101
|
Ohta K, Saka N, Fukasawa M, Nishio M. Hazara orthonairovirus nucleoprotein facilitates viral cell-to-cell spread by modulating tight junction protein, claudin-1. Front Microbiol 2023; 14:1192956. [PMID: 37287449 PMCID: PMC10243194 DOI: 10.3389/fmicb.2023.1192956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Background Tight junctions act as a barrier that prevents invasion of pathogens through epithelial cells. This study aims to elucidate the correlation between tight junctions and nairoviruses using Hazara orthonairovirus (HAZV) as a surrogate model for Crimean-Congo hemorrhagic fever virus. Methods mRNA, total protein, and cell surface protein levels of tight junction proteins were examined by quantitative real-time reverse transcription polymerase chain reaction, immunoblot and flow cytometry, respectively. HAZV growth was measured by plaque assay. Immunofluorescence assay was used to examine viral cell-to-cell spread. The interaction between HAZV nucleoprotein and claudin-1 was analyzed by immunoprecipitation. Results HAZV infection induced mRNA of several tight junction proteins, especially claudin-1. HAZV infection also induced cell surface expression of claudin-1 protein. Claudin-1 overexpression inhibited the growth of HAZV by blocking its cell-to-cell spread. In contrast, HAZV nucleoprotein completely inhibited HAZV-induced cell surface expression of claudin-1, and this inhibition required interaction between HAZV nucleoprotein and claudin-1. Conclusion HAZV nucleoprotein was shown to bind to claudin-1 to negatively regulate its cell surface expression, and so can promote cell-to-cell spread of HAZV. This is the first presentation of a possible mechanism behind how nairoviruses counteract tight junction barrier function.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naoki Saka
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
102
|
Guo GX, Wu KY, Zhang XY, Lai FX, Tsim KWK, Qin QW, Hu WH. The extract of Curcumae Longae Rhizoma suppresses angiogenesis via VEGF-induced PI3K/Akt-eNOS-NO pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116299. [PMID: 36842721 DOI: 10.1016/j.jep.2023.116299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumae Longae Rhizoma (CLR) is a safe natural herbal medicine, and which has been widely used for centuries as functional food and health products, but its effects on angiogenesis and related underlying mechanism remain unclear. AIM OF THE STUDY The abnormal angiogenesis is closely related with various diseases, and therefore the precise control of angiogenesis is of great importance. The well-known angiogenic factor, vascular endothelial growth factor (VEGF), mediates angiogenesis and induces multiple signalling pathways via binding to VEGF receptor (VEGFR). The attenuation of VEGF-triggered angiogenic-related signalling pathways may relieve various diseases through suppression of angiogenesis. Here, we aimed to elucidate that CLR extract could exert striking anti-angiogenic activities both in vitro and in vivo. MATERIALS AND METHODS The viability of human umbilical vascular endothelial cell (HUVEC) was examined by LDH and MTT assays. Migrative and invasive ability of the endothelial cells were independently evaluated by wound healing and transwell assays. The activities of CLR extract on in vitro angiogenesis was tested by tube formation assay. In vivo vascularization was determined by using zebrafish embryo model in the present of CLR extract. Western blotting was applied to determine the phosphorylated levels of VEGFR2, PI3K, AKT and eNOS. Besides, the levels of nitric oxide (NO) and reactive oxygen species (ROS) were separately evaluated by Griess assay and 2'7'-dichlorofluorescein diacetate reaction. In addition, the cell migrative ability of cancer cell was estimated by using cultured human colon carcinoma cells (HT-29 cell line), and immunofluorescence assay was applied to evaluate the effect of CLR extract on nuclear translocation of NF-κB p65 subunit in the VEGF-treated HT-29 cultures. RESULTS CLR extract significantly suppressed a series of VEGF-mediated angiogenic responses, including endothelial cell proliferation, migration, invasion, and tube formation. Moreover, CLR extract reduced in vivo sub-intestinal vessel formation in zebrafish embryo model. Mechanistically, the extract of CLR attenuated the VEGF-triggered signalling, as demonstrated by decreased level of phosphorylated VEGFR2 and subsequently inactivated its downstream regulators, e.g. phospho-PI3K, phospho-AKT and phospho-eNOS. The production of NO and formation of ROS were markedly inhibited in HUVECs. Furthermore, CLR extract suppressed cell migration and NF-κB translocation in cultured HT-29 cells. CONCLUSIONS These preclinical findings demonstrate that the extract of CLR remarkably attenuates angiogenesis and which has great potential as a natural drug candidate with excellent anti-angiogenic activity.
Collapse
Affiliation(s)
- Guo-Xia Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Ke-Yue Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiao-Yong Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| | - Fu-Xiang Lai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Karl Wah-Keung Tsim
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| | - Wei-Hui Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| |
Collapse
|
103
|
Li J, Bao H, Huang Z, Liang Z, Wang M, Lin N, Ni C, Xu Y. Little things with significant impact: miRNAs in hepatocellular carcinoma. Front Oncol 2023; 13:1191070. [PMID: 37274242 PMCID: PMC10235484 DOI: 10.3389/fonc.2023.1191070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has developed into one of the most lethal, aggressive, and malignant cancers worldwide. Although HCC treatment has improved in recent years, the incidence and lethality of HCC continue to increase yearly. Therefore, an in-depth study of the pathogenesis of HCC and the search for more reliable therapeutic targets are crucial to improving the survival quality of HCC patients. Currently, miRNAs have become one of the hotspots in life science research, which are widely present in living organisms and are non-coding RNAs involved in regulating gene expression. MiRNAs exert their biological roles by suppressing the expression of downstream genes and are engaged in various HCC-related processes, including proliferation, apoptosis, invasion, and metastasis. In addition, the expression status of miRNAs is related to the drug resistance mechanism of HCC, which has important implications for the systemic treatment of HCC. This paper reviews the regulatory role of miRNAs in the pathogenesis of HCC and the clinical applications of miRNAs in HCC in recent years.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ning Lin
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
| | - Chunjie Ni
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
104
|
Gnanasekaran R, Aickareth J, Hawwar M, Sanchez N, Croft J, Zhang J. CmPn/CmP Signaling Networks in the Maintenance of the Blood Vessel Barrier. J Pers Med 2023; 13:jpm13050751. [PMID: 37240921 DOI: 10.3390/jpm13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) arise when capillaries within the brain enlarge abnormally, causing the blood-brain barrier (BBB) to break down. The BBB serves as a sophisticated interface that controls molecular interactions between the bloodstream and the central nervous system. The neurovascular unit (NVU) is a complex structure made up of neurons, astrocytes, endothelial cells (ECs), pericytes, microglia, and basement membranes, which work together to maintain blood-brain barrier (BBB) permeability. Within the NVU, tight junctions (TJs) and adherens junctions (AJs) between endothelial cells play a critical role in regulating the permeability of the BBB. Disruptions to these junctions can compromise the BBB, potentially leading to a hemorrhagic stroke. Understanding the molecular signaling cascades that regulate BBB permeability through EC junctions is, therefore, essential. New research has demonstrated that steroids, including estrogens (ESTs), glucocorticoids (GCs), and metabolites/derivatives of progesterone (PRGs), have multifaceted effects on blood-brain barrier (BBB) permeability by regulating the expression of tight junctions (TJs) and adherens junctions (AJs). They also have anti-inflammatory effects on blood vessels. PRGs, in particular, have been found to play a significant role in maintaining BBB integrity. PRGs act through a combination of its classic and non-classic PRG receptors (nPR/mPR), which are part of a signaling network known as the CCM signaling complex (CSC). This network couples both nPR and mPR in the CmPn/CmP pathway in endothelial cells (ECs).
Collapse
Affiliation(s)
- Revathi Gnanasekaran
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Justin Aickareth
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Majd Hawwar
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Nickolas Sanchez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jacob Croft
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
105
|
Alsabbagh R, Ahmed M, Alqudah MAY, Hamoudi R, Harati R. Insights into the Molecular Mechanisms Mediating Extravasation in Brain Metastasis of Breast Cancer, Melanoma, and Lung Cancer. Cancers (Basel) 2023; 15:cancers15082258. [PMID: 37190188 DOI: 10.3390/cancers15082258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Brain metastasis is an incurable end-stage of systemic cancer associated with poor prognosis, and its incidence is increasing. Brain metastasis occurs through a multi-step cascade where cancer cells spread from the primary tumor site to the brain. The extravasation of tumor cells through the blood-brain barrier (BBB) is a critical step in brain metastasis. During extravasation, circulating cancer cells roll along the brain endothelium (BE), adhere to it, then induce alterations in the endothelial barrier to transmigrate through the BBB and enter the brain. Rolling and adhesion are generally mediated by selectins and adhesion molecules induced by inflammatory mediators, while alterations in the endothelial barrier are mediated by proteolytic enzymes, including matrix metalloproteinase, and the transmigration step mediated by factors, including chemokines. However, the molecular mechanisms mediating extravasation are not yet fully understood. A better understanding of these mechanisms is essential as it may serve as the basis for the development of therapeutic strategies for the prevention or treatment of brain metastases. In this review, we summarize the molecular events that occur during the extravasation of cancer cells through the blood-brain barrier in three types of cancer most likely to develop brain metastasis: breast cancer, melanoma, and lung cancer. Common molecular mechanisms driving extravasation in these different tumors are discussed.
Collapse
Affiliation(s)
- Rama Alsabbagh
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A Y Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
106
|
Kim Y, Bae CR, Kim D, Kim H, Lee S, Zhang H, Noh M, Kim YM, Mochizuki N, Kwon YG. Efficacy of CU06-1004 via regulation of inflammation and endothelial permeability in LPS-induced acute lung injury. J Inflamm (Lond) 2023; 20:13. [PMID: 37024954 PMCID: PMC10078077 DOI: 10.1186/s12950-023-00338-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a life-threatening condition that fundamentally results from inflammation and edema in the lung. There are no effective treatments available for clinical use. Previously, we found that as a leakage blocker CU06-1004 prevents endothelial barrier disruption and enhances endothelial cell survival under inflammatory conditions. In this study, we aimed to elucidate the effect of CU06-1004 in terms of prevention of inflammation and endothelial dysfunction in an ALI mouse model. METHODS An ALI model was established that included intraperitoneal administration of LPS. Following LPS administration, survival rates and lung wet/dry ratios were assessed. Histological analysis was performed using hematoxylin and eosin staining. Scanning electron microscopy was used to examine alveolar and capillary morphology. Cytokines such as IL-1β, IL-6, and TNF-α were analyzed using an ELISA assay of bronchoalveolar lavage fluid (BALF) and serum. Neutrophil infiltration was observed in BALF using Wright-Giemsa staining, and myeloperoxidase (MPO) activity was assessed. Pulmonary vascular leakage was confirmed using Evans-blue dye, and the expression of junctional proteins was evaluated using immunofluorescent staining. Expression of adhesion molecules was observed using immunofluorescence staining. NF-κB activation was determined using immunohistochemistry and western blot analysis. RESULTS Survival rates and pulmonary edema were ameliorated with CU06-1004 treatment. Administration of CU06-1004 normalized histopathological changes induced by LPS, and alveolar-capillary wall thickening was reduced. Compared with the LPS-challenged group, after CU06-1004 treatment, the infiltration of immune cells was decreased in the BALF, and MPO activity in lung tissue was reduced. Similarly, in the CU06-1004 treatment group, pro-inflammatory cytokines were significantly inhibited in both BALF and serum. Evans-blue leakage was reduced, and the expression of junctional proteins was recovered in the CU06-1004 group. Adhesion molecules were downregulated and NF-κB activation was inhibited after CU06-1004 treatment. CONCLUSIONS These results suggested that CU06-1004 had a therapeutic effect against LPS-induced ALI via alleviation of the inflammatory response and protection of vascular integrity.
Collapse
Affiliation(s)
- Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Cho-Rong Bae
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Dongyeop Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyejeong Kim
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Sunghye Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Haiying Zhang
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Minyoung Noh
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe- shimmachi, Suita, Osaka, 564-8565, Japan
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
107
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
108
|
Kamperman T, Willemen NGA, Kelder C, Koerselman M, Becker M, Lins L, Johnbosco C, Karperien M, Leijten J. Steering Stem Cell Fate within 3D Living Composite Tissues Using Stimuli-Responsive Cell-Adhesive Micromaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205487. [PMID: 36599686 PMCID: PMC10074101 DOI: 10.1002/advs.202205487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Indexed: 06/12/2023]
Abstract
Engineered living microtissues such as cellular spheroids and organoids have enormous potential for the study and regeneration of tissues and organs. Microtissues are typically engineered via self-assembly of adherent cells into cellular spheroids, which are characterized by little to no cell-material interactions. Consequently, 3D microtissue models currently lack structural biomechanical and biochemical control over their internal microenvironment resulting in suboptimal functional performance such as limited stem cell differentiation potential. Here, this work report on stimuli-responsive cell-adhesive micromaterials (SCMs) that can self-assemble with cells into 3D living composite microtissues through integrin binding, even under serum-free conditions. It is demonstrated that SCMs homogeneously distribute within engineered microtissues and act as biomechanically and biochemically tunable designer materials that can alter the composite tissue microenvironment on demand. Specifically, cell behavior is controlled based on the size, stiffness, number ratio, and biofunctionalization of SCMs in a temporal manner via orthogonal secondary crosslinking strategies. Photo-based mechanical tuning of SCMs reveals early onset stiffness-controlled lineage commitment of differentiating stem cell spheroids. In contrast to conventional encapsulation of stem cell spheroids within bulk hydrogel, incorporating cell-sized SCMs within stem cell spheroids uniquely provides biomechanical cues throughout the composite microtissues' volume, which is demonstrated to be essential for osteogenic differentiation.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Niels G. A. Willemen
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Cindy Kelder
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Malin Becker
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Luanda Lins
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Castro Johnbosco
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| |
Collapse
|
109
|
Davies EM, Gurung R, Le KQ, Roan KT, Harvey RP, Mitchell GM, Schwarz Q, Mitchell CA. PI(4,5)P 2-dependent regulation of endothelial tip cell specification contributes to angiogenesis. SCIENCE ADVANCES 2023; 9:eadd6911. [PMID: 37000875 PMCID: PMC10065449 DOI: 10.1126/sciadv.add6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Dynamic positioning of endothelial tip and stalk cells, via the interplay between VEGFR2 and NOTCH signaling, is essential for angiogenesis. VEGFR2 activates PI3K, which phosphorylates PI(4,5)P2 to PI(3,4,5)P3, activating AKT; however, PI3K/AKT does not direct tip cell specification. We report that PI(4,5)P2 hydrolysis by the phosphoinositide-5-phosphatase, INPP5K, contributes to angiogenesis. INPP5K ablation disrupted tip cell specification and impaired embryonic angiogenesis associated with enhanced DLL4/NOTCH signaling. INPP5K degraded a pool of PI(4,5)P2 generated by PIP5K1C phosphorylation of PI(4)P in endothelial cells. INPP5K ablation increased PI(4,5)P2, thereby releasing β-catenin from the plasma membrane, and concurrently increased PI(3,4,5)P3-dependent AKT activation, conditions that licensed DLL4/NOTCH transcription. Suppression of PI(4,5)P2 in INPP5K-siRNA cells by PIP5K1C-siRNA, restored β-catenin membrane localization and normalized AKT signaling. Pharmacological NOTCH or AKT inhibition in vivo or genetic β-catenin attenuation rescued angiogenesis defects in INPP5K-null mice. Therefore, PI(4,5)P2 is critical for β-catenin/DLL4/NOTCH signaling, which governs tip cell specification during angiogenesis.
Collapse
Affiliation(s)
- Elizabeth M. Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Kai Qin Le
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Katherine T. T. Roan
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Clinical Medicine and School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Geraldine M. Mitchell
- O’Brien Institute Department of St Vincent’s Institute and University of Melbourne, Department of Surgery, St. Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
- Health Sciences Faculty, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5001, Australia
| | - Christina A. Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
110
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
111
|
Chen J, Huan W, Mao L, Huang M, Wu Y, Zhuang S, Cui S. Impaired barrier integrity of endothelial cells induced by PEGylated black phosphorus nanosheets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160645. [PMID: 36464060 DOI: 10.1016/j.scitotenv.2022.160645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
PEGylated black phosphorus nanosheets (PEG-BPNSs) have shown promising applications in biomedicine and potentially interact with the vasculature following iatrogenic exposures. Whether the exposure to PEG-BPNSs could induce toxic effects on endothelial cells that line the blood vessels remains largely unknown. Herein, we investigate the cellular response and transcriptional profiling of human umbilical vein endothelial cells (HUVECs) after the exposure to BPNSs and PEG-BPNSs. BPNSs and PEG-BPNSs induce cellular elongation and cause significant cytotoxicity to HUVECs at 0.8 μg/mL, with viabilities of 87.8% and 87.7% respectively. The transcriptome analysis indicates that BPNSs and PEG-BPNSs at 0.4 μg/mL cause marked alterations in the expression of genes associated with detection of stimulus, ion transmembrane transport and components of plasma membrane. BPNSs and PEG-BPNSs at 0.4 μg/mL decrease the transendothelial electrical resistance (TEER) across monolayers of HUVECs by 22.8% and 20.3% compared to the control, respectively. The disturbance of tight junctions (TJs) after 24 h exposure to 0.4 μg/mL BPNSs and PEG-BPNSs is indicated with the downregulated mRNA expression of zona occluden-1 (ZO-1) by respective 16.5% and 29.9%, which may be involved in the impairment of endothelial barrier integrity. Overall, the response of HUVECs to PEG-BPNSs and BPNSs has no statistical difference, suggesting that PEGylation does not attenuate the BPNSs-induced endothelial injury. This study demonstrates the detrimental effects of BPNSs and PEG-BPNSs on barrier integrity of HUVECs, contributing to our understanding on the potential toxicological mechanisms.
Collapse
Affiliation(s)
- Jiayan Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environment Sciences (ACAES), Zhejiang University, Hangzhou 310058, China
| | - Meiling Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqu Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
112
|
Muacevic A, Adler JR, Beştepe Dursun Z, Eren E, Aslan Sırakaya H, Kuzugüden S, Celik I. The Relationship Between Cytokine Concentrations and Severity Scoring Index for Crimean-Congo Hemorrhagic Fever. Cureus 2023; 15:e34882. [PMID: 36788994 PMCID: PMC9922379 DOI: 10.7759/cureus.34882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 02/13/2023] Open
Abstract
Background This study aimed to investigate the effects of serum high mobility group box-1 (HMGB1), interleukin (IL)-6, IL-8, IL-1β, IL-10, and tumor necrosis factor alpha (TNF-α) levels on disease severity and mortality in Crimean-Congo hemorrhagic fever (CCHF) patients. Materials and methods This study was performed prospectively in the intensive care unit (ICU) and infection ward of a tertiary hospital in the Republic of Türkiye. Patients aged 18 years and older diagnosed with CCHF were included. Results Our study included 30 patients, of whom 83.3% were male, where the mean age was 51.6±14.35 years. The most common clinical findings in patients were malaise (90%) and myalgia (63.3%). In our study, IL-1β levels were found to be 1173.6 (783.0-1823.0) pg/mL, IL-6 69.9 (56.8-133.1) pg/mL, IL-8 191.2 (152.8-516.9) pg/mL, TNF-α 129.5 (104.9-270.8), HMGB1 37.01 (29.26-75.18), and IL-10 190.1 (IQR: 147.8-387.8) pg/mL. The patients' median Severity Scoring Index (SSI) score was found to be 2.5 (1.8-5.5). There was a moderate correlation between the patients' SSI score and serum IL-6 (r=0.464, p=0.010), TNF-α (r=0.420, p=0.021), and IL-10 levels (r=0.518, p=0.003), and a weak correlation between serum HMGB1 (r=0.392, p=0.032). The correlation between SSI and creatine phosphokinase (CPK) levels (r=0.499, p=0.036) was observed to be moderate. Conclusion It was seen that IL-10, IL-6, TNF-α, HMBG-1, and CPK levels evaluated at the CCHF patients' time of admission to the clinic and SSI clinical score were found to be significantly related. It is clear that more studies with patients and groups of healthy volunteers are needed on this subject.
Collapse
|
113
|
O'Leary F, Campbell M. The blood-retina barrier in health and disease. FEBS J 2023; 290:878-891. [PMID: 34923749 DOI: 10.1111/febs.16330] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/05/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
The blood-retina barrier (BRB) is the term used to define the properties of the retinal capillaries and the retinal pigment epithelium (RPE), which separate the systemic circulation from the retina. More specifically, the inner blood-retina barrier (iBRB) is used to describe the properties of the endothelial cells that line the microvasculature of the inner retina, while the outer blood-retina barrier (oBRB) refers to the properties of the RPE cells that separate the fenestrated choriocapillaris from the retina. The BRB is not a fixed structure; rather, it is dynamic, with its components making unique contributions to its function and structural integrity, and therefore the retina. For example, while tight junction (TJ) proteins between retinal endothelial cells are the key molecular structures in the maintenance of the iBRB, other cell types surrounding endothelial cells are also important. In fact, this overall structure is termed the neurovascular unit (NVU). The integrity of the BRB is crucial in the maintenance of a 'dry', tightly regulated retinal microenvironment through the regulation of transcellular and paracellular transport. Specifically, breakdown of TJs can result in oedema formation, a hallmark feature of many retinal diseases. Here, we will describe the oBRB briefly, with a more in-depth focus on the structure and function of the iBRB in health and diseased states. Finally, the contribution of the BRB to the pathophysiology of age-related macular degeneration (AMD), diabetic retinopathy (DR) and other rarer retinal diseases will be discussed.
Collapse
Affiliation(s)
- Fionn O'Leary
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
114
|
Wang D, Wang Y, Xu D, Zhou G, He S. Relationship between uric acid and cerebral amyloid angiopathy. Int J Neurosci 2023; 133:222-231. [PMID: 34913811 DOI: 10.1080/00207454.2021.1903001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purpose: To explored Relationship between uric acid and cerebral amyloid angiopathy; Materials and methods: ZO-1 and RAGE in HBMECs were detected by western blotting, and then, we analyzed ZO-1, occludin, and RAGE mRNA expression levels in different treatment groups using RTPCR. Cell counts and the relative αSMA fluorescence intensity were measured in order to evaluate the protective effect of uric acid against injury to HBVSMCs. Analysis of variance showed that LDH leakage rate was used to verify the uric acid protective effect on the injury induced by Aβ1-40. After that, the level of uric acid in serum and Aβ1-40 in brain tissue was analyzed by western blotting and immunohistochemistry to evaluate the protective effect of uric acid in the brain of APP23 mice. Meanwhile, Occludin, ZO-1, and RAGE protein levels were measured by western blotting; Results: Uric acid reduced the negative effects of Aβ on the vascular endothelium and smooth muscle cells and protected the vascular wall in vitro. In APP23 mice, Aβ1-40 and Aβ1-42 levels were significantly elevated in brain tissues and further increased after uric acid concentration was decreased. In APP23 mice, ZO-1 and occludin expression levels were both significantly lower than those in wild-type animals. After uric acid concentration was lowered in APP23 mice, ZO-1 and occludin expression levels were significantly lower than those in untreated animals; Conclusions: Uric acid in the blood protects the blood vessels from CAA damage to the blood vessel wall, and reduces the occurrence of cerebral hemorrhage.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yanqiu Wang
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Dehui Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Guangyong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Shiwei He
- Department of Neurosurgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| |
Collapse
|
115
|
Shakya S, Pyles KD, Albert CJ, Patel RP, McCommis KS, Ford DA. Myeloperoxidase-derived hypochlorous acid targets human airway epithelial plasmalogens liberating protein modifying electrophilic 2-chlorofatty aldehydes. Redox Biol 2023; 59:102557. [PMID: 36508858 PMCID: PMC9763693 DOI: 10.1016/j.redox.2022.102557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophil and airway epithelial cell interactions are critical in the inflammatory response to viral infections including respiratory syncytial virus, Sendai virus, and SARS-CoV-2. Airway epithelial cell dysfunction during viral infections is likely mediated by the interaction of virus and recruited neutrophils at the airway epithelial barrier. Neutrophils are key early responders to viral infection. Neutrophil myeloperoxidase catalyzes the conversion of hydrogen peroxide to hypochlorous acid (HOCl). Previous studies have shown HOCl targets host neutrophil and endothelial cell plasmalogen lipids, resulting in the production of the chlorinated lipid, 2-chlorofatty aldehyde (2-ClFALD). We have previously shown that the oxidation product of 2-ClFALD, 2-chlorofatty acid (2-ClFA) is present in bronchoalveolar lavage fluid of Sendai virus-infected mice, which likely results from the attack of the epithelial plasmalogen by neutrophil-derived HOCl. Herein, we demonstrate small airway epithelial cells contain plasmalogens enriched with oleic acid at the sn-2 position unlike endothelial cells which contain arachidonic acid enrichment at the sn-2 position of plasmalogen. We also show neutrophil-derived HOCl targets epithelial cell plasmalogens to produce 2-ClFALD. Further, proteomics and over-representation analysis using the ω-alkyne analog of the 2-ClFALD molecular species, 2-chlorohexadecanal (2-ClHDyA) showed cell adhesion molecule binding and cell-cell junction enriched categories similar to that observed previously in endothelial cells. However, in contrast to endothelial cells, proteins in distinct metabolic pathways were enriched with 2-ClFALD modification, particularly pyruvate metabolism was enriched in epithelial cells and mitochondrial pyruvate respiration was reduced. Collectively, these studies demonstrate, for the first time, a novel plasmalogen molecular species distribution in airway epithelial cells that are targeted by myeloperoxidase-derived hypochlorous acid resulting in electrophilic 2-ClFALD, which potentially modifies epithelial physiology by modifying proteins.
Collapse
Affiliation(s)
- Shubha Shakya
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Kelly D Pyles
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Carolyn J Albert
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
116
|
Jia Z, Yang M, Zhao Y, Li X, Yang C, Qiao L, Li H, Du J, Lin J, Guan L. CRISPR-Cas9-Mediated NPC1 Gene Deletion Enhances HEK 293 T Cell Adhesion by Regulating E-Cadherin. Mol Biotechnol 2023; 65:252-262. [PMID: 35587334 DOI: 10.1007/s12033-022-00503-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 01/18/2023]
Abstract
NPC1 gene encodes a transmembrane glycoprotein on the late endosome/lysosomal membrane. Its mutation leads to a rare and aggravated autosomal recessive neurovisceral condition, termed Niemann-Pick disease type C1 (NPC1), which is characterized by progressive neurodegeneration, visceral symptoms, and premature death. To investigate the influence of NPC1 gene deletion on cell morphology, adhesion, proliferation, and apoptosis, CRISPR-Cas9 technology was used to knockout the NPC1 gene in HEK 293 T cells. Sanger sequencing, western blotting, and immunofluorescence were used to confirm successful NPC1 ablation. Filipin staining results indicated that deletion of NPC1 gene led to accumulation of unesterified cholesterol in HEK 293 T cells. Phalloidin staining results revealed cell aggregation, synapse shortening, nuclear enlargement, and cytoskeleton filamentous actin thinning in HEK 293 T cells with NPC1 gene mutation. Furthermore, NPC1 gene mutated HEK 293 T cell showed enhanced cell adhesion, inhibited cell proliferation, and increased cell apoptosis. In addition, NPC1 gene mutations significantly increased the protein expression levels of E-cadherin and γ-catenin and significantly decreased the protein expression levels of Wnt 3a, c-Myc, and cyclin D1. These results suggest that NPC1 may regulate cell adhesion by affecting the cadherin-catenin complex through E-cadherin, and that the classical Wnt signaling pathway may be inhibited by restricting β-catenin from entering the nucleus to inhibit cell proliferation.
Collapse
Affiliation(s)
- Zisen Jia
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Minlin Yang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Yanchun Zhao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Xiaoying Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Ciqing Yang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Liang Qiao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Han Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Jiang Du
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China.,School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China. .,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China. .,School of Medical Engineering, Xinxiang Medical University, Xinxiang, China.
| | - Lihong Guan
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China. .,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China.
| |
Collapse
|
117
|
Zhang Y, Ren Y, Zhang Y, Li Y, Xu C, Peng Z, Jia Y, Qiao S, Zhang Z, Shi L. T-cell infiltration in the central nervous system and their association with brain calcification in Slc20a2-deficient mice. Front Mol Neurosci 2023; 16:1073723. [PMID: 36741925 PMCID: PMC9894888 DOI: 10.3389/fnmol.2023.1073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative and neuropsychiatric disorder characterized by bilateral symmetric intracranial calcification along the microvessels or inside neuronal cells in the basal ganglia, thalamus, and cerebellum. Slc20a2 homozygous (HO) knockout mice are the most commonly used model to simulate the brain calcification phenotype observed in human patients. However, the cellular and molecular mechanisms related to brain calcification, particularly at the early stage much prior to the emergence of brain calcification, remain largely unknown. In this study, we quantified the central nervous system (CNS)-infiltrating T-cells of different age groups of Slc20a2-HO and matched wild type mice and found CD45+CD3+ T-cells to be significantly increased in the brain parenchyma, even in the pre-calcification stage of 1-month-old -HO mice. The accumulation of the CD3+ T-cells appeared to be associated with the severity of brain calcification. Further immunophenotyping revealed that the two main subtypes that had increased in the brain were CD3+ CD4- CD8- and CD3+ CD4+ T-cells. The expression of endothelial cell (EC) adhesion molecules increased, while that of tight and adherents junction proteins decreased, providing the molecular precondition for T-cell recruitment to ECs and paracellular migration into the brain. The fusion of lymphocytes and EC membranes and transcellular migration of CD3-related gold particles were captured, suggesting enhancement of transcytosis in the brain ECs. Exogenous fluorescent tracers and endogenous IgG and albumin leakage also revealed an impairment of transcellular pathway in the ECs. FTY720 significantly alleviated brain calcification, probably by reducing T-cell infiltration, modulating neuroinflammation and ossification process, and enhancing the autophagy and phagocytosis of CNS-resident immune cells. This study clearly demonstrated CNS-infiltrating T-cells to be associated with the progression of brain calcification. Impairment of blood-brain barrier (BBB) permeability, which was closely related to T-cell invasion into the CNS, could be explained by the BBB alterations of an increase in the paracellular and transcellular pathways of brain ECs. FTY720 was found to be a potential drug to protect patients from PFBC-related lesions in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yaqiong Ren
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueni Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ying Li
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Xu
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Peng
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Jia
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shupei Qiao
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Lei Shi,
| |
Collapse
|
118
|
Yang X, Xu C, Yao F, Ding Q, Liu H, Luo C, Wang D, Huang J, Li Z, Shen Y, Yang W, Li Z, Yu F, Fu Y, Wang L, Ma Q, Zhu J, Xu F, Cong X, Kong W. Targeting endothelial tight junctions to predict and protect thoracic aortic aneurysm and dissection. Eur Heart J 2023; 44:1248-1261. [PMID: 36638776 DOI: 10.1093/eurheartj/ehac823] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
AIMS Whether changes in endothelial tight junctions (TJs) lead to the formation of thoracic aortic aneurysm and dissection (TAAD) and serve as an early indicator and therapeutic target remains elusive. METHODS AND RESULTS Single-cell RNA sequencing analysis showed aberrant endothelial TJ expressions in the thoracic aortas of patients with TAAD. In a β-aminopropionitrile (BAPN)-induced TAAD mouse model, endothelial TJ function was disrupted in the thoracic aortas at an early stage (5 and 10 days) as observed by a vascular permeability assay, while the intercellular distribution of crucial TJ components was significantly decreased by en face staining. For the non-invasive detection of endothelial TJ function, two dextrans of molecular weights 4 and 70 kDa were conjugated with the magnetic resonance imaging (MRI) contrast agent Gd-DOTA to synthesize FITC-dextran-DOTA-Gd and rhodamine B-dextran-DOTA-Gd. MRI images showed that both probes accumulated in the thoracic aortas of the BAPN-fed mice. Particularly, the mice with increased accumulated signals from 5 to 10 days developed TAAD at 14 days, whereas the mice with similar signals between the two time points did not. Furthermore, the protease-activated receptor 2 inhibitor AT-1001, which seals TJs, alleviated the BAPN-induced impairment of endothelial TJ function and expression and subsequently reduced TAAD incidence. Notably, endothelial-targeted ZO-1 conditional knockout increased TAAD incidence. Mechanistically, vascular inflammation and edema were observed in the thoracic aortas of the BAPN-fed mice, whereas these phenomena were attenuated by AT-1001. CONCLUSION The disruption of endothelial TJ function is an early event prior to TAAD formation, herein serving as a potential indicator and a promising target for TAAD.
Collapse
Affiliation(s)
- Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Chen Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fang Yao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.,Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Qianhui Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Congcong Luo
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Daidai Wang
- Department of Emergency, Peking University Third Hospital, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Weijie Yang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.,Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Qingbian Ma
- Department of Emergency, Peking University Third Hospital, Beijing 100191, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Fujian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| |
Collapse
|
119
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Locus Coeruleus Dysfunction and Trigeminal Mesencephalic Nucleus Degeneration: A Cue for Periodontal Infection Mediated Damage in Alzheimer's Disease? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1007. [PMID: 36673763 PMCID: PMC9858796 DOI: 10.3390/ijerph20021007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disease with deteriorating cognition as its main clinical sign. In addition to the clinical history, it is characterized by the presence of two neuropathological hallmark lesions; amyloid-beta (Aβ) and neurofibrillary tangles (NFTs), identified in the brain at post-mortem in specific anatomical areas. Recently, it was discovered that NFTs occur initially in the subcortical nuclei, such as the locus coeruleus in the pons, and are said to spread from there to the cerebral cortices and the hippocampus. This contrasts with the prior acceptance of their neuropathology in the enthorinal cortex and the hippocampus. The Braak staging system places the accumulation of phosphorylated tau (p-tau) binding to NFTs in the locus coeruleus and other subcortical nuclei to precede stages I-IV. The locus coeruleus plays diverse psychological and physiological roles within the human body including rapid eye movement sleep disorder, schizophrenia, anxiety, and depression, regulation of sleep-wake cycles, attention, memory, mood, and behavior, which correlates with AD clinical behavior. In addition, the locus coeruleus regulates cardiovascular, respiratory, and gastrointestinal activities, which have only recently been associated with AD by modern day research enabling the wider understanding of AD development via comorbidities and microbial dysbiosis. The focus of this narrative review is to explore the modes of neurodegeneration taking place in the locus coeruleus during the natural aging process of the trigeminal nerve connections from the teeth and microbial dysbiosis, and to postulate a pathogenetic mechanism due to periodontal damage and/or infection focused on Treponema denticola.
Collapse
Affiliation(s)
- Flavio Pisani
- Programme Lead, MSc/MClinDent in Clinical Periodontology, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- I.R.C.C.S. “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department-Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Sim K. Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
120
|
Morimoto M, Maishi N, Tsumita T, Alam MT, Kikuchi H, Hida Y, Yoshioka Y, Ochiya T, Annan DA, Takeda R, Kitagawa Y, Hida K. miR-1246 in tumor extracellular vesicles promotes metastasis via increased tumor cell adhesion and endothelial cell barrier destruction. Front Oncol 2023; 13:973871. [PMID: 37124539 PMCID: PMC10130374 DOI: 10.3389/fonc.2023.973871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Tumor blood vessels play a key role in tumor metastasis. We have previously reported that tumor endothelial cells (TECs) exhibit abnormalities compared to normal endothelial cells. However, it is unclear how TECs acquire these abnormalities. Tumor cells secrete extracellular vesicles (EVs) to create a suitable environment for themselves. We have previously identified miR-1246 to be more abundant in high metastatic melanoma EVs than in low metastatic melanoma EVs. In the current study, we focused on miR-1246 as primarily responsible for acquiring abnormalities in TECs and examined whether the alteration of endothelial cell (EC) character by miR-1246 promotes cancer metastasis. Methods We analyzed the effect of miR-1246 in metastatic melanoma, A375SM-EVs, in vivo metastasis. The role of tumor EV-miR-1246 in the adhesion between ECs and tumor cells and the EC barrier was addressed. Changes in the expression of adhesion molecule and endothelial permeability were examined. Results Intravenous administration of A375SM-EVs induced tumor cell colonization in the lung resulting in lung metastasis. In contrast, miR-1246 knockdown in A375SM decreased lung metastasis in vivo. miR-1246 transfection in ECs increased the expression of adhesion molecule ICAM-1 via activation of STAT3, followed by increased tumor cell adhesion to ECs. Furthermore, the expression of VE-Cadherin was downregulated in miR-1246 overexpressed EC. A375SM-EV treatment enhanced endothelial permeability. VE-Cadherin was validated as the potential target gene of miR-1246 via the target gene prediction database and 3' UTR assay. Conclusion miR-1246 in high metastatic tumor EVs promotes lung metastasis by inducing the adhesion of tumor cells to ECs and destroying the EC barrier.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroshi Kikuchi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yusuke Yoshioka
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Dorcas A. Annan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Ryo Takeda
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- *Correspondence: Kyoko Hida,
| |
Collapse
|
121
|
Wang X, Huang D, Wu J, Li Z, Yi X, Zhong T. The Biological Effect of Small Extracellular Vesicles on Colorectal Cancer Metastasis. Cells 2022; 11:cells11244071. [PMID: 36552835 PMCID: PMC9777375 DOI: 10.3390/cells11244071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is a malignancy that seriously threatens human health, and metastasis from CRC is a major cause of death and poor prognosis for patients. Studying the potential mechanisms of small extracellular vesicles (sEVs) in tumor development may provide new options for early and effective diagnosis and treatment of CRC metastasis. In this review, we systematically describe how sEVs mediate epithelial mesenchymal transition (EMT), reconfigure the tumor microenvironment (TME), modulate the immune system, and alter vascular permeability and angiogenesis to promote CRC metastasis. We also discuss the current difficulties in studying sEVs and propose new ideas.
Collapse
Affiliation(s)
- Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: ; Tel.: +86-07978266042
| |
Collapse
|
122
|
Amiri N, Mohammadi P, Allahgholi A, Salek F, Amini E. The potential of sertoli cells (SCs) derived exosomes and its therapeutic efficacy in male reproductive disorders. Life Sci 2022; 312:121251. [PMID: 36463941 DOI: 10.1016/j.lfs.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
In the male reproductive system, seminiferous tubules in testis are lined by a complex stratified epithelium containing two distinct populations of cells, spermatogenic cells that develop into spermatozoa, and sertoli cells (SCs) that mainly support and nourish spermatogenic cell lineage as well as exerting powerful effect on men reproductive capacity. Different varieties of proteins, hormones, exosomes and growth factors are secreted by SCs. There are different kinds of junctions found between SCs called BTB. It was elucidated that complete absence of BTB or its dysfunction leads to infertility. To promote spermatogenesis, crosstalk of SCs with spermatogenic cells plays an important role. The ability of SCs to support germ cell productivity and development is related to its various products carrying out several functions. Exosomes (EXOs) are one of the main EVs with 30-100 nm size generating from endocytic pathway. They are produced in different parts of male reproductive system including epididymis, prostate and SCs. The most prominent characteristics of SC-based exosomes is considered mutual interaction of sertoli cells with spermatogonial stem cells and Leydig cells mainly through establishment of intercellular communication. Exosomes have gotten a lot of interest because of their role in pathobiological processes and as a cell free therapy which led to developing multiple exosome isolation methods based on different principles. Transmission of nucleic acids, proteins, and growth factors via SC-based exosomes and exosomal miRNAs are proved to have potential to be valuable biomarkers in male reproductive disease. Among testicular abnormalities, non-obstructive azoospermia and testicular cancer have been more contributed with SCs performance. The identification of key proteins and miRNAs involved in the signaling pathways related with spermatogenesis, can serve as diagnostic and regenerative targets in male infertility.
Collapse
Affiliation(s)
- Narjes Amiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Paria Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Atefeh Allahgholi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Farzaneh Salek
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
123
|
Lin S, Lin R, Zhang H, Xu Q, He Y. Peripheral vascular remodeling during ischemia. Front Pharmacol 2022; 13:1078047. [DOI: 10.3389/fphar.2022.1078047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
About 230 million people worldwide suffer from peripheral arterial disease (PAD), and the prevalence is increasing year by year. Multiple risk factors, including smoking, dyslipidemia, diabetes, and hypertension, can contribute to the development of PAD. PAD is typically characterized by intermittent claudication and resting pain, and there is a risk of severe limb ischemia, leading to major adverse limb events, such as amputation. Currently, a major progress in the research field of the pathogenesis of vascular remodeling, including atherosclerosis and neointima hyperplasia has been made. For example, the molecular mechanisms of endothelial dysfunction and smooth muscle phenotype switching have been described. Interestingly, a series of focused studies on fibroblasts of the vessel wall has demonstrated their impact on smooth muscle proliferation and even endothelial function via cell-cell communications. In this review, we aim to focus on the functional changes of peripheral arterial cells and the mechanisms of the pathogenesis of PAD. At the same time, we summarize the progress of the current clinical treatment and potential therapeutic methods for PAD and shine a light on future perspectives.
Collapse
|
124
|
Shaji M, Kitada A, Fujimoto K, Karsten SL, Yokokawa R. Long-term effect of sodium selenite on the integrity and permeability of on-chip microvasculature. APL Bioeng 2022; 6:046105. [PMID: 36397962 PMCID: PMC9665962 DOI: 10.1063/5.0122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Development of the robust and functionally stable three-dimensional (3D) microvasculature remains challenging. One often-overlooked factor is the presence of potential anti-angiogenic agents in culture media. Sodium selenite, an antioxidant commonly used in serum-free media, demonstrates strong anti-angiogenic properties and has been proposed as an anticancer drug. However, its long-term effects on in vitro microvascular systems at the concentrations used in culture media have not been studied. In this study, we used a five-channel microfluidic device to investigate the concentration and temporal effects of sodium selenite on the morphology and functionality of on-chip preformed microvasculature. We found that high concentrations (∼3.0 μM) had adverse effects on microvasculature perfusion, permeability, and overall integrity within the first few days. Moreover, even at low concentrations (∼3.0 nM), a long-term culture effect was observed, resulting in an increase in vascular permeability without any noticeable changes in morphology. A further analysis suggested that vessel leakage may be due to vascular endothelial growth factor dysregulation, disruption of intracellular junctions, or both. This study provides important insight into the adverse effects caused by the routinely present sodium selenite on 3D microvasculature in long-term studies for its application in disease modeling and drug screening.
Collapse
Affiliation(s)
- Maneesha Shaji
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Atsuya Kitada
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Stanislav L. Karsten
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
125
|
Zhao B, Yin Q, Fei Y, Zhu J, Qiu Y, Fang W, Li Y. Research progress of mechanisms for tight junction damage on blood-brain barrier inflammation. Arch Physiol Biochem 2022; 128:1579-1590. [PMID: 32608276 DOI: 10.1080/13813455.2020.1784952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation in the central nervous system (CNS) contributes to disease pathologies by disrupting the integrity of the blood-brain barrier (BBB). Tight junctions (TJ) are a key component of the BBB. Following hypoxic-ischaemic or mechanical injury to the brain, inflammatory mediators are released such as cytokines, chemokines, and growth factors. Simultaneously, matrix metalloproteinases (MMPs) are released which can degrade TJ proteins. Subsequently, the function and morphology of the BBB are disrupted, which allows immune cells an opportunity to enter into the brain parenchyma. This review summarises the information on the role of TJ protein families in the BBB and provides a comprehensive summary of the mechanisms whereby inflammation breaks down the BBB by increasing degradation of TJ proteins.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qiyang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jianping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
126
|
DeBot M, Mitra S, Lutz P, Schaid TR, Stafford P, Hadley JB, Hom P, Sauaia A, Silliman CC, Moore EE, Cohen MJ. SHOCK INDUCES ENDOTHELIAL PERMEABILITY AFTER TRAUMA THROUGH INCREASED ACTIVATION OF RHOA GTPASE. Shock 2022; 58:542-548. [PMID: 36548645 PMCID: PMC9793983 DOI: 10.1097/shk.0000000000002008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Introduction: Severely injured patients develop a dysregulated inflammatory state characterized by vascular endothelial permeability, which contributes to multiple organ failure. To date, however, the mediators of and mechanisms for this permeability are not well established. Endothelial permeability in other inflammatory states such as sepsis is driven primarily by overactivation of the RhoA GTPase. We hypothesized that tissue injury and shock drive endothelial permeability after trauma by increased RhoA activation leading to break down of endothelial tight and adherens junctions. Methods: Human umbilical vein endothelial cells (HUVECs) were grown to confluence, whereas continuous resistance was measured using electrical cell-substrate impedance sensing (ECIS) Z-Theta technology, 10% ex vivo plasma from severely injured trauma patients was added, and resistance measurements continued for 2 hours. Areas under the curve (AUCs) were calculated from resistance curves. For GTPase activity analysis, HUVECs were grown to confluence and incubated with 10% trauma plasma for 5 minutes before harvesting of cell lysates. Rho and Rac activity were determined using a G-LISA assay. Significance was determined using Mann-Whitney tests or Kruskal-Wallis test, and Spearman ρ was calculated for correlations. Results: Plasma from severely injured patients induces endothelial permeability with plasma from patients with both severe injury and shock contributing most to this increased permeability. Surprisingly, Injury Severity Score (ISS) does not correlate with in vitro trauma-induced permeability (-0.05, P > 0.05), whereas base excess (BE) does correlate with permeability (-0.47, P = 0.0001). The combined impact of shock and injury resulted in a significantly smaller AUC in the injury + shock group (ISS > 15, BE < -9) compared with the injury only (ISS > 15, BE > -9; P = 0.04) or minimally injured (ISS < 15, BE > -9; P = 0.005) groups. In addition, incubation with injury + shock plasma resulted in higher RhoA activation ( P = 0.002) and a trend toward decreased Rac1 activation ( P = 0.07) compared with minimally injured control. Conclusions: Over the past decade, improved early survival in patients with severe trauma and hemorrhagic shock has led to a renewed focus on the endotheliopathy of trauma. This study presents the largest study to date measuring endothelial permeability in vitro using plasma collected from patients after traumatic injury. Here, we demonstrate that plasma from patients who develop shock after severe traumatic injury induces endothelial permeability and increased RhoA activation in vitro . Our ECIS model of trauma-induced permeability using ex vivo plasma has potential as a high throughput screening tool to phenotype endothelial dysfunction, study mediators of trauma-induced permeability, and screen potential interventions.
Collapse
Affiliation(s)
- Margot DeBot
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Sanchayita Mitra
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Patrick Lutz
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Terry R. Schaid
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Preston Stafford
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Jamie B. Hadley
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Patrick Hom
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Angela Sauaia
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
- University of Colorado Denver, School of Public Health, Management and Policy, Department of Health Systems, Aurora, CO
| | - Christopher C. Silliman
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Ernest E. Moore
- Denver Health Medical Center, Ernest E Moore Shock Trauma Center, Denver, CO
| | - Mitchell J. Cohen
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| |
Collapse
|
127
|
Zhao B, Huang J, Lou X, Yao K, Ye M, Mou Q, Wen Z, Duan Q, Zhang H, Zhao Y. Endothelial CYP2J2 overexpression restores the BRB via METTL3-mediated ANXA1 upregulation. FASEB J 2022; 36:e22619. [PMID: 36269280 DOI: 10.1096/fj.202201061rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
Blood-retinal barrier (BRB) breakdown is responsible for multiple ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vascular occlusive diseases. Increased vascular permeability contributes to vasogenic edema and tissue damage, with consequent adverse effects on vision. Herein, we found that endothelial CYP2J2 overexpression maintained BRB integrity after ischemia-reperfusion injury and consequently protected against retinal ganglion cell loss. Oxidative stress repressed endothelial ANXA1 expression in vivo and in vitro. CYP2J2 upregulated methyltransferase-like 3 (METTL3) expression and hence promoted ANXA1 translation via ANXA1 m6 A modification in endothelium under oxidative stress. CYP2J2 maintained the distribution of endothelial tight junctions and adherens junctions in an ANXA1-dependent manner. Endothelial ANXA1 plays an indispensable role in vascular homeostasis and stabilization during development. Endothelial ANXA1 deletion disrupted retinal vascular perfusion as well as BRB integrity. CYP2J2 metabolites restored BRB integrity in the presence of ANXA1. Our findings identified the CYP2J2-METTL3-ANXA1 pathway as a potential therapeutic target for relieving BRB impairments.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingqiu Huang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, California, USA
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
128
|
Shi J, Xiao Y, Zhang N, Jiao M, Tang X, Dai C, Wang C, Xu Y, Tan Z, Gong F, Zheng F. HMGB1 from Astrocytes Promotes EAE by Influencing the Immune Cell Infiltration-Associated Functions of BMECs in Mice. Neurosci Bull 2022; 38:1303-1314. [PMID: 35697993 PMCID: PMC9672173 DOI: 10.1007/s12264-022-00890-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
High mobility group box 1 (HMGB1) has been reported to play an important role in experimental autoimmune encephalomyelitis (EAE). Astrocytes are important components of neurovascular units and tightly appose the endothelial cells of microvessels by their perivascular endfeet and directly regulate the functions of the blood-brain barrier. Astrocytes express more HMGB1 during EAE while the exact roles of astrocytic HMGB1 in EAE have not been well elucidated. Here, using conditional-knockout mice, we found that astrocytic HMGB1 depletion decreased morbidity, delayed the onset time, and reduced the disease score and demyelination of EAE. Meanwhile, there were fewer immune cells, especially pathogenic T cells infiltration in the central nervous system of astrocytic HMGB1 conditional-knockout EAE mice, accompanied by up-regulated expression of the tight-junction protein Claudin5 and down-regulated expression of the cell adhesion molecules ICAM1 and VCAM1 in vivo. In vitro, HMGB1 released from astrocytes decreased Claudin5 while increased ICAM1 and VCAM1 expressed by brain microvascular endothelial cells (BMECs) through TLR4 or RAGE. Taken together, our results demonstrate that HMGB1 derived from astrocytes aggravates EAE by directly influencing the immune cell infiltration-associated functions of BMECs.
Collapse
Affiliation(s)
- Junyu Shi
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yifan Xiao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenchen Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China.
| |
Collapse
|
129
|
Tao Y, Zhao X, Liu X, Wang P, Huang Y, Bo R, Liu M, Li J. Oral delivery of chitosan-coated PLGA nanoemulsion loaded with artesunate alleviates ulcerative colitis in mice. Colloids Surf B Biointerfaces 2022; 219:112824. [PMID: 36108369 DOI: 10.1016/j.colsurfb.2022.112824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 01/08/2023]
Abstract
Artesunate (ARS) has been shown to have a protective effect on ulcerative colitis (UC) in mice. However, its lack of targeting and short half-life severely hamper its efficacy. In this study, polylactic acid-glycolic acid copolymer (PLGA) and chitosan (CS) double emulsification solvent volatilisation method was used to prepare a stable nanoemulsion loaded with ARS (CPA). The in vitro drug release profile was detected using dialysis and the potential protective effect was evaluated in an experimental ulcerative colitis (UC) model induced by oral administration of dextran sulphate sodium (DSS). The results suggested that the mean droplet diameter of CPA nanoemulsion is 409.9 ± 9.21 nm, the polydispersity index is 0.17 ± 0.01 and the zeta potential is 40.07 ± 1.65 mV. The cumulative release curve showed the ARS was mainly released at pH 7.4, which is similar to the colonic environment. Oral administration of CPA effectively relieved DSS-induced clinical symptoms by lowering the body weight loss, disease activity index (DAI) score and impressively maintained tight junction protein expression in colon tissue when compared to the blank nanoemulsion control. Meanwhile, CPA remarkably suppressed TLR4/NF-κB pathway activation and mRNA levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) while enhanced levels of IL-10 and CD206. In addition, the effect of CPA was slightly better than that of injecting ARS. Therefore, this study demonstrates a convenient drug delivery system for oral administration of ARS that potentially helps to target colonic tissue and alleviate UC.
Collapse
Affiliation(s)
- Ya Tao
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xin Zhao
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - XiaoPan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - PeiJia Wang
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - YinMo Huang
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - RuoNan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - MingJiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - JinGui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
130
|
Wang L, Shi Y, Jiang J, Li C, Zhang H, Zhang X, Jiang T, Wang L, Wang Y, Feng L. Micro-Nanocarriers Based Drug Delivery Technology for Blood-Brain Barrier Crossing and Brain Tumor Targeting Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203678. [PMID: 36103614 DOI: 10.1002/smll.202203678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The greatest obstacle to using drugs to treat brain tumors is the blood-brain barrier (BBB), making it difficult for conventional drug molecules to enter the brain. Therefore, how to safely and effectively penetrate the BBB to achieve targeted drug delivery to brain tumors has been a challenging research problem. With the intensive research in micro- and nanotechnology in recent years, nano drug-targeted delivery technologies have shown great potential to overcome this challenge, such as inorganic nanocarriers, organic polymer-carriers, liposomes, and biobased carriers, which can be designed in different sizes, shapes, and surface functional groups to enhance their ability to penetrate the BBB and targeted drug delivery for brain tumors. In this review, the composition and overcoming patterns of the BBB are detailed, and then the hot research topics of drug delivery carriers for brain tumors in recent years are summarized, and their mechanisms of action on the BBB and the factors affecting drug delivery are described in detail, and the effectiveness of targeted therapy for brain tumors is evaluated. Finally, the challenges and dilemmas in developing brain tumor drug delivery systems are discussed, which will be promising in the future for targeted drug delivery to brain tumors based on micro-nanocarriers technology.
Collapse
Affiliation(s)
- Luyao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Youyuan Shi
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Jingzhen Jiang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chan Li
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Hengrui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Xinhui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Tao Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yinyan Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
131
|
Fan Y, Qin M, Zhu J, Chen X, Luo J, Chen T, Sun J, Zhang Y, Xi Q. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Crit Rev Food Sci Nutr 2022; 64:4116-4133. [PMID: 36287029 DOI: 10.1080/10408398.2022.2139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengran Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
132
|
Yang J, Ran M, Li H, Lin Y, Ma K, Yang Y, Fu X, Yang S. New insight into neurological degeneration: Inflammatory cytokines and blood–brain barrier. Front Mol Neurosci 2022; 15:1013933. [PMID: 36353359 PMCID: PMC9637688 DOI: 10.3389/fnmol.2022.1013933] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Neurological degeneration after neuroinflammation, such as that resulting from Alzheimer’s disease (AD), stroke, multiple sclerosis (MS), and post-traumatic brain injury (TBI), is typically associated with high mortality and morbidity and with permanent cognitive dysfunction, which places a heavy economic burden on families and society. Diagnosing and curing these diseases in their early stages remains a challenge for clinical investigation and treatment. Recent insight into the onset and progression of these diseases highlights the permeability of the blood–brain barrier (BBB). The primary factor that influences BBB structure and function is inflammation, especially the main cytokines including IL-1β, TNFα, and IL-6, the mechanism on the disruption of which are critical component of the aforementioned diseases. Surprisingly, the main cytokines from systematic inflammation can also induce as much worse as from neurological diseases or injuries do. In this review, we will therefore discuss the physiological structure of BBB, the main cytokines including IL-1β, TNFα, IL-6, and their mechanism on the disruption of BBB and recent research about the main cytokines from systematic inflammation inducing the disruption of BBB and cognitive impairment, and we will eventually discuss the need to prevent the disruption of BBB.
Collapse
Affiliation(s)
- Jie Yang
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Anaesthesiology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Hongyu Li
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Ye Lin
- Department of Neurology, The First Medical Centre, PLA General Hospital, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Xiaobing Fu,
| | - Siming Yang
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
- *Correspondence: Siming Yang,
| |
Collapse
|
133
|
Partridge B, Eardley A, Morales BE, Campelo SN, Lorenzo MF, Mehta JN, Kani Y, Mora JKG, Campbell EOY, Arena CB, Platt S, Mintz A, Shinn RL, Rylander CG, Debinski W, Davalos RV, Rossmeisl JH. Advancements in drug delivery methods for the treatment of brain disease. Front Vet Sci 2022; 9:1039745. [PMID: 36330152 PMCID: PMC9623817 DOI: 10.3389/fvets.2022.1039745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
The blood-brain barrier (BBB) presents a formidable obstacle to the effective delivery of systemically administered pharmacological agents to the brain, with ~5% of candidate drugs capable of effectively penetrating the BBB. A variety of biomaterials and therapeutic delivery devices have recently been developed that facilitate drug delivery to the brain. These technologies have addressed many of the limitations imposed by the BBB by: (1) designing or modifying the physiochemical properties of therapeutic compounds to allow for transport across the BBB; (2) bypassing the BBB by administration of drugs via alternative routes; and (3) transiently disrupting the BBB (BBBD) using biophysical therapies. Here we specifically review colloidal drug carrier delivery systems, intranasal, intrathecal, and direct interstitial drug delivery methods, focused ultrasound BBBD, and pulsed electrical field induced BBBD, as well as the key features of BBB structure and function that are the mechanistic targets of these approaches. Each of these drug delivery technologies are illustrated in the context of their potential clinical applications and limitations in companion animals with naturally occurring intracranial diseases.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Allison Eardley
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Brianna E. Morales
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jason N. Mehta
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Yukitaka Kani
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Josefa K. Garcia Mora
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Etse-Oghena Y. Campbell
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Christopher B. Arena
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Richard L. Shinn
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Christopher G. Rylander
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - John H. Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| |
Collapse
|
134
|
Low-Dose X-Ray Increases Paracellular Permeability of Human Renal Glomerular Endothelial Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5382420. [PMID: 36267304 PMCID: PMC9578893 DOI: 10.1155/2022/5382420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Objective Glomerular endothelium functions as a filtration barrier of metabolites in the kidney. Although X-ray irradiation modulated the permeability of the vascular endothelium, the response of human renal glomerular endothelial cells (HRGECs) to low-dose X-ray irradiation has not been investigated. We evaluated the impacts of low-dose X-ray irradiation on HRGECs and revealed the underlying mechanism. Methods HRGECs were exposed to X-ray with doses of 0, 0.1, 0.5, 1.0, and 2.0 Gy. The proliferation, viability, and apoptosis of HRGECs were examined by MTT assay, trypan blue staining assay, and TUNEL staining, respectively. The paracellular permeability was assessed by paracellular permeability assay. The expression of VE-cadherin was investigated via immunofluorescence assay. Western blot and qRT-PCR detected the expression levels of VE-cadherin and CLDN5. Besides, the expression levels of pVE-cadherin (pY658), TGF-β, TGF-βRI, Src, p-Src, Smad2, p-Smad2, Smad3, p-Smad3, SNAIL, SLUG, and apoptosis-related proteins were tested by Western blot. Results The proliferation, viability, and apoptosis of HRGECs were not affected by low-dose (<2.0 Gy) X-ray irradiation. X-ray irradiation dose-dependently reduced the level of VE-cadherin, and VE-cadherin and CLDN5 levels were reduced with X-ray irradiation. The levels of pY658, p-Src, p-Smad2, and p-Smad3 were upregulated with the increase in X-ray dose. Besides, the paracellular permeability of HRGECs was increased by even low-dose (<2.0 Gy) X-ray irradiation. Therefore, low-dose X-ray irradiation reduced the cumulative content of VE-cadherin and increased the level of pY658 via activation of the TGF-β signaling pathway. Conclusion Even though low-dose X-ray exposure had no impact on proliferation, viability, and apoptosis of HRGECs, it increased the paracellular permeability by deterioration and downregulation of VE-cadherin through stimulating the TGF-β signaling pathway. This study built the framework for kidney response to low-dose irradiation exposure.
Collapse
|
135
|
Human endothelial cells form an endothelium in freestanding collagen hollow filaments fabricated by direct extrusion printing. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100067. [PMID: 36824376 PMCID: PMC9934428 DOI: 10.1016/j.bbiosy.2022.100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Fiber-shaped materials have great potential for tissue engineering applications as they provide structural support and spatial patterns within a three-dimensional construct. Here we demonstrate the fabrication of mechanically stable, meter-long collagen hollow filaments by a direct extrusion printing process. The fibres are permeable for oxygen and proteins and allow cultivation of primary human endothelial cells (ECs) at the inner surface under perfused conditions. The cells show typical characteristics of a well-organized EC lining including VE-cadherin expression, cellular response to flow and ECM production. The results demonstrate that the collagen tubes are capable of creating robust soft tissue filaments. The mechanical properties and the biofunctionality of these collagen hollow filaments facilitate the engineering of prevascularised tissue engineering constructs.
Collapse
|
136
|
Sun Y, Cheng G, Du L, Gan Y, Li B, Yan S, Shao M, Jin H, Li S. Chuanzhitongluo capsule ameliorates microcirculatory dysfunction in rats: Efficacy evaluation and metabolic profiles. Front Pharmacol 2022; 13:1011333. [PMID: 36278210 PMCID: PMC9585327 DOI: 10.3389/fphar.2022.1011333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Ischemic stroke is a leading cause of mortality and disability worldwide. Microcirculatory dysfunction is the foremost hindrance for a good clinical prognosis in ischemic stroke patients. Clinical researches show that Chuanzhitongluo capsule (CZTL) has a curative effect during the recovery period of ischemic stroke, which contributes to a good prognosis. However, it is not known whether CZTL treats ischemic stroke by ameliorating microcirculation dysfunction. Objective: In this study, we investigated the influence of CZTL on microcirculation and its underlying mechanism. Methods: A rat model of acute microcirculatory dysfunction was established by stimuli of adrenaline and ice water. The microcirculatory damage in model rats and the efficacy of CZTL were assessed by detecting laser speckle contrast imaging, coagulation function, hemorheology, vasomotor factor and microcirculation function. The potential mechanism of CZTL action was explored by the untargeted metabolomic analysis based on ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry. Results: Laser speckle contrast imaging showed that model rats suffered low perfusion in ears, feet and tails, and CZTL treatment increased microcirculatory blood flow. Coagulation function detection results showed that CZTL diminished the reduction of thrombin time, prothrombin time, activated partial thromboplastin time and the elevated fibrinogen level caused by acute microcirculatory dysfunction. Furthermore, CZTL could recover the increased blood viscosity as well as the abnormal vasomotor and microcirculation function in rats with acute microcirculatory dysfunction. Metabolomics analysis indicated that CZTL might regulate sphingolipid metabolism and arachidonic acid metabolism to exert protective effects on microcirculation. Conclusion: These results elucidated that CZTL was highly effective against microcirculatory dysfunction and its potential mechanisms related with the modulation of sphingolipid and arachidonic acid metabolic pathways. The present study provided a new perspective on the clinical application of CZTL, and it contribute to explore novel therapeutic drug against microcirculatory dysfunction.
Collapse
Affiliation(s)
- Yuanfang Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co.,Ltd, Linyi, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lijing Du
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Gan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co.,Ltd, Linyi, China
| | - Shikai Yan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co.,Ltd, Linyi, China
| | - Mingguo Shao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co.,Ltd, Linyi, China
- *Correspondence: Mingguo Shao, ; Shasha Li,
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co.,Ltd, Linyi, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Mingguo Shao, ; Shasha Li,
| |
Collapse
|
137
|
Mills WA, Coburn MA, Eyo UB. The emergence of the calvarial hematopoietic niche in health and disease. Immunol Rev 2022; 311:26-38. [PMID: 35880587 PMCID: PMC9489662 DOI: 10.1111/imr.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.
Collapse
Affiliation(s)
- William A. Mills
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Morgan A Coburn
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Ukpong B. Eyo
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
138
|
Mei XY, Zhang JN, Jia WY, Lu B, Wang MN, Zhang TY, Ji LL. Scutellarin suppresses triple-negative breast cancer metastasis by inhibiting TNFα-induced vascular endothelial barrier breakdown. Acta Pharmacol Sin 2022; 43:2666-2677. [PMID: 35228654 PMCID: PMC9525297 DOI: 10.1038/s41401-022-00873-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high vascularity and frequent metastasis. Tumor-associated abnormal vasculature was reported to accelerate TNBC metastasis. Scutellarin (SC) is a natural flavonoid with a cardiovascular protective function. In this study, SC reduced TNBC metastasis and alleviated tumor-associated vascular endothelial barrier injury in vivo. SC rescued the tumor necrosis factor-α (TNFα)-induced diminishment of endothelial junctional proteins and dysfunction of the endothelial barrier in vitro. SC reduced the increased transendothelial migration of TNBC cells through a monolayer composed of TNFα-stimulated human mammary microvascular endothelial cells (HMMECs) or human umbilical vein endothelial cells (HUVECs). TNFα induced the nuclear translocation of enhancer of zeste homolog-2 (EZH2), and its chemical inhibitor GSK126 blocked TNFα-induced endothelial barrier disruption and subsequent TNBC transendothelial migration. TNF receptor 2 (TNFR2) is the main receptor by which TNFα regulates endothelial barrier breakdown. Extracellular signal-regulated protein kinase (ERK)1/2 was found to be downstream of TNFα/TNFR2 and upstream of EZH2. Additionally, SC abrogated the TNFR2-ERK1/2-EZH2 signaling axis both in vivo and in vitro. Our results suggest that SC reduced TNBC metastasis by suppressing TNFα-initiated vascular endothelial barrier breakdown through rescuing the reduced expression of junctional proteins by regulating the TNFR2-ERK1/2-EZH2 signaling pathway.
Collapse
Affiliation(s)
- Xi-Yu Mei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing-Nan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wang-Ya Jia
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meng-Na Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tian-Yu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Li Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
139
|
Li DK, Chen XR, Wang LN, Wang JH, Li JK, Zhou ZY, Li X, Cai LB, Zhong SS, Zhang JJ, Zeng YM, Zhang QB, Fu XY, Lyu XM, Li MY, Huang ZX, Yao KT. Exosomal HMGA2 protein from EBV-positive NPC cells destroys vascular endothelial barriers and induces endothelial-to-mesenchymal transition to promote metastasis. Cancer Gene Ther 2022; 29:1439-1451. [PMID: 35388172 PMCID: PMC9576596 DOI: 10.1038/s41417-022-00453-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Increased vascular permeability facilitates metastasis. Cancer-secreted exosomes are emerging mediators of cancer-host crosstalk. Epstein-Barr virus (EBV), identified as the first human tumor-associated virus, plays a crucial role in metastatic tumors, especially in nasopharyngeal carcinoma (NPC). To date, whether and how exosomes from EBV-infected NPC cells affect vascular permeability remains unclear. Here, we show that exosomes from EBV-positive NPC cells, but not exosomes from EBV-negative NPC cells, destroy endothelial cell tight junction (TJ) proteins, which are natural barriers against metastasis, and promote endothelial-to-mesenchymal transition (EndMT) in endothelial cells. Proteomic analysis revealed that the level of HMGA2 protein was higher in exosomes derived from EBV-positive NPC cells compared with that in exosomes derived from EBV-negative NPC cells. Depletion of HMGA2 in exosomes derived from EBV-positive NPC cells attenuates endothelial cell dysfunction and tumor cell metastasis. In contrast, exosomes from HMGA2 overexpressing EBV-negative NPC cells promoted these processes. Furthermore, we showed that HMGA2 upregulates the expression of Snail, which contributes to TJ proteins reduction and EndMT in endothelial cells. Moreover, the level of HMGA2 in circulating exosomes is significantly higher in NPC patients with metastasis than in those without metastasis and healthy negative controls, and the level of HMGA2 in tumor cells is associated with TJ and EndMT protein expression in endothelial cells. Collectively, our findings suggest exosomal HMGA2 from EBV-positive NPC cells promotes tumor metastasis by targeting multiple endothelial TJ and promoting EndMT, which highlights secreted HMGA2 as a potential therapeutic target and a predictive marker for NPC metastasis.
Collapse
Affiliation(s)
- Deng-Ke Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xing-Rui Chen
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li-Na Wang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, 510180, China
| | - Jia-Hong Wang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ji-Ke Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Ying Zhou
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Lin-Bo Cai
- Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| | | | - Jing-Jing Zhang
- Department of Radiotherapy, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Yu-Mei Zeng
- Department of Pathology, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Qian-Bing Zhang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yan Fu
- Department of Otorhinolaryngology Head and Neck Surgery, General Hospital of Southern Theater Command, People's Liberation Army of China, Guangzhou, 510010, China
| | - Xiao-Ming Lyu
- Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Min-Ying Li
- Department of Radiotherapy, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, 528403, China.
| | - Zhong-Xi Huang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Kai-Tai Yao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
140
|
Kugeratski FG, Santi A, Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci Signal 2022; 15:eaaz4742. [PMID: 36166511 DOI: 10.1126/scisignal.aaz4742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Sara Zanivan
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
141
|
Tarricone G, Carmagnola I, Chiono V. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. J Funct Biomater 2022; 13:146. [PMID: 36135581 PMCID: PMC9501967 DOI: 10.3390/jfb13030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Neurological disorders affect billions of people across the world, making the discovery of effective treatments an important challenge. The evaluation of drug efficacy is further complicated because of the lack of in vitro models able to reproduce the complexity of the human brain structure and functions. Some limitations of 2D preclinical models of the human brain have been overcome by the use of 3D cultures such as cell spheroids, organoids and organs-on-chip. However, one of the most promising approaches for mimicking not only cell structure, but also brain architecture, is currently represented by tissue-engineered brain models. Both conventional (particularly electrospinning and salt leaching) and unconventional (particularly bioprinting) techniques have been exploited, making use of natural polymers or combinations between natural and synthetic polymers. Moreover, the use of induced pluripotent stem cells (iPSCs) has allowed the co-culture of different human brain cells (neurons, astrocytes, oligodendrocytes, microglia), helping towards approaching the central nervous system complexity. In this review article, we explain the importance of in vitro brain modeling, and present the main in vitro brain models developed to date, with a special focus on the most recent advancements in tissue-engineered brain models making use of iPSCs. Finally, we critically discuss achievements, main challenges and future perspectives.
Collapse
Affiliation(s)
- Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| |
Collapse
|
142
|
Dobson GP, Morris JL, Letson HL. Why are bleeding trauma patients still dying? Towards a systems hypothesis of trauma. Front Physiol 2022; 13:990903. [PMID: 36148305 PMCID: PMC9485567 DOI: 10.3389/fphys.2022.990903] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Over the years, many explanations have been put forward to explain early and late deaths following hemorrhagic trauma. Most include single-event, sequential contributions from sympathetic hyperactivity, endotheliopathy, trauma-induced coagulopathy (TIC), hyperinflammation, immune dysfunction, ATP deficit and multiple organ failure (MOF). We view early and late deaths as a systems failure, not as a series of manifestations that occur over time. The traditional approach appears to be a by-product of last century's highly reductionist, single-nodal thinking, which also extends to patient management, drug treatment and drug design. Current practices appear to focus more on alleviating symptoms rather than addressing the underlying problem. In this review, we discuss the importance of the system, and focus on the brain's "privilege" status to control secondary injury processes. Loss of status from blood brain barrier damage may be responsible for poor outcomes. We present a unified Systems Hypothesis Of Trauma (SHOT) which involves: 1) CNS-cardiovascular coupling, 2) Endothelial-glycocalyx health, and 3) Mitochondrial integrity. If central control of cardiovascular coupling is maintained, we hypothesize that the endothelium will be protected, mitochondrial energetics will be maintained, and immune dysregulation, inflammation, TIC and MOF will be minimized. Another overlooked contributor to early and late deaths following hemorrhagic trauma is from the trauma of emergent surgery itself. This adds further stress to central control of secondary injury processes. New point-of-care drug therapies are required to switch the body's genomic and proteomic programs from an injury phenotype to a survival phenotype. Currently, no drug therapy exists that targets the whole system following major trauma.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
143
|
Hu X, Wang Y, Du W, Liang LJ, Wang W, Jin X. Role of Glial Cell-Derived Oxidative Stress in Blood-Brain Barrier Damage after Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7762078. [PMID: 36092167 PMCID: PMC9463007 DOI: 10.1155/2022/7762078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
The integrity of the blood-brain barrier (BBB) is mainly maintained by endothelial cells and basement membrane and could be regulated by pericytes, neurons, and glial cells including astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs). BBB damage is the main pathological basis of hemorrhage transformation (HT) and vasogenic edema after stroke. In addition, BBB damage-induced HT and vasogenic edema will aggravate the secondary brain tissue damage. Of note, after reperfusion, oxidative stress-initiated cascade plays a critical role in the BBB damage after acute ischemic stroke (AIS). Although endothelial cells are the target of oxidative stress, the role of glial cell-derived oxidative stress in BBB damage after AIS also should receive more attention. In the current review, we first introduce the physiology and pathophysiology of the BBB, then we summarize the possible mechanisms related to BBB damage after AIS. We aim to characterize the role of glial cell-derived oxidative stress in BBB damage after AIS and discuss the role of oxidative stress in astrocytes, microglia cells and oligodendrocytes in after AIS, respectively.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yanping Wang
- Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, 314000 Zhejiang, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Li-Jun Liang
- Children's Hospital of Shanxi Province, Taiyuan, Shanxi Province, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
144
|
Dobson GP, Morris JL, Letson HL. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front Med (Lausanne) 2022; 9:968453. [PMID: 36111108 PMCID: PMC9468749 DOI: 10.3389/fmed.2022.968453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/20/2022] Open
Abstract
When a traumatic injury exceeds the body's internal tolerances, the innate immune and inflammatory systems are rapidly activated, and if not contained early, increase morbidity and mortality. Early deaths after hospital admission are mostly from central nervous system (CNS) trauma, hemorrhage and circulatory collapse (30%), and later deaths from hyperinflammation, immunosuppression, infection, sepsis, acute respiratory distress, and multiple organ failure (20%). The molecular drivers of secondary injury include damage associated molecular patterns (DAMPs), pathogen associated molecular patterns (PAMPs) and other immune-modifying agents that activate the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic stress response. Despite a number of drugs targeting specific anti-inflammatory and immune pathways showing promise in animal models, the majority have failed to translate. Reasons for failure include difficulty to replicate the heterogeneity of humans, poorly designed trials, inappropriate use of specific pathogen-free (SPF) animals, ignoring sex-specific differences, and the flawed practice of single-nodal targeting. Systems interconnectedness is a major overlooked factor. We argue that if the CNS is protected early after major trauma and control of cardiovascular function is maintained, the endothelial-glycocalyx will be protected, sufficient oxygen will be delivered, mitochondrial energetics will be maintained, inflammation will be resolved and immune dysfunction will be minimized. The current challenge is to develop new systems-based drugs that target the CNS coupling of whole-body function.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
145
|
Deng L, Lv JQ, Sun L. Experimental treatments to attenuate blood spinal cord barrier rupture in rats with traumatic spinal cord injury: A meta-analysis and systematic review. Front Pharmacol 2022; 13:950368. [PMID: 36081932 PMCID: PMC9445199 DOI: 10.3389/fphar.2022.950368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Traumatic spinal cord injury (t-SCI) is a severe injury that has a devastating impact on neurological function. Blood spinal cord barrier (BSCB) destruction following SCI aggravates the primary injury, resulting in a secondary injury. A series of experimental treatments have been proven to alleviate BSCB destruction after t-SCI. Methods: From a screen of 1,189 papers, which were retrieved from Pubmed, Embase, and Web of science, we identified 28 papers which adhered to strict inclusion and exclusion criteria. Evans blue (EB) leakage on the first day post-SCI was selected as the primary result. Secondary outcomes included the expression of tight junction (TJ) proteins and adhesion junction (AJ) proteins in protein immunoblotting. In addition, we measured functional recovery using the Basso, Beattie, Besnahan (BBB) score and we analyzed the relevant mechanisms to explore the similarities between different studies. Result: The forest plot of Evans blue leakage (EB leakage) reduction rate: the pooled effect size of the 28 studies was 0.54, 95% CI: 0.47–0.61, p < 0.01. This indicates that measures to mitigate BSCB damage significantly improved in reducing overall EB leakage. In addition TJ proteins (Occludin, Claudin-5, and ZO-1), AJ proteins (P120 and β-catenin) were significantly upregulated after treatment in all publications. Moreover, BBB scores were significantly improved. Comprehensive studies have shown that in t-SCI, inhibition of matrix metalloproteinases (MMPs) is the most commonly used mechanism to mitigate BSCB damage, followed by endoplasmic reticulum (ER) stress and the Akt pathway. In addition, we found that bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos), which inhibit the TIMP2/MMP signaling pathway, may be the most effective way to alleviate BSCB injury. Conclusion: This study systematically analyzes the experimental treatments and their mechanisms for reducing BSCB injury in the early stage of t-SCI. BMSC-Exos, which inhibit MMP expression, are currently the most effective therapeutic modality for alleviating BSCB damage. In addition, the regulation of MMPs in particular as well as the Akt pathway and the ER stress pathway play important roles in alleviating BSCB injury. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022324794.
Collapse
|
146
|
Remenyik J, Biró A, Klusóczki Á, Juhász KZ, Szendi-Szatmári T, Kenesei Á, Szőllősi E, Vasvári G, Stündl L, Fenyvesi F, Váradi J, Markovics A. Comparison of the Modulating Effect of Anthocyanin-Rich Sour Cherry Extract on Occludin and ZO-1 on Caco-2 and HUVEC Cultures. Int J Mol Sci 2022; 23:ijms23169036. [PMID: 36012299 PMCID: PMC9408816 DOI: 10.3390/ijms23169036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Increased permeability of the epithelial and endothelial cell layers results in the onset of pathogenic mechanisms. In both cell types, cell–cell connections play a regulatory role in altering membrane permeability. The aim of this study was to investigate the modulating effect of anthocyanin-rich extract (AC) on TJ proteins in inflammatory Caco-2 and HUVEC monolayers. Distribution of Occludin and zonula occludens-1 (ZO-1) were investigated by immunohistochemical staining and the protein levels were measured by flow cytometry. The mRNA expression was determined by quantitative real-time PCR. The transepithelial electrical resistance (TEER) values were measured during a permeability assay on HUVEC cell culture. As a result of inflammatory induction by TNF-α, redistribution of proteins was observed in Caco-2 cell culture, which was reduced by AC treatment. In HUVEC cell culture, the decrease in protein and mRNA expression was more dominant during inflammatory induction, which was compensated for by the AC treatment. Overall, AC positively affected the expression of the examined cell-binding structures forming the membrane on both cell types.
Collapse
Affiliation(s)
- Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Biró
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Klusóczki
- Institute of Healthcare Industry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztián Zoltán Juhász
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tímea Szendi-Szatmári
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ádám Kenesei
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Erzsébet Szőllősi
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (J.V.); (A.M.)
| | - Arnold Markovics
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (J.V.); (A.M.)
| |
Collapse
|
147
|
Zou X, Zhang Y, Wang N, Shi J, Li Q, Hao W, Zhu W, Han W. HEG1 as a novel potential biomarker for the prognosis of lung adenocarcinoma. Cancer Med 2022; 12:3288-3298. [PMID: 35950222 PMCID: PMC9939152 DOI: 10.1002/cam4.5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/15/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Heart development protein with EGF-like domains 1 (HEG1), generally related to angiogenesis and embryonic development, was reported to participate in the occurrence and progression of some tumors recently. However, the role of HEG1 in lung adenocarcinoma (LUAD) is unclear. PATIENTS AND METHODS To explore the effect of HEG1 on LUAD, GEPIA platform and UALCAN database, as well as Kaplan-Meier plotter were adopted to analyze the association of HEG1 with clinicopathological characteristics and survival outcomes for LUAD firstly. And then the HEG1 in LUAD tissues, blood and cell lines were detected by qRT-PCR, western blot, immunofluorescence, immunohistochemistry, and ELISA. Gene set enrichment analysis (GSEA) was conducted to identify pathways that might be affected by HEG1 in LUAD. RESULTS In this study, HEG1 in lung tissues and cell lines of LUAD were significantly downregulated compared to benign pulmonary disease tissues and alveolar epithelial cells (p < 0.05). Moreover, compared with other groups, patients with advanced tumor stage had lower HEG1 mRNA expression levels (p = 0.025), which were negatively correlated with Ki67 index in tumor tissues (r = -0.427, p = 0.033). On the other hand, the LUAD patients with lower HEG1 had shorter overall survival (OS) (HR = 0.51, 95% CI: 0.40-0.65, p < 0.001) according to Kaplan-Meier plotter. In addition, HEG1 in serum of LUAD patients was negatively associated with CEA (r = -0.636, p < 0.001). GSEA showed that HEG1 was enriched in various metabolic-related pathways, including glucose metabolism, lipid metabolism, and nucleotide metabolism signaling. CONCLUSIONS HEG1 was downregulated in LUAD patients and associated with poor prognosis, which indicating HEG1 may serve as a potential biomarker for diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Xin Zou
- Department of Pathology, Qingdao Municipal HospitalDalian Medical UniversityQingdaoChina,Respiratory Disease Key Laboratory of QingdaoQingdao Municipal HospitalQingdaoChina
| | - Yue Zhang
- Department of RespiratoryJilin Provincial People's HospitalJilinChina
| | - Ning Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
| | - Jie Shi
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese MedicineQingdaoChina
| | - Qinghai Li
- Respiratory Disease Key Laboratory of QingdaoQingdao Municipal HospitalQingdaoChina,Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
| | - Wanming Hao
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
| | - Wenjing Zhu
- Respiratory Disease Key Laboratory of QingdaoQingdao Municipal HospitalQingdaoChina,NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese MedicineQingdaoChina,Clinical Research Center, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Wei Han
- Respiratory Disease Key Laboratory of QingdaoQingdao Municipal HospitalQingdaoChina,Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
148
|
Michel JB, Lagrange J, Regnault V, Lacolley P. Conductance Artery Wall Layers and Their Respective Roles in the Clearance Functions. Arterioscler Thromb Vasc Biol 2022; 42:e253-e272. [PMID: 35924557 DOI: 10.1161/atvbaha.122.317759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolutionary organization of the arterial wall into layers occurred concomitantly with the emergence of a highly muscularized, pressurized arterial system that facilitates outward hydraulic conductance and mass transport of soluble substances across the arterial wall. Although colliding circulating cells disperse potential energy within the arterial wall, the different layers counteract this effect: (1) the endothelium ensures a partial barrier function; (2) the media comprises smooth muscle cells capable of endocytosis/phagocytosis; (3) the outer adventitia and perivascular adipocytic tissue are the final receptacles of convected substances. While the endothelium forms a physical and a biochemical barrier, the medial layer is avascular, relying on the specific permeability properties of the endothelium for metabolic support. Different components of the media interact with convected molecules: medial smooth muscle cells take up numerous molecules via scavenger receptors and are capable of phagocytosis of macro/micro particles. The outer layers-the highly microvascularized innervated adventitia and perivascular adipose tissue-are also involved in the clearance functions of the media: the adventitia is the seat of immune response development, inward angiogenesis, macromolecular lymphatic drainage, and neuronal stimulation. Consequently, the clearance functions of the arterial wall are physiologically essential, but also may favor the development of arterial wall pathologies. This review describes how the walls of large conductance arteries have acquired physiological clearance functions, how this is determined by the attributes of the endothelial barrier, governed by endocytic and phagocytic capacities of smooth muscle cells, impacting adventitial functions, and the role of these clearance functions in arterial wall diseases.
Collapse
|
149
|
Richards M, Nwadozi E, Pal S, Martinsson P, Kaakinen M, Gloger M, Sjöberg E, Koltowska K, Betsholtz C, Eklund L, Nordling S, Claesson-Welsh L. Claudin5 protects the peripheral endothelial barrier in an organ and vessel type-specific manner. eLife 2022; 11:78517. [PMID: 35861713 PMCID: PMC9348850 DOI: 10.7554/elife.78517] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Dysfunctional and leaky blood vessels resulting from disruption of the endothelial cell (EC) barrier accompanies numerous diseases. The EC barrier is established through endothelial cell tight and adherens junctions. However, the expression pattern and precise contribution of different junctional proteins to the EC barrier is poorly understood. Here, we focus on organs with continuous endothelium to identify structural and functional in vivo characteristics of the EC barrier. Assembly of multiple single-cell RNAseq datasets into a single integrated database revealed the variability and commonalities of EC barrier patterning. Across tissues, Claudin5 exhibited diminishing expression along the arteriovenous axis, correlating with EC barrier integrity. Functional analysis identified tissue-specific differences in leakage properties and response to the leakage agonist histamine. Loss of Claudin5 enhanced histamine-induced leakage in an organotypic and vessel type-specific manner in an inducible, EC-specific, knock-out mouse. Mechanistically, Claudin5 loss left junction ultrastructure unaffected but altered its composition, with concomitant loss of zonula occludens-1 and upregulation of VE-Cadherin expression. These findings uncover the organ-specific organisation of the EC barrier and distinct importance of Claudin5 in different vascular beds, providing insights to modify EC barrier stability in a targeted, organ-specific manner.
Collapse
Affiliation(s)
- Mark Richards
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emmanuel Nwadozi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sagnik Pal
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pernilla Martinsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mika Kaakinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Marleen Gloger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Elin Sjöberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lauri Eklund
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sofia Nordling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
150
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|