101
|
Udani SD, Bhogal P. Black blood vessel wall MRI to identify vulnerable atherosclerotic plaque in a non-stenotic intracranial vertebral artery as a cause of acute ischaemia. BJR Case Rep 2020; 6:20200061. [PMID: 33299594 PMCID: PMC7709074 DOI: 10.1259/bjrcr.20200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/05/2022] Open
Abstract
Conventional neuroimaging techniques for investigating the cause of stroke are mainly centred on investigating luminal stenosis. The pathophysiology of intracranial atherosclerotic disease (ICAD) and stroke is complex and extends beyond just vessel narrowing. The concept of the vulnerable atherosclerotic plaque, that can result in acute coronary syndromes, has been well described in the cardiac literature1,2although this concept is less well accepted among stroke physicians. We describe a case of a 61-year-old male with acute neurological sequelae from a non-stenotic atherosclerotic plaque of the intracranial vertebral artery. This case report describes the additional use of vessel wall MRI techniques to aid the radiologist in identifying such vulnerable lesions and therefore helping to tailor management and prevent further clinical deterioration.
Collapse
Affiliation(s)
- Sundip Dhanvant Udani
- Department of Neuroradiology, The Royal London Hospital, Whitechapel Road, London, E1 1BB, United Kingdom
| | | |
Collapse
|
102
|
Leung TW, Wang L, Zou X, Soo Y, Pu Y, Ip HL, Chan A, Au LWC, Fan F, Ma SH, Ip B, Ma K, Lau AYL, Leung H, Hui KF, Li R, Li SH, Fu M, Fong WC, Liu J, Mok V, Wong KSL, Miao Z, Ma N, Yu SCH, Leng X. Plaque morphology in acute symptomatic intracranial atherosclerotic disease. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-325027. [PMID: 33239439 PMCID: PMC7958085 DOI: 10.1136/jnnp-2020-325027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/19/2020] [Accepted: 11/06/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Intracranial atherosclerotic disease (ICAD) is globally a major ischaemic stroke subtype with high recurrence. Understanding the morphology of symptomatic ICAD plaques, largely unknown by far, may help identify vulnerable lesions prone to relapse. METHODS We prospectively recruited patients with acute ischaemic stroke or transient ischaemic attack attributed to high-grade ICAD (60%-99% stenosis). Plaque morphological parameters were assessed in three-dimensional rotational angiography, including surface contour, luminal stenosis, plaque length/thickness, upstream shoulder angulation, axial/longitudinal plaque distribution and presence of adjoining branch atheromatous disease (BAD). We compared morphological features of smooth, irregular and ulcerative plaques and correlated them with cerebral ischaemic lesion load downstream in MRI. RESULTS Among 180 recruited patients (median age=60 years; 63.3% male; median stenosis=75%), plaque contour was smooth (51 (28.3%)), irregular (101 (56.1%)) or ulcerative (28 (15.6%)). Surface ulcers were mostly at proximal (46.4%) and middle one-third (35.7%) of the lesions. Most (84.4%) plaques were eccentric, and half had their maximum thickness over the distal end. Ulcerative lesions were thicker (medians 1.6 vs 1.3 mm; p=0.003), had steeper upstream shoulder angulation (56.2° vs 31.0°; p<0.001) and more adjoining BAD (83.3% vs 57.0%; p=0.033) than non-ulcerative plaques. Ulcerative plaques were significantly associated with coexisting acute and chronic infarcts downstream (35.7% vs 12.5%; adjusted OR 4.29, 95% CI 1.65 to 11.14, p=0.003). Sensitivity analyses in patients with anterior-circulation ICAD lesions showed similar results in the associations between the plaque types and infarct load. CONCLUSIONS Ulcerative intracranial atherosclerotic plaques were associated with vulnerable morphological features and had a higher cumulative infarct load downstream.
Collapse
Affiliation(s)
- Thomas W Leung
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Wang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Yannie Soo
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuehua Pu
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Hing Lung Ip
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anne Chan
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lisa Wing Chi Au
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Florence Fan
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sze Ho Ma
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bonaventure Ip
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Karen Ma
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alexander Yuk-Lun Lau
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Howan Leung
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok Fai Hui
- Department of Medicine and Geriatrics, The United Christian Hospital, Hong Kong SAR, China
| | - Richard Li
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | - Siu Hung Li
- Department of Medicine, North District Hospital, Hong Kong SAR, China
| | - Michael Fu
- Department of Medicine and Geriatric, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wing Chi Fong
- Department of Medicine, The Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Vincent Mok
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Sing Lawrence Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Simon C H Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinyi Leng
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
103
|
Kochergin NA, Kochergina AM, Ganyukov VI, Barbarash OL. [Predictors of Coronary Plaque Vulnerability in Patients with Stable Coronary Artery Disease]. ACTA ACUST UNITED AC 2020; 60:20-26. [PMID: 33228501 DOI: 10.18087/cardio.2020.10.n1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/28/2020] [Accepted: 07/29/2020] [Indexed: 11/18/2022]
Abstract
Aim To identify new predictors for vulnerability of atherosclerotic coronary plaques in patients with stable ischemic heart disease (sIHD).Material and methods This prospective, single-center study included 58 patients with sIHD. Unstable plaques were detected with virtual histology intravascular ultrasound of proximal and medium segments of a coronary artery without significant lesions according to coronarography data. Indexes of inflammation, dyslipidemia and carbohydrate metabolism were considered as candidate predictors for coronary plaque vulnerability.Results In 56 coronary arteries, 58 plaques were detected, 12 of which (20.7 %) were unstable. Vulnerable plaques differed morphologically from stable ones by a greater size of the necrotic core (35.1±8.5 % vs. 24.0±13.2 %; р=0.008), calcified nodules (2.0 [1.0; 5.0] % vs. 1.0 [0; 2.0] %; р=0.006), and a lower content of fibrous components (54.9±10.2 % vs. 66.4±15.8 %; р=0.02). In addition, vulnerable plaques more frequently narrowed the arterial lumen by >70 % of the lumen area (33.3 % vs. 2.2 %; р=0.0006). Correlation analysis showed a negative correlation between the level of high-density lipoproteins (HDL) and calcium volume (r= -0.4104; р=0.023); a positive correlation between the blood glucose level as determined by the oral glucose tolerance test and the lipid component (r=0.48198; р=0.033); and a negative correlation between the apolipoprotein A level and the calcium volume (r= -0.4297; р=0.008).Conclusion The study demonstrated a high prevalence of vulnerable plaques in nontarget coronary arteries in patients with sIHD. In this process, dyslipidemia indexes (LDL, apolipoproteins A) correlate with the calcium volume whereas blood glucose, as measured in the oral glucose tolerance test, correlates with the lipid component of coronary plaque.
Collapse
Affiliation(s)
- N A Kochergin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo
| | - A M Kochergina
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo
| | - V I Ganyukov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo
| | - O L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo
| |
Collapse
|
104
|
Babaniamansour P, Mohammadi M, Babaniamansour S, Aliniagerdroudbari E. The Relation between Atherosclerosis Plaque Composition and Plaque Rupture. JOURNAL OF MEDICAL SIGNALS & SENSORS 2020; 10:267-273. [PMID: 33575199 PMCID: PMC7866947 DOI: 10.4103/jmss.jmss_48_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/11/2020] [Accepted: 07/19/2020] [Indexed: 11/13/2022]
Abstract
Background: Intima, media, and adventitia are three layers of arteries. They have different structures and different mechanical properties. Damage to intima layer of arteries leads to an inflammatory response, which is usually the reason for atherosclerosis plaque formation. Atherosclerosis plaques mainly consist of smooth muscle cells and calcium. However, plaque geometry and mechanical properties change during time. Blood flow is the source of biomechanical stress to the plaques. Maximum stress that atherosclerosis plaque can burden before its rupture depends on fibrous cap thickness, lipid core, calcification, and artery stenosis. When atherosclerotic plaque ruptures, the blood would be in contact with coagulation factors. That is why plaque rupture is one of the main causes of fatality. Method: In this article, the coronary artery was modeled by ANSYS. First, fibrous cap thickness was increased from 40 μm to 250 μm by keeping other parameters constant. Then, the lipid pool percentage was incremented from 10% to 90% by keeping other parameters unchanged. Furthermore, for investigating the influence of calcium in plaque vulnerability, calcium was modeled in both agglomerated and microcalcium form. Results: It is proved that atherosclerosis plaque stress decreases exponentially as cap thickness increases. Larger lipid pool leads to more vulnerable plaques. In addition, the analysis showed maximum plaque stress usually increases in calcified plaque as compared with noncalcified plaque. Conclusion: The plaque stress is dependent on whether calcium is agglomerated near the lumen or far from it. However, in both cases, the deposition of more calcium in calcified plaque reduces maximum plaque stress.
Collapse
Affiliation(s)
- Parto Babaniamansour
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Maryam Mohammadi
- Department of Biomedical Engineering, University of Isfahan, Isfahan
| | - Sepideh Babaniamansour
- Department of Internal Medicine, School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ehsan Aliniagerdroudbari
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
105
|
Meade RD, Akerman AP, Notley SR, McGinn R, Poirier P, Gosselin P, Kenny GP. Physiological factors characterizing heat-vulnerable older adults: A narrative review. ENVIRONMENT INTERNATIONAL 2020; 144:105909. [PMID: 32919284 DOI: 10.1016/j.envint.2020.105909] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/17/2020] [Indexed: 05/26/2023]
Abstract
More frequent and intense periods of extreme heat (heatwaves) represent the most direct challenge to human health posed by climate change. Older adults are particularly vulnerable, especially those with common age-associated chronic health conditions (e.g., cardiovascular disease, hypertension, obesity, type 2 diabetes, chronic kidney disease). In parallel, the global population is aging and age-associated disease rates are on the rise. Impairments in the physiological responses tasked with maintaining homeostasis during heat exposure have long been thought to contribute to increased risk of health disorders in older adults during heatwaves. As such, a comprehensive overview of the provisional links between age-related physiological dysfunction and elevated risk of heat-related injury in older adults would be of great value to healthcare officials and policy makers concerned with protecting heat-vulnerable sectors of the population from the adverse health impacts of heatwaves. In this narrative review, we therefore summarize our current understanding of the physiological mechanisms by which aging impairs the regulation of body temperature, hemodynamic stability and hydration status. We then examine how these impairments may contribute to acute pathophysiological events common during heatwaves (e.g., heatstroke, major adverse cardiovascular events, acute kidney injury) and discuss how age-associated chronic health conditions may exacerbate those impairments. Finally, we briefly consider the importance of physiological research in the development of climate-health programs aimed at protecting heat-vulnerable individuals.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryan McGinn
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Paul Poirier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Pierre Gosselin
- Institut National de Santé Publique du Québec and Université Laval, Québec, Québec, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
106
|
Jiao Y, Qin Y, Zhang Z, Zhang H, Liu H, Li C. Early identification of carotid vulnerable plaque in asymptomatic patients. BMC Cardiovasc Disord 2020; 20:429. [PMID: 33003997 PMCID: PMC7528473 DOI: 10.1186/s12872-020-01709-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was to explore the influencing factors of atherosclerotic plaque formation and stability in patients with asymptomatic carotid atherosclerotic plaques, so as to identify the vulnerable plaques at early stage, and then find high-risk group of cardio-cerebrovascular events for early clinical intervention to reduce related mortality and disability. METHODS A total of 302 enrolled patients with asymptomatic carotid atherosclerotic plaques were divided into 3 groups based on the results of carotid artery color Doppler ultrasound: atherosclerotic unstable plaque (UP) group, atherosclerotic stable plaque (SP) group, and control group without plaques. Serum markers were measured by ELISA. χ2 test, t test, Pearson correlation analysis, and Logistic multivariate regression analysis were used in the analysis, and P < 0.05 was considered statistically significant. RESULTS It revealed that high MMP-9, LOX-1and YKL-40 were independent risk factors for unstable plaque formation. The area under the curve (AUC) of serum markers combined with MMP-9, LOX-1 and YKL-40 was 0.850, with sensitivity 87.67%, specificity 81.13%, and diagnostic accuracy 84.92%, which was significantly better than the individual diagnostic efficacy of other three factors. The accuracy rate of Crouse Plaque Score (CPS) in the diagnosis of vulnerable plaques was 61.90%, the 10-year ICVD diagnosis accuracy rate was 56.75%, and the diagnostic accuracy of serum markers was significantly better than CPS and 10-year ICVD. CONCLUSION Noninvasive cervical color Doppler ultrasound combined with serum markers MMP-9, LOX-1 and YKL-40 have significant early recognition effect on asymptomatic carotid vulnerable plaque patients.
Collapse
Affiliation(s)
- Yungen Jiao
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China.
| | - Yahong Qin
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China.,521 Hospital of Norinco Group, 12# Zhangba East Road, Xi'an, 710065, Shaanxi Province, China
| | - Zhengang Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China
| | - Hao Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China
| | - Haiwei Liu
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China
| | - Chen Li
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China
| |
Collapse
|
107
|
González-Ramos S, Fernández-García V, Recalde M, Rodríguez C, Martínez-González J, Andrés V, Martín-Sanz P, Boscá L. Deletion or Inhibition of NOD1 Favors Plaque Stability and Attenuates Atherothrombosis in Advanced Atherogenesis †. Cells 2020; 9:cells9092067. [PMID: 32927803 PMCID: PMC7564689 DOI: 10.3390/cells9092067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Atherothrombosis, the main cause of acute coronary syndromes (ACS), is characterized by the rupture of the atherosclerotic plaque followed by the formation of thrombi. Fatal plaque rupture sites show large necrotic cores combined with high levels of inflammation and thin layers of collagen. Plaque necrosis due to the death of macrophages and smooth muscle cells (SMCs) remains critical in the process. To determine the contribution of the innate immunity receptor NOD1 to the stability of atherosclerotic plaque, Apoe-/- and Apoe-/- Nod1-/- atherosclerosis prone mice were placed on a high-fat diet for 16 weeks to assess post-mortem advanced atherosclerosis in the aortic sinus. The proliferation and apoptosis activity were analyzed, as well as the foam cell formation capacity in these lesions and in primary cultures of macrophages and vascular SMCs obtained from both groups of mice. Our results reinforce the preeminent role for NOD1 in human atherosclerosis. Advanced plaque analysis in the Apoe-/- atherosclerosis model suggests that NOD1 deficiency may decrease the risk of atherothrombosis by decreasing leukocyte infiltration and reducing macrophage apoptosis. Furthermore, Nod1-/- SMCs exhibit higher proliferation rates and decreased apoptotic activity, contributing to thicker fibrous caps with reduced content of pro-thrombotic collagen. These findings demonstrate a direct link between NOD1 and plaque vulnerability through effects on both macrophages and SMCs, suggesting promising insights for early detection of biomarkers for treating patients before ACS occurs.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Gene Deletion
- Humans
- Macrophages
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle
- Nod1 Signaling Adaptor Protein/physiology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-(0)91-497-2747 (ext. 5345) (L.B.)
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
| | - Miriam Recalde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
| | - Cristina Rodríguez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, IIB Sant Pau, 08041 Barcelona, Spain
| | - José Martínez-González
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), IIB Sant Pau, 08041 Barcelona, Spain
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-(0)91-497-2747 (ext. 5345) (L.B.)
| |
Collapse
|
108
|
Cademartiri F, Balestrieri A, Cau R, Punzo B, Cavaliere C, Maffei E, Saba L. Insight from imaging on plaque vulnerability: similarities and differences between coronary and carotid arteries-implications for systemic therapies. Cardiovasc Diagn Ther 2020; 10:1150-1162. [PMID: 32968666 DOI: 10.21037/cdt-20-528] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nowadays it is widely accepted that the rupture of the atherosclerotic plaque in coronary and carotid arteries plays a fundamental role in the development of acute myocardial infarctions or cerebrovascular events. In recent years, imaging techniques have explored, with a new level of detail, the atherosclerotic disease generating new evidences that some plaque characteristics are significantly associated to the risk of rupture and subsequent thrombosis or embolization. Moreover, the recent evidence of the anti-atherosclerotic effects determined by lipid-lowering and anti-inflammatory therapies poses a challenge for the choice of therapeutic approaches (best/optimal medical therapy vs. revascularization), maximized by the evidence that coronary and carotid atherosclerosis share common patterns but also differ regarding some important features. In this Review, we discuss the similarities and differences between coronary and carotid artery vulnerable plaque from the imaging point of view and the potential implications for systemic therapies according to the emerging evidence.
Collapse
Affiliation(s)
| | | | - Riccardo Cau
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Bruna Punzo
- Department of Radiology, SDN IRCCS, Naples, Italy
| | | | - Erica Maffei
- Department of Radiology, Area Vasta 1, ASUR Marche, Urbino (PU), Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
109
|
MacAskill MG, Newby DE, Tavares AAS. Frontiers in positron emission tomography imaging of the vulnerable atherosclerotic plaque. Cardiovasc Res 2020; 115:1952-1962. [PMID: 31233100 DOI: 10.1093/cvr/cvz162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rupture of vulnerable atherosclerotic plaques leading to an atherothrombotic event is the primary driver of myocardial infarction and stroke. The ability to detect non-invasively the presence and evolution of vulnerable plaques could have a huge impact on the future identification and management of atherosclerotic cardiovascular disease. Positron emission tomography (PET) imaging with an appropriate radiotracer has the potential to achieve this goal. This review will discuss the biological hallmarks of plaque vulnerability before going on to evaluate and to present PET imaging approaches which target these processes. The focus of this review will be on techniques beyond [18F]FDG imaging, some of which are clinically advanced, and others which are on the horizon. As inflammation is the primary driving force behind atherosclerotic plaque development, we will predominantly focus on approaches which either directly, or indirectly, target this process.
Collapse
Affiliation(s)
- Mark G MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
110
|
Vulnerable Plaques Producing an Acute Coronary Syndrome Exhibit a Different CT Phenotype than Those That Remain Silent. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2020. [DOI: 10.2478/jce-2020-0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background: All plaques that trigger acute coronary syndromes (ACS) present various characteristics of vulnerability. However, not all vulnerable plaques (VP) lead to an ACS. This raises the question as to which of the established CT vulnerability features hold the highest probability of developing ACS.
Aim: To identify the distinct phenotype of VP that exposes the unstable atheromatous plaque to a higher risk of rupture.
Material and Methods: In total, 20 patients in whom cardiac computed tomographic angiography (CCTA) identified the presence of a vulnerable plaque and who developed an ACS within 6 months after CCTA examination were enrolled in the study, and compared to 20 age- and gender-matched subjects with VPs who did not develop an ACS. All included patients presented VPs at baseline, defined as the presence of minimum 50% degree of stenosis and at least one CT marker of vulnerability (low attenuation plaques [LAP], napkin-ring sign [NRS], positive remodeling [PR], spotty calcifications [SCs]).
Results: The two groups were not different in regards to age, gender, cardiovascular risk factors, and comorbidities. Patients who developed an ACS at six months presented higher volumes of lipid-rich (p = 0.01) and calcified plaques (p = 0.01), while subjects in the control group presented plaques with a larger fibrotic content (p = 0.0005). The most frequent vulnerability markers within VPs that had triggered ACS were LAPs (p <0.0001) and PR (p <0.0001). Multivariate analysis identified LAP as the strongest independent predictor of ACS at 6 months in our study population (OR 8.18 [1.23-95.08], p = 0.04).
Conclusions: VPs producing an ACS exhibit a different phenotype compared to VPs that remain silent. The CCTA profile of VPs producing an ACS includes the presence of low attenuation, positive remodeling, and lipid-rich atheroma. The presence of these features in VPs identifies very high-risk patients, who can benefit from adapted therapeutic strategies in order to prevent an ACS.
Collapse
|
111
|
From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging 2020; 36:2403-2427. [PMID: 32617720 DOI: 10.1007/s10554-020-01926-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
The recent technological developments in the field of cardiac imaging have established coronary computed tomography angiography (CCTA) as a first-line diagnostic tool in patients with suspected coronary artery disease (CAD). CCTA offers robust information on the overall coronary circulation and luminal stenosis, also providing the ability to assess the composition, morphology, and vulnerability of atherosclerotic plaques. In addition, the perivascular adipose tissue (PVAT) has recently emerged as a marker of increased cardiovascular risk. The addition of PVAT quantification to standard CCTA imaging may provide the ability to extract information on local inflammation, for an individualized approach in coronary risk stratification. The development of image post-processing tools over the past several years allowed CCTA to provide a significant amount of data that can be incorporated into machine learning (ML) applications. ML algorithms that use radiomic features extracted from CCTA are still at an early stage. However, the recent development of artificial intelligence will probably bring major changes in the way we integrate clinical, biological, and imaging information, for a complex risk stratification and individualized therapeutic decision making in patients with CAD. This review aims to present the current evidence on the complex role of CCTA in the detection and quantification of vulnerable plaques and the associated coronary inflammation, also describing the most recent developments in the radiomics-based machine learning approach for complex assessment of plaque-associated risk.
Collapse
|
112
|
Weitz JI, Angiolillo DJ, Geisler T, Heitmeier S. Dual Pathway Inhibition for Vascular Protection in Patients with Atherosclerotic Disease: Rationale and Review of the Evidence. Thromb Haemost 2020; 120:1147-1158. [DOI: 10.1055/s-0040-1713376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractDespite advances in secondary prevention strategies in patients with cardiovascular disease, the residual risk of recurrent atherothrombotic events remains high. Dual-antiplatelet therapy is the standard of care for secondary prevention in patients with acute coronary syndrome (ACS), whereas single antiplatelet therapy, generally with aspirin, is the standard of care for secondary prevention in stable patients with coronary artery disease (CAD), peripheral artery disease (PAD), or cerebrovascular disease. However, atherosclerotic plaque disruption not only triggers platelet activation but also results in thrombin generation because of tissue factor exposure. Therefore, blocking both pathways by combining antiplatelet therapy with an anticoagulant, or dual pathway inhibition (DPI), has the potential to be more effective than inhibiting either pathway alone. The benefit of DPI has been demonstrated in the ATLAS ACS 2-TIMI 51, COMPASS, and VOYAGER PAD trials, where the combination of rivaroxaban vascular dose (2.5 mg twice daily) plus aspirin significantly reduced the risk of atherothrombotic events compared with aspirin across a broad range of patients, including those with recent ACS, those with chronic CAD and/or PAD, and patients with PAD who have undergone peripheral revascularization. This article provides the rationale for this regimen in more detail, including why the DPI regimen with the rivaroxaban vascular dose was developed for vascular protection in a broad spectrum of patients with atherosclerotic disease.
Collapse
Affiliation(s)
- Jeffrey Ian Weitz
- Thrombosis and Atherosclerosis Research Institute and McMaster University, Hamilton, Ontario, Canada
| | - Dominick J. Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, United States
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Heitmeier
- Research and Development Pharmaceuticals, Bayer AG, Wuppertal, Germany
| |
Collapse
|
113
|
Ravikanth R. Role of 18F-FDG positron emission tomography in carotid atherosclerotic plaque imaging: A systematic review. World J Nucl Med 2020; 19:327-335. [PMID: 33623500 PMCID: PMC7875029 DOI: 10.4103/wjnm.wjnm_26_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Stroke and other thromboembolic events in the brain are often due to carotid artery atherosclerosis, and atherosclerotic plaques with inflammation are considered particularly vulnerable, with an increased risk of becoming symptomatic. Positron emission tomography (PET) with 2-deoxy-2-[Fluorine-18] fluoro-D-glucose (18F-FDG) provides valuable metabolic information regarding arteriosclerotic lesions and may be applied for the detection of vulnerable plaque. At present, however, patients are selected for carotid surgical intervention on the basis of the degree of stenosis alone, and not the vulnerability or inflammation of the lesion. During the past decade, research using PET with the glucose analog tracer 18F-fluor-deoxy-glucose, has been implemented for identifying increased tracer uptake in symptomatic carotid plaques, and tracer uptake has been shown to correlate with plaque inflammation and vulnerability. These findings imply that 18F-FDG PET might hold the promise for a new and better diagnostic test to identify patients eligible for carotid endarterectomy. The rationale for developing diagnostic tests based on molecular imaging with 18F-FDG PET, as well as methods for simple clinical PET approaches, are discussed. This is a systematic review, following Preferred Reporting Items for Systematic Reviews guidelines, which interrogated the PUBMED database from January 2001 to November 2019. The search combined the terms, “atherosclerosis,” “inflammation,” “FDG,” and “plaque imaging.” The search criteria included all types of studies, with a primary outcome of the degree of arterial vascular inflammation determined by 18F-FDG uptake. This review examines the role of 18F-FDG PET imaging in the characterization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Reddy Ravikanth
- Department of Radiology, St. John's Hospital, Kattappana, Kerala, India
| |
Collapse
|
114
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
115
|
Su G, Gao MX, Shi GL, Dai XX, Yao WF, Zhang T, Zhuang SW. Effect of 1,5-anhydroglucitol levels on culprit plaque rupture in diabetic patients with acute coronary syndrome. Cardiovasc Diabetol 2020; 19:71. [PMID: 32473648 PMCID: PMC7261377 DOI: 10.1186/s12933-020-01045-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Postprandial hyperglycemia was reported to play a key role in established risk factors of coronary artery diseases (CAD) and cardiovascular events. Serum 1,5-anhydroglucitol (1,5-AG) levels are known to be a clinical marker of short-term postprandial glucose (PPG) excursions. Low serum 1,5-AG levels have been associated with occurrence of CAD. However, the relationship between 1,5-AG levels and coronary plaque rupture has not been fully elucidated. The aim of this study was to evaluate 1,5-AG as a predictor of coronary plaque rupture in diabetic patients with acute coronary syndrome (ACS). METHODS A total of 144 diabetic patients with ACS were included in this study. All patients underwent intravascular ultrasound examination, which revealed 49 patients with plaque rupture and 95 patients without plaque rupture in the culprit lesion. Fasting blood glucose (FBG), hemoglobin A1c (HbA1c) and 1,5-AG levels were measured before coronary angiography. Fasting urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) level was measured and corrected by creatinine clearance. RESULTS Patients with ruptured plaque had significantly lower serum 1,5-AG levels, longer duration of diabetes, higher HbA1c and FBG levels than patients without ruptured plaque in our study population. In multivariate analysis, low 1,5-AG levels were an independent predictor of plaque rupture (odds ratio 3.421; P = 0.005) in diabetic patients with ACS. The area under the receiver-operating characteristic curve for 1,5-AG (0.658, P = 0.002) to predict plaque rupture was superior to that for HbA1c (0.587, P = 0.087). Levels of 1,5-AG were significantly correlated with urinary 8-iso-prostaglandin F2α levels (r = - 0.234, P = 0.005). CONCLUSIONS Serum 1,5-AG may identify high risk for coronary plaque rupture in diabetic patients with ACS, which suggests PPG excursions are related to the pathogenesis of plaque rupture in diabetes.
Collapse
Affiliation(s)
- Gong Su
- grid.412478.c0000 0004 1760 4628Department of Cardiovascular Medicine, Shanghai General Hospital Baoshan Branch, No. 101 Tongtai North Road, Baoshan District, Shanghai, 200940 China
| | - Ming-Xi Gao
- grid.412478.c0000 0004 1760 4628Department of Cardiovascular Medicine, Shanghai General Hospital Baoshan Branch, No. 101 Tongtai North Road, Baoshan District, Shanghai, 200940 China
| | - Gen-Ling Shi
- grid.412478.c0000 0004 1760 4628Department of Cardiovascular Medicine, Shanghai General Hospital Baoshan Branch, No. 101 Tongtai North Road, Baoshan District, Shanghai, 200940 China
| | - Xi-Xi Dai
- grid.412478.c0000 0004 1760 4628Department of Cardiovascular Medicine, Shanghai General Hospital Baoshan Branch, No. 101 Tongtai North Road, Baoshan District, Shanghai, 200940 China
| | - Wei-Feng Yao
- grid.412478.c0000 0004 1760 4628Department of Cardiovascular Medicine, Shanghai General Hospital Baoshan Branch, No. 101 Tongtai North Road, Baoshan District, Shanghai, 200940 China
| | - Tao Zhang
- grid.24696.3f0000 0004 0369 153XCenter of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Shao-Wei Zhuang
- grid.412540.60000 0001 2372 7462Department of Cardiovascular Medicine, The Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, No. 358 Gaoqiaodatong Road, Pudong District, Shanghai, 200137 China
| |
Collapse
|
116
|
Fani L, van der Willik KD, Bos D, Leening MJG, Koudstaal PJ, Rizopoulos D, Ruiter R, Stricker BHC, Kavousi M, Ikram MA, Ikram MK. The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study. PLoS Med 2020; 17:e1003115. [PMID: 32379748 PMCID: PMC7205222 DOI: 10.1371/journal.pmed.1003115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/10/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ASCVD) is driven by multifaceted contributions of the immune system. However, the dysregulation of immune cells that leads to ASCVD is poorly understood. We determined the association of components of innate and adaptive immunity longitudinally with ASCVD, and assessed whether arterial calcifications play a role in this association. METHODS AND FINDINGS Granulocyte (innate immunity) and lymphocyte (adaptive immunity) counts were determined 3 times (2002-2008, mean age 65.2 years; 2009-2013, mean age 69.0 years; and 2014-2015, mean age 78.5 years) in participants of the population-based Rotterdam Study without ASCVD at baseline. Participants were followed-up for ASCVD or death until 1 January 2015. A random sample of 2,366 underwent computed tomography at baseline to quantify arterial calcification volume in 4 vessel beds. We studied the association between immunity components with risk of ASCVD and assessed whether immunity components were related to arterial calcifications at baseline. Of 7,730 participants (59.4% women), 801 developed ASCVD during a median follow-up of 8.1 years. Having an increased granulocyte count increased ASCVD risk (adjusted hazard ratio for doubled granulocyte count [95% CI] = 1.78 [1.34-2.37], P < 0.001). Higher granulocyte counts were related to larger calcification volumes in all vessels, most prominently in the coronary arteries (mean difference in calcium volume [mm3] per SD increase in granulocyte count [95% CI] = 32.3 [9.9-54.7], P < 0.001). Respectively, the association between granulocyte count and incident coronary heart disease and stroke was partly mediated by coronary artery calcification (overall proportion mediated [95% CI] = 19.0% [-10% to 32.3%], P = 0.08) and intracranial artery calcification (14.9% [-10.9% to 19.1%], P = 0.05). A limitation of our study is that studying the etiology of ASCVD remains difficult within an epidemiological setting due to the limited availability of surrogates for innate and especially adaptive immunity. CONCLUSIONS In this study, we found that an increased granulocyte count was associated with a higher risk of ASCVD in the general population. Moreover, higher levels of granulocytes were associated with larger volumes of arterial calcification. Arterial calcifications may explain a proportion of the link between granulocytes and ASCVD.
Collapse
Affiliation(s)
- Lana Fani
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Kimberly D van der Willik
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Maarten J G Leening
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Rikje Ruiter
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
117
|
Huang LH, Liu H, Chen JY, Sun XY, Yao ZH, Han J, Ouyang JM. Seaweed Porphyra yezoensis polysaccharides with different molecular weights inhibit hydroxyapatite damage and osteoblast differentiation of A7R5 cells. Food Funct 2020; 11:3393-3409. [PMID: 32232300 DOI: 10.1039/c9fo01732a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular calcification (VC) is a common pathological manifestation in patients with cardiovascular diseases, leading to high mortality in patients with chronic kidney diseases. The deposition of hydroxyapatite (HAP) crystals on vascular smooth muscle cells leads to cell damage, which promotes osteogenic transformation. In this study, four different molecular weights (MWs ) of Porphyra yezoensis polysaccharides (PYP1, PYP2, PYP3, and PYP4 with MWs of 576, 49.5, 12.6, and 4.02 kDa, respectively) were used to coat HAP, and the differences in toxicity and calcification of HAP on A7R5 cells before and after coating were studied. The results showed that PYPs could effectively reduce HAP damage to the A7R5 cells. Under the protection of PYPs, cell viability increased and lactate dehydrogenase release, active oxygen level, and cell necrosis rate decreased; also, the amount of the HAP crystals adhering to cell surfaces and entering cells decreased. PYPs with low molecular weights presented better protective effects than high-molecular-weight PYPs. PYPs also inhibited the osteogenic transformation of the A7R5 cells induced by HAP and decreased alkaline phosphatase (ALP) activity and expressions of bone/chondrocyte phenotype genes (runt-related factor 2, ALP, osteopontin, and osteocalcin). In the adenine-induced chronic renal failure (CRF) mouse VC model, PYP4 was found to obviously inhibit the aortic calcium level, and it also inhibited the serum creatinine, serum phosphorus and serum BUN levels. PYP4 (least molecular weight) showed the best inhibitory effect on calcification and may be considered as a candidate drug with therapeutic potential for inhibiting cellular damage and osteoblast differentiation induced by the HAP crystals.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
118
|
Clarke JRD, Duarte Lau F, Zarich SW. Determining the Significance of Coronary Plaque Lesions: Physiological Stenosis Severity and Plaque Characteristics. J Clin Med 2020; 9:jcm9030665. [PMID: 32131474 PMCID: PMC7141262 DOI: 10.3390/jcm9030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/10/2023] Open
Abstract
The evaluation of coronary lesions has evolved in recent years. Physiologic-guided revascularization (particularly with pressure-derived fractional flow reserve (FFR)) has led to superior outcomes compared to traditional angiographic assessment. A greater importance, therefore, has been placed on the functional significance of an epicardial lesion. Despite the improvements in the limitations of angiography, insights into the relationship between hemodynamic significance and plaque morphology at the lesion level has shown that determining the implications of epicardial lesions is rather complex. Investigators have sought greater understanding by correlating ischemia quantified by FFR with plaque characteristics determined on invasive and non-invasive modalities. We review the background of the use of these diagnostic tools in coronary artery disease and discuss the implications of analyzing physiological stenosis severity and plaque characteristics concurrently.
Collapse
Affiliation(s)
- John-Ross D. Clarke
- Department of Internal Medicine, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT 06610, USA;
- Correspondence: or ; Tel.: +1-203-260-4510
| | - Freddy Duarte Lau
- Department of Internal Medicine, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT 06610, USA;
| | - Stuart W. Zarich
- The Heart and Vascular Institute, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT 06610, USA;
| |
Collapse
|
119
|
Douna H, Amersfoort J, Schaftenaar FH, Kröner MJ, Kiss MG, Slütter B, Depuydt MAC, Bernabé Kleijn MNA, Wezel A, Smeets HJ, Yagita H, Binder CJ, Bot I, van Puijvelde GHM, Kuiper J, Foks AC. B- and T-lymphocyte attenuator stimulation protects against atherosclerosis by regulating follicular B cells. Cardiovasc Res 2020; 116:295-305. [PMID: 31150053 DOI: 10.1093/cvr/cvz129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS The immune system is strongly involved in atherosclerosis and immune regulation generally leads to attenuated atherosclerosis. B- and T-lymphocyte attenuator (BTLA) is a novel co-receptor that negatively regulates the activation of B and T cells; however, there have been no reports of BTLA and its function in atherosclerosis or cardiovascular disease (CVD). We aimed to assess the dominant BTLA expressing leucocyte in CVD patients and to investigate whether BTLA has a functional role in experimental atherosclerosis. METHODS AND RESULTS We show that BTLA is primarily expressed on B cells in CVD patients and follicular B2 cells in low-density lipoprotein receptor-deficient (Ldlr-/-) mice. We treated Ldlr-/- mice that were fed a western-type diet (WTD) with phosphate-buffered saline, an isotype antibody, or an agonistic BTLA antibody (3C10) for 6 weeks. We report here that the agonistic BTLA antibody significantly attenuated atherosclerosis. This was associated with a strong reduction in follicular B2 cells, while regulatory B and T cells were increased. The BTLA antibody showed similar immunomodulating effects in a progression study in which Ldlr-/- mice were fed a WTD for 10 weeks before receiving antibody treatment. Most importantly, BTLA stimulation enhanced collagen content, a feature of stable lesions, in pre-existing lesions. CONCLUSION Stimulation of the BTLA pathway in Ldlr-/- mice reduces initial lesion development and increases collagen content of established lesions, presumably by shifting the balance between atherogenic follicular B cells and atheroprotective B cells and directing CD4+ T cells towards regulatory T cells. We provide the first evidence that BTLA is a very promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hidde Douna
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jacob Amersfoort
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Máté G Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Bram Slütter
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marie A C Depuydt
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Anouk Wezel
- Department of Surgery, HMC Westeinde, The Hague, The Netherlands
| | - Harm J Smeets
- Department of Surgery, HMC Westeinde, The Hague, The Netherlands
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - I Bot
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijs H M van Puijvelde
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
120
|
Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification. Sci Rep 2020; 10:666. [PMID: 31959784 PMCID: PMC6971288 DOI: 10.1038/s41598-019-57299-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 11/08/2022] Open
Abstract
The extracellular matrix (ECM) of tissues is susceptible to modification by inflammation-associated oxidants. Considerable data support a role for hypochlorous acid (HOCl), generated by the leukocyte-derived heme-protein myeloperoxidase (MPO) in these changes. HOCl can modify isolated ECM proteins and cell-derived matrix, with this resulting in decreased cell adhesion, modulated proliferation and gene expression, and phenotypic changes. Whether this arises from free HOCl, or via site-specific reactions is unresolved. Here we examine the mechanisms of MPO-mediated changes to human coronary smooth muscle cell ECM. MPO is shown to co-localize with matrix fibronectin as detected by confocal microscopy, and bound active MPO can initiate ECM modification, as detected by decreased antibody recognition of fibronectin, versican and type IV collagen, and formation of protein carbonyls and HOCl-mediated damage. These changes are recapitulated by a glucose/glucose oxidase/MPO system where low continuous fluxes of H2O2 are generated. HOCl-induced modifications enhance MPO binding to ECM proteins as detected by ELISA and MPO activity measurements. These data demonstrate that MPO-generated HOCl induces ECM modification by interacting with ECM proteins in a site-specific manner, and generates alterations that increase MPO adhesion. This is proposed to give rise to an increasing cycle of alterations that contribute to tissue damage.
Collapse
|
121
|
Kyaw T, Toh BH, Bobik A. Evolving BAFF targeted therapies for preventing acute myocardial infarctions and ischemic strokes. Expert Opin Ther Targets 2020; 24:7-12. [DOI: 10.1080/14728222.2020.1708325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tin Kyaw
- Vascular Biology and Atherosclerosis laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
122
|
Mo H, Fu C, Wu Z, Liu P, Wen Z, Hong Q, Cai Y, Li G. IL-6-targeted ultrasmall superparamagnetic iron oxide nanoparticles for optimized MRI detection of atherosclerotic vulnerable plaques in rabbits. RSC Adv 2020; 10:15346-15353. [PMID: 35495447 PMCID: PMC9052309 DOI: 10.1039/c9ra10509c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/04/2020] [Indexed: 12/30/2022] Open
Abstract
Vulnerable plaques of atherosclerosis (AS) are the main culprit lesion for the serious risk of acute cardiovascular disease (CVD). Therefore, developing new non-invasive methods to detect vulnerable plaques and to evaluate their stability effectively is of great value in the early diagnosis of CVD. IL-6 plays a vital role in the development and rupture of AS. In this study, IL-6-targeted superparamagnetic iron oxide nanoparticles (Anti-IL-6-USPIO) are synthesized by a chemical condensation reaction. An AS model was established by damaging rabbit abdominal aortic intima with Foley's tube in combination with a high cholesterol diet. The results confirm that Anti-IL-6-USPIO have excellent IL-6-targeting ability and usefulness in detecting vulnerable plaques in vitro and in vivo, which may provide a novel, non-invasive strategy for evaluating acute cardiovascular risk or exploiting anti-atherosclerotic drugs. Herein, we report Anti-IL-6-USPIO for detecting IL-6 in inflammatory macrophages and MR imaging vulnerable plaques of atherosclerosis in rabbit, which would provide a novel non-invasive strategy for evaluating acute cardiovascular risk or exploiting anti-atherosclerotic drugs.![]()
Collapse
Affiliation(s)
- Huaqiang Mo
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Chenxing Fu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Zhiye Wu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Peng Liu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Zhibo Wen
- Department of Radiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Qingqing Hong
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Yanbin Cai
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Gongxin Li
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| |
Collapse
|
123
|
Kochergin NA, Kochergina AM, Ganiukov VI. [Predictors of acute coronary syndrome in patients with ischaemic heart disease]. ANGIOLOGIIA I SOSUDISTAIA KHIRURGIIA = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:179-184. [PMID: 33063766 DOI: 10.33529/angi02020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acute coronary syndrome has for a long time been giving no way of decreasing mortality related to ischaemic heart disease. The primary cause of acute coronary syndrome in the majority of cases is rupture of an unstable atherosclerotic plaque in the coronary artery followed by thrombosis thereof. The main missions of modern cardiology include: assessment of the risk of acute coronary syndrome, identification of predictors of adverse events, and working-out of measures aimed at prevention and optimal management of patients with ischaemic heart disease. This article deals with clinical and morphological factors associated with destabilization of coronary plaques, their rupture, and the development of an acute coronary event.
Collapse
Affiliation(s)
- N A Kochergin
- Laboratory of Roentgenoendovascular and Reconstructive Surgery of the Heart and Vessels, Research Institute for Complex Problems of Cardiovascular Diseases, Kemerovo, Russia
| | - A M Kochergina
- Laboratory of Roentgenoendovascular and Reconstructive Surgery of the Heart and Vessels, Research Institute for Complex Problems of Cardiovascular Diseases, Kemerovo, Russia
| | - V I Ganiukov
- Laboratory of Roentgenoendovascular and Reconstructive Surgery of the Heart and Vessels, Research Institute for Complex Problems of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
124
|
Arzani A. Coronary artery plaque growth: A two-way coupled shear stress-driven model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3293. [PMID: 31820589 DOI: 10.1002/cnm.3293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Atherosclerosis in coronary arteries can lead to plaque growth, stenosis formation, and blockage of the blood flow supplying the heart tissue. Several studies have shown that hemodynamics play an important role in the growth of coronary artery plaques. Specifically, low wall shear stress (WSS) appears to be the leading hemodynamic parameter promoting atherosclerotic plaque growth, which in turn influences the blood flow and WSS distribution. Therefore, a two-way coupled interaction exists between WSS and atherosclerosis growth. In this work, a computational framework was developed to study the coupling between WSS and plaque growth in coronary arteries. Computational fluid dynamics (CFD) was used to quantify WSS distribution. Surface mesh nodes were moved in the inward normal direction according to a growth model based on WSS. After each growth stage, the geometry was updated and the CFD simulation repeated to find updated WSS values for the next growth stage. One hundred twenty growth stages were simulated in an idealized tube and an image-based left anterior descending artery. An automated framework was developed using open-source software to couple CFD simulations with growth. Changes in plaque morphology and hemodynamic patterns during different growth stages are presented. The results show larger plaque growth towards the downstream segment of the plaque, agreeing with the reported clinical observations. The developed framework could be used to establish hemodynamic-driven growth models and study the interaction between these processes.
Collapse
Affiliation(s)
- Amirhossein Arzani
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
125
|
Hou KY, Tsujioka K, Yang CC. Optimization of HU threshold for coronary artery calcium scans reconstructed at 0.5-mm slice thickness using iterative reconstruction. J Appl Clin Med Phys 2020; 21:111-120. [PMID: 31889419 PMCID: PMC7021007 DOI: 10.1002/acm2.12806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/30/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This work investigated the simultaneous influence of tube voltage, tube current, body size, and HU threshold on calcium scoring reconstructed at 0.5-mm slice thickness using iterative reconstruction (IR) through multivariate analysis. Regression results were used to optimize the HU threshold to calibrate the resulting Agatston scores to be consistent with those obtained from the conventional protocol. METHODS A thorax phantom set simulating three different body sizes was used in this study. A total of 14 coronary artery calcium (CAC) protocols were studied, including 1 conventional protocol reconstructed at 3-mm slice thickness, 1 FBP protocol, and 12 statistical IR protocols (3 kVp values*4 SD values) reconstructed at 0.5-mm slice thickness. Three HU thresholds were applied for calcium identification, including 130, 150, and 170 HU. A multiple linear regression method was used to analyze the impact of kVp, SD, body size, and HU threshold on the Agatston scores of three calcification densities for IR-reconstructed CAC scans acquired with 0.5-mm slice thickness. RESULTS Each regression relationship has R2 larger than 0.80, indicating a good fit to the data. Based on the regression models, the HU thresholds as a function of SD estimated to ensure the quantification accuracy of calcium scores for 120-, 100-, and 80-kVp CAC scans reconstructed at 0.5-mm slice thickness using IR for three different body sizes were proposed. Our results indicate that the HU threshold should be adjusted according to the imaging condition, whereas a 130-HU threshold is appropriate for 120-kVp CAC scans acquired with SD = 55 for body size of 24.5 cm. CONCLUSION The optimized HU thresholds were proposed for CAC scans reconstructed at 0.5-mm slice thickness using IR. Our study results may provide a potential strategy to improve the reliability of calcium scoring by reducing partial volume effect while keeping radiation dose as low as reasonably achievable.
Collapse
Affiliation(s)
- Kuei-Yuan Hou
- Department of Radiology, Cathay General Hospital, Taipei, Taiwan
| | - Katsumi Tsujioka
- Faculty of Radiological Technology, Fujita Health University, Aichi, Japan
| | - Ching-Ching Yang
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
126
|
Huang LH, Sun XY, Ouyang JM. Shape-dependent toxicity and mineralization of hydroxyapatite nanoparticles in A7R5 aortic smooth muscle cells. Sci Rep 2019; 9:18979. [PMID: 31831831 PMCID: PMC6908626 DOI: 10.1038/s41598-019-55428-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Abstract
Vascular smooth muscle cell damage is a key step in inducing vascular calcification that yields hydroxyapatite (HAP) as a major product. The effect of the shape of HAP on the damage to vascular smooth muscle cells has yet to be investigated. In this study, we compared the differences in toxicity of four various morphological nano-HAP crystals, namely, H-Rod, H-Needle, H-Sphere, and H-Plate, in rat aortic smooth muscle cells (A7R5). The sizes of these crystals were 39 nm × 115 nm, 41 nm ×189 nm, 56 nm × 56 nm, and 91 nm × 192 nm, respectively. Results showed that all HAPs decreased cell viability, disorganized cell morphology, disrupted cell membranes, increased intracellular reactive oxygen species concentration, decreased mitochondrial membrane potential, decreased lysosome integrity, increased alkaline phosphatase activity, and increased intracellular calcium concentration, resulting in cell necrosis. The cytotoxicity of the four kinds of HAP was ranked as follows: H-Plate > H-Sphere > H-Needle > H-Rod. The cytotoxicity of each crystal was positively correlated with the following factors: large specific surface area, high electrical conductivity and low surface charge. HAP accelerated calcium deposits on the A7R5 cell surface and induced the expression of osteogenic proteins, such as BMP-2, Runx2, OCN, and ALP. The crystals with high cytotoxicity caused more calcium deposits on the cell surface, higher expression levels of osteogenic protein, and stronger osteogenic transformation abilities. These findings elucidated the relationship between crystal shape and cytotoxicity and provided theoretical references for decreasing the risks of vascular calcification.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
127
|
Epicardial Fat and Coronary Vulnerability. JOURNAL OF INTERDISCIPLINARY MEDICINE 2019. [DOI: 10.2478/jim-2019-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
128
|
Noninvasive Imaging Biomarkers of Vulnerable Coronary Plaques – a Clinical Update. JOURNAL OF INTERDISCIPLINARY MEDICINE 2019. [DOI: 10.2478/jim-2019-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Atherosclerosis is a slow, progressive disease, its most common manifestation and most severe consequence being coronary artery disease, one of the main causes of mortality and morbidity worldwide. The vast majority of cardiovascular deaths are caused by complications of atherosclerosis, most often being represented by the rupture of an unstable coronary plaque, regularly triggered by inflammation. A vulnerable plaque is characterized by a large, lipid-rich necrotic core, a thin fibrous cap with macrophage infiltration, and the presence of multiple specific biomarkers such as positive remodeling, irregular calcifications, and low attenuation visible with coronary computed tomography angiography (CCTA). Identifying biomarkers that could predict the risk of plaque rupture with high accuracy would be a significant advance in predicting acute cardiac events in asymptomatic patients, furthermore guiding treatment of patients with this disease. The main indication of noninvasive imaging is to identify patients at risk based on the presence or absence of symptoms that can be related to myocardial ischemia. The diagnostic objective is to confirm or to exclude the presence of coronary plaques. Coronary imaging in asymptomatic individuals is used to estimate the risk of future cardiac events through the identification of non-obstructive high-risk plaques. The possibility to monitor the evolution of vulnerable plaques via noninvasive imaging techniques, prior to the occurrence of an acute clinical event, is the main goal in plaque imaging. This manuscript will be focusing on recent advances of noninvasive imaging of vulnerable coronary plaques.
Collapse
|
129
|
Yu YN, Liu MW, Villablanca JP, Li ML, Xu YY, Gao S, Feng F, Liebeskind DS, Scalzo F, Xu WH. Middle Cerebral Artery Plaque Hyperintensity on T2-Weighted Vessel Wall Imaging Is Associated with Ischemic Stroke. AJNR Am J Neuroradiol 2019; 40:1886-1892. [PMID: 31624115 DOI: 10.3174/ajnr.a6260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/27/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Vessel wall imaging can identify intracranial atherosclerotic plaque and give clues about its components. We aimed to investigate whether the plaque hyperintensity in the middle cerebral artery on T2-weighted vessel wall imaging is associated with ischemic stroke. MATERIALS AND METHODS We retrospectively reviewed our institutional vessel wall MR imaging data base. Patients with an acute ischemic stroke within 7-day onset in the MCA territory were enrolled. Patients with stroke and stenotic MCA plaque (stenosis degree, ≥50%) were included for analysis. Ipsilateral MCA plaque was defined as symptomatic, and contralateral plaque, as asymptomatic. Plaque was manually delineated on T2-weighted vessel wall imaging. The plaque signal was normalized to the ipsilateral muscle signal. The thresholds and volume of normalized plaque signal were investigated using logistic regression and receiver operating characteristic analysis to determine the association between normalized plaque signal and stroke. RESULTS One hundred eight stenotic MCAs were analyzed (from 88 patients, 66 men; mean age, 58 ± 15 years), including 72 symptomatic and 36 asymptomatic MCA plaques. Symptomatic MCA plaque showed larger plaque hyperintensity volume compared with asymptomatic MCA plaque. The logistic regression model incorporating stenosis degree, remodeling ratio, and normalized plaque signal 1.3-1.4 (OR, 6.25; 95% CI, 1.90-20.57) had a higher area under curve in differentiating symptomatic/asymptomatic MCA plaque, compared with a model with only stenosis degree and remodeling ratio (area under curve, 0.884 versus 0.806; P =.008). CONCLUSIONS The MCA plaque hyperintensity on T2-weighted vessel wall imaging is independently associated with ischemic stroke and adds value to symptomatic MCA plaque classification. Measuring the normalized signal intensity may serve as a practical and integrative approach to the analysis of intracranial atherosclerotic plaque.
Collapse
Affiliation(s)
- Y-N Yu
- From the Departments of Neurology (Y.-N.Y., Y.-Y.X., S.G., W.-H.X.)
| | - M-W Liu
- Neurovascular Imaging Research Core and UCLA Stroke Center (M.-W.L., D.S.L., F.S.), Los Angeles, California
| | | | - M-L Li
- Radiology (M.-L.L., F.F.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Y-Y Xu
- From the Departments of Neurology (Y.-N.Y., Y.-Y.X., S.G., W.-H.X.)
| | - S Gao
- From the Departments of Neurology (Y.-N.Y., Y.-Y.X., S.G., W.-H.X.)
| | - F Feng
- Radiology (M.-L.L., F.F.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - D S Liebeskind
- Neurovascular Imaging Research Core and UCLA Stroke Center (M.-W.L., D.S.L., F.S.), Los Angeles, California
| | - F Scalzo
- Neurovascular Imaging Research Core and UCLA Stroke Center (M.-W.L., D.S.L., F.S.), Los Angeles, California
| | - W-H Xu
- From the Departments of Neurology (Y.-N.Y., Y.-Y.X., S.G., W.-H.X.)
| |
Collapse
|
130
|
Sorokin AV, Kotani K, Elnabawi YA, Dey AK, Sajja AP, Yamada S, Ueda M, Harrington CL, Baumer Y, Rodante JA, Gelfand JM, Chen MY, Joshi AA, Playford MP, Remaley AT, Mehta NN. Association Between Oxidation-Modified Lipoproteins and Coronary Plaque in Psoriasis. Circ Res 2019; 123:1244-1254. [PMID: 30571459 DOI: 10.1161/circresaha.118.313608] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Psoriasis is a systemic inflammatory skin disease associated with cardiovascular disease and lipid dysfunction. However, traditional lipid parameters have limited prognostic value, whereas assessing oxidation-modified lipids in this inflammatory driven condition may capture additional risk. Recently, a study showed that psoriasis was associated with increased lipid-rich coronary plaques; therefore, investigating potential relationships with oxidation-modified lipids may speed understanding of increased cardiovascular disease in psoriasis. OBJECTIVE To understand whether oxidation-modified lipids associate with traditional lipid phenotypes, cardiometabolic disease biomarkers, and total coronary plaque, with focus on noncalcified burden (NCB) by coronary computed tomographic angiography in psoriasis. METHODS AND RESULTS Psoriasis subjects and controls (n=252) had profiling for oxidation-modified LDL (low-density lipoprotein), HDL (high-density lipoprotein), Lp(a) (lipoprotein[a]), cholesterol efflux capacity, lipoprotein particle size and number by NMR spectroscopy, and PON-1 (paraoxonase-1) activity. Blinded coronary computed tomographic angiography coronary artery disease characterization included total burden, NCB, and dense-calcified burden. Compared with healthy volunteers, psoriasis subjects were older (mean age, 50.1), had increased body mass index, and homeostatic model assessment of insulin resistance. Psoriasis subjects had increase in oxidized Lp(a), Lp(a), and oxidized HDL (oxHDL; P <0.05 for all) with significant association of oxidized LDL (β=0.10; P=0.020) and oxHDL (β=-0.11; P=0.007) with NCB. Moreover, psoriasis subjects expressed significantly higher PON-1 (kU/µL) activity compared with healthy volunteers (8.55±3.21 versus 6.24±3.82; P=0.01). Finally, psoriasis treatment was associated with a reduction in oxHDL (U/mL; 203.79±88.40 versus 116.36±85.03; P<0.001) and with a concomitant decrease in NCB at 1 year (1.04±0.44 versus 0.95±0.32; P=0.03). CONCLUSIONS Traditional lipids did not capture risk of lipid-rich plaque as assessed by NCB, whereas assaying oxidation-modification of lipids revealed significant association with oxidized LDL and oxHDL. The PON-1 activity was increased in psoriasis suggesting possible compensatory antioxidative effect. Psoriasis treatment was associated with a reduction in oxHDL. These findings support performance of larger studies to understand oxidation-modified lipids in inflammatory states.
Collapse
Affiliation(s)
- Alexander V Sorokin
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kazuhiko Kotani
- Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan (K.K.)
| | - Youssef A Elnabawi
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Amit K Dey
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Aparna P Sajja
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Masashi Ueda
- Hokenkagaku-West, Co, Ltd, Kyoto-City, Japan (M.U.)
| | - Charlotte L Harrington
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yvonne Baumer
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Justin A Rodante
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Joel M Gelfand
- Department of Dermatology, Perelman School of Medicine (J.M.G.).,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia (J.M.G.)
| | - Marcus Y Chen
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Aditya A Joshi
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Martin P Playford
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Alan T Remaley
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch (A.T.R.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nehal N Mehta
- From the Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, (A.V.S., Y.A.E., A.K.D., A.P.S., C.L.H., Y.B., J.A.R., M.Y.C., A.A.J., M.P.P., N.N.M.), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
131
|
Luo X, Li W, Bai Y, Du L, Wu R, Li Z. Relation between carotid vulnerable plaques and peripheral leukocyte: a case-control study of comparison utilizing multi-parametric contrast-enhanced ultrasound. BMC Med Imaging 2019; 19:74. [PMID: 31443643 PMCID: PMC6708132 DOI: 10.1186/s12880-019-0374-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background This study evaluates carotid vulnerable plaques using contrast-enhanced ultrasound (CEUS) and explores the relationship between vulnerable plaques and leukocytes. Methods Sixty-two symptomatic and 54 asymptomatic patients underwent CEUS. The images were analyzed using time-intensity and fitting curves, and peak (PTIC), mean (MTIC), peak (PFC), sharpness (SFC), and area under the curve (AUCFC) were obtained. The relations between CEUS parameters and leukocytes were analyzed. Results In the symptomatic group, total leukocytes and neutrophils were higher, while lymphocyte was decreased; PTIC, MTIC, PFC, SFC, and AUCFC were significantly higher; MTIC and AUCFC were negatively correlated with lymphocytes, and MTIC was positively correlated with neutrophils. Classification and regression tree analysis showed that MTIC at a cutoff of 20.8 and AUCFC at a cutoff of 8.8 resulted in a predictive of acute cerebral infarction, accuracy of 84.3%, sensitivity of 87.1%, and specificity of 81.5%. Conclusions The variation in the perivascular leucocyte is significantly related to intraplaque inflammatory activities, CEUS is a feasible monitor of intraplaque neovascularization, so CEUS combined with perivascular leucocyte could be helpful as a warning for vulnerable plaques.
Collapse
Affiliation(s)
- Xianghong Luo
- Department of Echocardiography, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Wanbin Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Yun Bai
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Zhaojun Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
132
|
Impact of Coronary Plaque Vulnerability on Acute Cardiovascular Events – Design of a CT-based 2-year Follow-up Study. JOURNAL OF INTERDISCIPLINARY MEDICINE 2019. [DOI: 10.2478/jim-2019-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
With coronary artery disease (CAD) projected to remain the leading cause of global mortality, prevention strategies seem to be the only effective approach able to reduce the burden and improve mortality and morbidity. At this moment, diagnostic strategies focus mainly on symptomatic patients, ignoring the occurrence of major cardiovascular events as the only manifestation of CAD. As two thirds of fatal myocardial infarction are resulting from plaque rupture, an approach based on the “vulnerable plaque” concept is mandatory in order to improve patient diagnosis, treatment, and, by default, prognosis. Given that the main studies focus on a plaque-centered approach, this is a prospective observational study that will perform a complex assessment of the features that characterize unstable coronary lesions, in terms of both local assessment via specific coronary computed tomography angiography markers of coronary plaque vulnerability and systemic approach based on serological markers of systemic inflammation in patients proved to be “vulnerable” by developing acute cardiovascular events.
Collapse
|
133
|
Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J Cardiovasc Dev Dis 2019; 6:jcdd6030026. [PMID: 31357630 PMCID: PMC6787609 DOI: 10.3390/jcdd6030026] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Plaque development and rupture are hallmarks of atherosclerotic vascular disease. Despite current therapeutic developments, there is an unmet necessity in the prevention of atherosclerotic vascular disease. It remains a challenge to determine at an early stage if atherosclerotic plaque will become unstable and vulnerable. The arrival of molecular imaging is receiving more attention, considering it allows for a better understanding of the biology of human plaque and vulnerabilities. Various plaque therapies with common goals have been tested in high-risk patients with cardiovascular disease. In this work, the process of plaque instability, along with current technologies for sensing and predicting high-risk plaques, is debated. Updates on potential novel therapeutic approaches are also summarized.
Collapse
|
134
|
Tsujikawa LM, Fu L, Das S, Halliday C, Rakai BD, Stotz SC, Sarsons CD, Gilham D, Daze E, Wasiak S, Studer D, Rinker KD, Sweeney M, Johansson JO, Wong NCW, Kulikowski E. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenetics 2019; 11:102. [PMID: 31300040 PMCID: PMC6626370 DOI: 10.1186/s13148-019-0696-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Apabetalone (RVX-208) is a bromodomain and extraterminal protein inhibitor (BETi) that in phase II trials reduced the relative risk (RR) of major adverse cardiac events (MACE) in patients with cardiovascular disease (CVD) by 44% and in diabetic CVD patients by 57% on top of statins. A phase III trial, BETonMACE, is currently assessing apabetalone's ability to reduce MACE in statin-treated post-acute coronary syndrome type 2 diabetic CVD patients with low high-density lipoprotein C. The leading cause of MACE is atherosclerosis, driven by dysfunctional lipid metabolism and chronic vascular inflammation (VI). In vitro studies have implicated the BET protein BRD4 as an epigenetic driver of inflammation and atherogenesis, suggesting that BETi may be clinically effective in combating VI. Here, we assessed apabetalone's ability to regulate inflammation-driven gene expression and cell adhesion in vitro and investigated the mechanism by which apabetalone suppresses expression. The clinical impact of apabetalone on mediators of VI was assessed with proteomic analysis of phase II CVD patient plasma. RESULTS In vitro, apabetalone prevented inflammatory (TNFα, LPS, or IL-1β) induction of key factors that drive endothelial activation, monocyte recruitment, adhesion, and plaque destabilization. BRD4 abundance on inflammatory and adhesion gene promoters and enhancers was reduced by apabetalone. BRD2-4 degradation by MZ-1 also prevented TNFα-induced transcription of monocyte and endothelial cell adhesion molecules and inflammatory mediators, confirming BET-dependent regulation. Transcriptional regulation by apabetalone translated into a reduction in monocyte adhesion to an endothelial monolayer. In a phase II trial, apabetalone treatment reduced the abundance of multiple VI mediators in the plasma of CVD patients (SOMAscan® 1.3 k). These proteins correlate with CVD risk and include adhesion molecules, cytokines, and metalloproteinases. Ingenuity® Pathway Analysis (IPA®) predicted that apabetalone inhibits pro-atherogenic regulators and pathways and prevents disease states arising from leukocyte recruitment. CONCLUSIONS Apabetalone suppressed gene expression of VI mediators in monocytes and endothelial cells by inhibiting BET-dependent transcription induced by multiple inflammatory stimuli. In CVD patients, apabetalone treatment reduced circulating levels of VI mediators, an outcome conducive with atherosclerotic plaque stabilization and MACE reduction. Inhibition of inflammatory and adhesion molecule gene expression by apabetalone is predicted to contribute to MACE reduction in the phase III BETonMACE trial.
Collapse
Affiliation(s)
- Laura M Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Shovon Das
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | | | - Brooke D Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Stephanie C Stotz
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | | | - Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Emily Daze
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Deborah Studer
- Cellular and Molecular Bioengineering Research Lab, Libin Cardiovascular Institute of Alberta, University of Calgary, HMRB 358/361 3330 University Drive NW, Calgary, AB, T2N 4 N1, Canada
| | - Kristina D Rinker
- Cellular and Molecular Bioengineering Research Lab, Libin Cardiovascular Institute of Alberta, University of Calgary, HMRB 358/361 3330 University Drive NW, Calgary, AB, T2N 4 N1, Canada
| | - Michael Sweeney
- Resverlogix Inc., Suite 4010, 44 Montgomery Street, San Francisco, CA, 94104, USA
| | - Jan O Johansson
- Resverlogix Inc., Suite 4010, 44 Montgomery Street, San Francisco, CA, 94104, USA
| | - Norman C W Wong
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada.
| |
Collapse
|
135
|
Nam K, Liu JB, Eisenbrey JR, Stanczak M, Machado P, Li J, Li Z, Wei Y, Forsberg F. Three-Dimensional Subharmonic Aided Pressure Estimation for Assessing Arterial Plaques in a Rabbit Model. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:1865-1873. [PMID: 30560581 PMCID: PMC7081075 DOI: 10.1002/jum.14884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/29/2018] [Indexed: 05/07/2023]
Abstract
OBJECTIVES To investigate 3-dimensional subharmonic aided pressure estimation (SHAPE) for measuring intraplaque pressure and the pressure gradient across the plaque cap as novel biomarkers for potentially predicting plaque vulnerability. METHODS Twenty-seven rabbits received a high-cholesterol diet for 2 weeks before a balloon catheter injury to denude the endothelium of the aorta, followed by 8 to 10 weeks of the high-cholesterol diet to create arteriosclerotic plaques. SHAPE imagings of the resulting plaques were performed 12, 16, and 20 weeks after injury using a LOGIQ 9 scanner with a 4D10L probe (GE Healthcare, Milwaukee, WI) before and during an infusion of Definity (Lantheus Medical Imaging, North Billerica, MA) and Sonazoid (GE Healthcare, Oslo, Norway). The ratios of the maximum subharmonic magnitudes at baseline and during the infusion were correlated with the intraplaque pressure and pressure gradient across the plaque cap obtained from direct measurements. RESULTS Ten rabbits died prematurely after the balloon injury procedure or due to toxicity from the high-cholesterol diet, whereas 2 rabbits were excluded for other conditions. Five rabbits were scanned in the 12-, 16-, and 20-week groups, respectively. Even after 20 weeks, the plaques that developed were very small (mean ± SD, 0.9 ± 0.4 × 0.14 ± 0.05 cm). Definity performed better than Sonazoid in this application but still only achieved a moderate correlation with pressure across the plaque cap (Definity, r = -0.40; Sonazoid, r = 0.22) and intraplaque pressure (Definity, r = -0.19; Sonazoid, r = -0.11). CONCLUSIONS Initial findings from plaque pressure estimation using 3-dimensional SHAPE technique showed only moderate correlations with reference standards, but that may be have been due to weaknesses in the animal model studied.
Collapse
Affiliation(s)
- Kibo Nam
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Priscilla Machado
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jingzhi Li
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhaojun Li
- Department of Vascular Ultrasound, Shanghai General Hospital, Shanghai, China
| | - Ying Wei
- Department of Ultrasound, Beijing Friendship Hospital, Beijing, China
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
136
|
Zirak MR, Mehri S, Karimani A, Zeinali M, Hayes AW, Karimi G. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food Chem Toxicol 2019; 129:38-53. [DOI: 10.1016/j.fct.2019.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
137
|
Huang LH, Han J, Ouyang JM, Gui BS. Shape-dependent adhesion and endocytosis of hydroxyapatite nanoparticles on A7R5 aortic smooth muscle cells. J Cell Physiol 2019; 235:465-479. [PMID: 31222743 DOI: 10.1002/jcp.28987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The interaction between nanohydroxyapatite (HAP) and smooth muscle cells is an important step in vascular calcification. However, the effect of the shape of HAP on adhesion and endocytosis to aortic smooth muscle cells has been rarely reported. Four different morphological HAP crystals (H-Rod, H-Needle, H-Sphere, and H-Plate) were selected to interact with rat aortic smooth muscle cells (A7R5). Fluorescence-labeled HAP was used to detect crystal adhesion and endocytosis and then pretreated with different endocytic inhibitors to explore the pathway of endocytotic crystals. The distribution of crystals inside and outside the cells and the crystal localization in lysosomes was observed through laser confocal microscopy. The effect of crystal on the cell cycle and the changes in the expression of phosphatidylserine, osteopontin, α-actin, core binding factor alpha 1, and osterix on the surface of A7R5 cells were detected. The adhesion and endocytosis of HAP on A7R5 cells were closely related to crystal shapes and ranked as follows: H-Plate > H-Sphere > H-Needle > H-Rod. H-Sphere and H-Needle were internalized into the cells mainly via the clathrin-mediated pathway, whereas H-Plate and H-Rod were internalized into the cells mainly via macropinocytosis. The endocytosed nano-HAP was mainly distributed in the cell lysosome. The adhesion and endocytosis of HAP to A7R5 cells were positively correlated with the specific surface area, and contact area of HAP and negatively correlated with the absolute value of Zeta and contact angle of HAP. This study provided insights into the effect of crystal morphology on vascular calcification and its mechanism.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Jin Han
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Bao-Song Gui
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
138
|
Jha CK, Mir R, Elfaki I, Javid J, Babakr AT, Banu S, Chahal SMS. Evaluation of the Association of Omentin 1 rs2274907 A>T and rs2274908 G>A Gene Polymorphisms with Coronary Artery Disease in Indian Population: A Case Control Study. J Pers Med 2019; 9:jpm9020030. [PMID: 31174318 PMCID: PMC6617120 DOI: 10.3390/jpm9020030] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) is a major cause of death all over the world. CAD is caused by atherosclerosis which is induced by the interaction of genetic factors and environmental factors. Traditional environmental risk factors include hyperlipidemia, diabetes mellitus, lack of exercise, obesity, poor diet and others. Genome-wide association studies have revealed the association of certain gene polymorphisms with susceptibility to CAD. Omentin 1 is an adipokine secreted by the visceral adipose tissues and has been reported to have anti-inflammatory, cardioprotective, and enhances insulin sensitivity. In this study, we examined the role of omentin-1 common single nucleotide polymorphisms (SNPs) (rs2274907 A>T and rs2274908 G>A) in CAD. We genotyped 100 CAD patients and 100 matched healthy controls from the south Indian population using an amplification refractory mutation system (ARMS-PCR) and allele-specific PCR (AS-PCR). Our result indicated the rs2274908 G>A is not associated with CAD. Results showed that there was a significant difference in rs2274907 A>T genotype distribution between controls and CAD cases (P-value < 0.05). Results indicated that the AT genotype of the rs2274907 is associated with CAD with OR = 3.0 (95% confidence interval (CI), 1.64 to 5.49), 1.65 (1.27 to 2.163), P = 0.002. The T allele of the rs2274907 was also associated with CAD with OR = 1.82 (95% CI, 1.193 to 2.80), 1.37 (1.08 to 1.74), P = 0.005. Rs2274907 genotype distribution was also correlated with serum total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), hypertension and diabetes. We conclude that the AT genotype and the T allele of the rs2274907 A>T is associated with Cad in the south Indian population. Further studies on the effect of the rs2274907 A>T on omentin-1 function are recommended, and future well-designed studies with larger sample sizes and in different populations are required to validate our findings.
Collapse
Affiliation(s)
- Chandan K Jha
- Department of Human Genetics, Punjabi University, Punjab 147002, India.
| | - Rashid Mir
- Prince Fahd Bin Sultan Research chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Jamsheed Javid
- Prince Fahd Bin Sultan Research chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 57039, Saudi Arabia.
| | - Shaheena Banu
- Sri Jayadeva Institute of Cardiovascular science and Research, Bangalore 560069, India.
| | - S M S Chahal
- Department of Human Genetics, Punjabi University, Punjab 147002, India.
| |
Collapse
|
139
|
Abstract
ST-segment elevation myocardial infarction (STEMI) is the most acute manifestation of coronary artery disease and is associated with great morbidity and mortality. A complete thrombotic occlusion developing from an atherosclerotic plaque in an epicardial coronary vessel is the cause of STEMI in the majority of cases. Early diagnosis and immediate reperfusion are the most effective ways to limit myocardial ischaemia and infarct size and thereby reduce the risk of post-STEMI complications and heart failure. Primary percutaneous coronary intervention (PCI) has become the preferred reperfusion strategy in patients with STEMI; if PCI cannot be performed within 120 minutes of STEMI diagnosis, fibrinolysis therapy should be administered to dissolve the occluding thrombus. The initiation of networks to provide around-the-clock cardiac catheterization availability and the generation of standard operating procedures within hospital systems have helped to reduce the time to reperfusion therapy. Together with new advances in antithrombotic therapy and preventive measures, these developments have resulted in a decrease in mortality from STEMI. However, a substantial amount of patients still experience recurrent cardiovascular events after STEMI. New insights have been gained regarding the pathophysiology of STEMI and feed into the development of new treatment strategies.
Collapse
|
140
|
Computational imaging of aortic vasa vasorum and neovascularization in rabbits using contrast-enhanced intravascular ultrasound: Association with histological analysis. Anatol J Cardiol 2019; 20:117-124. [PMID: 30088486 PMCID: PMC6237958 DOI: 10.14744/anatoljcardiol.2018.35761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: Neoangiogenesis is pathophysiologically related to atherosclerotic plaque growth and vulnerability. We examined the in vivo performance of a computational method using contrast-enhanced intravascular ultrasound (CE-IVUS) to detect and quantify aortic wall neovascularization in rabbits. We also compared these findings with histological data. Methods: Nine rabbits were fed with a hyperlipidemic diet. IVUS image sequences were continuously recorded before and after the injection of a contrast agent. Mean enhancement of intensity of a region of interest (MEIR) was calculated using differential imaging algorithm. The percent difference of MEIR before and after the injection of microbubbles (d_MEIR) was used as an index of the density of plaque or/and adventitial neovascularization. Aortic segments were excised for histological analysis. Results: CE-IVUS and histological analysis were performed in 11 arterial segments. MEIR was significantly increased (~20%) after microbubble injection (from 8.1±0.9 to 9.7±1.8, p=0.016). Segments with increased VV/neovessels in the tunica adventitia (histological scores 2 and 3) had significantly higher d_MEIR compared with segments with low presence of VV/neovessels (score 1); 40.5±22.9 vs. 8±14.6, p=0.024, respectively. Conclusion: It is possible to detect VV or neovessels in vivo using computational analysis of CE-IVUS images, which is in agreement with histological data. These findings may have critical implications on vulnerable plaque assessment and risk stratification.
Collapse
|
141
|
Madsbad S. Liraglutide for the prevention of major adverse cardiovascular events in diabetic patients. Expert Rev Cardiovasc Ther 2019; 17:377-387. [DOI: 10.1080/14779072.2019.1615444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
142
|
Sleep disorders, nocturnal blood pressure, and cardiovascular risk: A translational perspective. Auton Neurosci 2019; 218:31-42. [DOI: 10.1016/j.autneu.2019.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
|
143
|
Thirunavukkarasu S, Khader SA. Advances in Cardiovascular Disease Lipid Research Can Provide Novel Insights Into Mycobacterial Pathogenesis. Front Cell Infect Microbiol 2019; 9:116. [PMID: 31058102 PMCID: PMC6482252 DOI: 10.3389/fcimb.2019.00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in industrialized nations and an emerging health problem in the developing world. Systemic inflammatory processes associated with alterations in lipid metabolism are a major contributing factor that mediates the development of CVDs, especially atherosclerosis. Therefore, the pathways promoting alterations in lipid metabolism and the interplay between varying cellular types, signaling agents, and effector molecules have been well-studied. Mycobacterial species are the causative agents of various infectious diseases in both humans and animals. Modulation of host lipid metabolism by mycobacteria plays a prominent role in its survival strategy within the host as well as in disease pathogenesis. However, there are still several knowledge gaps in the mechanistic understanding of how mycobacteria can alter host lipid metabolism. Considering the in-depth research available in the area of cardiovascular research, this review presents an overview of the parallel areas of research in host lipid-mediated immunological changes that might be extrapolated and explored to understand the underlying basis of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Shyamala Thirunavukkarasu
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
144
|
Morariu M, Hodas R, Benedek T, Benedek I, Opincariu D, Mester A, Chitu M, Kovacs I, Rezus C, Pasaroiu D, Mitra N, Szilágyi SM, Georgescu D, Rezus E. Impact of inflammation-mediated response on pan-coronary plaque vulnerability, myocardial viability and ventricular remodeling in the postinfarction period - the VIABILITY study: Protocol for a non-randomized prospective clinical study. Medicine (Baltimore) 2019; 98:e15194. [PMID: 31027064 PMCID: PMC6831282 DOI: 10.1097/md.0000000000015194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION While the role of inflammation in acute coronary events is well established, the impact of inflammatory-mediated vulnerability of coronary plaques from the entire coronary tree, on the extension of ventricular remodeling and scaring, has not been clarified yet. MATERIALS AND METHODS The present manuscript describes the procedures of the VIABILITY trial, a descriptive prospective single-center cohort study. The main purpose of this trial is to assess the link between systemic inflammation, pan-coronary plaque vulnerability (referring to the plaque vulnerability within the entire coronary tree), myocardial viability and ventricular remodeling in patients who had suffered a recent ST-segment elevation acute myocardial infarction (STEMI). One hundred patients with STEMI who underwent successful revascularization of the culprit lesion in the first 12 hours after the onset of symptoms will be enrolled in the study. The level of systemic inflammation will be evaluated based on the serum biomarker levels (hs-CRP, matrix metalloproteinases, interleukin-6) in the acute phase of the myocardial infarction (MI) and at 1 month. Pan-coronary plaque vulnerability will be assessed based on serum biomarkers known to be associated with increased plaque vulnerability (V-CAM or I-CAM) and at 1 month after infarction, based on computed tomographic angiography analysis of vulnerability features of all coronary plaques. Myocardial viability and remodeling will be assessed based on 3D speckle tracking echocardiography associated with dobutamine infusion and LGE-CMR associated with post-processing imaging methods. The study population will be categorized in 2 subgroups: subgroup 1 - subjects with STEMI and increased inflammatory response at 7 days after the acute event (hs-CRP ≥ 3 mg/dl), and subgroup 2 - subjects with STEMI and no increased inflammatory response at 7 days (hs-CRP < 3 mg/dl). Study outcomes will consist in the rate of post-infarction heart failure development and the major adverse events (MACE) rate. CONCLUSION VIABILITY is the first prospective study designed to evaluate the influence of infarct-related inflammatory response on several major determinants of post-infarction outcomes, such as coronary plaque vulnerability, myocardial viability, and ventricular remodeling.
Collapse
Affiliation(s)
- Mirabela Morariu
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Roxana Hodas
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Theodora Benedek
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Imre Benedek
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Diana Opincariu
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Andras Mester
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu-Mures
| | - Monica Chitu
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Istvan Kovacs
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Ciprian Rezus
- University of Medicine and Pharmacy ‘Gr.T.Popa’, Iasi
| | - Dan Pasaroiu
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu-Mures
| | - Noemi Mitra
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu-Mures
| | - Sándor M. Szilágyi
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu-Mures
- Department of Informatics, Faculty of Science, University of Medicine, Pharmacy
| | - Dan Georgescu
- Department of Internal Medicine, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Romania
| | - Elena Rezus
- University of Medicine and Pharmacy ‘Gr.T.Popa’, Iasi
| |
Collapse
|
145
|
Su G, Zhang T, Yang HX, Dai WL, Wang T, Tian L, Mi SH. Association of Isoprostanes-Related Oxidative Stress with Vulnerability of Culprit Lesions in Diabetic Patients with Acute Coronary Syndrome. Int Heart J 2019; 60:271-279. [PMID: 30745536 DOI: 10.1536/ihj.18-233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Urinary excretion of 8-iso-prostaglandin F2α (8-iso-PGF2α), a reliable biomarker for enhanced oxidant stress in vivo, has been described in association with diabetes and coronary heart disease. The aim of this study was to evaluate the relationship between urinary 8-iso-PGF2α levels and the characteristics of coronary culprit lesion in diabetic patients with acute coronary syndrome (ACS). A total of 79 diabetic patients with ACS were included. iMAP intravascular ultrasound (iMAP-IVUS) was performed to evaluate the characteristics of culprit plaques. Fasting urinary 8-iso-PGF2α level was measured and corrected by creatinine clearance. iMAP-IVUS data showed culprit plaques in high urinary 8-iso-PGF2α level patients had a greater percentage of necrotic core and less fibrous components. High urinary 8-iso-PGF2α levels were correlated with increased necrotic plaque components (r = 0.325, P = 0.003). Meanwhile, the presence of thin-capped fibroatheroma (50.0% versus 11.5%, P = 0.003), ruptured plaques (30.8% versus 7.7%, P = 0.035), and thrombus (38.5% versus 7.7%, P = 0.008) were significantly more frequent in the upper tertile of urinary 8-iso-PGF2α levels than in the low tertile. Multivariate analysis showed high levels of urinary 8-iso-PGF2α (OR 4.240, P = 0.007) was independently associated with the presence of vulnerable culprit plaque in diabetic ACS patients. Urinary 8-iso-PGF2α also displayed a significant value in predicting vulnerable plaques in diabetic patients with ACS by constructing the receiver-operating characteristic (ROC) curve (Area under the ROC curve: 0.713, P = 0.001). Urinary 8-iso-PGF2α levels are associated with the vulnerability of the coronary culprit lesion in diabetic patients with ACS and may provide additional information for risk assessment in suspected vulnerable patients.
Collapse
Affiliation(s)
- Gong Su
- Center of Cardiology, Beijing An Zhen Hospital, Capital Medical University
| | - Tao Zhang
- Center of Cardiology, Beijing An Zhen Hospital, Capital Medical University
| | - Hong-Xia Yang
- Center of Cardiology, Beijing An Zhen Hospital, Capital Medical University
| | - Wen-Long Dai
- Center of Cardiology, Beijing An Zhen Hospital, Capital Medical University
| | - Tao Wang
- Department of Thoracic Surgery, People Liberation Army General Hospital
| | - Lei Tian
- Center of Cardiology, Beijing An Zhen Hospital, Capital Medical University
| | - Shu-Hua Mi
- Center of Cardiology, Beijing An Zhen Hospital, Capital Medical University
| |
Collapse
|
146
|
Small vessel disease and intracoronary plaque composition: a single centre cross-sectional observational study. Sci Rep 2019; 9:4215. [PMID: 30862892 PMCID: PMC6414516 DOI: 10.1038/s41598-019-39989-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/28/2019] [Indexed: 02/03/2023] Open
Abstract
Cardiac events are commonly triggered by rupture of intracoronary plaque. Many studies have suggested that retinal small vessel abnormalities predict cardiac events. The present study examined retinal microvascular abnormalities associated with intracoronary plaque. This was a single centre cross-sectional observational study of consecutive subjects who underwent coronary angiography and intracoronary optical coherence tomography (OCT) of occlusive coronary artery disease. Subjects' retinal images were deidentified and graded for microvascular retinopathy (Wong and Mitchell classification), and vessel calibre using a semiautomated method based on Knudtson's modification of the Parr Hubbard formula. Control subjects had no significant plaque on angiography. Analysis used the Fisher's exact test or student t-test. Thirty-two subjects with intracoronary plaque including 22 males (79%) had a mean age of 62.6 ± 9.4 years. Twenty-four (86%) had hypertension, 10 (36%) had diabetes, and 21 (75%) were current or former smokers. Their average mean arterial pressure was 90.5 ± 5.8 mm Hg, and mean eGFR was 74 ± 15/min/1.73 m2. On angiography, 23 (82%) had a left anterior descending artery (LAD) stenosis, their mean diseased vessel score was 1.86 ± 1.21, and mean total stent number was 1.04 ± 1.00. Plaque type was mainly (>50%) fibrous (n = 7), lipid (n = 7), calcific (n = 10), or mixed (n = 4). Control subjects had a lower mean diastolic BP (p = 0.01), were less likely to have an LAD stenosis (p < 0.001), a lower mean diseased vessel score (p < 0.001) and fewer stents (p = 0.02). Subjects with plaque were more likely to have a moderate microvascular retinopathy than those with none (p = 0.004). Moderate retinopathy was more common with lipid (p = 0.05) or calcific (p = 0.003) plaque. Individuals with calcific plaque had a larger arteriole calibre (158.4 ± 15.2 µm) than those with no plaque (143.8 ± 10.6 µm, p = 0.02), but calibre was not related to diabetes or smoking. Calibre did not correlate with plaque length, thickness or arc angle. Thus, subjects with intracoronary artery plaque are more likely to have a moderate microvascular retinopathy. Those with calcific plaque have larger retinal arterioles which is consistent with our previous finding of larger vessel calibre in triple coronary artery disease. Retinal microvascular imaging warrants further evaluation in identifying severe coronary artery disease.
Collapse
|
147
|
Khalil P, Kabbach G. Direct Oral Anticoagulants in Addition to Antiplatelet Therapy for Secondary Prevention after Acute Coronary Syndromes: a Review. Curr Cardiol Rep 2019; 21:5. [PMID: 30689068 DOI: 10.1007/s11886-019-1088-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW As the management of acute coronary syndrome (ACS) continues to evolve, many old practices proved to be of a little benefit and other approaches established the new pillars of modern medicine. Treating ACS patients with dual antiplatelet therapy (DAPT) for a year by combining aspirin and a P2Y12 inhibitor (clopidogrel, ticagrelor, or prasugrel) has resulted in better outcomes and is currently the standard of therapy. However, owing to the persistent activation of the coagulation cascade, patients may continue to experience recurrent ischemia and high mortality rates despite compliance with the dual antiplatelet therapy. Research is underway to establish new treatment modalities for secondary prevention post-ACS, including the use of the novel direct oral anticoagulants (DOACs). RECENT FINDINGS Multiple trials have been conducted to evaluate the use of DOACs for the secondary prevention after ACS. Recent emerging data showed that the addition of rivaroxaban in a very low dose of 2.5 mg twice daily to the regular DAPT regimen after ACS is beneficial in the reduction of major cardiovascular events, including recurrent myocardial infarction (MI) and strokes. On the other hand, other DOACs, including apixaban, did not show similar efficacy and did not improve the cardiovascular outcomes. Patients who experience an ACS continue to suffer long-term consequences and thromboembolic complications. Many studies have shown that after the initial ACS event, patients remain in a hypercoagulable state and are more prone to recurrent ischemic attacks including stroke, recurrent MI, or unstable angina (UA). With the objective of seeking better outcomes, it is imperative to explore more aggressive anticoagulation strategies in ACS patients. In this article, we discuss the progress that was made and the limitations we face regarding the role of different anticoagulants in this setting.
Collapse
Affiliation(s)
- Peter Khalil
- Department of Internal Medicine, Texas Tech University Health Sciences Center. Paul L. Foster School of Medicine, 4800 Alberta Avenue, El Paso, TX, 79905, USA.
| | - Ghazal Kabbach
- Department of Internal Medicine, Texas Tech University Health Sciences Center. Paul L. Foster School of Medicine, 4800 Alberta Avenue, El Paso, TX, 79905, USA
| |
Collapse
|
148
|
Papaioannou TG, Kalantzis C, Katsianos E, Sanoudou D, Vavuranakis M, Tousoulis D. Personalized Assessment of the Coronary Atherosclerotic Arteries by Intravascular Ultrasound Imaging: Hunting the Vulnerable Plaque. J Pers Med 2019; 9:E8. [PMID: 30682871 PMCID: PMC6463043 DOI: 10.3390/jpm9010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
The term "vulnerable plaque" is commonly used to refer to an atherosclerotic plaque that is prone to rupture and the formation of thrombosis, which can lead to several cardiovascular and cerebrovascular events. Coronary artery atherosclerosis has a wide variety of different phenotypes among patients who may have a substantially variable risk for plaque rupture and cardiovascular events. Mounting evidence has proposed three distinctive histopathological mechanisms: plaque rupture, plaque erosion and calcified nodules. Studies have demonstrated the characteristics of plaques with high vulnerability such as the presence of a thin fibrous cap, a necrotic lipid-rich core, abundant infiltrating macrophages and neovascularization. However, traditional coronary angiographic imaging fails to determine plaque vulnerability features, and its ability to individualize treatment strategies is limited. In recent decades, catheter-based intravascular ultrasound imaging (IVUS) modalities have been developed to identify vulnerable plaques and ultimately vulnerable patients. The aim is to individualize prediction, prevention and treatment of acute coronary events based on the identification of specific features of high-risk atherosclerotic plaques, and to identify the most appropriate interventional procedures for their treatment. In this context, the aim of this review is to discuss how personalized assessment of coronary atherosclerotic arteries can be achieved by intravascular ultrasound imaging focusing on vulnerable plaque detection.
Collapse
Affiliation(s)
- Theodore G Papaioannou
- Biomedical Engineering Unit, First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Charalampos Kalantzis
- Biomedical Engineering Unit, First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efstratios Katsianos
- Biomedical Engineering Unit, First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, "Attikon" Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.
| | - Manolis Vavuranakis
- Third Department of Cardiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Dimitrios Tousoulis
- Biomedical Engineering Unit, First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
149
|
Wang H, Liu D, Zhang H. Investigation of the Underlying Genes and Mechanism of Macrophage-Enriched Ruptured Atherosclerotic Plaques Using Bioinformatics Method. J Atheroscler Thromb 2019; 26:636-658. [PMID: 30643084 PMCID: PMC6629752 DOI: 10.5551/jat.45963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: The study aimed to identify the underlying differentially expressed genes (DEGs) and mechanism of macrophage-enriched rupture atherosclerotic plaque using bioinformatics methods. Methods: GSE41571, which includes six stable samples and five ruptured atherosclerotic samples, was downloaded from the GEO database. After preprocessing, DEGs between ruptured and stable atherosclerotic samples were identified using LIMMA. Gene Ontology biological process (GO_BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed using the Database for Annotation, Visualization, and Integration Discovery (DAVID) online tool. Based on the STRING database, protein-protein interactions (PPIs) network among DEGs were constructed. Regulatory relationships between miRNAs/transcriptional factors (TFs) and target genes were predicted using Enrichr, and regulatory networks were visualized using Cytoscape. Results: A total of 268 DEGs (64 up-regulated and 204 down-regulated DEGs) were identified between ruptured and stable samples. In the PPI network, collagen type III alpha 1 chain (COL3A1), collagen type I alpha 2 chain (COL1A2), and asporin (ASPN) were more than 15 interaction degrees. In the miRNA-target network, miR21 was highlighted with highest degrees and ASPN could be targeted by miR21. Functional enrichment analysis showed that COL3A1 and COL1A2 were significantly enriched in extracellular matrix organization and cell adhesion GO_BP terms. Pre-platelet basic protein (PPBP) was the most significantly up-regulated gene in ruptured atherosclerotic samples and enriched in immune response and inflammatory response GO_BP terms. Conclusions: Down-regulated COL3A1, COL1A2 and ASPN, and up-regulated PPBP might perform critical promotional roles in atherosclerotic plaque rupture. Furthermore, miR21 might be potential target to prevent atherosclerotic rupture.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University
| | - Dongyuan Liu
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University
| | - Hongbing Zhang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University
| |
Collapse
|
150
|
Chae SY, Kwon TW, Jin S, Kwon SU, Sung C, Oh SJ, Lee SJ, Oh JS, Han Y, Cho YP, Lee N, Kim JY, Koglin N, Berndt M, Stephens AW, Moon DH. A phase 1, first-in-human study of 18F-GP1 positron emission tomography for imaging acute arterial thrombosis. EJNMMI Res 2019; 9:3. [PMID: 30617563 PMCID: PMC6323046 DOI: 10.1186/s13550-018-0471-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND 18F-GP1 is a novel positron emission tomography (PET) tracer that targets glycoprotein IIb/IIIa receptors on activated platelets. The study objective was to explore the feasibility of directly imaging acute arterial thrombosis (AAT) with 18F-GP1 PET/computed tomography (PET/CT) and to quantitatively assess 18F-GP1 uptake. Safety, biodistribution, pharmacokinetics and metabolism were also evaluated. METHODS Adult patients who had signs or symptoms of AAT or had recently undergone arterial intervention or surgery within 14 days prior to 18F-GP1 PET/CT were eligible for inclusion. The AAT focus was demonstrated by conventional imaging within the 5 days prior to 18F-GP1 administration. Whole-body dynamic 18F-GP1 PET/CT images were acquired for up to 140 min after injection of 250 MBq of 18F-GP1. Venous plasma samples were analysed to determine 18F-GP1 clearance and metabolite formation. RESULTS Among the ten eligible patients assessed, underlying diseases were abdominal aortic aneurysm with endovascular repair (n = 6), bypass surgery and stent placement (n = 1), endarterectomy (n = 1), arterial dissection (n = 1) and acute cerebral infarction (n = 1). 18F-GP1 administration and PET/CT procedures were well tolerated, with no drug-related adverse events. All patients showed high initial 18F-GP1 uptake in the spleen, kidney and blood pool, followed by rapid clearance. Unmetabolised plasma 18F-GP1 levels peaked at 4 min post-injection and decreased over time until 120 min. The overall image quality was sufficient for diagnosis in all patients and AAT foci were detected in all participants. The 18F-GP1 uptake in AAT foci remained constant from 7 min after injection and began to separate from the blood pool after 20 min. The median standardised uptake value of AAT was 5.0 (range 2.4-7.9) at 120 min post-injection. The median ratio of standardised uptake value of AAT foci to the mean blood pool activity was 3.4 (range 2.0-6.3) at 120 min. CONCLUSIONS 18F-GP1 is a safe and promising novel PET tracer for imaging AAT with a favourable biodistribution and pharmacokinetic profile. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02864810 , Registered August 3, 2016.
Collapse
Affiliation(s)
- Sun Young Chae
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Tae-Won Kwon
- Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soyoung Jin
- Department of Nuclear Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Sun U Kwon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhwan Sung
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Youngjin Han
- Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Pil Cho
- Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Narae Lee
- Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ji Young Kim
- Department of Nuclear Medicine, Guri Hospital of Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Norman Koglin
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Mathias Berndt
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Andrew W Stephens
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|