101
|
Abstract
Reactive oxygen species (ROS) have been implicated in many intra- and intercellular processes. High levels of ROS are generated as part of the innate immunity in the respiratory burst of phagocytic cells. Low levels of ROS, however, are generated in a highly controlled manner by various cell types to act as second messengers in redox-sensitive pathways. A NADPH oxidase has been initially described as the respiratory burst enzyme in neutrophils. Stimulation of this complex enzyme system requires specific signaling cascades linking it to membrane-receptor activation. Subsequently, a family of NADPH oxidases has been identified in various nonphagocytic cells. They mainly differ in containing one out of seven homologous catalytic core proteins termed NOX1 to NOX5 and DUOX1 or 2. NADPH oxidase activity is controlled by regulatory subunits, including the NOX regulators p47phox and p67phox, their homologs NOXO1 and NOXA1, or the DUOX1 or 2 regulators DUOXA1 and 2. In addition, the GTPase Rac modulates activity of several of these enzymes. Recently, additional proteins have been identified that seem to have a regulatory function on NADPH oxidase activity under certain conditions. We will thus summarize molecular pathways linking activation of different membrane-bound receptors with increased ROS production of NADPH oxidases.
Collapse
Affiliation(s)
- Andreas Petry
- Experimental Pediatric Cardiology, Technical University Munich, Munich, Germany
| | | | | |
Collapse
|
102
|
Kim JI, Jung SW, Yang E, Park KM, Eto M, Kim IK. Heat shock augments angiotensin II-induced vascular contraction through increased production of reactive oxygen species. Biochem Biophys Res Commun 2010; 399:452-7. [PMID: 20688045 DOI: 10.1016/j.bbrc.2010.07.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022]
Abstract
A temporal increase in temperature triggers a series of stress responses and alters vascular smooth muscle (VSM) contraction induced by agonist stimulation. Here we examined the role of reactive oxygen species (ROS) in heat shock-dependent augmentation of angiotensin II (AngII)-induced VSM contraction. Endothelium-denuded rat aortic rings were treated with heat shock for 45 min at 42 degrees C and then subjected to assays for the production of force, ROS, and the expression of ROS-related enzymes. AngII-induced contraction was enhanced in heat shock-treated aorta. AngII-induced production of hydrogen peroxide and superoxide were elevated in response to the heat shock treatment. Pre-treatment with superoxide dismutases (SOD) mimetic and inhibitors for glutathione peroxidase and NADPH oxidase but not for xanthine oxidase eliminated an increase in the AngII-induced contraction in the heat shock-treated aorta. Heat shock increased the expression of p47phox, a cytosolic subunit of NADPH oxidase, but not Cu-Zn-SOD and Mn-SOD. In addition, heat shock increased contraction that was evoked by hydrogen peroxide and pyrogallol. These results suggest that heat shock causes an elevation of ROS as well as a sensitization of ROS signal resulting in an augmentation of VSM contraction in response to agonist.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Pharmacology and Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | | | | | | | | | | |
Collapse
|
103
|
Romero M, Jiménez R, Sánchez M, López-Sepúlveda R, Zarzuelo A, Tamargo J, Pérez-Vizcaíno F, Duarte J. Vascular superoxide production by endothelin-1 requires Src non-receptor protein tyrosine kinase and MAPK activation. Atherosclerosis 2010; 212:78-85. [PMID: 20553682 DOI: 10.1016/j.atherosclerosis.2010.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 04/15/2010] [Accepted: 04/27/2010] [Indexed: 11/17/2022]
Abstract
ET-1 induces vascular O(2)(*-) production via activation of NADPH oxidase. We have investigated whether c-Src and MAPKs activation are involved in ET-1-induced vascular oxidative response. At 2 h, ET-1 induced an increase in NADPH oxidase-driven O(2)(*-) production in rat isolated aortic rings, which was completely suppressed in PP2 (c-Src inhibitor)-pretreated rings, whereas PP3 (inactive analogue of PP2) was without effect. ET-1 increased the levels of phospho-c-Src, the active form of c-Src, and the phosphorylation of cortactin, a Src-specific substrate. Both c-Src and cortactin phosphorylation induced by ET-1 were prevented by PP2. The increased expression of p47(phox), the main cytosolic subunit of NADPH oxidase, induced by ET-1 was also prevented by PP2. The increased vascular O(2)(*-) production and p47(phox) up-regulation induced by ET-1 was only inhibited in aortic rings coincubated with the ERK1/2 inhibitor, PD98059; being without effects both the p38 MAPK inhibitor, SB203580, and JNK inhibitor, SP600125. Aortic rings incubation with ET-1 increased the phosphorylation of ERK1/2. This effect was suppressed by coincubation with PP2 showing that this event is down-stream of c-Src activation. In conclusion, ET-1 induces NADPH oxidase-driven O(2)(*-) generation through increase of p47(phox) protein expression. The signalling pathway for this effect involves c-Src activation and ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 2010; 459:923-39. [PMID: 20306272 DOI: 10.1007/s00424-010-0808-2] [Citation(s) in RCA: 527] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 02/07/2023]
Abstract
Endothelium-derived nitric oxide (NO) is a paracrine factor that controls vascular tone, inhibits platelet function, prevents adhesion of leukocytes, and reduces proliferation of the intima. An enhanced inactivation and/or reduced synthesis of NO is seen in conjunction with risk factors for cardiovascular disease. This condition, referred to as endothelial dysfunction, can promote vasospasm, thrombosis, vascular inflammation, and proliferation of vascular smooth muscle cells. Vascular oxidative stress with an increased production of reactive oxygen species (ROS) contributes to mechanisms of vascular dysfunction. Oxidative stress is mainly caused by an imbalance between the activity of endogenous pro-oxidative enzymes (such as NADPH oxidase, xanthine oxidase, or the mitochondrial respiratory chain) and anti-oxidative enzymes (such as superoxide dismutase, glutathione peroxidase, heme oxygenase, thioredoxin peroxidase/peroxiredoxin, catalase, and paraoxonase) in favor of the former. Also, small molecular weight antioxidants may play a role in the defense against oxidative stress. Increased ROS concentrations reduce the amount of bioactive NO by chemical inactivation to form toxic peroxynitrite. Peroxynitrite-in turn-can "uncouple" endothelial NO synthase to become a dysfunctional superoxide-generating enzyme that contributes to vascular oxidative stress. Oxidative stress and endothelial dysfunction can promote atherogenesis. Therapeutically, drugs in clinical use such as ACE inhibitors, AT(1) receptor blockers, and statins have pleiotropic actions that can improve endothelial function. Also, dietary polyphenolic antioxidants can reduce oxidative stress, whereas clinical trials with antioxidant vitamins C and E failed to show an improved cardiovascular outcome.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Obere Zahlbacher Strasse 67, 55101, Mainz, Germany.
| |
Collapse
|
105
|
Montezano AC, Burger D, Paravicini TM, Chignalia AZ, Yusuf H, Almasri M, He Y, Callera GE, He G, Krause KH, Lambeth D, Quinn MT, Touyz RM. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circ Res 2010; 106:1363-73. [PMID: 20339118 PMCID: PMC3119893 DOI: 10.1161/circresaha.109.216036] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Although Nox5 (Nox2 homolog) has been identified in the vasculature, its regulation and functional significance remain unclear. OBJECTIVES We sought to test whether vasoactive agents regulate Nox5 through Ca(2+)/calmodulin-dependent processes and whether Ca(2+)-sensitive Nox5, associated with Rac-1, generates superoxide (O(2)(*-)) and activates growth and inflammatory responses via mitogen-activated protein kinases in human endothelial cells (ECs). METHODS AND RESULTS Cultured ECs, exposed to angiotensin II (Ang II) and endothelin (ET)-1 in the absence and presence of diltiazem (Ca(2+) channel blocker), calmidazolium (calmodulin inhibitor), and EHT1864 (Rac-1 inhibitor), were studied. Nox5 was downregulated with small interfering RNA. Ang II and ET-1 increased Nox5 expression (mRNA and protein). Effects were inhibited by actinomycin D and cycloheximide and blunted by diltiazem, calmidazolium and low extracellular Ca(2+) ([Ca(2+)](e)). Ang II and ET-1 activated NADPH oxidase, an effect blocked by low [Ca(2+)](e), but not by EHT1864. Nox5 knockdown abrogated agonist-stimulated O(2)(*-) production and inhibited phosphorylation of extracellular signal-regulated kinase (ERK)1/2, but not p38 MAPK (mitogen-activated protein kinase) or SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase). Nox5 small interfering RNA blunted Ang II-induced, but not ET-1-induced, upregulation of proliferating-cell nuclear antigen and vascular cell adhesion molecule-1, important in growth and inflammation. CONCLUSIONS Human ECs possess functionally active Nox5, regulated by Ang II and ET-1 through Ca(2+)/calmodulin-dependent, Rac-1-independent mechanisms. Nox5 activation by Ang II and ET-1 induces ROS generation and ERK1/2 phosphorylation. Nox5 is involved in ERK1/2-regulated growth and inflammatory signaling by Ang II but not by ET-1. We elucidate novel mechanisms whereby vasoactive peptides regulate Nox5 in human ECs and demonstrate differential Nox5-mediated functional responses by Ang II and ET-1. Such phenomena link Ca(2+)/calmodulin to Nox5 signaling, potentially important in the regulation of endothelial function by Ang II and ET-1.
Collapse
Affiliation(s)
- Augusto C Montezano
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Tamara M Paravicini
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Andreia Z Chignalia
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Hiba Yusuf
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Mahmoud Almasri
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Ying He
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Glaucia E Callera
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Gang He
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | | | - David Lambeth
- Department of Pathology Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, USA
| | - Rhian M Touyz
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| |
Collapse
|
106
|
Receptor and nonreceptor tyrosine kinases in vascular biology of hypertension. Curr Opin Nephrol Hypertens 2010; 19:169-76. [DOI: 10.1097/mnh.0b013e3283361c24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
107
|
Trebak M, Ginnan R, Singer HA, Jourd'heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal 2010; 12:657-74. [PMID: 19719386 PMCID: PMC2861541 DOI: 10.1089/ars.2009.2842] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Signaling cascades initiated or regulated by calcium (Ca(2+)), reactive oxygen (ROS), and nitrogen (RNS) species are essential to diverse physiological and pathological processes in vascular smooth muscle. Stimuli-induced changes in intracellular Ca(2+) regulate the activity of primary ROS and RNS, producing enzymes including NADPH oxidases (Nox) and nitric oxide synthases (NOS). At the same time, alteration in intracellular ROS and RNS production reciprocates through redox-based post-translational modifications altering Ca(2+) signaling networks. These may include Ca(2+) pumps such as sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase (SERCA), voltage-gated channels, transient receptor potential canonical (TRPC), melastatin2 (TRPM2), and ankyrin1 (TRPA1) channels, store operated Ca(2+) channels such as Orai1/stromal interaction molecule 1 (STIM1), and Ca(2+) effectors such as Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In this review, we summarize and highlight current experimental evidence supporting the idea that cross-talk between Ca(2+) and ROS/RNS may represent a well-integrated signaling network in vascular smooth muscle.
Collapse
Affiliation(s)
- Mohamed Trebak
- Center for Cardiovascular Sciences, Albany Medical College, New York, USA
| | | | | | | |
Collapse
|
108
|
Bouallegue A, Vardatsikos G, Srivastava AK. Role of insulin-like growth factor 1 receptor and c-Src in endothelin-1- and angiotensin II-induced PKB phosphorylation, and hypertrophic and proliferative responses in vascular smooth muscle cellsThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research. Can J Physiol Pharmacol 2009; 87:1009-18. [DOI: 10.1139/y09-056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Endothelin-1 (ET-1) and angiotensin II (Ang II) are vasoactive peptides believed to contribute to the pathogenesis of vascular abnormalities such as hypertension, atherosclerosis, hypertrophy, and restenosis. The concept of transactivation of growth factor receptors, such as epidermal growth factor receptor (EGFR), in triggering vasoactive peptide-induced signaling events has gained much recognition during the past several years. We have demonstrated that insulin-like growth factor type 1 receptor (IGF-1R) plays a role in transducing the effect of H2O2, leading to protein kinase B (PKB) phosphorylation. Since vasoactive peptides elicit their responses through generation of reactive oxygen species, including H2O2, we investigated whether IGF-1R transactivation plays a similar role in ET-1- and Ang II-induced PKB phosphorylation and hypertrophic responses in vascular smooth muscle cells (VSMC). AG1024, a specific inhibitor of IGF-1R protein tyrosine kinase (PTK), attenuated both ET-1- and Ang II-induced PKB phosphorylation in a dose-dependent manner. ET-1 and Ang II treatment also induced the phosphorylation of tyrosine residues in the autophosphorylation sites of IGF-1R, which were blocked by AG1024. In addition, both ET-1 and Ang II evoked tyrosine phosphorylation of c-Src, a nonreceptor PTK, whereas pharmacological inhibition of c-Src PTK activity by PP2, a specific inhibitor of Src-family tyrosine kinase, significantly reduced PKB phosphorylation as well as tyrosine phosphorylation of IGF-1R induced by the 2 vasoactive peptides. Furthermore, protein and DNA synthesis enhanced by ET-1 and Ang II were attenuated by AG1024 and PP2. In conclusion, these data suggest that IGF-1R PTK and c-Src PTK play a critical role in mediating PKB phosphorylation as well as hypertrophic and proliferative responses induced by ET-1 and Ang II in A10 VSMC.
Collapse
Affiliation(s)
- Ali Bouallegue
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Technopole Angus Campus, and Department of Medicine, University of Montreal, Montréal, Quebec, Canada
| | - George Vardatsikos
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Technopole Angus Campus, and Department of Medicine, University of Montreal, Montréal, Quebec, Canada
| | - Ashok K. Srivastava
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Technopole Angus Campus, and Department of Medicine, University of Montreal, Montréal, Quebec, Canada
| |
Collapse
|
109
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
110
|
Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 2009; 30:653-61. [PMID: 19910640 DOI: 10.1161/atvbaha.108.181610] [Citation(s) in RCA: 458] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species are ubiquitous signaling molecules in biological systems. Four members of the NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species in the vasculature: Nox1, Nox2, Nox4, and Nox5. Signaling cascades triggered by stresses, hormones, vasoactive agents, and cytokines control the expression and activity of these enzymes and of their regulatory subunits, among which p22phox, p47phox, Noxa1, and p67phox are present in blood vessels. Vascular Nox enzymes are also regulated by Rac, ClC-3, Poldip2, and protein disulfide isomerase. Multiple Nox subtypes, simultaneously present in different subcellular compartments, produce specific amounts of superoxide, some of which is rapidly converted to hydrogen peroxide. The identity and location of these reactive oxygen species, and of the enzymes that degrade them, determine their downstream signaling pathways. Nox enzymes participate in a broad array of cellular functions, including differentiation, fibrosis, growth, proliferation, apoptosis, cytoskeletal regulation, migration, and contraction. They are involved in vascular pathologies such as hypertension, restenosis, inflammation, atherosclerosis, and diabetes. As our understanding of the regulation of these oxidases progresses, so will our ability to alter their functions and associated pathologies.
Collapse
Affiliation(s)
- Bernard Lassègue
- Emory University School of Medicine, Division of Cardiology, 1639 Pierce Drive, WMB 319, Atlanta, GA 30322, USA
| | | |
Collapse
|
111
|
Zhang HB, Wen JK, Wang YY, Zheng B, Han M. Flavonoids from Inula britannica L. inhibit injury-induced neointimal formation by suppressing oxidative-stress generation. JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:176-183. [PMID: 19559080 DOI: 10.1016/j.jep.2009.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/21/2009] [Accepted: 05/24/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY We aimed to investigate whether and how the total flavonoid extracts (TFE) from Inula britannica L. block neointimal hyperplasia induced by balloon injury in rats. MATERIALS AND METHODS Rats were administered orally TFE doses of 12.5, 25 and 50 mg/kg/d by gastric gavage from 3 days before balloon injury to 14 days after the injury. The ratio of intima (I) to media (M) thickness (I/M) in carotid arteries was examined by morphological analyses. The MDA content and SOD activity in plasma were measured. The O(2)(-) production in vascular tissues was detected in situ. The expression of p47(phox) in carotid arteries was analyzed by Western blot analysis and immunohistochemistry. RESULTS The rats treated with TFE 50 mg/kg/d showed a reduction in neointimal hyperplasia, and the ratio of I/M of balloon injured-carotid arteries was significantly reduced by over 70% after TFE treatment, compared with the injured group. The inhibitory effect of TFE on neointimal hyperplasia was almost consistent with that of atorvastatin, a positive control. The plasma SOD activity was obviously increased by TFE treatment (P<0.01), while plasma MDA production was markedly decreased by TFE treatment (P<0.05). On day 14 after balloon injury, the carotid arteries showed an increase in O(2)(-) production that was most evident in the neointimal and medial layer of the vessel. Thus, TFE significantly inhibited injury-induced O(2)(-) production and p47(phox) expression in carotid arteries. CONCLUSION Our results suggest that TFE inhibit the neointimal hyperplasia after balloon injury, at least partly, by suppressing oxidative-stress generation.
Collapse
Affiliation(s)
- Hong-Bing Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, PR China
| | | | | | | | | |
Collapse
|
112
|
Singleton PA, Pendyala S, Gorshkova IA, Mambetsariev N, Moitra J, Garcia JGN, Natarajan V. Dynamin 2 and c-Abl are novel regulators of hyperoxia-mediated NADPH oxidase activation and reactive oxygen species production in caveolin-enriched microdomains of the endothelium. J Biol Chem 2009; 284:34964-75. [PMID: 19833721 DOI: 10.1074/jbc.m109.013771] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) generation, particularly by the endothelial NADPH oxidase family of proteins, plays a major role in the pathophysiology associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. We examined potential regulators of ROS production and discovered that hyperoxia treatment of human pulmonary artery endothelial cells induced recruitment of the vesicular regulator, dynamin 2, the non-receptor tyrosine kinase, c-Abl, and the NADPH oxidase subunit, p47(phox), to caveolin-enriched microdomains (CEMs). Silencing caveolin-1 (which blocks CEM formation) and/or c-Abl expression with small interference RNA inhibited hyperoxia-mediated tyrosine phosphorylation and association of dynamin 2 with p47(phox) and ROS production. In addition, treatment of human pulmonary artery endothelial cells with dynamin 2 small interfering RNA or the dynamin GTPase inhibitor, Dynasore, attenuated hyperoxia-mediated ROS production and p47(phox) recruitment to CEMs. Using purified recombinant proteins, we observed that c-Abl tyrosine-phosphorylated dynamin 2, and this phosphorylation increased p47(phox)/dynamin 2 association (change in the dissociation constant (K(d)) from 85.8 to 6.9 nm). Furthermore, exposure of mice to hyperoxia increased ROS production, c-Abl activation, dynamin 2 association with p47(phox), and pulmonary leak, events that were attenuated in the caveolin-1 knock-out mouse confirming a role for CEMs in ROS generation. These results suggest that hyperoxia induces c-Abl-mediated dynamin 2 phosphorylation required for recruitment of p47(phox) to CEMs and subsequent ROS production in lung endothelium.
Collapse
Affiliation(s)
- Patrick A Singleton
- Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
113
|
Ishizawa K, Izawa-Ishizawa Y, Dorjsuren N, Miki E, Kihira Y, Ikeda Y, Hamano S, Kawazoe K, Minakuchi K, Tomita S, Tsuchiya K, Tamaki T. Angiotensin II receptor blocker attenuates PDGF-induced mesangial cell migration in a receptor-independent manner. Nephrol Dial Transplant 2009; 25:364-72. [PMID: 19812233 DOI: 10.1093/ndt/gfp520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Clinical studies have shown that angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are able to provide renoprotection independent of their blood pressure lowering effects. ARBs also are reported to suppress oxidative stress, inflammation and certain other cellular responses in a receptor-independent manner. We investigated the effects of an ARB, olmesartan, on the cell migration induced by platelet-derived growth factor (PDGF), a major mitogen involved in the pathogenesis of glomerulonephritis in rat mesangial cells (RMCs). METHODS Cell migration was determined by a modified Boyden chamber assay. The intracellular signalling pathway was examined by western blotting. AT1 receptor expression was knocked down by small interfering RNAs. The intracellular reactive oxygen species (ROS) was measured by using a fluorescent probe. The O(2)(.-) scavenging activities were studied by the electron paramagnetic resonance-spin trapping method. RESULTS PDGF-induced cell migration was inhibited by olmesartan in AT1 receptor knockdown RMCs. Olmesartan attenuated big mitogen-activated protein (MAP) kinase 1 (BMK1) and Src activation by PDGF in AT1 receptor knockdown RMCs. PDGF-induced BMK1 activation was suppressed by the Src family tyrosine kinase inhibitors, indicating that Src exists upstream of BMK1. The NADPH oxidase inhibitors inhibited not only PDGF-induced BMK1 and Src activation but also RMC migration. The elevation in ROS generation induced by PDGF was decreased by olmesartan. Olmesartan displayed neither directly ROS scavenging activity nor the inhibition of ROS-mediated intracellular signalling in RMCs. CONCLUSIONS Olmesartan attenuates ROS generation by PDGF, leading to the subsequent inhibition of Src/ BMK1/migration in an AT1 receptor-independent manner in RMCs.
Collapse
Affiliation(s)
- Keisuke Ishizawa
- Department of Pharmacology, The Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Singh PP, Mahadi F, Roy A, Sharma P. Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian J Clin Biochem 2009; 24:324-42. [PMID: 23105858 PMCID: PMC3453064 DOI: 10.1007/s12291-009-0062-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type-2 (DMT-2) is a hyperglycemic syndrome with several characteristic features. It continues to rise unabatedly in all pockets of the world, parallels with affluence and can be controlled but not cured. It has a definite involvement of genetic component but environmental factors play overwhelmingly dominant role in etiopathogenesis. Insulin resistance (IR) and obesity are singular instigators of DMT-2. The various events cause critical defects in insulin signaling cascade followed by beta-cell dysfunction. Over a period of time, numerous other metabolic aberrations develop, resulting in diabetic complications which could be both vascular (cardiovascular complications, nephropathy, neuropathy, retinopathy and embryopathy) or a-vascular (cataract and glaucoma etc). It has been proposed that all these abnormal events are initiated or activated by a common mechanism of superoxide anion, which is accompanied with generation of a variety of reactive oxygen species (ROS), reactive nitrogen specie (RNS) and resultant heightened oxidative stress (OS). Provoked OS causes IR and altered gene expressions. Hyperglycemia induces OS through multiple routes: a)stimulated polyol pathway where in ≤ 30% glucose can be diverted to sorbitol and fructose, b)increased transcription of genes for proinflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1) c) activation of protein kinase-C (PKC) leading to several molecular changes d)increased synthesis of Advanced Glycation End Products (AGEs) e)changes in a receptor far AGEs and f) autooxidation of glucose with formation of ketoimines and AGEs. All these processes are accompanied with alteration in redox status, ROS, RNS and OS which trigger DMT-2 and its complications. Initial hurriedly planned and executed experimental and clinical studies showed promising results of antioxidant therapies, but recent studies indicate that excess intake/supplement may have adverse outcomes including increased mortality. It is advocated that antioxidants should be given only if preexisting deficiency is present. Selection of antioxidant is another important aspect. Lastly but most importantly the impact of OS is not obligatory but facultative. As such only those diabetic patients will be benefited by antioxidant therapies that have impelling punch of prooxidants.
Collapse
Affiliation(s)
- P. P. Singh
- Department of Biochemistry, Era’s Lucknow Medical College, Sarfarazganj, Lucknow, Uttar Pradesh India
- Department of Biochemistry, Era’s Lucknow Medical College, Sarfarazganj, Lucknow, 226003 India
| | - Farzana Mahadi
- Department of Biochemistry, Era’s Lucknow Medical College, Sarfarazganj, Lucknow, Uttar Pradesh India
| | - Ajanta Roy
- Department of Biochemistry, Era’s Lucknow Medical College, Sarfarazganj, Lucknow, Uttar Pradesh India
| | - Praveen Sharma
- Department of Biochemistry, SMS Medical College Jaipur, Rajasthan, India
| |
Collapse
|
115
|
Abstract
PURPOSE OF REVIEW Molecular mechanisms contributing to the pathoetiology of hypertension are complex, involving many interacting systems such as signaling through G protein-coupled receptors, the renin-angiotensin system, vascular inflammation and remodeling, vascular senescence and aging and developmental programming, as highlighted in the current issue of the journal. Common to these systems is NADPH oxidase-derived reactive oxygen species (ROS). This editorial highlights current concepts relating to the production of ROS in hypertension and focuses on the Nox family NADPH oxidases, major sources of free radicals in the cardiovascular and renal systems. RECENT FINDINGS ROS play a major role as intracellular signaling molecules to regulate normal biological cellular responses. In pathological conditions, loss of redox homeostasis contributes to vascular oxidative damage. Recent evidence indicates that specific enzymes, the Nox family of NADPH oxidases, have the sole function of generating ROS in a highly regulated fashion in physiological conditions, and that in disease states, hyperactivation of Noxes contributes to oxidative stress and consequent cardiovascular and renal injury. The Nox family comprises seven members, Nox1-Nox7. Nox1, Nox2 (gp91phox-containing NADPH oxidase), Nox4 and Nox5 have been identified in the cardiovascular-renal systems and have been implicated in the pathophysiology of cardiovascular and renal disease. SUMMARY Noxes, which are differentially regulated in hypertension, are major sources of cardiovascular and renal oxidative stress. This has evoked considerable interest because of the possibilities that therapies targeted against specific Nox isoforms to decrease ROS generation or to increase nitric oxide availability or both may be useful in minimizing vascular injury and renal dysfunction, and thereby prevent or regress target organ damage associated with hypertension.
Collapse
|
116
|
Jiang F, Drummond GR, Dusting GJ. Suppression of Oxidative Stress in the Endothelium and Vascular Wall. ACTA ACUST UNITED AC 2009; 11:79-88. [PMID: 15370067 DOI: 10.1080/10623320490482600] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
There is growing evidence that oxidative stress, meaning an excessive production of reactive oxygen and nitrogen species, underlies many forms of cardiovascular disease. The major source of oxidative stress in the artery wall is an NADPH oxidase. This enzyme complex in vascular cells, including endothelium, differs from that in phagocytic leucocytes in both biochemical structure and functions. The crucial flavin-containing catalytic subunits Nox1 and Nox4 are not present in leucocytes, but are highly expressed in vascular cells and upregulated in vascular remodeling, such as that found in hypertension and atherosclerosis. This offers the opportunity to develop "vascular specific" NADPH oxidase inhibitors that do not compromise the essential physiological signaling and phagocytic function carried out by reactive oxygen and nitrogen molecules. Although many conventional antioxidants fail to significantly affect outcomes in cardiovascular disease, targeted inhibitors of NADPH oxidase that block the source of oxidative stress in the vasculature are more likely to prevent the deterioration of vascular function that leads to stroke and heart attack.
Collapse
Affiliation(s)
- Fan Jiang
- Howard Florey Institute, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
117
|
Oakley FD, Abbott D, Li Q, Engelhardt JF. Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal 2009; 11:1313-33. [PMID: 19072143 PMCID: PMC2842130 DOI: 10.1089/ars.2008.2363] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and/or Rac1), ROS processing enzymes (SOD1 and/or peroxiredoxins), chloride channels capable of mediating superoxide transport and/or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia/reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redox-dependent effector functions through the spatial and temporal regulation of ROS as second messengers.
Collapse
Affiliation(s)
- Fredrick D Oakley
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
118
|
Wosniak J, Santos CXC, Kowaltowski AJ, Laurindo FRM. Cross-talk between mitochondria and NADPH oxidase: effects of mild mitochondrial dysfunction on angiotensin II-mediated increase in Nox isoform expression and activity in vascular smooth muscle cells. Antioxid Redox Signal 2009; 11:1265-78. [PMID: 19281299 DOI: 10.1089/ars.2009.2392] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII.
Collapse
Affiliation(s)
- João Wosniak
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | |
Collapse
|
119
|
Yatabe J, Sanada H, Yatabe MS, Hashimoto S, Yoneda M, Felder RA, Jose PA, Watanabe T. Angiotensin II type 1 receptor blocker attenuates the activation of ERK and NADPH oxidase by mechanical strain in mesangial cells in the absence of angiotensin II. Am J Physiol Renal Physiol 2009; 296:F1052-60. [PMID: 19261744 PMCID: PMC4067119 DOI: 10.1152/ajprenal.00580.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/25/2009] [Indexed: 01/29/2023] Open
Abstract
It has been reported that mechanical strain activates extracellular signal-regulated protein kinases (ERK) without the involvement of angiotensin II (Ang II) in cardiomyocytes. We examined the effects of mechanical strain on ERK phosphorylation levels in the absence of Ang II using rat mesangial cells. The ratio of phosphorylated ERK (p-ERK) to total ERK expression was increased by cyclic mechanical strain in a time- and elongation strength-dependent manner. With olmesartan [Ang II type 1 receptor (AT1R) antagonist] pretreatment, p-ERK plateau levels decreased in a dose-dependent manner (EC(50) = 1.3 x 10(-8) M, maximal inhibition 50.6 +/- 11.0% at 10(-5) M); a similar effect was observed with RNA interference against Ang II type 1A receptor (AT(1A)R) and Tempol, a superoxide dismutase mimetic. In addition to the inhibition of p-ERK levels, olmesartan blocked the increase in cell surface and phosphorylated p47(phox) induced by mechanical strain and also lowered the mRNA expression levels of NADPH oxidase subunits. These results demonstrate that mechanical strain stimulates AT1R to phosphorylate ERK in mesangial cells in the absence of Ang II. This mechanotransduction mechanism is involved in the oxidative stress caused by NADPH oxidase and is blocked by olmesartan. The inverse agonistic activity of this AT1R blocker may be useful for the prevention of mesangial proliferation and renal damage caused by mechanical strain/oxidative stress regardless of circulating or tissue Ang II levels.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Autocrine Communication/drug effects
- Autocrine Communication/physiology
- Cells, Cultured
- Chelating Agents/pharmacology
- Cytochalasin D/pharmacology
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression/drug effects
- Gene Expression/physiology
- Hypertension, Renal/drug therapy
- Hypertension, Renal/metabolism
- Hypertension, Renal/physiopathology
- Imidazoles/pharmacology
- Male
- Mesangial Cells/cytology
- Mesangial Cells/drug effects
- Mesangial Cells/enzymology
- MicroRNAs/pharmacology
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidase 1
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oxidative Stress/physiology
- Paracrine Communication/drug effects
- Paracrine Communication/physiology
- Phosphorylation/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Stress, Mechanical
- Tetrazoles/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Junichi Yatabe
- Department of Internal Medicine 3, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Garrido AM, Griendling KK. NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol 2009; 302:148-58. [PMID: 19059306 PMCID: PMC2835147 DOI: 10.1016/j.mce.2008.11.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/17/2008] [Accepted: 11/03/2008] [Indexed: 02/07/2023]
Abstract
Over the last decade many studies have demonstrated the importance of reactive oxygen species (ROS) production by NADPH oxidases in angiotensin II (Ang II) signaling, as well as a role for ROS in the development of different diseases in which Ang II is a central component. In this review, we summarize the mechanism of activation of NADPH oxidases by Ang II and describe the molecular targets of ROS in Ang II signaling in the vasculature, kidney and brain. We also discuss the effects of genetic manipulation of NADPH oxidase function on the physiology and pathophysiology of the renin-angiotensin system.
Collapse
|
121
|
Kim HR, Lee GH, Yi Cho E, Chae SW, Ahn T, Chae HJ. Bax inhibitor 1 regulates ER-stress-induced ROS accumulation through the regulation of cytochrome P450 2E1. J Cell Sci 2009; 122:1126-33. [DOI: 10.1242/jcs.038430] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study investigated the molecular mechanism by which Bax inhibitor 1 (BI1) abrogates the accumulation of reactive oxygen species (ROS) in the endoplasmic reticulum (ER). Electron uncoupling between NADPH-dependent cytochrome P450 reductase (NPR) and cytochrome P450 2E1 (P450 2E1) is a major source of ROS on the ER membrane. ER stress produced ROS accumulation and lipid peroxidation of the ER membrane, but BI1 reduced this accumulation. Under ER stress, expression of P450 2E1 in control cells was upregulated more than in BI1-overexpressing cells. In control cells, inhibiting P450 2E1 through chemical or siRNA approaches suppressed ROS accumulation, ER membrane lipid peroxidation and the resultant cell death after ER stress. However, it had little effect in BI1-overexpressing cells. In addition, BI1 knock down also increased ROS accumulation and expression of P450 2E1. In a reconstituted phospholipid membrane containing purified BI1, NPR and P450 2E1, BI1 dose-dependently decreased the production of ROS. BI1 bound to NPR with higher affinity than P450 2E1. Furthermore, BI1 overexpression reduced the interaction of NPR and P450 2E1, and decreased the catalytic activity of P450 2E1, suggesting that the flow of electrons from NPR to P450 2E1 can be modulated by BI1. In summary, BI1 reduces the accumulation of ROS and the resultant cell death through regulating P450 2E1.
Collapse
Affiliation(s)
- Hyung-Ryong Kim
- Department of Dental Pharmacology, School of Dentistry, Wonkwang University, Iksan, Chonbuk, 570-749, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, 560-182, Republic of Korea
| | - Eun Yi Cho
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Soo-Wan Chae
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, 560-182, Republic of Korea
- Clinical Trial Center, Chonbuk Hospital, Jeonju, 561-712, Republic of Korea
| | - Taeho Ahn
- Department of Biochemistry, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, 560-182, Republic of Korea
- Clinical Trial Center, Chonbuk Hospital, Jeonju, 561-712, Republic of Korea
| |
Collapse
|
122
|
Usatyuk PV, Gorshkova IA, He D, Zhao Y, Kalari SK, Garcia JGN, Natarajan V. Phospholipase D-mediated activation of IQGAP1 through Rac1 regulates hyperoxia-induced p47phox translocation and reactive oxygen species generation in lung endothelial cells. J Biol Chem 2009; 284:15339-52. [PMID: 19366706 DOI: 10.1074/jbc.m109.005439] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidic acid generated by the activation of phospholipase D (PLD) functions as a second messenger and plays a vital role in cell signaling. Here we demonstrate that PLD-dependent generation of phosphatidic acid is critical for Rac1/IQGAP1 signal transduction, translocation of p47(phox) to cell periphery, and ROS production. Exposure of [(32)P]orthophosphate-labeled human pulmonary artery endothelial cells (HPAECs) to hyperoxia (95% O(2) and 5% CO(2)) in the presence of 0.05% 1-butanol, but not tertiary-butanol, stimulated PLD as evidenced by accumulation of [(32)P]phosphatidylbutanol. Infection of HPAECs with adenoviral constructs of PLD1 and PLD2 wild-type potentiated hyperoxia-induced PLD activation and accumulation of O(2)(.)/reactive oxygen species (ROS). Conversely, overexpression of catalytically inactive mutants of PLD (hPLD1-K898R or mPLD2-K758R) or down-regulation of expression of PLD with PLD1 or PLD2 siRNA did not augment hyperoxia-induced [(32)P]phosphatidylbutanol accumulation and ROS generation. Hyperoxia caused rapid activation and redistribution of Rac1, and IQGAP1 to cell periphery, and down-regulation of Rac1, and IQGAP1 attenuated hyperoxia-induced tyrosine phosphorylation of Src and cortactin and ROS generation. Further, hyperoxia-mediated redistribution of Rac1, and IQGAP1 to membrane ruffles, was attenuated by PLD1 or PLD2 small interference RNA, suggesting that PLD is upstream of the Rac1/IQGAP1 signaling cascade. Finally, small interference RNA for PLD1 or PLD2 attenuated hyperoxia-induced cortactin tyrosine phosphorylation and abolished Src, cortactin, and p47(phox) redistribution to cell periphery. These results demonstrate a role of PLD in hyperoxia-mediated IQGAP1 activation through Rac1 in tyrosine phosphorylation of Src and cortactin, as well as in p47(phox) translocation and ROS formation in human lung endothelial cells.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal 2009; 11:841-60. [PMID: 18828698 PMCID: PMC2850292 DOI: 10.1089/ars.2008.2231] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47(phox), p67(phox), and Rac1) and membrane-associated components (Noxes and p22(phox)). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase-derived ROS in the pathobiology of lung diseases.
Collapse
|
124
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1060] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
125
|
|
126
|
Wilson SJ, Cavanagh CC, Lesher AM, Frey AJ, Russell SE, Smyth EM. Activation-dependent stabilization of the human thromboxane receptor: role of reactive oxygen species. J Lipid Res 2009; 50:1047-56. [PMID: 19151335 DOI: 10.1194/jlr.m800447-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thromboxane A(2) (TxA(2)), the principle product of platelet COX-1-dependent arachidonic acid metabolism, directs multiple pro-atherogenic processes via its receptor, TP. Oxidative challenge offsets TP degradation, a key component in limiting TxA(2)'s actions. Following TP activation, we observed cellular reactive oxygen species (ROS) generation coincident with increased TP expression. We examined the link between TP-evoked ROS and TP regulation. TP expression was augmented in TPalpha-transfected cells treated with a TxA(2) analog [1S-1alpha,2beta(5Z),3alpha(1E,3R*),4alpha]]-7-[3-(3-hydroxy-4-(4'-iodophenoxy)-1-butenyl)-7-oxabicyclo-[2.2.1]heptan-2-yl]-5-heptenoic acid (IBOP). This was reduced with a cellular antioxidant, N-acetyl cysteine, or two distinct NADPH oxidase inhibitors, diphenyleneiodonium and apocynin. Homologous upregulation of the native TP was also reduced in apocynin-treated aortic smooth muscle cells (ASMCs) and was absent in ASMCs lacking an NADPH oxidase subunit (p47(-/-)). TP transcription was not increased in IBOP-treated cells, indicating a posttranscriptional mechanism. IBOP induced translocation of TPalpha to the Golgi and reduced degradation of the immature form of the receptor. These data are consistent with a ROS-dependent mechanism whereby TP activation enhanced TP stability early in posttranscriptional biogenesis. Given the significant role played by TP and ROS in perturbed cardiovascular function, the convergence of TP on ROS-generating pathways for regulation of TxA(2)-dependent events may be critical for cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Wilson
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
127
|
Wu R, Zeng Y. Does angiotensin II-aldosterone have a role in radiation-induced heart disease? Med Hypotheses 2008; 72:263-6. [PMID: 19095366 DOI: 10.1016/j.mehy.2008.09.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 08/18/2008] [Accepted: 09/03/2008] [Indexed: 11/18/2022]
Abstract
Radiation-induced heart disease (RIHD) is the potentially lethal side effect of radiation therapy. Clinical trials and epidemiologic studies show the adverse impact of RIHD on the outcome of long-term cancer survivors. However, what factors affect RIHD and how RIHD develop are not yet clear. On the other hand, as we all known, angiotensin II (Ang II) and aldosterone play a vital pathophysiological role in the common cardiovascular disease, including hypertension, atherosclerosis, heart failure, myocardial infarction and cardiac hypertrophy. The pathophysiology of these various syndromes is similar, starting by prior microvascular injury that leads to subsequent myocardium ischemia, all of which cause late fibrous scars. So the pathophysiology of RIHD is similar to the common heart diseases induced by angiotensin-aldosterone. But the effect of angiotensin-aldosterone on RIHD has little been studied. Thus, in the present hypothesis we suggest that angiotensin II-aldosterone plays an important pathophysical role in RIHD, which was confirmed by our pilot study.
Collapse
Affiliation(s)
- Rong Wu
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, PR China
| | | |
Collapse
|
128
|
Nistala R, Whaley-Connell A, Sowers JR. Redox control of renal function and hypertension. Antioxid Redox Signal 2008; 10:2047-89. [PMID: 18821850 PMCID: PMC2582196 DOI: 10.1089/ars.2008.2034] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/05/2008] [Accepted: 07/05/2008] [Indexed: 12/19/2022]
Abstract
Loss of redox homeostasis and formation of excessive free radicals play an important role in the pathogenesis of kidney disease and hypertension. Free radicals such as reactive oxygen species (ROS) are necessary in physiologic processes. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways in the kidney, which in turn lead to reduced vascular compliance and proteinuria. The kidney is susceptible to the influence of various extracellular and intracellular cues, including the renin-angiotensin-aldosterone system (RAAS), hyperglycemia, lipid peroxidation, inflammatory cytokines, and growth factors. Redox control of kidney function is a dynamic process with reversible pro- and anti-free radical processes. The imbalance of redox homeostasis within the kidney is integral in hypertension and the progression of kidney disease. An emerging paradigm exists for renal redox contribution to hypertension.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri-Columbia School of Medicine, Department of Internal Medicine, Columbia, Missouri 65212, USA.
| | | | | |
Collapse
|
129
|
|
130
|
Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HHHW, Harrison DG, Griendling KK. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 2008; 45:1340-51. [PMID: 18760347 PMCID: PMC2630771 DOI: 10.1016/j.freeradbiomed.2008.08.013] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
NADPH oxidases are major sources of superoxide (O2*-) and hydrogen peroxide (H2O2) in vascular cells. Production of these reactive oxygen species (ROS) is essential for cell proliferation and differentiation, while ROS overproduction has been implicated in hypertension and atherosclerosis. It is known that the heme-containing catalytic subunits Nox1 and Nox4 are responsible for oxygen reduction in vascular smooth muscle cells from large arteries. However, the exact mechanism of ROS production by NADPH oxidases is not completely understood. We hypothesized that Nox1 and Nox4 play distinct roles in basal and angiotensin II (AngII)-stimulated production of O2*- and H2O2. Nox1 and Nox4 expression in rat aortic smooth muscle cells (RASMCs) was selectively reduced by treatment with siNox4 or antisense Nox1 adenovirus. Production of O2*- and H2O2 in intact RASMCs was analyzed by dihydroethidium and Amplex Red assay. Activity of NADPH oxidases was measured by NADPH-dependent O2*- and H2O2 production using electron spin resonance (ESR) and 1-hydroxy-3-carboxypyrrolidine (CPH) in the membrane fraction in the absence of cytosolic superoxide dismutase. It was found that production of O2*- by quiescent RASMC NADPH oxidases was five times less than H2O2 production. Stimulation of cells with AngII led to a 2-fold increase of O2*- production by NADPH oxidases, with a small 15 to 30% increase in H2O2 formation. Depletion of Nox4 in RASMCs led to diminished basal H2O2 production, but did not affect O2*- or H2O2 production stimulated by AngII. In contrast, depletion of Nox1 in RASMCs inhibited production of O2*- and AngII-stimulated H2O2 in the membrane fraction and intact cells. Our data suggest that Nox4 produces mainly H2O2, while Nox1 generates mostly O2*- that is later converted to H2O2. Therefore, Nox4 is responsible for basal H2O2 production, while O2*- production in nonstimulated and AngII-stimulated cells depends on Nox1. The difference in the products generated by Nox1 and Nox4 may help to explain the distinct roles of these NADPH oxidases in cell signaling. These findings also provide important insight into the origin of H2O2 in vascular cells, and may partially account for the limited pharmacological effect of antioxidant treatments with O2*- scavengers that do not affect H2O2.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
131
|
Chao HH, Liu JC, Lin JW, Chen CH, Wu CH, Cheng TH. Uric acid stimulates endothelin-1 gene expression associated with NADPH oxidase in human aortic smooth muscle cells. Acta Pharmacol Sin 2008; 29:1301-1312. [PMID: 18954524 DOI: 10.1111/j.1745-7254.2008.00877.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIM Recent experimental and human studies have shown that hyperuricemia is associated with hypertension and cardiovascular diseases. Elevated levels of endothelin-1 (ET-1) has been regarded as one of the most powerful independent predictors of cardiovascular diseases. For investigating whether uric acidinduced vascular diseases are related to ET-1, the uric acid-induced ET-1 expression in human aortic smooth muscle cells (HASMC) was examined. METHODS Cultured HASMC treated with uric acid, cell proliferation and ET-1 expression were examined. Antioxidant pretreatments on uric acid-induced extracellular signal-regulated kinases (ERK) phosphorylation were carried out to elucidate the redox-sensitive pathway in proliferation and ET-1 gene expression. RESULTS Uric acid was found to increase HASMC proliferation, ET-1 expression and reactive oxygen species production. The ability of both N-acetylcysteine and apocynin (1-[4-hydroxy-3-methoxyphenyl]ethanone, a NADPH oxidase inhibitor) to inhibit uric acid-induced ET-1 secretion and cell proliferation suggested the involvement of intracellular redox pathways. Furthermore, apocynin, and p47phox small interfering RNA knockdown inhibited ET-1 secretion and cell proliferation induced by uric acid. Inhibition of ERK by U0126 (1,4-diamino-2,3-dicyano- 1,4-bis[2-aminophenylthio]butadiene) significantly suppressed uric acid-induced ET-1 expression, implicating this pathway in the response to uric acid. In addition, uric acid increased the transcription factor activator protein-1 (AP-1) mediated reporter activity, as well as the ERK phosphorylation. Mutational analysis of the ET-1 gene promoter showed that the AP-1 binding site was an important cis-element in uric acid-induced ET-1 gene expression. CONCLUSION This is the first observation of ET-1 regulation by uric acid in HASMC, which implicates the important role of uric acid in the vascular changes associated with hypertension and vascular diseases.
Collapse
|
132
|
Puddu P, Puddu GM, Cravero E, Rosati M, Muscari A. The molecular sources of reactive oxygen species in hypertension. Blood Press 2008; 17:70-7. [PMID: 18568695 DOI: 10.1080/08037050802029954] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In both animal models and humans, increased blood pressure has been associated with oxidative stress in the vasculature, i.e. an excessive endothelial production of reactive oxygen species (ROS), which may be both a cause and an effect of hypertension. In addition to NADPH oxidase, the best characterized source of ROS, several other enzymes may contribute to ROS generation, including nitric oxide synthase, lipoxygenases, cyclo-oxygenases, xanthine oxidase and cytochrome P450 enzymes. It has been suggested that also mitochondria could be considered a major source of ROS: in situations of metabolic perturbation, increased mitochondrial ROS generation might trigger endothelial dysfunction, possibly contributing to the development of hypertension. However, the use of antioxidants in the clinical setting induced only limited effects on human hypertension or cardiovascular endpoints. More clinical studies are needed to fully elucidate this so called "oxidative paradox" of hypertension.
Collapse
Affiliation(s)
- Paolo Puddu
- Department of Internal Medicine, Aging and Nephrological Diseases, University of Bologna and S Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | | | | |
Collapse
|
133
|
Kinoshita H, Matsuda N, Kaba H, Hatakeyama N, Azma T, Nakahata K, Kuroda Y, Tange K, Iranami H, Hatano Y. Roles of Phosphatidylinositol 3-Kinase-Akt and NADPH Oxidase in Adenosine 5′-Triphosphate–Sensitive K
+
Channel Function Impaired by High Glucose in the Human Artery. Hypertension 2008; 52:507-13. [DOI: 10.1161/hypertensionaha.108.118216] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was designed to examine roles of the phosphatidylinositol 3-kinase-Akt pathway and reduced nicotinamide-adenine dinucleotide phosphate oxidases in the reduced ATP-sensitive K
+
channel function via superoxide produced by high glucose in the human artery. We evaluated the activity of the phosphatidylinositol 3-kinase-Akt pathway, as well as reduced nicotinamide-adenine dinucleotide phosphate oxidases, the intracellular levels of superoxide and ATP-sensitive K
+
channel function in the human omental artery without endothelium. Levels of the p85-α subunit and reduced nicotinamide-adenine dinucleotide phosphate oxidase subunits, including p47phox, p22phox, and Rac-1, increased in the membrane fraction from arteries treated with
d
-glucose (20 mmol/L) accompanied by increased intracellular superoxide production. High glucose simultaneously augmented Akt phosphorylation at Ser 473, as well as Thr 308 in the human vascular smooth muscle cells. A phosphatidylinositol 3-kinase inhibitor LY294002, as well as tiron and apocynin, restored vasorelaxation and hyperpolarization in response to an ATP-sensitive K
+
channel opener levcromakalim. Therefore, it can be concluded that the activation of the phosphatidylinositol 3-kinase-Akt pathway, in combination with the translocation of p47phox, p22phox, and Rac-1, contributes to the superoxide production induced by high glucose, resulting in the impairment of ATP-sensitive K
+
channel function in the human visceral artery.
Collapse
Affiliation(s)
- Hiroyuki Kinoshita
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Naoyuki Matsuda
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Hikari Kaba
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Noboru Hatakeyama
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Toshiharu Azma
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Katsutoshi Nakahata
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Yasuhiro Kuroda
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Kazuaki Tange
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Hiroshi Iranami
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Yoshio Hatano
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| |
Collapse
|
134
|
Papparella I, Ceolotto G, Montemurro D, Antonello M, Garbisa S, Rossi G, Semplicini A. Green tea attenuates angiotensin II-induced cardiac hypertrophy in rats by modulating reactive oxygen species production and the Src/epidermal growth factor receptor/Akt signaling pathway. J Nutr 2008; 138:1596-601. [PMID: 18716156 DOI: 10.1093/jn/138.9.1596] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously documented a clear-cut antihypertensive effect of green teat extract (GTE), which was associated with correction of endothelial dysfunction and prevention of left ventricular hypertrophy in an angiotensin II (Ang II)-dependent model of hypertension, but the molecular mechanisms remain to be defined. As several effects of Ang II involve production of reactive oxygen species (ROS) and activation of 2nd messengers, such as mitogen-activated protein kinase (MAPK) and Akt, we investigated the effect of GTE on these signal transduction pathways in Ang II-treated rats. Rats were treated for 2 wk with Ang II infusion (700 mug.kg(-1).d(-1); n = 6, via osmotic minipumps), Ang II plus GTE (6 g/L) dissolved in the drinking water; n = 6), or vehicle (n = 6) to serve as controls. Blood pressure was monitored by telemetry throughout the study. The activation and expression of NAD(P)H oxidase subunits, protein kinase C isoforms, Src, epidermal growth factor receptor (EGFR), Akt, and MAPK were determined in the heart in vitro through immunoprecipitation and western blot analysis with specific antibodies. NAD(P)H oxidase enzymatic activity was measured by cytochrome c reduction assay. GTE blunted Ang II-induced blood pressure increase and cardiac hypertrophy. In Ang II-treated rats, GTE decreased the expression of the NAD(P)H oxidase subunit gp91(phox) and the translocation of Rac-1, as well as NAD(P)H oxidase enzymatic activity. Furthermore, it specifically reduced Ang II-induced Src, EGFR, and Akt phosphorylation. These results show that GTE blunts Ang II-induced cardiac hypertrophy specifically by regulating ROS production and the Src/EGFR/Akt signaling pathway activated by Ang II.
Collapse
Affiliation(s)
- Italia Papparella
- Department of Clinical and Experimental Medicine and Experimental Biomedical Sciences, University of Padova, 35128 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
135
|
Tabet F, Schiffrin EL, Callera GE, He Y, Yao G, Ostman A, Kappert K, Tonks NK, Touyz RM. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR. Circ Res 2008; 103:149-58. [PMID: 18566342 DOI: 10.1161/circresaha.108.178608] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) signaling in vascular smooth muscle cells (VSMCs) involves reactive oxygen species (ROS) through unknown mechanisms. We propose that Ang II induces phosphorylation of growth signaling kinases by redox-sensitive regulation of protein tyrosine phosphatases (PTP) in VSMCs and that augmented Ang II signaling in spontaneously hypertensive rats (SHRs) involves oxidation/inactivation and blunted phosphorylation of the PTP, SHP-2. PTP oxidation was assessed by the in-gel PTP method. SHP-2 expression and activity were evaluated by immunoblotting and by a PTP activity assay, respectively. SHP-2 and Nox1 were downregulated by siRNA. Ang II induced oxidation of multiple PTPs, including SHP-2. Basal SHP-2 content was lower in SHRs versus WKY. Ang II increased SHP-2 phosphorylation and activity with blunted responses in SHRs. Ang II-induced SHP-2 effects were inhibited by valsartan (AT(1)R blocker), apocynin (NAD(P)H oxidase inhibitor), and Nox1 siRNA. Ang II stimulation increased activation of ERK1/2, p38MAPK, and AKT, with enhanced effects in SHR. SHP-2 knockdown resulted in increased AKT phosphorylation, without effect on ERK1/2 or p38MAPK. Nox1 downregulation attenuated Ang II-mediated AKT activation in SHRs. Hence, Ang II regulates PTP/SHP-2 in VSMCs through AT(1)R and Nox1-based NAD(P)H oxidase via two mechanisms, oxidation and phosphorylation. In SHR Ang II-stimulated PTP oxidation/inactivation is enhanced, basal SHP-2 expression is reduced, and Ang II-induced PTP/SHP-2 phosphorylation is blunted. These SHP-2 actions are associated with augmented AKT signaling. We identify a novel redox-sensitive SHP-2-dependent pathway for Ang II in VSMCs. SHP-2 dysregulation by increased Nox1-derived ROS in SHR is associated with altered Ang II-AKT signaling.
Collapse
Affiliation(s)
- Fatiha Tabet
- Kidney Research Institute, OHRI/University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Laurindo FRM, Fernandes DC, Amanso AM, Lopes LR, Santos CXC. Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: pathophysiological implications in vascular diseases. Antioxid Redox Signal 2008; 10:1101-13. [PMID: 18373437 DOI: 10.1089/ars.2007.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular cell NADPH oxidase complexes are key sources of signaling reactive oxygen species (ROS) and contribute to disease pathophysiology. However, mechanisms that fine-tune oxidase-mediated ROS generation are incompletely understood. Besides known regulatory subunits, upstream mediators and scaffold platforms reportedly control and localize ROS generation. Some evidence suggest that thiol redox processes may coordinate oxidase regulation. We hypothesized that thiol oxidoreductases are involved in this process. We focused on protein disulfide isomerase (PDI), a ubiquitous dithiol disulfide oxidoreductase chaperone from the endoplasmic reticulum, given PDI's unique versatile role as oxidase/isomerase. PDI is also involved in protein traffic and can translocate to the cell surface, where it participates in cell adhesion and nitric oxide internalization. We recently provided evidence that PDI exerts functionally relevant regulation of NADPH oxidase activity in vascular smooth muscle and endothelial cells, in a thiol redox-dependent manner. Loss-of-function experiments indicate that PDI supports angiotensin II-mediated ROS generation and Akt phosphorylation. In addition, PDI displays confocal co-localization and co-immunoprecipitates with oxidase subunits, indicating close association. The mechanisms of such interaction are yet obscure, but may involve subunit assembling stabilization, assistance with traffic, and subunit disposal. These data may clarify an integrative view of oxidase activation in disease conditions, including stress responses.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute InCor, University of São Paulo School of Medicine, Brazil.
| | | | | | | | | |
Collapse
|
137
|
Gupte SA, Wolin MS. Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxid Redox Signal 2008; 10:1137-52. [PMID: 18315496 PMCID: PMC2443404 DOI: 10.1089/ars.2007.1995] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 12/03/2007] [Accepted: 12/07/2007] [Indexed: 02/02/2023]
Abstract
It has been well known for >100 years that systemic blood vessels dilate in response to decreases in oxygen tension (hypoxia; low PO2), and this response appears to be critical to supply blood to the stressed organ. Conversely, pulmonary vessels constrict to a decrease in alveolar PO2 to maintain a balance in the ventilation-to-perfusion ratio. Currently, although little question exists that the PO2 affects vascular reactivity and vascular smooth muscle cells (VSMCs) act as oxygen sensors, the molecular mechanisms involved in modulating the vascular reactivity are still not clearly understood. Many laboratories, including ours, have suggested that the intracellular calcium concentration ([Ca2+]i), which regulates vasomotor function, is controlled by free radicals and redox signaling, including NAD(P)H and glutathione (GSH) redox. In this review article, therefore, we discuss the implications of redox and oxidant alterations seen in pulmonary and systemic hypertension, and how key targets that control [Ca2+]i, such as ion channels, Ca2+ release from internal stores and uptake by the sarcoplasmic reticulum, and the Ca2+ sensitivity to the myofilaments, are regulated by changes in intracellular redox and oxidants associated with vascular PO2sensing in physiologic or pathophysiologic conditions.
Collapse
Affiliation(s)
- Sachin A Gupte
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
138
|
Montezano AC, Callera GE, Yogi A, He Y, Tostes RC, He G, Schiffrin EL, Touyz RM. Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathways. Arterioscler Thromb Vasc Biol 2008; 28:1511-8. [PMID: 18467645 DOI: 10.1161/atvbaha.108.168021] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Synergistic interactions between aldosterone (Aldo) and angiotensin II (Ang II) have been implicated in vascular inflammation, fibrosis, and remodeling. Molecular mechanisms underlying this are unclear. We tested the hypothesis that c-Src activation, through receptor tyrosine kinase transactivation, is critically involved in synergistic interactions between Aldo and Ang II and that it is upstream of promigratory signaling pathways in vascular smooth muscle cells (VSMCs). METHODS AND RESULTS VSMCs from WKY rats were studied. At low concentrations (10(-10) mol/L) Aldo and Ang II alone did not influence c-Src activation, whereas in combination they rapidly increased phosphorylation (P<0.01), an effect blocked by eplerenone (Aldo receptor antagonist) and irbesartan (AT1R blocker). This synergism was attenuated by AG1478 and AG1296 (inhibitors of EGFR and PDGFR, respectively), but not by AG1024 (IGFR inhibitor). Aldo and Ang II costimulation induced c-Src-dependent activation of NAD(P)H oxidase and c-Src-independent activation of ERK1/2 (P<0.05), without effect on ERK5, p38MAPK, or JNK. Aldo/Ang II synergistically activated RhoA/Rho kinase and VSMC migration, effects blocked by PP2, apocynin, and fasudil, inhibitors of c-Src, NADPH oxidase, and Rho kinase, respectively. CONCLUSIONS Aldo/Ang II synergistically activate c-Src, an immediate signaling response, through EGFR and PDGFR, but not IGFR transactivation. This is associated with activation of redox-regulated RhoA/Rho kinase, which controls VSMC migration. Although Aldo and Ang II interact to stimulate ERK1/2, such effects are c-Src-independent. These findings indicate differential signaling in Aldo-Ang II crosstalk and highlight the importance of c-Src in redox-sensitive RhoA, but not ERK1/2 signaling. Blockade of Aldo/Ang II may be therapeutically useful in vascular remodeling associated with abnormal VSMC migration.
Collapse
Affiliation(s)
- A C Montezano
- Ottawa Health Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. ACTA ACUST UNITED AC 2008; 5:338-49. [DOI: 10.1038/ncpcardio1211] [Citation(s) in RCA: 422] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 02/01/2008] [Indexed: 02/07/2023]
|
140
|
Ginnan R, Guikema BJ, Halligan KE, Singer HA, Jourd’heuil D. Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases. Free Radic Biol Med 2008; 44:1232-45. [PMID: 18211830 PMCID: PMC2390910 DOI: 10.1016/j.freeradbiomed.2007.12.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/11/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Inflammation plays a critical role in promoting smooth muscle migration and proliferation during vascular diseases such as postangioplasty restenosis and atherosclerosis. Another common feature of many vascular diseases is the contribution of reactive oxygen (ROS) and reactive nitrogen (RNS) species to vascular injury. Primary sources of ROS and RNS in smooth muscle are several isoforms of NADPH oxidase (Nox) and the cytokine-regulated inducible nitric oxide (NO) synthase (iNOS). One important example of the interaction between NO and ROS is the reaction of NO with superoxide to yield peroxynitrite, which may contribute to the pathogenesis of hypertension. In this review, we discuss the literature that supports an alternate possibility: Nox-derived ROS modulate NO bioavailability by altering the expression of iNOS. We highlight data showing coexpression of iNOS and Nox in vascular smooth muscle demonstrating the functional consequences of iNOS and Nox during vascular injury. We describe the relevant literature demonstrating that the mitogen-activated protein kinases are important modulators of proinflammatory cytokine-dependent expression of iNOS. A central hypothesis discussed is that ROS-dependent regulation of the serine/threonine kinase protein kinase Cdelta is essential to understanding how Nox may regulate signaling pathways leading to iNOS expression. Overall, the integration of nonphagocytic NADPH oxidase with cytokine signaling in general and in vascular smooth muscle in particular is poorly understood and merits further investigation.
Collapse
Affiliation(s)
- Roman Ginnan
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY
| | | | | | - Harold A. Singer
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY
| | - David Jourd’heuil
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY
| |
Collapse
|
141
|
Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis 2008; 202:58-67. [PMID: 18436224 DOI: 10.1016/j.atherosclerosis.2008.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/13/2008] [Accepted: 03/10/2008] [Indexed: 12/29/2022]
Abstract
Chronic administration of the most abundant dietary flavonoid quercetin exerts antihypertensive effects and improves endothelial function. We have investigated the effects of quercetin and its methylated metabolite isorhamnetin (1-10microM) on endothelial dysfunction and superoxide (O(2*)(-)) production induced by endothelin-1 (ET-1, 10nM). ET-1 increased the contractile response induced by phenylephrine and reduced the relaxant responses to acetylcholine in phenylephrine contracted intact aorta, and these effects were prevented by co-incubation with quercetin, isorhamnetin or chelerythrine (protein kinase C (PKC) inhibitor). This endothelial dysfunction was also improved by superoxide dismutase (SOD), apocynin (NADPH oxidase inhibitor) and sepiapterin (tetrahydrobiopterin synthesis substrate). Furthermore, ET-1 increased intracellular O(2*)(-) production in all layers of the vessel, protein expression of NADPH oxidase subunit p47(phox) without affecting p22(phox) expression and lucigenin-enhanced chemiluminescence signal stimulated by calcium ionophore A23187. All these changes were prevented by both quercetin and isorhamnetin. Moreover, apocynin, endothelium denudation and N(G)-nitro-l-arginine methylester (l-NAME, nitric oxide synthase inhibitor) suppressed the ET-1-induced increase in A23187-stimulated O(2*)(-) generation. Moreover, quercetin but not isorhamnetin, inhibited the increased PKC activity induced by ET-1. Taken together these results indicate that ET-1-induced NADPH oxidase up-regulation and eNOS uncoupling via PKC leading to endothelial dysfunction and these effects were prevented by quercetin and isorhamnetin.
Collapse
|
142
|
Abstract
PURPOSE OF REVIEW Angiotensin II regulates vasoconstriction, homeostasis of salt and water, and cardiovascular hypertrophy and remodeling. Angiotensin II is a potent activator of NAD(P)H oxidase in the cardiovascular system, and augments production of reactive oxygen species. Numerous signaling pathways in response to angiotensin II are mediated by reactive oxygen species and oxidative stress is deeply associated with the progression of cardiovascular disease. The purpose of this review is to discuss the mechanism of reactive oxygen species formation and the pathophysiological effects of angiotensin II in the cardiovascular system. RECENT FINDINGS Recent studies have demonstrated novel molecular mechanisms of reactive oxygen species generation by angiotensin II and signaling pathways including cell proliferation, hypertrophy and apoptosis. In spite of these findings that strongly suggest the benefits of angiotensin II inhibition for cardiovascular disease, the clinical effects of angiotensin II-induced reactive oxygen species on the cardiovascular system are still controversial. SUMMARY We focus on the effects of angiotensin II-induced oxidative stress on cardiovascular function and remodeling after discussing the source of reactive oxygen species and novel signaling pathways in response to reactive oxygen species.
Collapse
Affiliation(s)
- Hirofumi Hitomi
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | |
Collapse
|
143
|
Jackson EK, Gillespie DG, Zhu C, Ren J, Zacharia LC, Mi Z. Alpha2-adrenoceptors enhance angiotensin II-induced renal vasoconstriction: role for NADPH oxidase and RhoA. Hypertension 2008; 51:719-26. [PMID: 18250367 DOI: 10.1161/hypertensionaha.107.096297] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alpha(2)-adrenoceptors potentiate renal vascular responses to angiotensin II via coincident signaling at phospholipase C. This leads to increased activation of the phospholipase C/protein kinase C/c-src pathway. Studies suggest that c-src activates the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase/superoxide system, and reactive oxygen species stimulate the RhoA/Rho kinase pathway. Therefore, we hypothesized that NADPH oxidase/superoxide and RhoA/Rho kinase are downstream components of the signal transduction pathway that mediate the interaction between alpha(2)-adrenoceptors and angiotensin II on renal vascular resistance. In rat kidneys, both in vivo and in vitro, intrarenal infusions of angiotensin II increased renal vascular resistance, and UK14,304 (alpha(2)-adrenoceptor agonist) enhanced this response. Intrarenal Tempol (superoxide dismutase mimetic) or Y27632 (Rho kinase inhibitor) abolished the interaction between UK14,304 and angiotensin II both in vivo and in vitro. The interaction was also blocked by inhibitors of NADPH oxidase (in vivo using chronic gp91ds-tat administration and in vitro with diphenyleneiodonium). In cultured preglomerular vascular smooth muscle cells, UK14,304 enhanced angiotensin II-induced intracellular superoxide (2-hydroxyethidium production) and potentiated activation of RhoA (Western blot of activated RhoA bound to the binding domain of rhotekin). The interaction between angiotensin II and UK14,304 on superoxide generation and RhoA activation was blocked by inhibitors of phospholipase C (U73312), protein kinase C (GF109203X), c-src (PP1), NADPH oxidase (diphenyleneiodonium), or superoxide (Tempol). We conclude that NADPH oxidase/superoxide and RhoA/Rho kinase are involved in the interaction between alpha(2)-adrenoceptors and angiotensin II on renal vascular resistance by mediating signaling events downstream of the phospholipase C/protein kinase C/c-src pathway.
Collapse
Affiliation(s)
- Edwin K Jackson
- Center for Clinical Pharmacology, Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. edj+@pitt.edu
| | | | | | | | | | | |
Collapse
|
144
|
Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008; 31 Suppl 2:S170-80. [PMID: 18227481 DOI: 10.2337/dc08-s247] [Citation(s) in RCA: 499] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reactive oxygen species (ROS) influence many physiological processes including host defense, hormone biosynthesis, fertilization, and cellular signaling. Increased ROS production (termed "oxidative stress") has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic kidney disease. A major source for vascular and renal ROS is a family of nonphagocytic NAD(P)H oxidases, including the prototypic Nox2 homolog-based NAD(P)H oxidase, as well as other NAD(P)H oxidases, such as Nox1 and Nox4. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase, and uncoupled nitric oxide synthase. NAD(P)H oxidase-derived ROS plays a physiological role in the regulation of endothelial function and vascular tone and a pathophysiological role in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, important processes underlying cardiovascular and renal remodeling in hypertension and diabetes. These findings have evoked considerable interest because of the possibilities that therapies against nonphagocytic NAD(P)H oxidase to decrease ROS generation and/or strategies to increase nitric oxide (NO) availability and antioxidants may be useful in minimizing vascular injury and renal dysfunction and thereby prevent or regress target organ damage associated with hypertension and diabetes. Here we highlight current developments in the field of reactive oxygen species and cardiovascular disease, focusing specifically on the recently identified novel Nox family of NAD(P)H oxidases in hypertension. We also discuss the potential role of targeting ROS as a therapeutic possibility in the management of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Tamara M Paravicini
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, 451 Smyth Rd., Ottawa, K1H 8M5, Ontario, Canada
| | | |
Collapse
|
145
|
Yogi A, Mercure C, Touyz J, Callera GE, Montezano ACI, Aranha AB, Tostes RC, Reudelhuber T, Touyz RM. Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension 2008; 51:500-6. [PMID: 18195161 DOI: 10.1161/hypertensionaha.107.103192] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phox-containing NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P<0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2- to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P<0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Collapse
Affiliation(s)
- Alvaro Yogi
- Kidney Research Centre, Ontario Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Carey RM. Pathophysiology of Primary Hypertension. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
147
|
Reduced expression of GSTM2 and increased oxidative stress in spontaneously hypertensive rat. Mol Cell Biochem 2007; 309:99-107. [DOI: 10.1007/s11010-007-9647-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 10/31/2007] [Indexed: 02/05/2023]
|
148
|
Sampaio WO, Henrique de Castro C, Santos RAS, Schiffrin EL, Touyz RM. Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 2007; 50:1093-8. [PMID: 17984366 DOI: 10.1161/hypertensionaha.106.084848] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiotensin (Ang)-(1-7), acting through the Mas receptor, opposes the actions of Ang II. Molecular mechanisms for this are unclear. Here we sought to determine whether Ang-(1-7) influences Ang II signaling in human endothelial cells, focusing specifically on Src homology 2-containing inositol phosphatase 2 (SHP-2) and its interaction with c-Src. Ang II-induced phosphorylation of c-Src, extracellular signal regulated kinase (ERK)1/2, and SHP-2 and activation of NAD(P)H oxidase were assessed in the absence and presence of Ang-(1-7) (10(-6) mol/L, 15 minutes) by immunoblotting and lucigenin-enhanced chemiluminescence, respectively. (D-Ala(7))-Ang I/II (1-7) (Ang fragment 1-7 receptor antagonist) was used to block Ang-(1-7) effects. Association between SHP-2 and c-Src was assessed by immunoprecipitation/immunoblotting studies. Ang II significantly increased activation of c-Src, ERK1/2, and NAD(P)H oxidase and reduced phosphorylation of SHP-2 (P<0.05) in human endothelial cells. These effects were abrogated in cells pre-exposed to Ang-(1-7). Ang fragment 1-7 receptor antagonist pretreatment blocked the negative modulatory actions of Ang-(1-7) on Ang II-induced signaling. Ang-(1-7) alone did not significantly alter phosphorylation of c-Src, ERK1/2, and SHP-2 and had no effect on basal activity of NAD(P)H oxidase. SHP-2 and c-Src were physically associated in the basal state. This association was increased by Ang-(1-7) and blocked by Ang fragment 1-7 receptor antagonist. Our findings demonstrate that, in human endothelial cells, Ang-(1-7) negatively modulates Ang II/Ang II type 1 receptor-activated c-Src and its downstream targets ERK1/2 and NAD(P)H oxidase. We also show that SHP-2-c-Src interaction is enhanced by Ang-(1-7). These phenomena may represent a protective mechanism in the endothelium whereby potentially deleterious effects of Ang II are counterregulated by Ang-(1-7).
Collapse
Affiliation(s)
- Walkyria O Sampaio
- Department of Physiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
149
|
Lambert IH. Activation and inactivation of the volume-sensitive taurine leak pathway in NIH3T3 fibroblasts and Ehrlich Lettre ascites cells. Am J Physiol Cell Physiol 2007; 293:C390-400. [PMID: 17537804 DOI: 10.1152/ajpcell.00104.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypotonic exposure provokes the mobilization of arachidonic acid, production of ROS, and a transient increase in taurine release in Ehrlich Lettre cells. The taurine release is potentiated by H2O2 and the tyrosine phosphatase inhibitor vanadate and reduced by the phospholipase A2 (PLA2) inhibitors bromoenol lactone (BEL) and manoalide, the 5-lipoxygenase (5-LO) inhibitor ETH-615139, the NADPH oxidase inhibitor diphenyl iodonium (DPI), and antioxidants. Thus, swelling-induced taurine efflux in Ehrlich Lettre cells involves Ca2+-independent (iPLA2)/secretory PLA2 (sPLA2) plus 5-LO activity and modulation by ROS. Vanadate and H2O2 stimulate arachidonic acid mobilization and vanadate potentiates ROS production in Ehrlich Lettre cells and NIH3T3 fibroblasts under hypotonic conditions. However, vanadate-induced potentiation of the volume-sensitive taurine efflux is, in both cell types, impaired in the presence of BEL and DPI and following restoration of the cell volume. Thus, potentiation of the volume-sensitive taurine efflux pathway following inhibition of tyrosine phosphatase activity reflects increased arachidonic acid mobilization and ROS production for downstream signaling. Vanadate delays the inactivation of volume-sensitive taurine efflux in NIH3T3 cells, and this delay is impaired in the presence of DPI. Vanadate has no effect on the inactivation of swelling-induced taurine efflux in Ehrlich Lettre cells. It is suggested that increased tyrosine phosphorylation of regulatory components of NADPH oxidase leads to increased ROS production and a subsequent delay in inactivation of the volume-sensitive taurine efflux pathway and that NADPH oxidase or antioxidative capacity differ between NIH3T3 and Ehrlich Lettre cells.
Collapse
|
150
|
Yogi A, Callera GE, Montezano ACI, Aranha AB, Tostes RC, Schiffrin EL, Touyz RM. Endothelin-1, but not Ang II, activates MAP kinases through c-Src independent Ras-Raf dependent pathways in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2007; 27:1960-7. [PMID: 17569879 DOI: 10.1161/atvbaha.107.146746] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelin-1 (ET-1) and angiotensin II (Ang II) activate common signaling pathways to promote changes in vascular reactivity, remodeling, inflammation, and oxidative stress. Here we sought to determine whether upstream regulators of mitogen-activated protein kinases (MAPKs) are differentially regulated by ET-1 and Ang II focusing on the role of c-Src and the small GTPase Ras. METHODS AND RESULTS Mesenteric vascular smooth muscle cells (VSMCs) from mice with different disruption levels in the c-Src gene (c-Src(+/-) and c-Src(-/-)) and wild-type (c-Src(+/+)) were used. ET-1 and Ang II induced extracellular signal-regulated kinase (ERK) 1/2, SAPK/JNK, and p38MAPK phosphorylation in c-Src(+/+) VSMCs. In VSMCs from c-Src(+/-) and c-Src(-/-), Ang II effects were blunted, whereas c-Src deficiency had no effect in ET-1-induced MAPK activation. Ang II but not ET-1 induced c-Src phosphorylation in c-Src(+/+) VSMCs. Activation of c-Raf, an effector of Ras, was significantly increased by ET-1 and Ang II in c-Src(+/+) VSMCs. Ang II but not ET-1-mediated c-Raf phosphorylation was inhibited by c-Src deficiency. Knockdown of Ras by siRNA inhibited both ET-1 and Ang II-induced MAPK phosphorylation. CONCLUSIONS Our data indicate differential regulation of MAPKs by distinct G protein-coupled receptors. Whereas Ang II has an obligatory need for c-Src, ET-1 mediates its actions through a c-Src-independent Ras-Raf-dependent pathway for MAPK activation. These findings suggest that Ang II and ET-1 can activate similar signaling pathways through unrelated mechanisms. MAP kinases are an important point of convergence for Ang II and ET-1.
Collapse
Affiliation(s)
- A Yogi
- Kidney Research Centre, University of Ottawa/Ottawa Health Research Institute, 451 Smyth Rd, Ottawa, ON, KIH 8M5
| | | | | | | | | | | | | |
Collapse
|