRS1-R locus was the main QTL of resistance detected regardless of the method of inoculation used. This highlights the power of GWA mapping to identify functionally important loci for resistance to the GMI1000 strain. At 30°C, although most of the accessions developed wilting symptoms, we identified several QTLs that were specific to the inoculation method used. We focused on a QTL region associated with response to the GMI1000 strain in the early stages of infection and, by adopting a reverse genetic approach, we functionally validated the involvement of a strictosidine synthase-like 4 (SSL4) protein that shares structural similarities with animal proteins known to play a role in animal immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard Berthomé
- LIPM, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INPT, Université de ToulouseCastanet-Tolosan, France
| |
Collapse
|
134
|
Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 2017; 8:309. [PMID: 28827608 PMCID: PMC5567177 DOI: 10.1038/s41467-017-00355-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/16/2017] [Indexed: 01/09/2023] Open
Abstract
Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.
Collapse
|
135
|
Environmental Factors Driving the Recovery of Bay Laurels from Phytophthora ramorum Infections: An Application of Numerical Ecology to Citizen Science. FORESTS 2017. [DOI: 10.3390/f8080293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
136
|
Effect of elevated CO 2 and O 3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:816-825. [PMID: 28785951 DOI: 10.1007/s11427-017-9126-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Climatic variations are becoming important limiting factors for agriculture productivity, as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests. Elevated CO2 and O3 are two important climatic factors that have been widely studied before. Elevated CO2 or O3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants. Many studies have shown that elevated CO2 or O3 decreases the plant nitrogen content, which modulates the characteristics of vector insects. Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO2 or O3. In the current review, we describe how elevated CO2 or O3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways. We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO2 or O3. We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO2 or O3.
Collapse
|
137
|
Donatelli M, Magarey R, Bregaglio S, Willocquet L, Whish J, Savary S. Modelling the impacts of pests and diseases on agricultural systems. AGRICULTURAL SYSTEMS 2017; 155:213-224. [PMID: 28701814 PMCID: PMC5485649 DOI: 10.1016/j.agsy.2017.01.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 05/06/2023]
Abstract
The improvement and application of pest and disease models to analyse and predict yield losses including those due to climate change is still a challenge for the scientific community. Applied modelling of crop diseases and pests has mostly targeted the development of support capabilities to schedule scouting or pesticide applications. There is a need for research to both broaden the scope and evaluate the capabilities of pest and disease models. Key research questions not only involve the assessment of the potential effects of climate change on known pathosystems, but also on new pathogens which could alter the (still incompletely documented) impacts of pests and diseases on agricultural systems. Yield loss data collected in various current environments may no longer represent a adequate reference to develop tactical, decision-oriented, models for plant diseases and pests and their impacts, because of the ongoing changes in climate patterns. Process-based agricultural simulation modelling, on the other hand, appears to represent a viable methodology to estimate the impacts of these potential effects. A new generation of tools based on state-of-the-art knowledge and technologies is needed to allow systems analysis including key processes and their dynamics over appropriate suitable range of environmental variables. This paper offers a brief overview of the current state of development in coupling pest and disease models to crop models, and discusses technical and scientific challenges. We propose a five-stage roadmap to improve the simulation of the impacts caused by plant diseases and pests; i) improve the quality and availability of data for model inputs; ii) improve the quality and availability of data for model evaluation; iii) improve the integration with crop models; iv) improve the processes for model evaluation; and v) develop a community of plant pest and disease modelers.
Collapse
Affiliation(s)
- M. Donatelli
- CREA - Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, via di Corticella 133, I-40128, Bologna, Italy
| | - R.D. Magarey
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606, USA
| | - S. Bregaglio
- CREA - Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, via di Corticella 133, I-40128, Bologna, Italy
| | - L. Willocquet
- AGIR, Université de Toulouse, INRA, INPT, INP- EI PURPAN, Castanet-Tolosan, France
| | - J.P.M. Whish
- CSIRO Agriculture and Food, 203 Tor St Toowoomba, Qld 4350, Australia
| | - S. Savary
- AGIR, Université de Toulouse, INRA, INPT, INP- EI PURPAN, Castanet-Tolosan, France
| |
Collapse
|
138
|
Gotor-Vila A, Teixidó N, Sisquella M, Torres R, Usall J. Biological Characterization of the Biocontrol Agent Bacillus amyloliquefaciens CPA-8: The Effect of Temperature, pH and Water Activity on Growth, Susceptibility to Antibiotics and Detection of Enterotoxic Genes. Curr Microbiol 2017; 74:1089-1099. [DOI: 10.1007/s00284-017-1289-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
139
|
Long-read sequencing improves assembly of Trichinella genomes 10-fold, revealing substantial synteny between lineages diverged over 7 million years. Parasitology 2017; 144:1302-1315. [PMID: 28583210 DOI: 10.1017/s0031182017000348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genome assemblies can form the basis of comparative analyses fostering insight into the evolutionary genetics of a parasite's pathogenicity, host-pathogen interactions, environmental constraints and invasion biology; however, the length and complexity of many parasite genomes has hampered the development of well-resolved assemblies. In order to improve Trichinella genome assemblies, the genome of the sylvatic encapsulated species Trichinella murrelli was sequenced using third-generation, long-read technology and, using syntenic comparisons, scaffolded to a reference genome assembly of Trichinella spiralis, markedly improving both. A high-quality draft assembly for T. murrelli was achieved that totalled 63·2 Mbp, half of which was condensed into 26 contigs each longer than 571 000 bp. When compared with previous assemblies for parasites in the genus, ours required 10-fold fewer contigs, which were five times longer, on average. Better assembly across repetitive regions also enabled resolution of 8 Mbp of previously indeterminate sequence. Furthermore, syntenic comparisons identified widespread scaffold misassemblies in the T. spiralis reference genome. The two new assemblies, organized for the first time into three chromosomal scaffolds, will be valuable resources for future studies linking phenotypic traits within each species to their underlying genetic bases.
Collapse
|
140
|
El Aou-Ouad H, Pou A, Tomás M, Montero R, Ribas-Carbo M, Medrano H, Bota J. Combined effect of virus infection and water stress on water flow and water economy in grapevines. PHYSIOLOGIA PLANTARUM 2017; 160:171-184. [PMID: 28044321 DOI: 10.1111/ppl.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 05/21/2023]
Abstract
Water limitation is one of the major threats affecting grapevine production. Thus, improving water-use efficiency (WUE) is crucial for a sustainable viticulture industry in Mediterranean regions. Under field conditions, water stress (WS) is often combined with viral infections as those are present in major grape-growing areas worldwide. Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting grapevines. Indeed, the optimization of water use in a real context of virus infection is an important topic that needs to be understood. In this work, we have focused our attention on determining the interaction of biotic and abiotic stresses on WUE and hydraulic conductance (Kh ) parameters in two white grapevine cultivars (Malvasia de Banyalbufar and Giró Ros). Under well-watered (WW) conditions, virus infection provokes a strong reduction (P < 0.001) in Kpetiole in both cultivars; however, Kleaf was only reduced in Malvasia de Banyalbufar. Moreover, the presence of virus also reduced whole-plant hydraulic conductance (Khplant ) in 2013 and 2014 for Malvasia de Banyalbufar and in 2014 for Giró Ros. Thus, the effect of virus infection on water flow might explain the imposed stomatal limitation. Under WS conditions, the virus effect on Kplant was negligible, because of the bigger effect of WS than virus infection. Whole-plant WUE (WUEWP ) was not affected by the presence of virus neither under WW nor under WS conditions, indicating that plants may adjust their physiology to counteract the virus infection by maintaining a tight stomatal control and by sustaining a balanced carbon change.
Collapse
Affiliation(s)
- Hanan El Aou-Ouad
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Alicia Pou
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Magdalena Tomás
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Rafael Montero
- Institut de Recerca i Formació Agrària i Pesquera (IRFAP), Conselleria d'Agricultura, Medi Ambient i Territori, Govern de les Illes Balears, C/Eusebio Estada no. 145, 07009, Palma de Mallorca, Balears, Spain
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Hipólito Medrano
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Josefina Bota
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| |
Collapse
|
141
|
Hýsek J, Vavera R, Růžek P. Influence of temperature, precipitation, and cultivar characteristics on changes in the spectrum of pathogenic fungi in winter wheat. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:967-975. [PMID: 27975117 DOI: 10.1007/s00484-016-1276-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/05/2016] [Accepted: 11/13/2016] [Indexed: 06/06/2023]
Abstract
In view of the threat posed by climate change, we studied the influence of temperature, precipitation, cultivar characteristics, and technical management measures on the occurrence of phytopathogenic fungi in wheat during 2009-2013. This work involved experiments at two sites differing in average temperatures and precipitation. Temperature and precipitation appear to influence differences in the spectrum of phytopathogenic fungi at the individual sites. In 2009 (the warmest year), Alternaria triticina was dominant. In 2010 (having the smallest deviations from the average for individual years), Septoria tritici dominated. In 2011, Puccinia triticina was most prominent, while in 2012, the genus Drechslera (Pyrenophora) and in 2013, S. tritici and Drechslera tritici-repentis (DTR) dominated. Temperature and precipitation levels in the individual spring months (warmer March to May) played a large role, especially for the leaf rust P. triticina in 2011. A change of only 1 °C with different precipitation during a year played a significant role in changing wheat's fungal spectrum. Cluster analysis showed the differences between single pathogenic fungi on wheat in a single year due to temperature and precipitation. Alternaria abundance was strongly influenced by year (p < 0.001) while locality was significant only in certain years (2012, 2013; p = 0.004 and 0.015, respectively). The same factors were revealed to be significant in the case of Puccinia, but locality played a role (p < 0.001) in different years (2011, 2013). The abundance of S. tritici and Pyrenophora tritici-repentis (Drechslera tritici-repentis) was influenced only by year (p < 0.001).
Collapse
Affiliation(s)
- Josef Hýsek
- Crop Research Institute (CRI), Prague 6, Ruzyně, Czech Republic.
| | - Radek Vavera
- Crop Research Institute (CRI), Prague 6, Ruzyně, Czech Republic
| | - Pavel Růžek
- Crop Research Institute (CRI), Prague 6, Ruzyně, Czech Republic
| |
Collapse
|
142
|
Linnakoski R, Forbes KM, Wingfield MJ, Pulkkinen P, Asiegbu FO. Testing Projected Climate Change Conditions on the Endoconidiophora polonica / Norway spruce Pathosystem Shows Fungal Strain Specific Effects. FRONTIERS IN PLANT SCIENCE 2017; 8:883. [PMID: 28603538 PMCID: PMC5445173 DOI: 10.3389/fpls.2017.00883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/11/2017] [Indexed: 05/04/2023]
Abstract
Climate changes, exemplified by increased temperatures and CO2 concentration, pose a global threat to forest health. Of particular concern are pests and pathogens, with a warming climate altering their distributions and evolutionary capacity, while impairing the ability of some plants to respond to infections. Progress in understanding and mitigating such effects is currently hindered by a lack of empirical research. Norway spruce (Picea abies) is one of the most economically important tree species in northern Europe, and is considered highly vulnerable to changes in climate. It is commonly infected by the fungus Endoconidiophora polonica, and we hypothesized that damage caused to trees will increase under future climate change predictions. To test this hypothesis an in vivo greenhouse experiment was conducted to evaluate the effects of a changed growing environment on E. polonica infected Norway spruce seedlings, comparing ambient conditions to predicted temperatures and CO2 levels in Finland for the years 2030 and 2100. In total, 450 seedlings were randomized amongst the three treatments, with 25 seedlings from each allocated to inoculation with one of five different fungal strains or mock-inoculation. Seedlings were monitored throughout the thermal growing season for mortality, and lesion length and depth indices were measured at the experiment conclusion. Disease severity (mortality and lesions) was consistently greater in fungal-inoculated than mock-inoculated seedlings. However, substantial differences were observed among fungal strains in response to climate scenarios. For example, although overall seedling mortality was highest under the most distant (and severe) climate change expectations, of the two fungal strains with the highest mortality counts (referred to as F4 and F5), one produced greater mortality under the 2030 and 2100 scenarios than ambient conditions, whereas climate scenario had no effect on the other. This study contributes to a limited body of empirical research on the effects of projected climate changes on forestry pathosystems, and is the first to investigate interactions between Norway spruce and E. polonica. The results indicate the potential for future climate changes to alter the impact of forest pathogens with implications for productivity, while highlighting the need for a strain-specific level of understanding of the disease agents.
Collapse
Affiliation(s)
- Riikka Linnakoski
- Department of Forest Sciences, University of HelsinkiHelsinki, Finland
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | | | - Michael J. Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | | | - Fred O. Asiegbu
- Department of Forest Sciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
143
|
Zhou Y, Vroegop-Vos I, Schuurink RC, Pieterse CMJ, Van Wees SCM. Atmospheric CO 2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine. FRONTIERS IN PLANT SCIENCE 2017; 8:700. [PMID: 28559899 PMCID: PMC5432532 DOI: 10.3389/fpls.2017.00700] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) was investigated at three different CO2 levels: high (800 ppm), ambient (450 ppm), and low (150 ppm). Under all conditions tested, infection by Pst resulted in stomatal closure within 1 h after inoculation. However, subsequent stomatal reopening at 4 h, triggered by the virulence factor coronatine (COR), occurred only at ambient and high CO2, but not at low CO2. Moreover, infection by Pst was reduced at low CO2 to the same extent as infection by mutant Pst cor- . Under all CO2 conditions, the ABA mutants aba2-1 and abi1-1 were as resistant to Pst as wild-type plants under low CO2, which contained less ABA. Moreover, stomatal reopening mediated by COR was dependent on ABA. Our results suggest that reduced ABA levels at low CO2 contribute to the observed enhanced resistance to Pst by deregulation of virulence responses. This implies that enhanced ABA levels at increasing CO2 levels may have a role in weakening plant defense.
Collapse
Affiliation(s)
- Yeling Zhou
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Irene Vroegop-Vos
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Robert C. Schuurink
- Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Saskia C. M. Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
144
|
Cid P, Aguirre C, Sánchez MÁ, Zamorano D, Mihoc M, Salazar E, Chacón G, Navarrete H, Rosas M, Prieto H. An Internet-based platform for the estimation of outcrossing potential between cultivated and Chilean vascular plants. Ecol Evol 2017; 7:2480-2488. [PMID: 28428840 PMCID: PMC5395444 DOI: 10.1002/ece3.2854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022] Open
Abstract
A national‐scale study of outcrossing potential within Chilean vascular flora was conducted using an upgraded algorithm, which adds parameters such as pollinator agents, climate, and geographic conditions. Datasets were organized and linked in a Web platform (www.flujogenico.cl), in which the development of a total outcrossing potential (TOP) predictor was formulated. The TOP predictor is the engine in the Web platform, which models the effect of a type of agricultural practice on others (coexistence calculation mode) and on the environment (biodiversity calculation mode). The scale for TOP results uses quintiles in order to define outcrossing potential between species as “very low,” “low,” “medium,” “high,” or “very high.” In a coexistence analysis considering 256 species (207 genera), the 10 highest TOP values were for genera Citrus, Prunus, Trifolium, Brassica, Allium, Eucalyptus, Cucurbita, Solanum, Lollium, and Lotus. The highest TOP for species in this analysis fell at “high” potential, 4.9% of the determined values. In biodiversity mode, seven out of 256 cultivated species (2.7%) were native, and 249 (97.3%) corresponded to introduced species. The highest TOP was obtained in the genera Senecio, Calceolaria, Viola, Solanum, Poa, Alstroemeria, Valeriana, Vicia, Atriplex, and Campanula, showing “high” potential in 4.9% of the values. On the other hand, 137 genetically modified species, including the commercial and pre‐commercial developments, were included and represented 100 genera. Among these, 22 genera had relatives (i.e., members of the same genus) in the native/introduced group. The genera with the highest number of native/introduced relatives ranged from one (Ipomea, Limonium, Carica, Potentilla, Lotus, Castanea, and Daucus) to 66 species (Solanum). The highest TOP was obtained when the same species were coincident in both groups, such as for Carica chilensis, Prosopis tamarugo, and Solanum tuberosum. Results are discussed from the perspective of assessing the possible impact of cultivated species on Chilean flora biodiversity. The TOP predictor (http://epc.agroinformatica.cl/) is useful in the context of environmental risk assessment.
Collapse
Affiliation(s)
- Pablo Cid
- Biotechnology Laboratory La Platina Research Station Instituto de Investigaciones Agropecuarias La Pintana Santiago Chile
| | - Carlos Aguirre
- Biotechnology Laboratory La Platina Research Station Instituto de Investigaciones Agropecuarias La Pintana Santiago Chile
| | | | - Daniel Zamorano
- Limnology Laboratory Facultad de Ciencias Universidad de Chile Macul, Santiago de Chile Chile
| | - Maritza Mihoc
- Institute of Ecology and Biodiversity Facultad de Ciencias Universidad de Chile Macul, Santiago de Chile Chile
| | - Erika Salazar
- Genetic Resources Unit and Germplasm Bank La Platina Research Station Instituto de Investigaciones Agropecuarias La Pintana Santiago Chile
| | - Gustavo Chacón
- Computer Sciences Laboratory La Platina Research Station Instituto de Investigaciones Agropecuarias La Pintana Santiago Chile
| | - Humberto Navarrete
- Molecular Fruit Phytopathology Laboratory Facultad Ciencias Agropecuarias Universidad de Chile La Pintana Santiago Chile
| | - Marcelo Rosas
- Genetic Resources Unit and Germplasm Bank Intihuasi Research Station Instituto de Investigaciones Agropecuarias Vicuña Chile
| | - Humberto Prieto
- Biotechnology Laboratory La Platina Research Station Instituto de Investigaciones Agropecuarias La Pintana Santiago Chile
| |
Collapse
|
145
|
Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. FRONTIERS IN PLANT SCIENCE 2017; 8:537. [PMID: 28458674 PMCID: PMC5394115 DOI: 10.3389/fpls.2017.00537] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/27/2017] [Indexed: 05/18/2023]
Abstract
Global warming leads to the concurrence of a number of abiotic and biotic stresses, thus affecting agricultural productivity. Occurrence of abiotic stresses can alter plant-pest interactions by enhancing host plant susceptibility to pathogenic organisms, insects, and by reducing competitive ability with weeds. On the contrary, some pests may alter plant response to abiotic stress factors. Therefore, systematic studies are pivotal to understand the effect of concurrent abiotic and biotic stress conditions on crop productivity. However, to date, a collective database on the occurrence of various stress combinations in agriculturally prominent areas is not available. This review attempts to assemble published information on this topic, with a particular focus on the impact of combined drought and pathogen stresses on crop productivity. In doing so, this review highlights some agriculturally important morpho-physiological traits that can be utilized to identify genotypes with combined stress tolerance. In addition, this review outlines potential role of recent genomic tools in deciphering combined stress tolerance in plants. This review will, therefore, be helpful for agronomists and field pathologists in assessing the impact of the interactions between drought and plant-pathogens on crop performance. Further, the review will be helpful for physiologists and molecular biologists to design agronomically relevant strategies for the development of broad spectrum stress tolerant crops.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | | | | |
Collapse
|
146
|
Simulated Summer Rainfall Variability Effects on Loblolly Pine (Pinus taeda) Seedling Physiology and Susceptibility to Root-Infecting Ophiostomatoid Fungi. FORESTS 2017. [DOI: 10.3390/f8040104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
147
|
Genomic innovation for crop improvement. Nature 2017; 543:346-354. [DOI: 10.1038/nature22011] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
|
148
|
Onaga G, Wydra KD, Koopmann B, Séré Y, von Tiedemann A. Elevated temperature increases in planta expression levels of virulence related genes in Magnaporthe oryzae and compromises resistance in Oryza sativa cv. Nipponbare. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:358-371. [PMID: 32480570 DOI: 10.1071/fp16151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/24/2016] [Indexed: 06/11/2023]
Abstract
Temperature changes have the potential to alter the incidence and severity of plant disease epidemics and pressures, as well as to reshape the co-evolutionary relationships between plants and pathogens. However, the molecular basis of temperature modulation of pathogenicity of plant pathogens is still unclear. Here, we studied the effect of temperature on biomass of Magnaporthe oryzae in planta using qPCR. Additionally, the transcriptomes of M. oryzae and rice were analysed using RNA-seq. Rice seedlings were exposed to 35°C and 28°C for 7 days before pathogen inoculation. Inoculated plants were kept in the dark at 28°C for 24h and later re-exposed to 35°C and 28°C for an additional 24h before sample collection. Plants grown and predisposed to 35°C prior to inoculation exhibited accelerated tissue necrosis compared with plants grown and inoculated at 28°C. In accordance with the disease severity observed on infected leaves, in planta fungal biomass was significantly higher at 35°C than 28°C. Moreover, M. oryzae exhibited increased expression levels of putative fungal effector genes in plants exposed to 35°C compared with plants exposed to 28°C. Collectively, this study revealed that temperature elevation could favour M. oryzae infection by compromising plant resistance and accelerating plant tissue colonisation with the pathogen.
Collapse
Affiliation(s)
- Geoffrey Onaga
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Kerstin D Wydra
- Erfurt University of Applied Sciences, Horticulture - Plant Production and Climate Change, Leipziger Str. 77, 90085 Erfurt, Germany
| | - Birger Koopmann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Yakouba Séré
- Africa Rice Centre, P.O Box 33581, Dar es Salaam, Tanzania
| | - Andreas von Tiedemann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University, Grisebachstr. 6, 37077, Göttingen, Germany
| |
Collapse
|
149
|
Zhang Y, Wang Y, Liu J, Ding Y, Wang S, Zhang X, Liu Y, Yang S. Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3. THE NEW PHYTOLOGIST 2017; 213:1330-1345. [PMID: 27699788 DOI: 10.1111/nph.14216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/23/2016] [Indexed: 05/03/2023]
Abstract
Toll/interleukin receptor (TIR)-nucleotide binding site (NB)-type (TN) proteins are encoded by a family of 21 genes in the Arabidopsis genome. Previous studies have shown that a mutation in the TN gene CHS1 activates the activation of defense responses at low temperatures. However, the underlying molecular mechanism remains unknown. To genetically dissect chs1-mediated signaling, we isolated genetic suppressors of chs1-2 (soc). Several independent soc mutants carried mutations in the same TIR-NB-leucine-rich repeat (LRR) (TNL)-encoding gene SOC3, which is adjacent to CHS1 on chromosome 1. Expression of SOC3 was upregulated in the chs1-2 mutant. Mutations in six soc3 alleles and downregulation of SOC3 by an artificial microRNA construct fully rescued the chilling sensitivity and defense defects of chs1-2. Biochemical studies showed that CHS1 interacted with the NB and LRR domains of SOC3; however, mutated chs1 interacted with the TIR, NB and LRR domains of SOC3 in vitro and in vivo. This study reveals that the TN protein CHS1 interacts with the TNL protein SOC3 to modulate temperature-dependent autoimmunity.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuancong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shanshan Wang
- Center for Plant Biology and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yule Liu
- Center for Plant Biology and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
150
|
Wosula EN, Tatineni S, Wegulo SN, Hein GL. Effect of Temperature on Wheat Streak Mosaic Disease Development in Winter Wheat. PLANT DISEASE 2017; 101:324-330. [PMID: 30681928 DOI: 10.1094/pdis-07-16-1053-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Temperature is one of the key factors that influence viral disease development in plants. In this study, temperature effect on Wheat streak mosaic virus (WSMV) replication and in planta movement was determined using a green fluorescent protein (GFP)-tagged virus in two winter wheat cultivars. Virus-inoculated plants were first incubated at 10, 15, 20, and 25°C for 21 days, followed by 27°C for 14 days; and, in a second experiment, virus-inoculated plants were initially incubated at 27°C for 3 days, followed by 10, 15, 20, and 25°C for 21 days. In the first experiment, WSMV-GFP in susceptible 'Tomahawk' wheat at 10°C was restricted at the point of inoculation whereas, at 15°C, the virus moved systemically, accompanied with mild symptoms, and, at 20 and 25°C, WSMV elicited severe WSMV symptoms. In resistant 'Mace' wheat (PI 651043), WSMV-GFP was restricted at the point of inoculation at 10 and 15°C but, at 20 and 25°C, the virus infected systemically with no visual symptoms. Some plants that were not systemically infected at low temperatures expressed WSMV-GFP in regrowth shoots when later held at 27°C. In the second experiment, Tomahawk plants (100%) expressed systemic WSMV-GFP after 21 days at all four temperature levels; however, systemic WSMV expression in Mace was delayed at the lower temperatures. These results indicate that temperature played an important role in WSMV replication, movement, and symptom development in resistant and susceptible wheat cultivars. This study also demonstrates that suboptimal temperatures impair WSMV movement but the virus rapidly begins to replicate and spread in planta under optimal temperatures.
Collapse
Affiliation(s)
- E N Wosula
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - S Tatineni
- United States Department of Agriculture-Agricultural Research Service, and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68583
| | - S N Wegulo
- Department of Plant Pathology, University of Nebraska-Lincoln
| | - G L Hein
- Department of Entomology, University of Nebraska-Lincoln
| |
Collapse
|