101
|
Hu H, Cusack R, Naci L. OUP accepted manuscript. Brain Commun 2022; 4:fcac071. [PMID: 35425900 PMCID: PMC9006044 DOI: 10.1093/braincomms/fcac071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
One of the great frontiers of consciousness science is understanding how early consciousness arises in the development of the human infant. The reciprocal relationship between the default mode network and fronto-parietal networks—the dorsal attention and executive control network—is thought to facilitate integration of information across the brain and its availability for a wide set of conscious mental operations. It remains unknown whether the brain mechanism of conscious awareness is instantiated in infants from birth. To address this gap, we investigated the development of the default mode and fronto-parietal networks and of their reciprocal relationship in neonates. To understand the effect of early neonate age on these networks, we also assessed neonates born prematurely or before term-equivalent age. We used the Developing Human Connectome Project, a unique Open Science dataset which provides a large sample of neonatal functional MRI data with high temporal and spatial resolution. Resting state functional MRI data for full-term neonates (n = 282, age 41.2 weeks ± 12 days) and preterm neonates scanned at term-equivalent age (n = 73, 40.9 weeks ± 14.5 days), or before term-equivalent age (n = 73, 34.6 weeks ± 13.4 days), were obtained from the Developing Human Connectome Project, and for a reference adult group (n = 176, 22–36 years), from the Human Connectome Project. For the first time, we show that the reciprocal relationship between the default mode and dorsal attention network was present at full-term birth or term-equivalent age. Although different from the adult networks, the default mode, dorsal attention and executive control networks were present as distinct networks at full-term birth or term-equivalent age, but premature birth was associated with network disruption. By contrast, neonates before term-equivalent age showed dramatic underdevelopment of high-order networks. Only the dorsal attention network was present as a distinct network and the reciprocal network relationship was not yet formed. Our results suggest that, at full-term birth or by term-equivalent age, infants possess key features of the neural circuitry that enables integration of information across diverse sensory and high-order functional modules, giving rise to conscious awareness. Conversely, they suggest that this brain infrastructure is not present before infants reach term-equivalent age. These findings improve understanding of the ontogeny of high-order network dynamics that support conscious awareness and of their disruption by premature birth.
Collapse
Affiliation(s)
- Huiqing Hu
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Correspondence to: Lorina Naci School of Psychology Trinity College Institute of Neuroscience Global Brain Health Institute Trinity College Dublin Dublin, Ireland E-mail:
| |
Collapse
|
102
|
The default network is causally linked to creative thinking. Mol Psychiatry 2022; 27:1848-1854. [PMID: 34974525 PMCID: PMC9095481 DOI: 10.1038/s41380-021-01403-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Creative thinking represents a major evolutionary mechanism that greatly contributed to the rapid advancement of the human species. The ability to produce novel and useful ideas, or original thinking, is thought to correlate well with unexpected, synchronous activation of several large-scale, dispersed cortical networks, such as the default network (DN). Despite a vast amount of correlative evidence, a causal link between default network and creativity has yet to be demonstrated. Surgeries for resection of brain tumors that lie in proximity to speech related areas are performed while the patient is awake to map the exposed cortical surface for language functions. Such operations provide a unique opportunity to explore human behavior while disrupting a focal cortical area via focal electrical stimulation. We used a novel paradigm of individualized direct cortical stimulation to examine the association between creative thinking and the DN. Preoperative resting-state fMRI was used to map the DN in individual patients. A cortical area identified as a DN node (study) or outside the DN (controls) was stimulated while the participants performed an alternate-uses-task (AUT). This task measures divergent thinking through the number and originality of different uses provided for an everyday object. Baseline AUT performance in the operating room was positively correlated with DN integrity. Direct cortical stimulation at the DN node resulted in decreased ability to produce alternate uses, but not in the originality of uses produced. Stimulation in areas that when used as network seed regions produced a network similar to the canonical DN was associated with reduction of creative fluency. Stimulation of areas that did not produce a default-like network (controls) did not alter creative thinking. This is the first study to causally link the DN and creative thinking.
Collapse
|
103
|
Cortical morphology and illness insight in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2022; 272:985-995. [PMID: 34518921 PMCID: PMC9388450 DOI: 10.1007/s00406-021-01328-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/27/2021] [Indexed: 11/07/2022]
Abstract
Insight into illness in schizophrenia (SZ) patients has a major impact on treatment adherence and outcome. Previous studies have linked distinct deviations of brain structure to illness insight, specifically in frontoparietal and subcortical regions. Some of these abnormalities are thought to reflect aberrant cortical development. In this study, we used cross-sectional data to examine associations between illness insight and two cortical surface markers that are known to follow distinct neurodevelopmental trajectories, i.e. cortical gyrification (CG) and thickness (CT). CG and CT was investigated in SZ patients (n = 82) and healthy controls (HC, n = 48) using 3 T structural magnetic resonance imaging. Illness insight in SZ patients was measured using the OSSTI scale, an instrument that provides information on two distinct dimensions of illness insight, i.e. treatment adherence (OSSTI-A) and identification of disease-related symptoms (OSSTI-I). CT and CG were computed using the Computational Anatomy Toolbox (CAT12). Whole-brain and regions-of-interest (ROI)-based analyses were performed. SZ patients showed higher CG in anterior cingulate, superior frontal and temporal gyrus and reduced CG in insular and superior frontal cortex when compared to HC. SZ patients showed decreased CT in pre- and paracentral, occipital, cingulate, frontoparietal and temporal regions. Illness insight in SZ patients was significantly associated with both CG and CT in the left inferior parietal lobule (OSSTI-A) and the right precentral gyrus (CG/OSSTI-A, CT/OSSTI-I). The data support a multi-parametric neuronal model with both pre- and postnatal brain developmental factors having an impact on illness insight in patients with SZ.
Collapse
|
104
|
Error-Related Brain Activity in Patients With Obsessive-Compulsive Disorder and Unaffected First-Degree Relatives: Evidence for Protective Patterns. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:79-87. [PMID: 36324601 PMCID: PMC9616249 DOI: 10.1016/j.bpsgos.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background Indicators of increased error monitoring are associated with obsessive-compulsive disorder (OCD), as shown in electroencephalography and functional magnetic resonance imaging studies. As most studies used strictly controlled samples (excluding comorbidity and medication), it remains open whether these findings extend to naturalistic settings. Thus, we assessed error-related brain activity in a large, naturalistic OCD sample. We also explored which activity patterns might qualify as vulnerability endophenotypes or protective factors for the disorder. To this aim, a sample of unaffected first-degree relatives of patients with OCD was also included. Methods Participants (84 patients with OCD, 99 healthy control participants, and 37 unaffected first-degree relatives of patients with OCD) completed a flanker task while blood oxygen level–dependent responses were measured with functional magnetic resonance imaging. Aberrant error-related brain activity in patients and relatives was identified. Results Patients with OCD showed increased error-related activity in the supplementary motor area and within the default mode network, specifically in the precuneus and postcentral gyrus. Unaffected first-degree relatives showed increased error-related activity in the bilateral inferior frontal gyrus. Conclusions Increased supplementary motor area and default mode network activity in patients with OCD replicates previous studies and might indicate excessive error signals and increased self-referential error processing. Increased activity of the inferior frontal gyrus in relatives may reflect increased inhibition. Impaired response inhibition in OCD has been demonstrated in several studies and might contribute to impairments in suppressing compulsive actions. Thus, increased inferior frontal gyrus activity in the unaffected relatives of patients with OCD may have contributed to protection from symptom development.
Collapse
|
105
|
Chou T, Dougherty DD, Nierenberg AA, Deckersbach T. Restoration of default mode network and task positive network anti-correlation associated with mindfulness-based cognitive therapy for bipolar disorder. Psychiatry Res Neuroimaging 2022; 319:111419. [PMID: 34847405 PMCID: PMC8724460 DOI: 10.1016/j.pscychresns.2021.111419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Individuals with bipolar disorder (BP) show abnormalities in the default mode network (DMN), a brain network active at rest and during self-referential cognition. In healthy individuals, the DMN is anti-correlated (strongly negatively correlated) with the task positive network (TPN), a brain network that is active during attention demanding tasks. Mindfulness has been linked to changes in DMN connectivity. We investigated the effects of mindfulness-based cognitive therapy (MBCT) versus supportive psychotherapy (SP) on the relationship between these two networks in individuals with BP. We identified differences in BOLD resting state DMN-TPN connectivity between healthy controls (HC; n = 22) and individuals with DSM-IV BP before treatment (n = 22) using a seed region in the dorsolateral prefrontal cortex (DLPFC), a key TPN node. We then explored changes in DMN-TPN connectivity after 12 weeks of MBCT or SP. Before treatment, BP individuals showed positively correlated activity and the HC group showed negatively correlated activity between the DLPFC and the posterior cingulate cortex (PCC). After treatment, BP individuals who received MBCT showed negatively correlated DLPFC-PCC activity. BP individuals who received SP did not show a significant change. Mindfulness-based cognitive therapy can restore the anti-correlation between the DMN and TPN in individuals with BP.
Collapse
Affiliation(s)
- Tina Chou
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States.
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States
| | - Andrew A Nierenberg
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States; University of Applied Sciences, Diploma Hochschule, Germany
| |
Collapse
|
106
|
Ji B, Dai M, Guo Z, Li J, Cao Y, Zhang Z, Zhang Y, Liu X. Functional Connectivity Density in the Sensorimotor Area is Associated with Sleep Latency in Patients with Primary Insomnia. Neuropsychiatr Dis Treat 2022; 18:1-10. [PMID: 35035217 PMCID: PMC8755708 DOI: 10.2147/ndt.s338489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE It is unclear whether the patterns of functional connectivity density (FCD) differ between patients with primary insomnia (PI) and healthy subjects. In the present study, we investigated the features of FCD in patients with PI using resting-state functional MRI (rsfMRI). METHODS rsfMRI datasets of 32 patients with PI and 34 healthy controls (HCs) were obtained using a 3-Tesla scanner. FCD analysis was performed to compare voxels with abnormal whole-brain functional connectivity with other voxels among patients with PI and HCs. Abnormal brain regions were then used as seed points for FC analysis. RESULTS Compared with HCs, patients with PI exhibited significantly decreased FCD in the left medial frontal gyrus and increased FCD in the left supplementary motor area (SMA). With the left medial frontal gyrus as the seed point, patients with PI showed decreased FC between the left medial frontal gyrus and the left fusiform gyrus compared with HCs. With the left SMA as the seed point, patients with PI exhibited increased FC between the left SMA and the right anterior cingulate gyrus. Correlation analysis revealed that the increased FCD values in the left SMA were positively correlated with sleep latency in patients with PI. CONCLUSION Default-mode network and SMA dysfunctions may be related to the pathophysiology of PI.
Collapse
Affiliation(s)
- Bin Ji
- Department of Anesthesiologyand Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Min Dai
- Department of Radiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Zhongwei Guo
- The Sleep Medical Center of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Jiapeng Li
- Department of Radiology of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Yulin Cao
- Department of Radiology of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Zhenzhong Zhang
- The Sleep Medical Center of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Yan Zhang
- The Sleep Medical Center of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
107
|
Geffen T, Smallwood J, Finke C, Olbrich S, Sjoerds Z, Schlagenhauf F. Functional connectivity alterations between default mode network and occipital cortex in patients with obsessive-compulsive disorder (OCD). Neuroimage Clin 2021; 33:102915. [PMID: 34933233 PMCID: PMC8688720 DOI: 10.1016/j.nicl.2021.102915] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/06/2021] [Accepted: 12/12/2021] [Indexed: 01/26/2023]
Abstract
Altered brain network connectivity is a potential biomarker for obsessive-compulsive disorder (OCD). A meta-analysis of resting-state MRI studies by Gürsel et al. (2018) described altered functional connectivity in OCD patients within and between the default mode network (DMN), the salience network (SN), and the frontoparietal network (FPN), as well as evidence for aberrant fronto-striatal circuitry. Here, we tested the replicability of these meta-analytic rsfMRI findings by measuring functional connectivity during resting-state fMRI in a new sample of OCD patients (n = 24) and matched controls (n = 33). We performed seed-to-voxel analyses using 30 seed regions from the prior meta-analysis. OCD patients showed reduced functional connectivity between the SN and the DMN compared to controls, replicating previous findings. We did not observe significant group differences of functional connectivity within the DMN, SN, nor FPN. Additionally, we observed reduced connectivity between the visual network to both the DMN and SN in OCD patients, in particular reduced functional connectivity between lateral parietal seeds and the left inferior lateral occipital pole. Furthermore, the right lateral parietal seed (associated with the DMN) was more strongly correlated with a cluster in the right lateral occipital cortex and precuneus (a region partly overlapping with the Dorsal Attentional Network (DAN)) in patients. Importantly, this latter finding was positively correlated to OCD symptom severity. Overall, our study partly replicated prior meta-analytic findings, highlighting hypoconnectivity between SN and DMN as a potential biomarker for OCD. Furthermore, we identified changes between the SN and the DMN with the visual network. This suggests that abnormal connectivity between cortex regions associated with abstract functions (transmodal regions such as the DMN), and cortex regions associated with constrained neural processing (unimodal regions such as the visual cortex), may be important in OCD.
Collapse
Affiliation(s)
- Tal Geffen
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany.
| | | | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin, Berlin, Germany; Humboldt-Universitaet zu Berlin, Berlin School of Mind and Brain, Berlin, Germany
| | - Sebastian Olbrich
- Department for Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Zsuzsika Sjoerds
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain & Cognition, Leiden University, Leiden, Netherlands
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany; Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
108
|
Runia N, Yücel DE, Lok A, de Jong K, Denys DAJP, van Wingen GA, Bergfeld IO. The neurobiology of treatment-resistant depression: A systematic review of neuroimaging studies. Neurosci Biobehav Rev 2021; 132:433-448. [PMID: 34890601 DOI: 10.1016/j.neubiorev.2021.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition associated with higher medical costs, increased illness burden, and reduced quality of life compared to non-treatment-resistant major depressive disorder (MDD). The question arises whether TRD can be considered a distinct MDD sub-type based on neurobiological features. To answer this question we conducted a systematic review of neuroimaging studies investigating the neurobiological differences between TRD and non-TRD. Our main findings are that patients with TRD show 1) reduced functional connectivity (FC) within the default mode network (DMN), 2) reduced FC between components of the DMN and other brain areas, and 3) hyperactivity of DMN regions. In addition, aberrant activity and FC in the occipital lobe may play a role in TRD. The main limitations of most studies were related to inherent confounding factors for comparing TRD with non-TRD, such as differences in disease chronicity/severity and medication history. Future studies may use prospective longitudinal neuroimaging designs to delineate which effects are present in treatment-naive patients and which effects are the result of disease progression.
Collapse
Affiliation(s)
- Nora Runia
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| | - Dilan E Yücel
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Anja Lok
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Kiki de Jong
- University of Amsterdam, Amsterdam, the Netherlands
| | - Damiaan A J P Denys
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Guido A van Wingen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Isidoor O Bergfeld
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
109
|
Lee D, Quattrocki Knight E, Song H, Lee S, Pae C, Yoo S, Park HJ. Differential structure-function network coupling in the inattentive and combined types of attention deficit hyperactivity disorder. PLoS One 2021; 16:e0260295. [PMID: 34851976 PMCID: PMC8635373 DOI: 10.1371/journal.pone.0260295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
The heterogeneous presentation of inattentive and hyperactive-impulsive core symptoms in attention deficit hyperactivity disorder (ADHD) warrants further investigation into brain network connectivity as a basis for subtype divisions in this prevalent disorder. With diffusion and resting-state functional magnetic resonance imaging data from the Healthy Brain Network database, we analyzed both structural and functional network efficiency and structure-functional network (SC-FC) coupling at the default mode (DMN), executive control (ECN), and salience (SAN) intrinsic networks in 201 children diagnosed with the inattentive subtype (ADHD-I), the combined subtype (ADHD-C), and typically developing children (TDC) to characterize ADHD symptoms relative to TDC and to test differences between ADHD subtypes. Relative to TDC, children with ADHD had lower structural connectivity and network efficiency in the DMN, without significant group differences in functional networks. Children with ADHD-C had higher SC-FC coupling, a finding consistent with diminished cognitive flexibility, for all subnetworks compared to TDC. The ADHD-C group also demonstrated increased SC-FC coupling in the DMN compared to the ADHD-I group. The correlation between SC-FC coupling and hyperactivity scores was negative in the ADHD-I, but not in the ADHD-C group. The current study suggests that ADHD-C and ADHD-I may differ with respect to their underlying neuronal connectivity and that the added dimensionality of hyperactivity may not explain this distinction.
Collapse
Affiliation(s)
- Dongha Lee
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Elizabeth Quattrocki Knight
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Hyunjoo Song
- Department of Educational Psychology, Seoul Women’s University, Seoul, Republic of Korea
| | - Saebyul Lee
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chongwon Pae
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sol Yoo
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
110
|
Duda M, Koutra D, Sripada C. Validating dynamicity in resting state fMRI with activation-informed temporal segmentation. Hum Brain Mapp 2021; 42:5718-5735. [PMID: 34510647 PMCID: PMC8559473 DOI: 10.1002/hbm.25649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Confirming the presence (or absence) of dynamic functional connectivity (dFC) states during rest is an important open question in the field of cognitive neuroscience. The prevailing dFC framework aims to identify dynamics directly from connectivity estimates with a sliding window approach, however this method suffers from several drawbacks including sensitivity to window size and poor test-retest reliability. We hypothesize that time-varying changes in functional connectivity are mirrored by significant temporal changes in functional activation, and that this coupling can be leveraged to study dFC without the need for a predefined sliding window. Here, we introduce a data-driven dFC framework, which involves informed segmentation of fMRI time series at candidate FC state transition points estimated from changes in whole-brain functional activation, rather than a fixed-length sliding window. We show our approach reliably identifies true cognitive state change points when applied on block-design working memory task data and outperforms the standard sliding window approach in both accuracy and computational efficiency in this context. When applied to data from four resting state fMRI scanning sessions, our method consistently recovers five reliable FC states, and subject-specific features derived from these states show significant correlation with behavioral phenotypes of interest (cognitive ability, personality). Overall, these results suggest abrupt whole-brain changes in activation can be used as a marker for changes in connectivity states and provides new evidence for the existence of time-varying FC in rest.
Collapse
Affiliation(s)
- Marlena Duda
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Danai Koutra
- Department of Computer Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Chandra Sripada
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
111
|
Temporal order of signal propagation within and across intrinsic brain networks. Proc Natl Acad Sci U S A 2021; 118:2105031118. [PMID: 34819365 DOI: 10.1073/pnas.2105031118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
We studied the temporal dynamics of activity within and across functional MRI (fMRI)-derived nodes of intrinsic resting-state networks of the human brain using intracranial electroencephalography (iEEG) and repeated single-pulse electrical stimulation (SPES) in neurosurgical subjects implanted with intracranial electrodes. We stimulated and recorded from 2,133 and 2,372 sites, respectively, in 29 subjects. We found that N1 and N2 segments of the evoked responses are associated with intra- and internetwork communications, respectively. In a separate cognitive experiment, evoked electrophysiological responses to visual target stimuli occurred with less temporal separation across pairs of electrodes that were located within the same fMRI-defined resting-state networks compared with those located across different resting-state networks. Our results suggest intranetwork prior to internetwork information processing at the subsecond timescale.
Collapse
|
112
|
Taruffi L. Mind-Wandering during Personal Music Listening in Everyday Life: Music-Evoked Emotions Predict Thought Valence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312321. [PMID: 34886046 PMCID: PMC8656507 DOI: 10.3390/ijerph182312321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
Research has shown that mind-wandering, negative mood, and poor wellbeing are closely related, stressing the importance of exploring contexts or tools that can stimulate positive thoughts and images. While music represents a promising option, work on this topic is still scarce with only a few studies published, mainly featuring laboratory or online music listening tasks. Here, I used the experience sampling method for the first time to capture mind-wandering during personal music listening in everyday life, aiming to test for the capacity of music to facilitate beneficial styles of mind-wandering and to explore its experiential characteristics. Twenty-six participants used a smart-phone application that collected reports of thought, mood, and emotion during music listening or other daily-life activities over 10 days. The application was linked to a music playlist, specifically assembled to induce positive and relaxing emotions. Results showed that mind-wandering evoked during music and non-music contexts had overall similar characteristics, although some minor differences were also observed. Most importantly, music-evoked emotions predicted thought valence, thereby indicating music as an effective tool to regulate thoughts via emotion. These findings have important applications for music listening in daily life as well as for the use of music in health interventions.
Collapse
Affiliation(s)
- Liila Taruffi
- Music Department, Durham University, Durham DH1 3RL, UK
| |
Collapse
|
113
|
Sripada C, Angstadt M, Taxali A, Kessler D, Greathouse T, Rutherford S, Clark DA, Hyde LW, Weigard A, Brislin SJ, Hicks B, Heitzeg M. Widespread attenuating changes in brain connectivity associated with the general factor of psychopathology in 9- and 10-year olds. Transl Psychiatry 2021; 11:575. [PMID: 34753911 PMCID: PMC8578613 DOI: 10.1038/s41398-021-01708-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Convergent research identifies a general factor ("P factor") that confers transdiagnostic risk for psychopathology. Large-scale networks are key organizational units of the human brain. However, studies of altered network connectivity patterns associated with the P factor are limited, especially in early adolescence when most mental disorders are first emerging. We studied 11,875 9- and 10-year olds from the Adolescent Brain and Cognitive Development (ABCD) study, of whom 6593 had high-quality resting-state scans. Network contingency analysis was used to identify altered interconnections associated with the P factor among 16 large-scale networks. These connectivity changes were then further characterized with quadrant analysis that quantified the directionality of P factor effects in relation to neurotypical patterns of positive versus negative connectivity across connections. The results showed that the P factor was associated with altered connectivity across 28 network cells (i.e., sets of connections linking pairs of networks); pPERMUTATION values < 0.05 FDR-corrected for multiple comparisons. Higher P factor scores were associated with hypoconnectivity within default network and hyperconnectivity between default network and multiple control networks. Among connections within these 28 significant cells, the P factor was predominantly associated with "attenuating" effects (67%; pPERMUTATION < 0.0002), i.e., reduced connectivity at neurotypically positive connections and increased connectivity at neurotypically negative connections. These results demonstrate that the general factor of psychopathology produces attenuating changes across multiple networks including default network, involved in spontaneous responses, and control networks involved in cognitive control. Moreover, they clarify mechanisms of transdiagnostic risk for psychopathology and invite further research into developmental causes of distributed attenuated connectivity.
Collapse
Affiliation(s)
- Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Aman Taxali
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Kessler
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Saige Rutherford
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - D Angus Clark
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Luke W Hyde
- Department of Psychology and Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Alex Weigard
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Sarah J Brislin
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Brian Hicks
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mary Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
114
|
Arkhipova A, Hok P, Valošek J, Trnečková M, Všetičková G, Coufalová G, Synek J, Zouhar V, Hluštík P. Changes in Brain Responses to Music and Non-music Sounds Following Creativity Training Within the "Different Hearing" Program. Front Neurosci 2021; 15:703620. [PMID: 34658759 PMCID: PMC8517178 DOI: 10.3389/fnins.2021.703620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
The "Different Hearing" program (DHP) is an educational activity aimed at stimulating musical creativity of children and adults by group composing in the classroom, alternative to the mainstream model of music education in Czechia. Composing in the classroom in the DHP context does not use traditional musical instruments or notation, instead, the participants use their bodies, sounds originating from common objects as well as environmental sounds as the "elements" for music composition by the participants' team, with the teacher initiating and then participating and coordinating the creative process, which ends with writing down a graphical score and then performing the composition in front of an audience. The DHP methodology works with a wide definition of musical composition. We hypothesized that the DHP short-term (2 days) intense workshop would induce changes in subjective appreciation of different classes of music and sound (including typical samples of music composed in the DHP course), as well as plastic changes of the brain systems engaged in creative thinking and music perception, in their response to diverse auditory stimuli. In our study, 22 healthy university students participated in the workshop over 2 days and underwent fMRI examinations before and after the workshop, meanwhile 24 students were also scanned twice as a control group. During fMRI, each subject was listening to musical and non-musical sound samples, indicating their esthetic impression with a button press after each sample. As a result, participants' favorable feelings toward non-musical sound samples were significantly increased only in the active group. fMRI data analyzed using ANOVA with post hoc ROI analysis showed significant group-by-time interaction (opposing trends in the two groups) in the bilateral posterior cingulate cortex/precuneus, which are functional hubs of the default mode network (DMN) and in parts of the executive, motor, and auditory networks. The findings suggest that DHP training modified the behavioral and brain response to diverse sound samples, differentially changing the engagement of functional networks known to be related to creative thinking, namely, increasing DMN activation and decreasing activation of the executive network.
Collapse
Affiliation(s)
- Anna Arkhipova
- Department of Neurology, Faculty of Medicine and Dentistry and University Hospital Olomouc, Olomouc, Czechia
| | - Pavel Hok
- Department of Neurology, Faculty of Medicine and Dentistry and University Hospital Olomouc, Olomouc, Czechia
| | - Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry and University Hospital Olomouc, Olomouc, Czechia.,Department of Biomedical Engineering, University Hospital Olomouc, Olomouc, Czechia
| | - Markéta Trnečková
- Department of Neurology, Faculty of Medicine and Dentistry and University Hospital Olomouc, Olomouc, Czechia.,Department of Computer Science, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Gabriela Všetičková
- Department of Music Education, Faculty of Education, Palacký University Olomouc, Olomouc, Czechia
| | - Gabriela Coufalová
- Department of Music Education, Faculty of Education, Palacký University Olomouc, Olomouc, Czechia
| | - Jaromír Synek
- Department of Music Education, Faculty of Education, Palacký University Olomouc, Olomouc, Czechia
| | - Vít Zouhar
- Department of Music Education, Faculty of Education, Palacký University Olomouc, Olomouc, Czechia
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry and University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
115
|
Yu Q, Li Q, Fang W, Wang Y, Zhu Y, Wang J, Shen Y, Han Y, Zou D, Cheng O. Disorganized resting-state functional connectivity between the dorsal attention network and intrinsic networks in Parkinson's disease with freezing of gait. Eur J Neurosci 2021; 54:6633-6645. [PMID: 34479401 DOI: 10.1111/ejn.15439] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
Freezing of gait (FOG) is a common and complex manifestation of Parkinson's disease (PD) and is associated with impairment of attention. The purpose of this study was to evaluate the functional network connectivity (FNc) changes between the dorsal attention network (DAN) and the other seven intrinsic networks relevant to attention, visual-spatial, executive and motor functions in PD with or without FOG. Forty-three idiopathic PD patients (21 with FOG [FOG+] versus 22 without FOG [FOG-]) and 18 healthy controls (HC) were recruited in this study. The data-driven independent component analysis (ICA) method was used to extract and analyze the above-mentioned resting-state networks (RSNs). Compared with FOG-, FOG+ displayed decreased positive connectivity between the DAN and medial visual network (mVN) and sensory-motor network (SMN) and increased negative connectivity between the DAN and default mode network (DMN). The within-network connectivity in the SMN and visual networks were decreased, whereas the connectivity within DMN was increased significantly in FOG+. Correlation analysis showed that the clock drawing test (CDT) scores were positively correlated with the functional connectivity of mVN (r = 0.573, p = 0.008) and lateral visual network (lVN) (r = 0.510, p = 0.022), the Timed Up and Go Test (TUG) duration were negatively correlated with the connectivity of SMN (r = -0.629, p = 0.003), and the Frontal Assessment Battery (FAB) scores were negatively correlated with the connectivity of DMN in FOG+. Functional connectivity was changed in multiple intra-networks in patients with FOG. Inordinate inter-network connectivity between the DAN and other intrinsic networks may partly contribute to the mechanism of freezing.
Collapse
Affiliation(s)
- Qian Yu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qun Li
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuchan Wang
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingcheng Zhu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Wang
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yalian Shen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu Han
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dezhi Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
116
|
Jubera-Garcia E, Gevers W, Van Opstal F. Local build-up of sleep pressure could trigger mind wandering: Evidence from sleep, circadian and mind wandering research. Biochem Pharmacol 2021; 191:114478. [DOI: 10.1016/j.bcp.2021.114478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
|
117
|
Veselinović T, Rajkumar R, Amort L, Junger J, Shah NJ, Fimm B, Neuner I. Connectivity Patterns in the Core Resting-State Networks and Their Influence on Cognition. Brain Connect 2021; 12:334-347. [PMID: 34182786 DOI: 10.1089/brain.2020.0943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: Three prominent resting-state networks (rsNW) (default mode network [DMN], salience network [SN], and central executive network [CEN]) are recognized for their important role in several neuropsychiatric conditions. However, our understanding of their relevance in terms of cognition remains insufficient. Materials and Methods: In response, this study aims at investigating the patterns of different network properties (resting-state activity [RSA] and short- and long-range functional connectivity [FC]) in these three core rsNWs, as well as the dynamics of age-associated changes and their relation to cognitive performance in a sample of healthy controls (N = 74) covering a large age span (20-79 years). Using a whole-network based approach, three measures were calculated from the functional magnetic resonance imaging (fMRI) data: amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and degree of network centrality (DC). The cognitive test battery covered the following domains: memory, executive functioning, processing speed, attention, and visual perception. Results: For all three fMRI measures (ALFF, ReHo, and DC), the highest values of spontaneous brain activity (ALFF), short- and long-range connectivity (ReHo, DC) were observed in the DMN and the lowest in the SN. Significant age-associated decrease was observed in the DMN for ALFF and DC, and in the SN for ALFF and ReHo. Significant negative partial correlations were observed for working memory and ALFF in all three networks, as well as for additional cognitive parameters and ALFF in CEN. Discussion: Our results show that higher RSA in the three core rsNWs may have an unfavorable effect on cognition. Conversely, the pattern of network properties in healthy subjects included low RSA and FC in the SN. This complements previous research related to the three core rsNW and shows that the chosen approach can provide additional insight into their function.
Collapse
Affiliation(s)
- Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Jessica Junger
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany
| | - Nadim Jon Shah
- JARA-BRAIN-Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Bruno Fimm
- JARA-BRAIN-Translational Medicine, Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
118
|
Konjedi S, Maleeh R. The dynamic framework of mind wandering revisited: How mindful meta-awareness affects mental states' constraints. Conscious Cogn 2021; 95:103194. [PMID: 34419729 DOI: 10.1016/j.concog.2021.103194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The dynamic framework of mind wandering (Christoff, Irving, Fox, Spreng, & Andrews-Hanna, 2016) is reviewed and modified through integrating the construct of mindful meta-awareness. The dynamic framework maintains that mind wandering belongs to a family of spontaneous thought phenomena. The key defining feature of mind wandering is 'spontaneity' which characterizes the dynamic nature of thoughts in the framework. The argument is made that incorporating the mindful meta-awareness construct modifies the dynamic framework as follows: (1) the framework's criteria for mind wandering do not hold anymore as meta-awareness changes the relationship between thoughts and constraints, and (2) lucid dreaming can be categorized as unguided thought while at the same time being dependent on deliberate constraints. Finally, the application of this modified framework will be discussed in terms of the treatment of mental disorders related to spontaneous thought alterations, in particular depression and nightmares.
Collapse
Affiliation(s)
| | - Reza Maleeh
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany; School of Historical and Philosophical Inquiry, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia.
| |
Collapse
|
119
|
Su C, Zhou H, Wang C, Geng F, Hu Y. Individualized video recommendation modulates functional connectivity between large scale networks. Hum Brain Mapp 2021; 42:5288-5299. [PMID: 34363282 PMCID: PMC8519862 DOI: 10.1002/hbm.25616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
With the emergence of AI‐powered recommender systems and their extensive use in the video streaming service, questions and concerns also arise. Why can recommended video content continuously capture users' attention? What is the impact of long‐term exposure to personalized video content on one's behaviors and brain functions? To address these questions, we designed an fMRI experiment presenting participants with personally recommended videos and generally recommended ones. To examine how large‐scale networks were modulated by personalized video content, graph theory analysis was applied to investigate the interaction between seven networks, including the ventral and dorsal attention networks (VAN, DAN), frontal–parietal network (FPN), salience network (SN), and three subnetworks of default mode network (dorsal medial prefrontal (dMPFC), Core, and medial temporal lobe (MTL)). Our results showed that viewing nonpersonalized video content mainly enhanced the connectivity in the DAN‐FPN‐Core pathway, whereas viewing personalized ones increased not only the connectivity in this pathway but also the DAN‐VAN‐dMPFC pathway. In addition, both personalized and nonpersonalized short videos decreased the couplings between SN and VAN as well as between two DMN subsystems, Core and MTL. Collectively, these findings uncovered distinct patterns of network interactions in response to short videos and provided insights into potential neural mechanisms by which human behaviors are biased by personally recommended content.
Collapse
Affiliation(s)
- Conghui Su
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
120
|
Wang Y, Metoki A, Xia Y, Zang Y, He Y, Olson IR. A large-scale structural and functional connectome of social mentalizing. Neuroimage 2021; 236:118115. [PMID: 33933599 DOI: 10.1016/j.neuroimage.2021.118115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Humans have a remarkable ability to infer the mind of others. This mentalizing skill relies on a distributed network of brain regions but how these regions connect and interact is not well understood. Here we leveraged large-scale multimodal neuroimaging data to elucidate the brain-wide organization and mechanisms of mentalizing processing. Key connectomic features of the mentalizing network (MTN) have been delineated in exquisite detail. We found the structural architecture of MTN is organized by two parallel subsystems and constructed redundantly by local and long-range white matter fibers. We uncovered an intrinsic functional architecture that is synchronized according to the degree of mentalizing, and its hierarchy reflects the inherent information integration order. We also examined the correspondence between the structural and functional connectivity in the network and revealed their differences in network topology, individual variance, spatial specificity, and functional specificity. Finally, we scrutinized the connectome resemblance between the default mode network and MTN and elaborated their inherent differences in dynamic patterns, laterality, and homogeneity. Overall, our study demonstrates that mentalizing processing unfolds across functionally heterogeneous regions with highly structured fiber tracts and unique hierarchical functional architecture, which make it distinguishable from the default mode network and other vicinity brain networks supporting autobiographical memory, semantic memory, self-referential, moral reasoning, and mental time travel.
Collapse
Affiliation(s)
- Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Athanasia Metoki
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yunman Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yinyin Zang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
121
|
Jafari Z, Perani D, Kolb BE, Mohajerani MH. Bilingual experience and intrinsic functional connectivity in adults, aging, and Alzheimer's disease. Ann N Y Acad Sci 2021; 1505:8-22. [PMID: 34309857 DOI: 10.1111/nyas.14666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The past decade marked the beginning of the use of resting-state functional connectivity (RSFC) imaging in bilingualism studies. This paper intends to review the latest evidence of changes in RSFC in language and cognitive control networks in bilinguals during adulthood, aging, and early Alzheimer's disease, which can add to our understanding of brain functional reshaping in the context of second language (L2) acquisition. Because of high variability in bilingual experience, recent studies mostly focus on the role of the main aspects of bilingual experience (age of acquisition (AoA), language proficiency, and language usage) on intrinsic functional connectivity (FC). Existing evidence accounts for stronger FC in simultaneous rather than sequential bilinguals in language and control networks, and the modulation of the AoA impact by language proficiency and usage. Studies on older bilingual adults show stronger FC in language and frontoparietal networks and preserved FC in posterior brain regions, which can protect the brain against cognitive decline and neurodegenerative processes. Altered RSFC in language and control networks subsequent to L2 training programs also is associated with improved global cognition in older adults. This review ends with a brief discussion of potential confounding factors in bilingualism research and conclusions and suggestions for future research.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Daniela Perani
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
122
|
Linli Z, Huang X, Liu Z, Guo S, Sariah A. A multivariate pattern analysis of resting-state functional MRI data in Naïve and chronic betel quid chewers. Brain Imaging Behav 2021; 15:1222-1234. [PMID: 32712800 DOI: 10.1007/s11682-020-00322-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Betel quid (BQ) is the fourth most commonly consumed psychoactive substance in the world. However, comprehensive functional magnetic resonance imaging (fMRI) studies exploring the neurophysiological mechanism of BQ addiction are lacking. Betel-quid-dependent (BQD) individuals (n = 24) and age-matched healthy controls (HC) (n = 26) underwent fMRI before and after chewing BQ. Multivariate pattern analysis (MVPA) was used to explore the acute effects of BQ-chewing in both groups. A cross-sectional comparison was conducted to explore the chronic effects of BQ-chewing. Regression analysis was used to investigate the relationship between altered circuits of BQD individuals and the severity of BQ addiction. MVPA achieved classification accuracies of up to 90% in both groups for acute BQ-chewing. Suppression of the default-mode network was the most prominent feature. BQD showed more extensive and intensive within- and between-network dysconnectivity of the default, frontal-parietal, and occipital regions associated with high-order brain functions such as self-awareness, inhibitory control, and decision-making. In contrast, the chronic effects of BQ on the brain function were mild, but impaired circuits were predominately located in the default and frontal-parietal networks which might be associated with compulsive drug use. Simultaneously quantifying the effects of both chronic and acute BQ exposure provides a possible neuroimaging-based BQ addiction foci. Results from this study may help us understand the neural mechanisms involved in BQ-chewing and BQ dependence.
Collapse
Affiliation(s)
- Zeqiang Linli
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, People's Republic of China
| | - Xiaojun Huang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhening Liu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, People's Republic of China.
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, People's Republic of China.
| | - Adellah Sariah
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Department of Mental Health and Psychiatric Nursing, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania.
| |
Collapse
|
123
|
Song K, Potenza MN, Fang X, Gong G, Yao Y, Wang Z, Liu L, Ma S, Xia C, Lan J, Deng L, Wu L, Zhang J. Resting-state connectome-based support-vector-machine predictive modeling of internet gaming disorder. Addict Biol 2021; 26:e12969. [PMID: 33047425 DOI: 10.1111/adb.12969] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Internet gaming disorder (IGD), a worldwide mental health issue, has been widely studied using neuroimaging techniques during the last decade. Although dysfunctions in resting-state functional connectivity have been reported in IGD, mapping relationships from abnormal connectivity patterns to behavioral measures have not been fully investigated. Connectome-based predictive modeling (CPM)-a recently developed machine-learning approach-has been used to examine potential neural mechanisms in addictions and other psychiatric disorders. To identify the resting-state connections associated with IGD, we modified the CPM approach by replacing its core learning algorithm with a support vector machine. Resting-state functional magnetic resonance imaging (fMRI) data were acquired in 72 individuals with IGD and 41 healthy comparison participants. The modified CPM was conducted with respect to classification and regression. A comparison of whole-brain and network-based analyses showed that the default-mode network (DMN) is the most informative network in predicting IGD both in classification (individual identification accuracy = 78.76%) and regression (correspondence between predicted and actual psychometric scale score: r = 0.44, P < 0.001). To facilitate the characterization of the aberrant resting-state activity in the DMN, the identified networks have been mapped into a three-subsystem division of the DMN. Results suggest that individual differences in DMN function at rest could advance our understanding of IGD and variability in disorder etiology and intervention outcomes.
Collapse
Affiliation(s)
- Kun‐Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
- IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Marc N. Potenza
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut USA
- Child Study Center Yale University School of Medicine New Haven Connecticut USA
- Department of Neuroscience Yale University School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut Council on Problem Gambling Wethersfield Connecticut USA
| | - Xiao‐Yi Fang
- Institute of Developmental Psychology Beijing Normal University Beijing China
| | - Gao‐Lang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
- IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Yuan‐Wei Yao
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
- Department of Education and Psychology Freie Universität Berlin Berlin Germany
- IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Zi‐Liang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
- IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Lu Liu
- Institute of Developmental Psychology Beijing Normal University Beijing China
- Department of Decision Neuroscience and Nutrition German Institute of Human Nutrition Potsdam‐Rehbruecke Nuthetal Germany
| | - Shan‐Shan Ma
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
- Institute of Developmental Psychology Beijing Normal University Beijing China
- IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Cui‐Cui Xia
- Psychological Counseling Center Beijing Normal University Beijing China
| | - Jing Lan
- Institute of Developmental Psychology Beijing Normal University Beijing China
| | - Lin‐Yuan Deng
- Faculty of Education Beijing Normal University Beijing China
| | - Lu‐Lu Wu
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
- IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Jin‐Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
- IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| |
Collapse
|
124
|
Fakhraei L, Francoeur M, Balasubramani PP, Tang T, Hulyalkar S, Buscher N, Mishra J, Ramanathan DS. Electrophysiological Correlates of Rodent Default-Mode Network Suppression Revealed by Large-Scale Local Field Potential Recordings. Cereb Cortex Commun 2021; 2:tgab034. [PMID: 34296178 PMCID: PMC8166125 DOI: 10.1093/texcom/tgab034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
The default-mode network (DMN) in humans consists of a set of brain regions that, as measured with functional magnetic resonance imaging (fMRI), show both intrinsic correlations with each other and suppression during externally oriented tasks. Resting-state fMRI studies have previously identified similar patterns of intrinsic correlations in overlapping brain regions in rodents (A29C/posterior cingulate cortex, parietal cortex, and medial temporal lobe structures). However, due to challenges with performing rodent behavior in an MRI machine, it is still unclear whether activity in rodent DMN regions are suppressed during externally oriented visual tasks. Using distributed local field potential measurements in rats, we have discovered that activity in DMN brain regions noted above show task-related suppression during an externally oriented visual task at alpha and low beta-frequencies. Interestingly, this suppression (particularly in posterior cingulate cortex) was linked with improved performance on the task. Using electroencephalography recordings from a similar task in humans, we identified a similar suppression of activity in posterior cingulate cortex at alpha/low beta-frequencies. Thus, we have identified a common electrophysiological marker of DMN suppression in both rodents and humans. This observation paves the way for future studies using rodents to probe circuit-level functioning of DMN function. SIGNIFICANCE Here we show that alpha/beta frequency oscillations in rats show key features of DMN activity, including intrinsic correlations between DMN brain regions, task-related suppression, and interference with attention/decision-making. We found similar task-related suppression at alpha/low beta-frequencies of DMN activity in humans.
Collapse
Affiliation(s)
- Leila Fakhraei
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Miranda Francoeur
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | | | - Tianzhi Tang
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Sidharth Hulyalkar
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Nathalie Buscher
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Jyoti Mishra
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Dhakshin S Ramanathan
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
125
|
Agarwal K, Manza P, Leggio L, Livinski AA, Volkow ND, Joseph PV. Sensory cue reactivity: Sensitization in alcohol use disorder and obesity. Neurosci Biobehav Rev 2021; 124:326-357. [PMID: 33587959 DOI: 10.1016/j.neubiorev.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Neuroimaging techniques to measure the function of the human brain such as electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), are powerful tools for understanding the underlying neural circuitry associated with alcohol use disorder (AUD) and obesity. The sensory (visual, taste and smell) paradigms used in neuroimaging studies represent an ideal platform to investigate the connection between the different neural circuits subserving the reward/executive control systems in these disorders, which may offer a translational mechanism for novel intervention predictions. Thus, the current review provides an integrated summary of the recent neuroimaging studies that have applied cue-reactivity paradigms and neuromodulation strategies to explore underlying alterations in neural circuitry as well in treatment strategies in AUD and obesity. Finally, we discuss literature on mechanisms associated with increased alcohol sensitivity post-bariatric surgery (BS) which offers guidance for future research to use sensory percepts in elucidating the relation of reward signaling in AUD development post-BS.
Collapse
Affiliation(s)
- Khushbu Agarwal
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Lorenzo Leggio
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | | | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | - Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA.
| |
Collapse
|
126
|
Chen YC, Yong W, Xing C, Feng Y, Haidari NA, Xu JJ, Gu JP, Yin X, Wu Y. Directed functional connectivity of the hippocampus in patients with presbycusis. Brain Imaging Behav 2021; 14:917-926. [PMID: 31270776 DOI: 10.1007/s11682-019-00162-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Presbycusis, associated with a diminished quality of life characterized by bilateral sensorineural hearing loss at high frequencies, has become an increasingly critical public health problem. This study aimed to identify directed functional connectivity (FC) of the hippocampus in patients with presbycusis and to explore the causes if the directed functional connections of the hippocampus were disrupted. Presbycusis patients (n = 32) and age-, sex-, and education-matched healthy controls (n = 40) were included in this study. The seed regions of bilateral hippocampus were selected to identify directed FC in patients with presbycusis using Granger causality analysis (GCA) approach. Correlation analyses were conducted to detect the associations of disrupted directed FC of hippocampus with clinical measures of presbycusis. Compared to healthy controls, decreased directed FC between inferior parietal lobule, insula, right supplementary motor area, middle temporal gyrus and hippocampus were detected in presbycusis patients. Furthermore, a negative correlation between TMB score and the decline of directed FC from left inferior parietal lobule to left hippocampus (r = -0.423, p = 0.025) and from right inferior parietal lobule to right hippocampus (r = -0.516, p = 0.005) were also observed. The decreased directed functional connections of the hippocampus were detected in patients with presbycusis, which was associated with specific cognitive performance. This study mainly emphasizes the crucial role of hippocampus in presbycusis and will enhance our understanding of the neuropathological mechanisms of presbycusis.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Nasir Ahmad Haidari
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jian-Ping Gu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
127
|
Zhou WR, Wang M, Zheng H, Wang MJ, Dong GH. Altered modular segregation of brain networks during the cue-craving task contributes to the disrupted executive functions in internet gaming disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110256. [PMID: 33503493 DOI: 10.1016/j.pnpbp.2021.110256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Previous studies have shown that gaming-related cues could induce gaming cravings and bring about changes in brain activities in subjects with Internet gaming disorder (IGD). However, little is known about the brain network organizations in IGD subjects during a cue-craving task and the relationship between this network organization and IGD severity. METHODS Sixty-one IGD subjects and 61 matched recreational game users (RGUs) were scanned while performing a cue-craving task. We calculated and compared the participation coefficient (PC) among brain network modules between IGD subjects and RGUs. Based on the results, further group comparison analyses were performed to explain the PC changes and to explore the relationship between PCs and IGD severity. RESULTS While performing a cue-craving task, compared with RGUs, IGD subjects showed significantly decreased PCs in the default-mode network (DMN) and the frontal-parietal network (FPN). Specifically, the number of connections between nodes in the ventromedial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex and other nodes in the DMN of IGD subjects was much larger than that in RGUs. Correlation results showed that the number of DMN intra-modular connections was positively correlated with addiction severity and craving degree. CONCLUSIONS These results provide neural evidence that can explain why cognitive control, emotion, attention and other functions are impaired in IGD subjects in the face of gaming cues, which leads to compulsive behavior toward games. These findings extend our understanding of the neural mechanism of IGD and have important implications for developing effective interventions to treat IGD subjects.
Collapse
Affiliation(s)
- Wei-Ran Zhou
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Meng-Jing Wang
- Southeast University, Monash University Joint Graduate School, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
128
|
Chase HW. Computing the Uncontrollable: Insights from Computational Modelling of Learning and Choice in Depression. Curr Behav Neurosci Rep 2021. [DOI: 10.1007/s40473-021-00228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
129
|
Jackson RL, Bajada CJ, Lambon Ralph MA, Cloutman LL. The Graded Change in Connectivity across the Ventromedial Prefrontal Cortex Reveals Distinct Subregions. Cereb Cortex 2021; 30:165-180. [PMID: 31329834 PMCID: PMC7029692 DOI: 10.1093/cercor/bhz079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
The functional heterogeneity of the ventromedial prefrontal cortex (vmPFC) suggests it may include distinct functional subregions. To date these have not been well elucidated. Regions with differentiable connectivity (and as a result likely dissociable functions) may be identified using emergent data-driven approaches. However, prior parcellations of the vmPFC have only considered hard splits between distinct regions, although both hard and graded connectivity changes may exist. Here we determine the full pattern of change in structural and functional connectivity across the vmPFC for the first time and extract core distinct regions. Both structural and functional connectivity varied along a dorsomedial to ventrolateral axis from relatively dorsal medial wall regions to relatively lateral basal orbitofrontal cortex. The pattern of connectivity shifted from default mode network to sensorimotor and multimodal semantic connections. This finding extends the classical distinction between primate medial and orbital regions by demonstrating a similar gradient in humans for the first time. Additionally, core distinct regions in the medial wall and orbitofrontal cortex were identified that may show greater correspondence to functional differences than prior hard parcellations. The possible functional roles of the orbitofrontal cortex and medial wall are discussed.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Claude J Bajada
- Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology (Zochonis Building), University of Manchester, Manchester, UK
| |
Collapse
|
130
|
Fang X, Deza-Araujo YI, Petzold J, Spreer M, Riedel P, Marxen M, O'Connor SJ, Zimmermann US, Smolka MN. Effects of moderate alcohol levels on default mode network connectivity in heavy drinkers. Alcohol Clin Exp Res 2021; 45:1039-1050. [PMID: 33742481 DOI: 10.1111/acer.14602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND It is well established that even moderate levels of alcohol affect cognitive functions such as memory, self-related information processing, and response inhibition. Nevertheless, the neural mechanisms underlying these alcohol-induced changes are still unclear, especially on the network level. The default mode network (DMN) plays an important role in memory and self-initiated mental activities; hence, studying functional interactions of the DMN may provide new insights into the neural mechanisms underlying alcohol-related changes. METHODS We investigated resting-state functional connectivity (rsFC) of the DMN in a cohort of 37 heavy drinkers at a breath alcohol concentration of 0.8 g/kg. Alcohol and saline were infused in a single-blind crossover design. RESULTS Intranetwork connectivity analyses revealed that participants showed significantly decreased rsFC of the right hippocampus and right middle temporal gyrus during acute alcohol exposure. Moreover, follow-up analyses revealed that these rsFC decreases were more pronounced in participants who reported stronger craving for alcohol. Exploratory internetwork connectivity analyses of the DMN with other resting-state networks showed no significant alcohol-induced changes, but suffered from low statistical power. CONCLUSIONS Our results indicate that acute alcohol exposure affects rsFC within the DMN. Functionally, this finding may be associated with impairments in memory encoding and self-referential processes commonly observed during alcohol intoxication. Future resting-state functional magnetic resonance imaging studies might therefore also investigate memory function and test whether DMN-related connectivity changes are associated with alcohol-induced impairments or craving.
Collapse
Affiliation(s)
- Xiaojing Fang
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Yacila I Deza-Araujo
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Johannes Petzold
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Maik Spreer
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Philipp Riedel
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Marxen
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Sean J O'Connor
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ulrich S Zimmermann
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany.,Department of Addiction Medicine and Psychotherapy, Isar-Amper-Klinikum München-Ost, Haar, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
131
|
Kucyi A, Esterman M, Capella J, Green A, Uchida M, Biederman J, Gabrieli JDE, Valera EM, Whitfield-Gabrieli S. Prediction of stimulus-independent and task-unrelated thought from functional brain networks. Nat Commun 2021; 12:1793. [PMID: 33741956 PMCID: PMC7979817 DOI: 10.1038/s41467-021-22027-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Neural substrates of "mind wandering" have been widely reported, yet experiments have varied in their contexts and their definitions of this psychological phenomenon, limiting generalizability. We aimed to develop and test the generalizability, specificity, and clinical relevance of a functional brain network-based marker for a well-defined feature of mind wandering-stimulus-independent, task-unrelated thought (SITUT). Combining functional MRI (fMRI) with online experience sampling in healthy adults, we defined a connectome-wide model of inter-regional coupling-dominated by default-frontoparietal control subnetwork interactions-that predicted trial-by-trial SITUT fluctuations within novel individuals. Model predictions generalized in an independent sample of adults with attention-deficit/hyperactivity disorder (ADHD). In three additional resting-state fMRI studies (total n = 1115), including healthy individuals and individuals with ADHD, we demonstrated further prediction of SITUT (at modest effect sizes) defined using multiple trait-level and in-scanner measures. Our findings suggest that SITUT is represented within a common pattern of brain network interactions across time scales and contexts.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - Michael Esterman
- National Center for PTSD & Neuroimaging Research for Veterans Center (NeRVe), Veterans Administration Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - James Capella
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison Green
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Mai Uchida
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joseph Biederman
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain Research, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Eve M Valera
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
132
|
La Buissonniere-Ariza V, Fitzgerald K, Meoded A, Williams LL, Liu G, Goodman WK, Storch EA. Neural correlates of cognitive behavioral therapy response in youth with negative valence disorders: A systematic review of the literature. J Affect Disord 2021; 282:1288-1307. [PMID: 33601708 DOI: 10.1016/j.jad.2020.12.182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 11/25/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cognitive-behavioral therapy (CBT) is the gold-standard psychotherapeutic treatment for pediatric negative valence disorders. However, some youths do not respond optimally to treatment, which may be due to variations in neural functioning. METHODS We systematically reviewed functional magnetic resonance imaging studies in youths with negative valence disorders to identify pre- and post-treatment neural correlates of CBT response. RESULTS A total of 21 studies were identified, of overall weak to moderate quality. The most consistent findings across negative valence disorders consisted of associations of treatment response with pre- and post-treatment task-based activation and/or functional connectivity within and between the prefrontal cortex, the medial temporal lobe, and other limbic regions. Associations of CBT response with baseline and/or post-treatment activity in the striatum, precentral and postcentral gyri, medial and posterior cingulate cortices, and parietal cortex, connectivity within and between the default-mode, cognitive control, salience, and frontoparietal networks, and metrics of large-scale brain network organization, were also reported, although less consistently. LIMITATIONS The poor quality and limited number of studies and the important heterogeneity of study designs and results considerably limit the conclusions that can be drawn from this literature. CONCLUSIONS Despite these limitations, these findings provide preliminary evidence suggesting youths presenting certain patterns of brain function may respond better to CBT, whereas others may benefit from alternative or augmented forms of treatment.
Collapse
Affiliation(s)
- Valerie La Buissonniere-Ariza
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA.
| | - Kate Fitzgerald
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Avner Meoded
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Laurel L Williams
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA
| | - Gary Liu
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA
| |
Collapse
|
133
|
Yeshurun Y, Nguyen M, Hasson U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci 2021; 22:181-192. [PMID: 33483717 PMCID: PMC7959111 DOI: 10.1038/s41583-020-00420-w] [Citation(s) in RCA: 318] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
The default mode network (DMN) is classically considered an 'intrinsic' system, specializing in internally oriented cognitive processes such as daydreaming, reminiscing and future planning. In this Perspective, we suggest that the DMN is an active and dynamic 'sense-making' network that integrates incoming extrinsic information with prior intrinsic information to form rich, context-dependent models of situations as they unfold over time. We review studies that relied on naturalistic stimuli, such as stories and movies, to demonstrate how an individual's DMN neural responses are influenced both by external information accumulated as events unfold over time and by the individual's idiosyncratic past memories and knowledge. The integration of extrinsic and intrinsic information over long timescales provides a space for negotiating a shared neural code, which is necessary for establishing shared meaning, shared communication tools, shared narratives and, above all, shared communities and social networks.
Collapse
Affiliation(s)
- Yaara Yeshurun
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Mai Nguyen
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Uri Hasson
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
134
|
Mikos A, Malagurski B, Liem F, Mérillat S, Jäncke L. Object-Location Memory Training in Older Adults Leads to Greater Deactivation of the Dorsal Default Mode Network. Front Hum Neurosci 2021; 15:623766. [PMID: 33716693 PMCID: PMC7952529 DOI: 10.3389/fnhum.2021.623766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/20/2021] [Indexed: 12/02/2022] Open
Abstract
Substantial evidence indicates that cognitive training can be efficacious for older adults, but findings regarding training-related brain plasticity have been mixed and vary depending on the imaging modality. Recent years have seen a growth in recognition of the importance of large-scale brain networks on cognition. In particular, task-induced deactivation within the default mode network (DMN) is thought to facilitate externally directed cognition, while aging-related decrements in this neural process are related to reduced cognitive performance. It is not yet clear whether task-induced deactivation within the DMN can be enhanced by cognitive training in the elderly. We previously reported durable cognitive improvements in a sample of healthy older adults (age range = 60-75) who completed 6 weeks of process-based object-location memory training (N = 36) compared to an active control training group (N = 31). The primary aim of the current study is to evaluate whether these cognitive gains are accompanied by training-related changes in task-related DMN deactivation. Given the evidence for heterogeneity of the DMN, we examine task-related activation/deactivation within two separate DMN branches, a ventral branch related to episodic memory and a dorsal branch more closely resembling the canonical DMN. Participants underwent functional magnetic resonance imaging (fMRI) while performing an untrained object-location memory task at four time points before, during, and after the training period. Task-induced (de)activation values were extracted for the ventral and dorsal DMN branches at each time point. Relative to visual fixation baseline: (i) the dorsal DMN was deactivated during the scanner task, while the ventral DMN was activated; (ii) the object-location memory training group exhibited an increase in dorsal DMN deactivation relative to the active control group over the course of training and follow-up; (iii) changes in dorsal DMN deactivation did not correlate with task improvement. These results indicate a training-related enhancement of task-induced deactivation of the dorsal DMN, although the specificity of this improvement to the cognitive task performed in the scanner is not clear.
Collapse
Affiliation(s)
- Ania Mikos
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Brigitta Malagurski
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Franziskus Liem
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Susan Mérillat
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
- Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
135
|
Boenniger MM, Diers K, Herholz SC, Shahid M, Stöcker T, Breteler MMB, Huijbers W. A Functional MRI Paradigm for Efficient Mapping of Memory Encoding Across Sensory Conditions. Front Hum Neurosci 2021; 14:591721. [PMID: 33551773 PMCID: PMC7859438 DOI: 10.3389/fnhum.2020.591721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
We introduce a new and time-efficient memory-encoding paradigm for functional magnetic resonance imaging (fMRI). This paradigm is optimized for mapping multiple contrasts using a mixed design, using auditory (environmental/vocal) and visual (scene/face) stimuli. We demonstrate that the paradigm evokes robust neuronal activity in typical sensory and memory networks. We were able to detect auditory and visual sensory-specific encoding activities in auditory and visual cortices. Also, we detected stimulus-selective activation in environmental-, voice-, scene-, and face-selective brain regions (parahippocampal place and fusiform face area). A subsequent recognition task allowed the detection of sensory-specific encoding success activity (ESA) in both auditory and visual cortices, as well as sensory-unspecific positive ESA in the hippocampus. Further, sensory-unspecific negative ESA was observed in the precuneus. Among others, the parallel mixed design enabled sustained and transient activity comparison in contrast to rest blocks. Sustained and transient activations showed great overlap in most sensory brain regions, whereas several regions, typically associated with the default-mode network, showed transient rather than sustained deactivation. We also show that the use of a parallel mixed model had relatively little influence on positive or negative ESA. Together, these results demonstrate a feasible, versatile, and brief memory-encoding task, which includes multiple sensory stimuli to guarantee a comprehensive measurement. This task is especially suitable for large-scale clinical or population studies, which aim to test task-evoked sensory-specific and sensory-unspecific memory-encoding performance as well as broad sensory activity across the life span within a very limited time frame.
Collapse
Affiliation(s)
- Meta M. Boenniger
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Kersten Diers
- Image Analysis Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sibylle C. Herholz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammad Shahid
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Monique M. B. Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Willem Huijbers
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
136
|
Trahan MH, Morley RH, Nason EE, Rodrigues N, Huerta L, Metsis V. Virtual Reality Exposure Simulation for Student Veteran Social Anxiety and PTSD: A Case Study. CLINICAL SOCIAL WORK JOURNAL 2021; 49:220-230. [PMID: 33487778 PMCID: PMC7813669 DOI: 10.1007/s10615-020-00784-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Exposure based exercises are a common element of many gold standard treatments for anxiety disorders and post-traumatic stress disorder and virtual reality simulations have been evaluated as a platform for providing clients with opportunities for repeated exposure during treatment. Although research on virtual reality exposure therapy (VRET) indicates effectiveness and high levels of user satisfaction, VRETs require a participant to complete exposure exercises in-offices with specialized equipment. The current exploratory case method study evaluates the experience and outcomes of one student veteran with social anxiety disorder and PTSD completing twelve sessions of VRET exposure using a mobile phone simulation of a virtual grocery store. The participant reported decreases in psychological symptoms, improvements in neurological connectivity, and better sleep quality upon completing the trial. Results suggest that VRET using a mobile application is feasible and warrants further research to evaluate effectiveness more fully. Implications include the use of a mobile based virtual reality simulation for intervening in social anxiety for student veterans.
Collapse
Affiliation(s)
- Mark H. Trahan
- School of Social Work, Texas State University, 601 University Blvd., Encino Hall #158, San Marcos, TX 78666 USA
| | - Richard H. Morley
- School of Social Work, Texas State University, 601 University Blvd., Encino Hall #158, San Marcos, TX 78666 USA
| | - Erica E. Nason
- School of Social Work, Texas State University, 601 University Blvd., Encino Hall #158, San Marcos, TX 78666 USA
| | - Nathan Rodrigues
- Department of Respiratory Care and Texas Sleep Center, Round Rock, TX 78665 USA
| | - Laura Huerta
- Department of Computer Science, Texas State University, San Marcos, TX 78666 USA
| | - Vangelis Metsis
- Department of Computer Science, Texas State University, San Marcos, TX 78666 USA
| |
Collapse
|
137
|
Peng Y, Zhang S, Zhou Y, Song Y, Yang G, Hao K, Yang Y, Li W, Lv L, Zhang Y. Abnormal functional connectivity based on nodes of the default mode network in first-episode drug-naive early-onset schizophrenia. Psychiatry Res 2021; 295:113578. [PMID: 33243520 DOI: 10.1016/j.psychres.2020.113578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Schizophrenia is considered a connectivity disorder. Further, the functional connectivity (FC) of the default-mode network (DMN) has gained the interest of researchers. However, few studies have been conducted on the abnormal connectivity of DMN in early-onset schizophrenia (EOS). In this study, the key brain regions of the DMN were used as seed regions to analyze the FC of the whole brain in EOS. When the seed was located in the medial prefrontal cortex (mPFC), patients with EOS exhibited decreased FC between mPFC and other brain regions compared with healthy controls (voxel P value < 0.001, cluster P value < 0.05, Gaussian random field corrected). When the seed was located in the posterior cingulate cortex (PCC), the FC between PCC and other brain regions was enhanced and weakened (voxel P value < 0.001, cluster P value < 0.05, Gaussian random field corrected), and PCC connectivity with the right parahippocampal gyrus was associated with Positive and Negative Syndrome Scale scores for the general score (r = -0.315, P = 0.02). The results showed that the FC within the DMN and that between DMN and visual networks were abnormal, suggesting that the DMN might be involved in the pathogenesis of EOS.
Collapse
Affiliation(s)
- Yue Peng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.
| | - Sen Zhang
- Mental Health Center of Shantou University, Shantou, Guangdong, China.
| | - Youqi Zhou
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang 453002, China.
| | - Yichen Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.
| | - Ge Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.
| | - Keke Hao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang 453002, China.
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.
| | - Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.
| |
Collapse
|
138
|
Philippi CL, Bruss J, Boes AD, Albazron FM, Streese CD, Ciaramelli E, Rudrauf D, Tranel D. Lesion network mapping demonstrates that mind-wandering is associated with the default mode network. J Neurosci Res 2021; 99:361-373. [PMID: 32594566 PMCID: PMC7704688 DOI: 10.1002/jnr.24648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/20/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023]
Abstract
Functional neuroimaging research has consistently associated brain structures within the default mode network (DMN) and frontoparietal network (FPN) with mind-wandering. Targeted lesion research has documented impairments in mind-wandering after damage to the medial prefrontal cortex (mPFC) and hippocampal regions associated with the DMN. However, no lesion studies to date have applied lesion network mapping to identify common networks associated with deficits in mind-wandering. In lesion network mapping, resting-state functional connectivity data from healthy participants are used to infer which brain regions are functionally connected to each lesion location from a sample with brain injury. In the current study, we conducted a lesion network mapping analysis to test the hypothesis that lesions affecting the DMN and FPN would be associated with diminished mind-wandering. We assessed mind-wandering frequency on the Imaginal Processes Inventory (IPI) in participants with brain injury (n = 29) and healthy comparison participants without brain injury (n = 19). Lesion network mapping analyses showed the strongest association of reduced mind-wandering with the left inferior parietal lobule within the DMN. In addition, traditional lesion symptom mapping results revealed that reduced mind-wandering was associated with lesions of the dorsal, ventral, and anterior sectors of mPFC, parietal lobule, and inferior frontal gyrus in the DMN (p < 0.05 uncorrected). These findings provide novel lesion support for the role of the DMN in mind-wandering and contribute to a burgeoning literature on the neural correlates of spontaneous cognition.
Collapse
Affiliation(s)
- Carissa L. Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Joel Bruss
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Aaron D. Boes
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Fatimah M. Albazron
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Elisa Ciaramelli
- Department of Psychology and Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - David Rudrauf
- Faculty of Psychology and Education Sciences, University of Geneva, Geneva, Switzerland
| | - Daniel Tranel
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
139
|
Relationship between BMI and alcohol consumption levels in decision making. Int J Obes (Lond) 2021; 45:2455-2463. [PMID: 34363001 PMCID: PMC8528710 DOI: 10.1038/s41366-021-00919-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Decision-making deficits in obesity and alcohol use disorder (AUD) may contribute to the choice of immediate rewards despite their long-term deleterious consequences. METHODS Gambling task functional MRI in Human connectome project (HCP) dataset was used to investigate neural activation differences associated with reward or punishment (a key component of decision-making behavior) in 418 individuals with obesity (high BMI) and without obesity (lean BMI) and either at high (HR) or low (LR) risk of AUD based on their alcohol drinking levels. RESULTS Interaction between BMI and alcohol drinking was seen in regions of the default mode network (DMN) and those implicated in self-related processing, memory, and salience attribution. ObesityHR relative to obesityLR also recruited DMN along with primary motor and regions implicated in inattention, negative perception, and uncertain choices, which might facilitate impulsive choices in obesityHR. Furthermore, obesityHR compared to leanHR/leanLR also demonstrated heightened activation in DMN and regions implicated in uncertain decisions. CONCLUSIONS These results suggest that BMI is an independent variable from that of alcohol drinking levels in neural processing of gambling tasks. Moreover, leanLR relative to leanHR, showed increased activation in motor regions [precentral and superior frontal gyrus] suggestive of worse executive function from excessive alcohol use. Delayed discounting measures failed to distinguish between obesity and high alcohol drinking levels, which as for gambling task results suggests independent negative effects of obesity and chronic alcohol drinking on decision-making. These findings highlight distinct associations of obesity and high-risk alcohol drinking with two key constituents of decision-making behavior.
Collapse
|
140
|
Mwilambwe-Tshilobo L, Spreng RN. Social exclusion reliably engages the default network: A meta-analysis of Cyberball. Neuroimage 2020; 227:117666. [PMID: 33359341 DOI: 10.1016/j.neuroimage.2020.117666] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Social exclusion refers to the experience of being disregarded or rejected by others and has wide-ranging negative consequences for well-being and cognition. Cyberball, a game where a ball is virtually tossed between players, then leads to the exclusion of the research participant, is a common method used to examine the experience of social exclusion. The neural correlates of social exclusion remain a topic of debate, particularly with regards to the role of the dorsal anterior cingulate cortex (dACC) and the concept of social pain. Here we conducted a quantitative meta-analysis using activation likelihood estimation (ALE) to identify brain activity reliably engaged by social exclusion during Cyberball task performance (Studies = 53; total N = 1,817 participants). Results revealed consistent recruitment in ventral anterior cingulate and posterior cingulate cortex, inferior and superior frontal gyri, posterior insula, and occipital pole. No reliable activity was observed in dACC. Using a probabilistic atlas to define dACC, fewer than 15% of studies reported peak coordinates in dACC. Meta-analytic connectivity mapping suggests patterns of co-activation are consistent with the topography of the default network. Reverse inference for cognition associated with reliable Cyberball activity computed in Neurosynth revealed social exclusion to be associated with cognitive terms Social, Autobiographical, Mental States, and Theory of Mind. Taken together, these findings highlight the role of the default network in social exclusion and warns against interpretations of the dACC as a key region involved in the experience of social exclusion in humans.
Collapse
Affiliation(s)
- Laetitia Mwilambwe-Tshilobo
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Verdun, QC, Canada; McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
141
|
Higgins C, Liu Y, Vidaurre D, Kurth-Nelson Z, Dolan R, Behrens T, Woolrich M. Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron 2020; 109:882-893.e7. [PMID: 33357412 PMCID: PMC7927915 DOI: 10.1016/j.neuron.2020.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 11/04/2022]
Abstract
Our brains at rest spontaneously replay recently acquired information, but how this process is orchestrated to avoid interference with ongoing cognition is an open question. Here we investigated whether replay coincided with spontaneous patterns of whole-brain activity. We found, in two separate datasets, that replay sequences were packaged into transient bursts occurring selectively during activation of the default mode network (DMN) and parietal alpha networks. These networks are believed to support inwardly oriented attention and inhibit bottom-up sensory processing and were characterized by widespread synchronized oscillations coupled to increases in high frequency power, mechanisms thought to coordinate information flow between disparate cortical areas. Our data reveal a tight correspondence between two widely studied phenomena in neural physiology and suggest that the DMN may coordinate replay bursts in a manner that minimizes interference with ongoing cognition. Replay in humans coincides with activity in specific resting brain networks Clusters of heightened default mode and alpha activity are linked to replay bursts These networks are characterized by highly synchronized brain-wide oscillations High-frequency power bursts are uniquely linked to default mode network activation
Collapse
Affiliation(s)
- Cameron Higgins
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Yunzhe Liu
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Diego Vidaurre
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Zeb Kurth-Nelson
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Deepmind, London, UK
| | - Ray Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Timothy Behrens
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Mark Woolrich
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
142
|
O'Callaghan C, Walpola IC, Shine JM. Neuromodulation of the mind-wandering brain state: the interaction between neuromodulatory tone, sharp wave-ripples and spontaneous thought. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190699. [PMID: 33308063 DOI: 10.1098/rstb.2019.0699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mind-wandering has become a captivating topic for cognitive neuroscientists. By now, it is reasonably well described in terms of its phenomenology and the large-scale neural networks that support it. However, we know very little about what neurobiological mechanisms trigger a mind-wandering episode and sustain the mind-wandering brain state. Here, we focus on the role of ascending neuromodulatory systems (i.e. acetylcholine, noradrenaline, serotonin and dopamine) in shaping mind-wandering. We advance the hypothesis that the hippocampal sharp wave-ripple (SWR) is a compelling candidate for a brain state that can trigger mind-wandering episodes. This hippocampal rhythm, which occurs spontaneously in quiescent behavioural states, is capable of propagating widespread activity in the default network and is functionally associated with recollective, associative, imagination and simulation processes. The occurrence of the SWR is heavily dependent on hippocampal neuromodulatory tone. We describe how the interplay of neuromodulators may promote the hippocampal SWR and trigger mind-wandering episodes. We then identify the global neuromodulatory signatures that shape the evolution of the mind-wandering brain state. Under our proposed framework, mind-wandering emerges due to the interplay between neuromodulatory systems that influence the transitions between brain states, which either facilitate, or impede, a wandering mind. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ishan C Walpola
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
143
|
Dreszer J, Grochowski M, Lewandowska M, Nikadon J, Gorgol J, Bałaj B, Finc K, Duch W, Kałamała P, Chuderski A, Piotrowski T. Spatiotemporal complexity patterns of resting-state bioelectrical activity explain fluid intelligence: Sex matters. Hum Brain Mapp 2020; 41:4846-4865. [PMID: 32808732 PMCID: PMC7643359 DOI: 10.1002/hbm.25162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022] Open
Abstract
Neural complexity is thought to be associated with efficient information processing but the exact nature of this relation remains unclear. Here, the relationship of fluid intelligence (gf) with the resting-state EEG (rsEEG) complexity over different timescales and different electrodes was investigated. A 6-min rsEEG blocks of eyes open were analyzed. The results of 119 subjects (57 men, mean age = 22.85 ± 2.84 years) were examined using multivariate multiscale sample entropy (mMSE) that quantifies changes in information richness of rsEEG in multiple data channels at fine and coarse timescales. gf factor was extracted from six intelligence tests. Partial least square regression analysis revealed that mainly predictors of the rsEEG complexity at coarse timescales in the frontoparietal network (FPN) and the temporo-parietal complexities at fine timescales were relevant to higher gf. Sex differently affected the relationship between fluid intelligence and EEG complexity at rest. In men, gf was mainly positively related to the complexity at coarse timescales in the FPN. Furthermore, at fine and coarse timescales positive relations in the parietal region were revealed. In women, positive relations with gf were mostly observed for the overall and the coarse complexity in the FPN, whereas negative associations with gf were found for the complexity at fine timescales in the parietal and centro-temporal region. These outcomes indicate that two separate time pathways (corresponding to fine and coarse timescales) used to characterize rsEEG complexity (expressed by mMSE features) are beneficial for effective information processing.
Collapse
Affiliation(s)
- Joanna Dreszer
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Marek Grochowski
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| | - Monika Lewandowska
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Jan Nikadon
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
| | - Joanna Gorgol
- Faculty of PsychologyUniversity of WarsawWarsawPoland
| | - Bibianna Bałaj
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Karolina Finc
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
| | - Włodzisław Duch
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| | - Patrycja Kałamała
- Department of Cognitive ScienceInstitute of Philosophy, Jagiellonian UniversityKrakowPoland
| | - Adam Chuderski
- Department of Cognitive ScienceInstitute of Philosophy, Jagiellonian UniversityKrakowPoland
| | - Tomasz Piotrowski
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| |
Collapse
|
144
|
Tang L, Takahashi T, Shimada T, Komachi M, Imanishi N, Nishiyama Y, Iida T, Otsu Y, Kitazawa S. Neural Correlates of Temporal Presentness in the Precuneus: A Cross-linguistic fMRI Study based on Speech Stimuli. Cereb Cortex 2020; 31:1538-1552. [PMID: 33152751 DOI: 10.1093/cercor/bhaa307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
The position of any event in time could be in the present, past, or future. This temporal discrimination is vitally important in our daily conversations, but it remains elusive how the human brain distinguishes among the past, present, and future. To address this issue, we searched for neural correlates of presentness, pastness, and futurity, each of which is automatically evoked when we hear sentences such as "it is raining now," "it rained yesterday," or "it will rain tomorrow." Here, we show that sentences that evoked "presentness" activated the bilateral precuneus more strongly than those that evoked "pastness" or "futurity." Interestingly, this contrast was shared across native speakers of Japanese, English, and Chinese languages, which vary considerably in their verb tense systems. The results suggest that the precuneus serves as a key region that provides the origin (that is, the Now) of our time perception irrespective of differences in tense systems across languages.
Collapse
Affiliation(s)
- Long Tang
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toshimitsu Takahashi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Department of Brain Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka 565-0871, Japan.,Department of Physiology, School of Medicine, Dokkyo Medical University, Tochigi 880, Japan
| | - Tamami Shimada
- Faculty of Languages and Cultures, Meikai University, Chiba 279-8550, Japan
| | - Masayuki Komachi
- Faculty of Humanities and Social Sciences, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | - Takashi Iida
- Keio University (Emeritus), Tokyo 108-8345, Japan
| | - Yukio Otsu
- Faculty of Foreign Language Studies, Kansai University, Osaka 564-8680, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Department of Brain Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka 565-0871, Japan
| |
Collapse
|
145
|
The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study. Neuroimage 2020; 221:117185. [DOI: 10.1016/j.neuroimage.2020.117185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022] Open
|
146
|
Miyagi T, Oishi N, Kobayashi K, Ueno T, Yoshimura S, Murai T, Fujiwara H. Psychological resilience is correlated with dynamic changes in functional connectivity within the default mode network during a cognitive task. Sci Rep 2020; 10:17760. [PMID: 33082442 PMCID: PMC7576164 DOI: 10.1038/s41598-020-74283-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Resilience is a dynamic process that enables organisms to cope with demanding environments. Resting-state functional MRI (fMRI) studies have demonstrated a negative correlation between resilience and functional connectivities (FCs) within the default mode network (DMN). Considering the on-demand recruitment process of resilience, dynamic changes in FCs during cognitive load increases may reflect essential aspects of resilience. We compared DMN FC changes in resting and task states and their association with resilience. Eighty-nine healthy volunteers completed the Connor–Davidson Resilience Scale (CD-RISC) and an fMRI with an auditory oddball task. The fMRI time series was divided into resting and task periods. We focused on FC changes between the latter half of the resting period and the former half of the task phase (switching), and between the former and latter half of the task phase (sustaining). FCs within the ventral DMN significantly increased during “switching” and decreased during “sustaining”. For FCs between the retrosplenial/posterior cingulate and the parahippocampal cortex, increased FC during switching was negatively correlated with CD-RISC scores. In individuals with higher resilience, ventral DMN connectivities were more stable and homeostatic in the face of cognitive demand. The dynamic profile of DMN FCs may represent a novel biomarker of resilience.
Collapse
Affiliation(s)
- Takashi Miyagi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kei Kobayashi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Ueno
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Integrated Clinical Education Center, Kyoto University Hospital, Kyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironobu Fujiwara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| |
Collapse
|
147
|
Gaesser B. Episodic mindreading: Mentalizing guided by scene construction of imagined and remembered events. Cognition 2020; 203:104325. [DOI: 10.1016/j.cognition.2020.104325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
|
148
|
Marron TR, Berant E, Axelrod V, Faust M. Spontaneous cognition and its relationship to human creativity: A functional connectivity study involving a chain free association task. Neuroimage 2020; 220:117064. [DOI: 10.1016/j.neuroimage.2020.117064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 05/24/2020] [Accepted: 06/13/2020] [Indexed: 11/30/2022] Open
|
149
|
Peeters LM, van den Berg M, Hinz R, Majumdar G, Pintelon I, Keliris GA. Cholinergic Modulation of the Default Mode Like Network in Rats. iScience 2020; 23:101455. [PMID: 32846343 PMCID: PMC7452182 DOI: 10.1016/j.isci.2020.101455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
The discovery of the default mode network (DMN), a large-scale brain network that is suppressed during attention-demanding tasks, had major impact in neuroscience. This network exhibits an antagonistic relationship with attention-related networks. A better understanding of the processes underlying modulation of DMN is imperative, as this network is compromised in several neurological diseases. Cholinergic neuromodulation is one of the major regulatory networks for attention, and studies suggest a role in regulation of the DMN. In this study, we unilaterally activated the right basal forebrain cholinergic neurons and observed decreased right intra-hemispheric and interhemispheric FC in the default mode like network (DMLN). Our findings provide critical insights into the interplay between cholinergic neuromodulation and DMLN, demonstrate that differential effects can be exerted between the two hemispheres by unilateral stimulation, and open windows for further studies involving directed modulations of DMN in treatments for diseases demonstrating compromised DMN activity.
Collapse
Affiliation(s)
- Lore M. Peeters
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Rukun Hinz
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Gaurav Majumdar
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
150
|
Sripada C, Taxali A. Structure in the stream of consciousness: Evidence from a verbalized thought protocol and automated text analytic methods. Conscious Cogn 2020; 85:103007. [PMID: 32977240 DOI: 10.1016/j.concog.2020.103007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/12/2020] [Accepted: 08/10/2020] [Indexed: 02/01/2023]
Abstract
A key question about the spontaneous stream of thought (SST), often called the stream of consciousness, concerns its serial structure: How are thoughts in an extended sequence related to each other? In this study, we used a verbalized thought protocol to investigate "clump-and-jump" structure in SST-clusters of related thoughts about a topic followed by a jump to a new topic, in a repeating pattern. Several lines of evidence convergently supported the presence of clump-and-jump structure: high interrater agreement in identifying jumps, corroboration of rater-assigned jumps by automated text analytic methods, identification of clumps and jumps by a data-driven algorithm, and the inferred presence of clumps and jumps in unverbalized SST. We also found evidence that jumps involve a discontinuous shift in which a new clump is only modestly related to the previous one. These results illuminate serial structure in SST and invite research into the processes that generate the clump-and-jump pattern.
Collapse
Affiliation(s)
- Chandra Sripada
- Department of Philosophy, University of Michigan, Ann Arbor, MI, United States; Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| | - Aman Taxali
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|