101
|
Singh S, Natalini JG, Segal LN. Lung microbial-host interface through the lens of multi-omics. Mucosal Immunol 2022; 15:837-845. [PMID: 35794200 PMCID: PMC9391302 DOI: 10.1038/s41385-022-00541-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
In recent years, our understanding of the microbial world within us has been revolutionized by the use of culture-independent techniques. The use of multi-omic approaches can now not only comprehensively characterize the microbial environment but also evaluate its functional aspects and its relationship with the host immune response. Advances in bioinformatics have enabled high throughput and in-depth analyses of transcripts, proteins and metabolites and enormously expanded our understanding of the role of the human microbiome in different conditions. Such investigations of the lower airways have specific challenges but as the field develops, new approaches will be facilitated. In this review, we focus on how integrative multi-omics can advance our understanding of the microbial environment and its effects on the host immune tone in the lungs.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Jake G. Natalini
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY,NYU Langone Lung Transplant Institute, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| |
Collapse
|
102
|
Functional, transcriptional, and microbial shifts associated with healthy pulmonary aging in rhesus macaques. Cell Rep 2022; 39:110725. [PMID: 35443183 PMCID: PMC9096119 DOI: 10.1016/j.celrep.2022.110725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 01/04/2023] Open
Abstract
Older individuals are at increased risk of developing severe respiratory infections. However, our understanding of the impact of aging on the respiratory tract remains limited as samples from healthy humans are challenging to obtain and results can be confounded by variables such as smoking and diet. Here, we carry out a comprehensive cross-sectional study (n = 34 adult, n = 49 aged) to define the consequences of aging on the lung using the rhesus macaque model. Pulmonary function testing establishes similar age and sex differences as humans. Additionally, we report increased abundance of alveolar and infiltrating macrophages and a concomitant decrease in T cells were in aged animals. scRNAseq reveals shifts from GRZMB to IFN expressing CD8+ T cells in the lungs. These data provide insight into age-related changes in the lungs’ functional, microbial, and immunological landscape that explain increased prevalence and severity of respiratory diseases in the elderly. Rhoades et al. describe age-associated functional, microbial, and immunological changes in the lung using the rhesus macaque model. These data will support further studies aimed at designing and testing interventions to mitigate the impact of age-associated shifts in the lung environment to reduce age-related pulmonary disease in the elderly.
Collapse
|
103
|
Papiris SA, Kolilekas L, Kagouridis K, Maniati M, Manali ED. IPF-Acute Exacerbations: Advances and Future Perspectives. Front Pharmacol 2022; 13:836553. [PMID: 35496286 PMCID: PMC9047939 DOI: 10.3389/fphar.2022.836553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Spyros A. Papiris
- 2ndPulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Spyros A. Papiris,
| | | | - Konstantinos Kagouridis
- 2ndPulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Maniati
- 2ndPulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Effrosyni D. Manali
- 2ndPulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
104
|
The Relevance of the Bacterial Microbiome, Archaeome and Mycobiome in Pediatric Asthma and Respiratory Disorders. Cells 2022; 11:cells11081287. [PMID: 35455967 PMCID: PMC9024940 DOI: 10.3390/cells11081287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria, as well as eukaryotes, principally fungi, of the upper respiratory tract play key roles in the etiopathogenesis of respiratory diseases, whereas the potential role of archaea remains poorly understood. In this review, we discuss the contribution of all three domains of cellular life to human naso- and oropharyngeal microbiomes, i.e., bacterial microbiota, eukaryotes (mostly fungi), as well as the archaeome and their relation to respiratory and atopic disorders in infancy and adolescence. With this review, we aim to summarize state-of-the-art contributions to the field published in the last decade. In particular, we intend to build bridges between basic and clinical science.
Collapse
|
105
|
胡 彬, 陈 佳, 李 为, 汪 景, 李 晓. [An updated review of the mechanism of fibrosis in acquired laryngotrachealstenosis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:310-314. [PMID: 35511628 PMCID: PMC10128174 DOI: 10.13201/j.issn.2096-7993.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 04/30/2023]
Abstract
Acquired laryngotracheal stenosis is a laryngeal obstruction disease due to pathologic scar formation. Although acquired laryngotracheal stenosis is hypothesized to be related to fibrosis, its specific mechanisms have yet to be characterized. This article reviews the latest research progress on the mechanisms of laryngotracheal fibrosis, including metabolic changes, immune cell dysregulation, extracellular matrix changes and microbiota.
Collapse
Affiliation(s)
- 彬 胡
- 上海市儿童医院 上海交通大学附属儿童医院耳鼻喉科(上海, 200333)
| | - 佳瑞 陈
- 上海市儿童医院 上海交通大学附属儿童医院耳鼻喉科(上海, 200333)
| | | | - 景 汪
- 上海市儿童医院 上海交通大学附属儿童医院耳鼻喉科(上海, 200333)
| | - 晓艳 李
- 上海市儿童医院 上海交通大学附属儿童医院耳鼻喉科(上海, 200333)
| |
Collapse
|
106
|
Asai N, Kato H, Mikamo H. The pathophysiological mechanisms of COVID-19 and host immunity, with emphasis on the dysbiosis of the lung and gut microbiomes and pregnancy. Respir Investig 2022; 60:496-502. [PMID: 35422403 PMCID: PMC8977498 DOI: 10.1016/j.resinv.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022]
Abstract
The coronavirus 2019 (COVID-19) pandemic is a health and economic crisis. It has also highlighted human relational problems, such as racism and conflicts between nations. Although vaccination programs against the severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have started worldwide, the pandemic is ongoing, and people are struggling. The mechanism of disease severity in COVID-19 is multifactorial, complicated, and affected by viral pathogenesis. For example, monocyte dysfunction due to aging and respiratory and gut dysbiosis influence the host's immunity against SARS-CoV-2 including helper T-cell imbalance and viral clearance reduction, leading to accelerated disease progression in older patients or those with underlying diseases. The different immune responses against SARS-CoV-2 also contribute to various radiological findings, including that of acute respiratory distress syndrome, which is associated with high mortality, especially in patients susceptible to disease progression. We aimed to review the pathophysiological mechanisms involved in COVID-19, with emphasis on the altered microbiome in the lung and gut, and the different radiological findings in different patient groups, such as younger adults and pregnant women.
Collapse
|
107
|
De R, Dutta S. Role of the Microbiome in the Pathogenesis of COVID-19. Front Cell Infect Microbiol 2022; 12:736397. [PMID: 35433495 PMCID: PMC9009446 DOI: 10.3389/fcimb.2022.736397] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic coronavirus disease COVID-19 is caused by the highly contagious single-stranded RNA virus, SARS-coronavirus 2 (SARS-CoV-2), which has a high rate of evolution like other RNA viruses. The first genome sequences of SARS-CoV-2 were available in early 2020. Subsequent whole-genome sequencing revealed that the virus had accumulated several mutations in genes associated with viral replication and pathogenesis. These variants showed enhanced transmissibility and infectivity. Soon after the first outbreak due to the wild-type strain in December 2019, a genetic variant D614G emerged in late January to early February 2020 and became the dominant genotype worldwide. Thereafter, several variants emerged, which were found to harbor mutations in essential viral genes encoding proteins that could act as drug and vaccine targets. Numerous vaccines have been successfully developed to assuage the burden of COVID-19. These have different rates of efficacy, including, although rarely, a number of vaccinated individuals exhibiting side effects like thrombosis. However, the recent emergence of the Britain strain with 70% more transmissibility and South African variants with higher resistance to vaccines at a time when several countries have approved these for mass immunization has raised tremendous concern regarding the long-lasting impact of currently available prophylaxis. Apart from studies addressing the pathophysiology, pathogenesis, and therapeutic targets of SARS-CoV-2, analysis of the gut, oral, nasopharyngeal, and lung microbiome dysbiosis has also been undertaken to find a link between the microbiome and the pathogenesis of COVID-19. Therefore, in the current scenario of skepticism regarding vaccine efficacy and challenges over the direct effects of currently available drugs looming large, investigation of alternative therapeutic avenues based on the microbiome can be a rewarding finding. This review presents the currently available understanding of microbiome dysbiosis and its association with cause and consequence of COVID-19. Taking cues from other inflammatory diseases, we propose a hypothesis of how the microbiome may be influencing homeostasis, pro-inflammatory condition, and the onset of inflammation. This accentuates the importance of a healthy microbiome as a protective element to prevent the onset of COVID-19. Finally, the review attempts to identify areas where the application of microbiome research can help in reducing the burden of the disease.
Collapse
Affiliation(s)
- Rituparna De
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| |
Collapse
|
108
|
Zinter MS, Versluys AB, Lindemans CA, Mayday MY, Reyes G, Sunshine S, Chan M, Fiorino EK, Cancio M, Prevaes S, Sirota M, Matthay MA, Kharbanda S, Dvorak CC, Boelens JJ, DeRisi JL. Pulmonary microbiome and gene expression signatures differentiate lung function in pediatric hematopoietic cell transplant candidates. Sci Transl Med 2022; 14:eabm8646. [PMID: 35263147 PMCID: PMC9487170 DOI: 10.1126/scitranslmed.abm8646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Impaired baseline lung function is associated with mortality after pediatric allogeneic hematopoietic cell transplantation (HCT), yet limited knowledge of the molecular pathways that characterize pretransplant lung function has hindered the development of lung-targeted interventions. In this study, we quantified the association between bronchoalveolar lavage (BAL) metatranscriptomes and paired pulmonary function tests performed a median of 1 to 2 weeks before allogeneic HCT in 104 children in The Netherlands. Abnormal pulmonary function was recorded in more than half the cohort, consisted most commonly of restriction and impaired diffusion, and was associated with both all-cause and lung injury-related mortality after HCT. Depletion of commensal supraglottic taxa, such as Haemophilus, and enrichment of nasal and skin taxa, such as Staphylococcus, in the BAL microbiome were associated with worse measures of lung capacity and gas diffusion. In addition, BAL gene expression signatures of alveolar epithelial activation, epithelial-mesenchymal transition, and down-regulated immunity were associated with impaired lung capacity and diffusion, suggesting a postinjury profibrotic response. Detection of microbial depletion and abnormal epithelial gene expression in BAL enhanced the prognostic utility of pre-HCT pulmonary function tests for the outcome of post-HCT mortality. These findings suggest a potentially actionable connection between microbiome depletion, alveolar injury, and pulmonary fibrosis in the pathogenesis of pre-HCT lung dysfunction.
Collapse
Affiliation(s)
- Matt S Zinter
- School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,School of Medicine, Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, San Francisco, CA 94143, USA
| | - A Birgitta Versluys
- University Medical Center Utrecht, Department of Pediatric Stem Cell Transplantation, Utrecht, 3584 CX, Netherlands.,Princess Maxima Center for Pediatric Oncology, Department of Hematopoietic Cell Transplantation, Utrecht 3584 CX, Netherlands
| | - Caroline A Lindemans
- University Medical Center Utrecht, Department of Pediatric Stem Cell Transplantation, Utrecht, 3584 CX, Netherlands.,Princess Maxima Center for Pediatric Oncology, Department of Hematopoietic Cell Transplantation, Utrecht 3584 CX, Netherlands
| | - Madeline Y Mayday
- Department of Pathology, Graduate Program in Experimental Pathology, and Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Gustavo Reyes
- School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sara Sunshine
- School of Medicine, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marilynn Chan
- School of Medicine, Department of Pediatrics, Division of Pulmonology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth K Fiorino
- WC Medical College, Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Cornell University, New York City, NY 10065, USA
| | - Maria Cancio
- WC Medical College, Department of Pediatrics, Cornell University, New York City, NY 10065, USA.,Department of Pediatric Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Sabine Prevaes
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 CX, Netherlands
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,School of Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael A Matthay
- School of Medicine, Cardiovascular Research Institute, Departments of Medicine and Anesthesiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sandhya Kharbanda
- School of Medicine, Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher C Dvorak
- School of Medicine, Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jaap J Boelens
- WC Medical College, Department of Pediatrics, Cornell University, New York City, NY 10065, USA.,Department of Pediatric Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Joseph L DeRisi
- School of Medicine, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
109
|
Rinaldi S, Balsillie C, Truchon C, AL‐Mubarak A, Mura M, Madill J. Nutrition implications of intrinsic restrictive lung disease. Nutr Clin Pract 2022; 37:239-255. [DOI: 10.1002/ncp.10849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sylvia Rinaldi
- School of Food and Nutritional Science, Brescia University College Western University London Ontario Canada
| | - Christine Balsillie
- School of Food and Nutritional Science, Brescia University College Western University London Ontario Canada
| | - Cassandra Truchon
- School of Food and Nutritional Science, Brescia University College Western University London Ontario Canada
| | - Awatif AL‐Mubarak
- School of Food and Nutritional Science, Brescia University College Western University London Ontario Canada
| | - Marco Mura
- Division of Respirology, Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Janet Madill
- School of Food and Nutritional Science, Brescia University College Western University London Ontario Canada
| |
Collapse
|
110
|
Targeting the Pulmonary Microbiota to Fight against Respiratory Diseases. Cells 2022; 11:cells11050916. [PMID: 35269538 PMCID: PMC8909000 DOI: 10.3390/cells11050916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system of the respiratory tract possesses an effective “defense barrier” against the invading pathogenic microorganisms; therefore, the lungs of healthy organisms are considered to be sterile for a long time according to the strong pathogens-eliminating ability. The emergence of next-generation sequencing technology has accelerated the studies about the microbial communities and immune regulating functions of lung microbiota during the past two decades. The acquisition and maturation of respiratory microbiota during childhood are mainly determined by the birth mode, diet structure, environmental exposure and antibiotic usage. However, the formation and development of lung microbiota in early life might affect the occurrence of respiratory diseases throughout the whole life cycle. The interplay and crosstalk between the gut and lung can be realized by the direct exchange of microbial species through the lymph circulation, moreover, the bioactive metabolites produced by the gut microbiota and lung microbiota can be changed via blood circulation. Complicated interactions among the lung microbiota, the respiratory viruses, and the host immune system can regulate the immune homeostasis and affect the inflammatory response in the lung. Probiotics, prebiotics, functional foods and fecal microbiota transplantation can all be used to maintain the microbial homeostasis of intestinal microbiota and lung microbiota. Therefore, various kinds of interventions on manipulating the symbiotic microbiota might be explored as novel effective strategies to prevent and control respiratory diseases.
Collapse
|
111
|
Wang X, Xu X, Chen Y, Li Z, Zhang M, Zhao C, Lian B, Zhao J, Guo Y, Liu Q. Liu Shen Capsule Alters Airway Microbiota Composition and Metabolite Profiles in Healthy Humans. Front Pharmacol 2022; 12:824180. [PMID: 35153770 PMCID: PMC8831732 DOI: 10.3389/fphar.2021.824180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Alteration in airway microbiota composition and perturbations in microbe-metabolites interactions have been proposed as markers of many diseases. Liu Shen (LS) capsule, a traditional Chinese medicine, was proved as favorable in treating respiratory diseases. However, the effects of the LS capsule in terms of regulating human microorganisms and metabolite profiles are not well known. This study aimed to define and compare the respiratory microbiota composition and circulating and fecal metabolite profiles before and after LS capsule administration. A total of 30 healthy volunteers were recruited. The pharyngeal swab samples were collected for 16S rRNA gene sequencing. The serum and fecal samples were collected to analyze the non-targeted ultra-performance liquid chromatography–tandem mass spectrometry metabolomics. The airway microbial compositions were profoundly altered after LS capsule administration, as evidenced by increased microbial diversity and altered microbial taxa distribution. The increasing abundance of bacterial Bifidobacteria, and Lactobacillus characterized the after-administration groups, and the increasing of abundance bacterial Proteobacteria, Veillonella, Prevotella, Neisseria, and Actinomyces characterized the before-administration groups. Significant discriminations were observed in both serum and fecal metabolic profiles between the before- and after-administration groups. A total number of 134 and 71 significant HMDB taxonomic metabolites including glycerophospholipids, fatty acyls, and prenol lipids in the serum and fecal samples were identified respectively between the before- and after-administration groups. The integrated analysis showed that some altered airway microbiota phylum, such as Bacteroidetes and Proteobacteria, significantly correlated with metabolites in serum and fecal. Hence, our study reported the alternations in the composition and functions of the airway microbial community and the changes in circulating and fecal metabolite profiles after LS capsule administration in healthy humans, thus providing a novel insight into the mechanisms underlying the role of LS capsule treating and preventing related diseases.
Collapse
Affiliation(s)
- Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Yishan Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhenxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mina Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Bo Lian
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
- *Correspondence: Qingquan Liu,
| |
Collapse
|
112
|
Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Front Pharmacol 2022; 12:797292. [PMID: 35126134 PMCID: PMC8807692 DOI: 10.3389/fphar.2021.797292] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal fibrotic lung disease that occurs primarily in middle-aged and elderly adults. It is a major cause of morbidity and mortality. With an increase in life expectancy, the economic burden of IPF is expected to continuously rise in the near future. Although the exact pathophysiological mechanisms underlying IPF remain not known. Significant progress has been made in our understanding of the pathogenesis of this devastating disease in last decade. The current paradigm assumes that IPF results from sustained or repetitive lung epithelial injury and subsequent activation of fibroblasts and myofibroblast differentiation. Persistent myofibroblast phenotype contributes to excessive deposition of the extracellular matrix (ECM) and aberrant lung repair, leading to tissue scar formation, distortion of the alveolar structure, and irreversible loss of lung function. Treatments of patients with IPF by pirfenidone and nintedanib have shown significant reduction of lung function decline and slowing of disease progression in patients with IPF. However, these drugs do not cure the disease. In this review, we discuss recent advances on the pathogenesis of IPF and highlight the development of novel therapeutic strategies against the disease.
Collapse
Affiliation(s)
| | | | | | | | - Jing Qu
- *Correspondence: Zhenhua Yang, ; Jing Qu,
| |
Collapse
|
113
|
Amati F, Stainer A, Mantero M, Gramegna A, Simonetta E, Suigo G, Voza A, Nambiar AM, Cariboni U, Oldham J, Molyneaux PL, Spagnolo P, Blasi F, Aliberti S. Lung Microbiome in Idiopathic Pulmonary Fibrosis and Other Interstitial Lung Diseases. Int J Mol Sci 2022; 23:ijms23020977. [PMID: 35055163 PMCID: PMC8779068 DOI: 10.3390/ijms23020977] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Interstitial lung diseases represent a heterogeneous and wide group of diseases in which factors leading to disease initiation and progression are not fully understood. Recent evidence suggests that the lung microbiome might influence the pathogenesis and progression of interstitial lung diseases. In recent years, the utilization of culture-independent methodologies has allowed the identification of complex and dynamic communities of microbes, in patients with interstitial lung diseases. However, the potential mechanisms by which these changes may drive disease pathogenesis and progression are largely unknown. The aim of this review is to discuss the role of the altered lung microbiome in several interstitial lung diseases. Untangling the host–microbiome interaction in the lung and airway of interstitial lung disease patients is a research priority. Thus, lung dysbiosis is a potentially treatable trait across several interstitial lung diseases, and its proper characterization and treatment might be crucial to change the natural history of these diseases and improve outcomes.
Collapse
Affiliation(s)
- Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (A.S.); (G.S.); (A.V.); (S.A.)
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence:
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (A.S.); (G.S.); (A.V.); (S.A.)
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Marco Mantero
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (M.M.); (A.G.); (E.S.); (F.B.)
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (M.M.); (A.G.); (E.S.); (F.B.)
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Edoardo Simonetta
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (M.M.); (A.G.); (E.S.); (F.B.)
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giulia Suigo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (A.S.); (G.S.); (A.V.); (S.A.)
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (A.S.); (G.S.); (A.V.); (S.A.)
- Emergency Medicine Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Anoop M. Nambiar
- Division of Pulmonary and Critical Care, Department of Medicine, University of Texas Health San Antonio, South Texas Health Care System, San Antonio, TX 78229, USA;
| | - Umberto Cariboni
- Department of General and Thoracic Surgery, Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Justin Oldham
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Sacramento, CA 95616, USA;
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK;
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy;
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (M.M.); (A.G.); (E.S.); (F.B.)
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (A.S.); (G.S.); (A.V.); (S.A.)
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
114
|
Knudsen KS, Lehmann S, Nielsen R, Tangedal S, Haaland I, Hiemstra PS, Eagan TM. The lower airways microbiome and antimicrobial peptides in idiopathic pulmonary fibrosis differ from chronic obstructive pulmonary disease. PLoS One 2022; 17:e0262082. [PMID: 34990493 PMCID: PMC8735599 DOI: 10.1371/journal.pone.0262082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/19/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The lower airways microbiome and host immune response in chronic pulmonary diseases are incompletely understood. We aimed to investigate possible microbiome characteristics and key antimicrobial peptides and proteins in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). METHODS 12 IPF patients, 12 COPD patients and 12 healthy controls were sampled with oral wash (OW), protected bronchoalveolar lavage (PBAL) and right lung protected sterile brushings (rPSB). The antimicrobial peptides and proteins (AMPs), secretory leucocyte protease inhibitor (SLPI) and human beta defensins 1 and 2 (hBD-1 & hBD-2), were measured in PBAL by enzyme linked immunosorbent assay (ELISA). The V3V4 region of the bacterial 16S rDNA gene was sequenced. Bioinformatic analyses were performed with QIIME 2. RESULTS hBD-1 levels in PBAL for IPF were lower compared with COPD. The predominant phyla in IPF were Firmicutes, Bacteroides and Actinobacteria; Proteobacteria were among top three in COPD. Differential abundance analysis at genus level showed significant differences between study groups for less abundant, mostly oropharyngeal, microbes. Alpha diversity was lower in IPF in PBAL compared to COPD (p = 0.03) and controls (p = 0.01), as well as in rPSB compared to COPD (p = 0.02) and controls (p = 0.04). Phylogenetic beta diversity showed significantly more similarity for IPF compared with COPD and controls. There were no significant correlations between alpha diversity and AMPs. CONCLUSIONS IPF differed in microbial diversity from COPD and controls, accompanied by differences in antimicrobial peptides. Beta diversity similarity between OW and PBAL in IPF may indicate that microaspiration contributes to changes in its microbiome.
Collapse
Affiliation(s)
- Kristel S. Knudsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sverre Lehmann
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rune Nielsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Solveig Tangedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Haaland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas M. Eagan
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
115
|
Warheit-Niemi HI, Edwards SJ, SenGupta S, Parent CA, Zhou X, O'Dwyer DN, Moore BB. Fibrotic lung disease inhibits innate immune responses to Staphylococcal pneumonia via impaired neutrophil and macrophage function. JCI Insight 2022; 7:152690. [PMID: 34990413 PMCID: PMC8876506 DOI: 10.1172/jci.insight.152690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease characterized by collagen deposition within the lung interstitium. Bacterial infection is associated with increased morbidity and more rapid mortality in IPF patient populations, and pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) are commonly isolated from the lungs of hospitalized patients with IPF. Despite this, the effects of fibrotic lung injury on critical immune responses to infection remain unknown. In the present study, we show that, like humans with IPF, fibrotic mice infected with MRSA exhibit increased morbidity and mortality compared with uninfected fibrotic mice. We determine that fibrosis conferred a defect in MRSA clearance compared with nonfibrotic mice, resulting from blunted innate immune responses. We show that fibrosis inhibited neutrophil intracellular killing of MRSA through impaired neutrophil elastase release and oxidative radical production. Additionally, we demonstrate that lung macrophages from fibrotic mice have impaired phagocytosis of MRSA. Our study describes potentially novel impairments of antimicrobial responses upon pulmonary fibrosis development, and our findings suggest a possible mechanism for why patients with IPF are at greater risk of morbidity and mortality related to infection.
Collapse
Affiliation(s)
- Helen I Warheit-Niemi
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Summer J Edwards
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Shuvasree SenGupta
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Carole A Parent
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Xiaofeng Zhou
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - David N O'Dwyer
- The University of Michigan Medical School, Ann Arbor, United States of America
| | - Bethany B Moore
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| |
Collapse
|
116
|
Shen D, Guo Z, Huang K, Dai P, Jin X, Li Y, Li C. Inflammation-associated pulmonary microbiome and metabolome changes in broilers exposed to particulate matter in broiler houses. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126710. [PMID: 34332479 DOI: 10.1016/j.jhazmat.2021.126710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The particulate matter (PM) in livestock houses, one of the primary sources of atmospheric PM, is not only detrimental to the respiratory health of animals and farmworkers but also poses a threat to the public environment and public health and warrants increased attention. In this study, we investigated the variation in the pulmonary microbiome and metabolome in broiler chickens exposed to PM collected from a broiler house. We examined the pulmonary microbiome and metabolome in broilers, observing that PM induced a visible change in α and β diversity. A total of 66 differential genera, including unclassified_f_Ruminococcaceae and Campylobacter, were associated with pulmonary inflammation. Untargeted metabolomics was utilised to identify 63 differential metabolites induced by PM and correlated with differential bacteria. We observed that PM resulted in injury of the broiler lung and disruption of the microbial community, as well as causing changes in the observed metabolites. These results imply that perturbations to the microbiome and metabolome may play pivotal roles in the mechanism underlying PM-induced broiler lung damage.
Collapse
Affiliation(s)
- Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhendong Guo
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130117, China
| | - Kai Huang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyuan Dai
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Jin
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
117
|
Rastogi S, Mohanty S, Sharma S, Tripathi P. Possible role of gut microbes and host's immune response in gut-lung homeostasis. Front Immunol 2022; 13:954339. [PMID: 36275735 PMCID: PMC9581402 DOI: 10.3389/fimmu.2022.954339] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
The vast diversity of microbial communities reside in various locations of the human body, and they are collectively named as the 'Human Microbiota.' The majority of those microbes are found in the gastrointestinal and respiratory tracts. The microorganisms present in the gastrointestinal and the respiratory tracts are called the gut microbiota and the airway microbiota, respectively. These microbial communities are known to affect both the metabolic functions and the immune responses of the host. Among multiple factors determining the composition of gut microbiota, diet has played a pivotal role. The gut microbes possess enzymatic machinery for assimilating dietary fibers and releasing different metabolites, primarily short-chain fatty acids (SCFAs). The SCFAs modulate the immune responses of not only the gut but other distal mucosal sites as well, such as the lungs. Dysbiosis in normal gut flora is one of the factors involved in the development of asthma and other respiratory disorders. Of note, several human and murine studies have indicated significant cross-talk between gut microbiota and lung immunity, known as the gut-lung axis. Here, in this review, we summarize the recent state of the field concerning the effect of dietary metabolites, particularly SCFAs, on the "gut-lung axis" as well as discuss its impact on lung health. Moreover, we have highlighted the role of the "gut-lung axis" in SARS-CoV-2 mediated inflammation. Also, to analyze the global research progress on the gut-lung axis and to identify the knowledge gap in this field, we have also utilized the bibliographic tools Dimension database and VOS viewer analysis software. Through network mapping and visualization analysis, we can predict the present research trend and the possibility to explore new directions.
Collapse
Affiliation(s)
- Sonakshi Rastogi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sneha Mohanty
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sapna Sharma
- Institute of Biosciences and Biotechnology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- *Correspondence: Prabhanshu Tripathi, ; Sapna Sharma,
| | - Prabhanshu Tripathi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- *Correspondence: Prabhanshu Tripathi, ; Sapna Sharma,
| |
Collapse
|
118
|
Moutsoglou DM. 2021 American Thoracic Society BEAR Cage Winning Proposal: Microbiome Transplant in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2022; 205:13-16. [PMID: 34758276 PMCID: PMC8865595 DOI: 10.1164/rccm.202108-1833ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
119
|
He Y, Yu W, Ning P, Luo Q, Zhao L, Xie Y, Yu Y, Ma X, Chen L, Zheng Y, Gao Z. Shared and Specific Lung Microbiota with Metabolic Profiles in Bronchoalveolar Lavage Fluid Between Infectious and Inflammatory Respiratory Diseases. J Inflamm Res 2022; 15:187-198. [PMID: 35046693 PMCID: PMC8760989 DOI: 10.2147/jir.s342462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Background Infiltration of the lower respiratory tract (LRT) microenvironment could be significantly associated with respiratory diseases. However, alterations in the LRT microbiome and metabolome in infectious and inflammatory respiratory diseases and their correlation with inflammation still need to be explored. Methods Bronchoalveolar lavage samples from 44 community-acquired pneumonia (CAP) patients, 29 connective tissue disease-associated interstitial disease (CTD-ILD) patients, and 30 healthy volunteers were used to detect microbiota and metabolites through 16S rRNA gene sequencing and untargeted high-performance liquid chromatography with mass spectrometry. Results The composition of the LRT microbial communities and metabolites differed in disease states. CAP patients showed a significantly low abundance and both diseases presented a depletion of some genera of the phylum Bacteroidetes, including Prevotella, Porphyromonas, and health-associated metabolites, such as sphingosine (d16:1), which were negatively correlated with infectious indicators. In contrast, Bacillus and Mycoplasma were both enriched in the disease groups. Streptococcus was specifically increased in CTD-ILD. In addition, co-elevated metabolites such as FA (22:4) and pyruvic acid represented hypoxia and inflammation in the diseases. Significantly increased levels of amino acids and succinate, as well as decreased itaconic acid levels, were observed in CAP patients, whereas CTD-ILD patients showed only a handful of specific metabolic alterations. Functions related to microbial lipid and amino acid metabolism were significantly altered, indicating the possible contributions of microbial metabolism. Dual omics analysis showed a moderate positive correlation between the microbiome and metabolome. The levels of L-isoleucine and L-arginine were negatively correlated with Streptococcus, and itaconic acid positively correlated with Streptococcus. Conclusion In the LRT microenvironment, shared and specific alterations occurred in CAP and CTD-ILD patients, which were associated with inflammatory and immune reactions, which may provide a new direction for future studies aiming to elucidate the mechanism, improve the diagnosis, and develop therapies for different respiratory diseases.
Collapse
Affiliation(s)
- Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Pu Ning
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Qiongzhen Luo
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
- Department of Respiratory & Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Yu Xie
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Yan Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Li Chen
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Yali Zheng
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
- Department of Respiratory, Critical Care, and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Correspondence: Yali Zheng Department of Respiratory, Critical Care, and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China Email
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
- Department of Respiratory, Critical Care, and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Zhancheng Gao Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China Email
| |
Collapse
|
120
|
Ren L, Wang Y, Zhong J, Li X, Xiao Y, Li J, Yang J, Fan G, Guo L, Shen Z, Kang L, Shi L, Li Q, Li J, Di L, Li H, Wang C, Wang Y, Wang X, Zou X, Rao J, Zhang L, Wang J, Huang Y, Cao B, Wang J, Li M. Dynamics of the Upper Respiratory Tract Microbiota and Its Association with Mortality in COVID-19. Am J Respir Crit Care Med 2021; 204:1379-1390. [PMID: 34534435 PMCID: PMC8865718 DOI: 10.1164/rccm.202103-0814oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rationale Alteration of human respiratory microbiota had been observed in coronavirus disease (COVID-19). How the microbiota is associated with the prognosis in COVID-19 is unclear. Objectives To characterize the feature and dynamics of the respiratory microbiota and its associations with clinical features in patients with COVID-19. Methods We conducted metatranscriptome sequencing on 588 longitudinal oropharyngeal swab specimens collected from 192 patients with COVID-19 (including 39 deceased patients) and 95 healthy controls from the same geographic area. Meanwhile, the concentration of 27 cytokines and chemokines in plasma was measured for patients with COVID-19. Measurements and Main Results The upper respiratory tract (URT) microbiota in patients with COVID-19 differed from that in healthy controls, whereas deceased patients possessed a more distinct microbiota, both on admission and before discharge/death. The alteration of URT microbiota showed a significant correlation with the concentration of proinflammatory cytokines and mortality. Specifically, Streptococcus-dominated microbiota was enriched in recovered patients, and showed high temporal stability and resistance against pathogens. In contrast, the microbiota in deceased patients was more susceptible to secondary infections and became more deviated from the norm after admission. Moreover, the abundance of S. parasanguinis on admission was significantly correlated with prognosis in nonsevere patients (lower vs. higher abundance, odds ratio, 7.80; 95% CI, 1.70–42.05). Conclusions URT microbiota dysbiosis is a remarkable manifestation of COVID-19; its association with mortality suggests it may reflect the interplay between pathogens, symbionts, and the host immune status. Whether URT microbiota could be used as a biomarker for diagnosis and prognosis of respiratory diseases merits further investigation.
Collapse
Affiliation(s)
- Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, and.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, and.,Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Jiaxin Zhong
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, and.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Li
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jing Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guohui Fan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Li Guo
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, and.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijie Shen
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Kang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Leisheng Shi
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Li
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jizhou Li
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Lin Di
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, College of Chemistry, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Haibo Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, and.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Conghui Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, and
| | - Ying Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, and
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, and
| | - Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, and.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Jian Rao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, and.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianbin Wang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, College of Chemistry, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, and.,Department of Respiratory Medicine, Capital Medical University, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China; and
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, and.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
121
|
Liu KX, Liu HX, Zhang J, Zhang N, Zhou YZ, Tao MM, Wang HW, Qu JM. Biogeography of the Respiratory Tract Microbiome in Patients With Malignant Tracheal Tumors. Front Oncol 2021; 11:758917. [PMID: 34868972 PMCID: PMC8640173 DOI: 10.3389/fonc.2021.758917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background This study aimed to characterize the bacterial microbiota in the oral cavity (OC), throat, trachea, and distal alveoli of patients with primary malignant tracheal tumors (PMTT), including squamous cell carcinoma (SCC) and salivary gland carcinoma patients (SGC), for comparison with a matched non-malignant tracheal tumor (NMTT) group. Methods Patients with pathological diagnosis of PMTT and NMTT were included in this study. Saliva, throat swab (TS), trachea protected specimen brush (PSB), and bronchoalveolar lavage fluid (BALF) samples were collected for 16S rRNA gene sequencing. The composition, diversity, and distribution of the microbiota were compared among biogeographic sampling sites and patient groups. The relationship between the genera-level taxon abundance and tracheal tumor types was also investigated to screen for candidate biomarkers. Findings The most represented phyla in the four sites were Bacteroidetes, Firmicutes, Proteobacteria, and Fusobacteria. In SCC patients, the relative abundance of Bacteroidetes and Firmicutes gradually decreased with increasing depth into the respiratory tract, while the relative abundance of Proteobacteria gradually increased. Bacterial communities at the four biogeographic sites formed two distinct clusters, with OC and TS samples comprising one cluster and PSB and BALF samples comprising the other group. Principal coordinate analysis showed that trachea microbiota in SCC patients were distinct from that of SGC or NMTT patients. In the trachea, AUCs generated by Prevotella and Alloprevotella showed that the abundance of these genera could distinguish SCC patients from both NMTT and SGC patients. Interpretation The structure of respiratory tract microbiota in PMTT patients is related to tumor type. Certain bacteria could potentially serve as markers of SCC, although verification with large-sample studies is necessary.
Collapse
Affiliation(s)
- Kai-Xiong Liu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hai-Xia Liu
- Department of Infectious Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nan Zhang
- Department of Oncology, Emergency General Hospital, Beijing, China
| | - Yun-Zhi Zhou
- Department of Respiratory Medicine, Emergency General Hospital, Beijing, China
| | - Mei-Mei Tao
- Department of Oncology, Emergency General Hospital, Beijing, China
| | - Hong-Wu Wang
- Department of Respiratory and Critical Care Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jie-Ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| |
Collapse
|
122
|
Shi CY, Yu CH, Yu WY, Ying HZ. Gut-Lung Microbiota in Chronic Pulmonary Diseases: Evolution, Pathogenesis, and Therapeutics. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:9278441. [PMID: 34900069 PMCID: PMC8664551 DOI: 10.1155/2021/9278441] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiota colonized in the human body has a symbiotic relationship with human body and forms a different microecosystem, which affects human immunity, metabolism, endocrine, and other physiological processes. The imbalance of microbiota is usually linked to the aberrant immune responses and inflammation, which eventually promotes the occurrence and development of respiratory diseases. Patients with chronic respiratory diseases, including asthma, COPD, bronchiectasis, and idiopathic pulmonary fibrosis, often have alteration of the composition and function of intestinal and lung microbiota. Gut microbiota affects respiratory immunity and barrier function through the lung-gut microbiota, resulting in altered prognosis of chronic respiratory diseases. In turn, lung dysbiosis promotes aggravation of lung diseases and causes intestinal dysfunction through persistent activation of lymphoid cells in the body. Recent advances in next-generation sequencing technology have disclosed the pivotal roles of lung-gut microbiota in the pathogenesis of chronic respiratory diseases. This review focuses on the association between the gut-lung dysbiosis and respiratory diseases pathogenesis. In addition, potential therapeutic modalities, such as probiotics and fecal microbiota transplantation, are also evaluated for the prevention of chronic respiratory diseases.
Collapse
Affiliation(s)
- Chang Yi Shi
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Chen Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Wen Ying Yu
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Hua Zhong Ying
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
123
|
Boustani K, Ghai P, Invernizzi R, Hewitt RJ, Maher TM, Li QZ, Molyneaux PL, Harker JA. Autoantibodies are present in the bronchoalveolar lavage but not circulation in patients with fibrotic interstitial lung disease. ERJ Open Res 2021; 8:00481-2021. [PMID: 35174247 PMCID: PMC8841989 DOI: 10.1183/23120541.00481-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/23/2021] [Indexed: 11/09/2022] Open
Abstract
Background Fibrotic interstitial lung disease (fILD) has previously been associated with the presence of autoantibody. While studies have focused on systemic autoimmunity, the role of local autoantibodies in the airways remains unknown. We therefore extensively characterised the airway and peripheral autoantibody profiles in patients with fILD, and assessed association with disease severity and outcome. Methods Bronchoalveolar lavage (BAL) fluid was collected from a cohort of fILD patients and total BAL antibody concentrations were quantified. An autoantigen microarray was used to measure IgG and IgA autoantibodies against 122 autoantigens in BAL from 40 idiopathic pulmonary fibrosis (IPF), 20 chronic hypersensitivity pneumonitis (CHP), 20 connective tissue disease-associated ILD (CTD-ILD) patients and 20 controls. Results A subset of patients with fILD but not healthy controls had a local autoimmune signature in their BAL that was not present systemically, regardless of disease. The proportion of patients with IPF with a local autoantibody signature was comparable to that of CTD-ILD, which has a known autoimmune pathology, identifying a potentially novel subset of patients. The presence of an airway autoimmune signature was not associated with reduced survival probability or changes in lung function in the cohort as a whole. Patients with IPF had increased BAL total IgA and IgG1 while subjects with CHP had increased BAL IgA, IgG1 and IgG4. In patients with CHP, increased BAL total IgA was associated with reduced survival probability. Conclusion Airway autoantibodies that are not present systemically identify a group of patients with fILD and the mechanisms by which these autoantibodies contribute to disease requires further investigation. Autoantibodies are present in the bronchoalveolar lavage but not circulation in patients with fibrotic interstitial lung diseasehttps://bit.ly/3CNvKjj
Collapse
|
124
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
125
|
Fabbrizzi A, Nannini G, Lavorini F, Tomassetti S, Amedei A. Microbiota and IPF: hidden and detected relationships. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2021; 38:e2021028. [PMID: 34744424 PMCID: PMC8552575 DOI: 10.36141/svdld.v38i3.11365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022]
Abstract
Lung microbiota (LM) is an interesting new way to consider and redesign pathogenesis and possible therapeutic approach to many lung diseases, such as idiopathic pulmonary fibrosis (IPF), which is an interstitial pneumonia with bad prognosis. Chronic inflammation is the basis but probably not the only cause of lung fibrosis and although the risk factors are not completely clear, endogenous factors (e.g. gastroesophageal reflux) and environmental factors like cigarette smoking, industrial dusts, and precisely microbial agents could contribute to the IPF development. It is well demonstrated that many bacteria can cause epithelial cell injuries in the airways through induction of a host immune response or by activating flogosis mediators following a chronic, low-level antigenic stimulus. This persistent host response could influence fibroblast responsiveness suggesting that LM may play a role in repetitive alveolar injury in IPF. We reviewed literature regarding not only bacteria but also the role of virome and mycobiome in IPF. In fact, some viruses such as hepatitis C virus or certain fungi could be etiological agents or co-factors in the IPF progress. We aim to illustrate how the cross-talk between different local microbiotas throughout specific axis and immune modulation governed by microorganisms could be at the basis of lung dysfunctions and IPF development. Finally, since the future direction of medicine will be personalized, we suggest that the analysis of LM could be a goal to research new therapies also in IPF.
Collapse
Affiliation(s)
- Alessio Fabbrizzi
- Department of Respiratory Physiopathology, Palagi Hospital, Florence, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Federico Lavorini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Sara Tomassetti
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
126
|
Bao Y, Wadden J, Erb-Downward JR, Ranjan P, Zhou W, McDonald TL, Mills RE, Boyle AP, Dickson RP, Blaauw D, Welch JD. SquiggleNet: real-time, direct classification of nanopore signals. Genome Biol 2021; 22:298. [PMID: 34706748 PMCID: PMC8548853 DOI: 10.1186/s13059-021-02511-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
We present SquiggleNet, the first deep-learning model that can classify nanopore reads directly from their electrical signals. SquiggleNet operates faster than DNA passes through the pore, allowing real-time classification and read ejection. Using 1 s of sequencing data, the classifier achieves significantly higher accuracy than base calling followed by sequence alignment. Our approach is also faster and requires an order of magnitude less memory than alignment-based approaches. SquiggleNet distinguished human from bacterial DNA with over 90% accuracy, generalized to unseen bacterial species in a human respiratory meta genome sample, and accurately classified sequences containing human long interspersed repeat elements.
Collapse
Affiliation(s)
- Yuwei Bao
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Jack Wadden
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, 48109, MI, USA
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, 48109, MI, USA
| | - John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Piyush Ranjan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Torrin L McDonald
- Department of Human Genetics, University of Michigan Medical, Ann Arbor, 48109, MI, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109, MI, USA
- Department of Human Genetics, University of Michigan Medical, Ann Arbor, 48109, MI, USA
| | - Alan P Boyle
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109, MI, USA
- Department of Human Genetics, University of Michigan Medical, Ann Arbor, 48109, MI, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, 48109, MI, USA
| | - David Blaauw
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Joshua D Welch
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, 48109, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109, MI, USA.
| |
Collapse
|
127
|
Xiang L, Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit Rev Microbiol 2021; 48:577-610. [PMID: 34693852 DOI: 10.1080/1040841x.2021.1992345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the discovery of the lung microbiota, its study in both pulmonary health and disease has become a vibrant area of emerging research interest. Thus far, most studies have described the lung microbiota composition in lung disease quite well, and some of these studies indicated alterations in lung microbial communities related to the onset and development of lung disease and vice versa. However, the underlying mechanisms, particularly the cellular and molecular links, are still largely unknown. In this review, we highlight the current progress in the complex cellular and molecular mechanisms by which the lung microbiome interacts with immune homeostasis and pulmonary disease pathogenesis to advance our understanding of the elaborate function of the lung microbiota in lung disease. We hope that this work can attract more attention to this still-young yet very promising field to facilitate the identification of new therapeutic targets and provide more innovative therapies. Additional accurate standard-based methodologies and technological breakthroughs are critical to propel the field forward to ultimately achieve the goal of maintaining respiratory health.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
128
|
Polke M, Kondoh Y, Wijsenbeek M, Cottin V, Walsh SLF, Collard HR, Chaudhuri N, Avdeev S, Behr J, Calligaro G, Corte TJ, Flaherty K, Funke-Chambour M, Kolb M, Krisam J, Maher TM, Molina Molina M, Morais A, Moor CC, Morisset J, Pereira C, Quadrelli S, Selman M, Tzouvelekis A, Valenzuela C, Vancheri C, Vicens-Zygmunt V, Wälscher J, Wuyts W, Bendstrup E, Kreuter M. Management of Acute Exacerbation of Idiopathic Pulmonary Fibrosis in Specialised and Non-specialised ILD Centres Around the World. Front Med (Lausanne) 2021; 8:699644. [PMID: 34646836 PMCID: PMC8502934 DOI: 10.3389/fmed.2021.699644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is a severe complication associated with a high mortality. However, evidence and guidance on management is sparse. The aim of this international survey was to assess differences in prevention, diagnostic and treatment strategies for AE-IPF in specialised and non-specialised ILD centres worldwide. Material and Methods: Pulmonologists working in specialised and non-specialised ILD centres were invited to participate in a survey designed by an international expert panel. Responses were evaluated in respect to the physicians' institutions. Results: Three hundred and two (65%) of the respondents worked in a specialised ILD centre, 134 (29%) in a non-specialised pulmonology centre. Similarities were frequent with regards to diagnostic methods including radiology and screening for infection, treatment with corticosteroids, use of high-flow oxygen and non-invasive ventilation in critical ill patients and palliative strategies. However, differences were significant in terms of the use of KL-6 and pathogen testing in urine, treatments with cyclosporine and recombinant thrombomodulin, extracorporeal membrane oxygenation in critical ill patients as well as antacid medication and anaesthesia measures as preventive methods. Conclusion: Despite the absence of recommendations, approaches to the prevention, diagnosis and treatment of AE-IPF are comparable in specialised and non-specialised ILD centres, yet certain differences in the managements of AE-IPF exist. Clinical trials and guidelines are needed to improve patient care and prognosis in AE-IPF.
Collapse
Affiliation(s)
- Markus Polke
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Marlies Wijsenbeek
- Department of Respiratory Medicine, Centre for Interstitial Lung Diseases and Sarcoidosis, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Vincent Cottin
- National Coordinating Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Simon L F Walsh
- Imperial College, National Heart and Lung Institute, London, United Kingdom
| | - Harold R Collard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nazia Chaudhuri
- North West Interstitial Lung Disease Unit, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom
| | - Sergey Avdeev
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, LMU Klinikum, University of Munich, Munich, Germany.,German Center for Lung Research (DZL), Marburg, Germany
| | - Gregory Calligaro
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Tamera J Corte
- Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Kevin Flaherty
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Johannes Krisam
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Toby M Maher
- Hastings Centre for Pulmonary Research and Division of Pulmonary, Critical Care, and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Interstitial Lung Disease Unit, Imperial College London, National Heart and Lung Institute, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Maria Molina Molina
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University Hospital of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio Morais
- Department of Pneumology, Faculdade de Medicina, Centro Hospitalar São João, Universidade do Porto, Porto, Portugal
| | - Catharina C Moor
- Department of Respiratory Medicine, Centre for Interstitial Lung Diseases and Sarcoidosis, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Julie Morisset
- Département de Médecine, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Carlos Pereira
- Lung Disease Department, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Quadrelli
- Hospital Británico, Buenos Aires, Argentina.,Sanatorio Güemes, Buenos Aires, Argentina
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Argyrios Tzouvelekis
- Department of First Academic Respiratory, Sotiria General Hospital for Thoracic Diseases, University of Athens, Athens, Greece
| | - Claudia Valenzuela
- ILD Unit, Pulmonology Department Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Vanesa Vicens-Zygmunt
- Unit of Interstitial Lung Diseases, Department of Pneumology, Pneumology Research Group, IDIBELL, L'Hospitalet de Llobregat, University Hospital of Bellvitge, Barcelona, Spain
| | - Julia Wälscher
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.,Department of Pulmonary Medicine, Centre for Interstitial and Rare Lung Diseases, Ruhrlandklinik University Hospital Essen, Essen, Germany
| | - Wim Wuyts
- Unit for Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Elisabeth Bendstrup
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus C, Denmark
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
129
|
Park CM, Kim HY, Jeon D, Shin YJ, Kim IH, Choi SJ, Kim KC, Lee K, Kim SH, Kim MS. Anti-fibrotic effect of pycnogenol® in a polyhexamethylene guanidine-treated mouse model. Respir Physiol Neurobiol 2021; 296:103802. [PMID: 34653662 DOI: 10.1016/j.resp.2021.103802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/15/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023]
Abstract
Pulmonary fibrosis (PF) is a respiratory disease that causes serious respiratory problems. The effects of French marine pine bark extract (Pycnogenol®), with antioxidant and anti-inflammatory properties, were investigated on lung fibrosis in polyhexamethylene guanidine (PHMG)-treated mice. Mice were separated into four groups (n = 6): vehicle control (VC, saline 50 μl); PHMG (1.1 mg/kg); PHMG + Pycnogenol® (0.3 mg/kg/day); and PHMG + Pycnogenol® (1 mg/kg/day). PF was induced via intratracheal instillation of PHMG. Treatment with PHMG decreased body weight and increased lung weight, both of which were improved by treatment with PHMG + Pycnogenol® (1 mg/kg). Enzyme-linked immunosorbent assay, western blotting, and PCR revealed that Pycnogenol® attenuated PHMG-induced increase in inflammatory cytokines and fibrosis-related factors in a dose-dependent manner. Finally, histopathological analysis revealed reduced inflammation/fibrosis in the PHMG + Pycnogenol® (1 mg/kg) group. Collectively, the results indicate that Pycnogenol® can be used to treat PF as it hinders fibrosis progression by inhibiting inflammatory responses in the lungs of PHMG-treated mice.
Collapse
Affiliation(s)
- Chul-Min Park
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Hyeon-Young Kim
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Doin Jeon
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Young-Jun Shin
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - In-Hyeon Kim
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seong-Jin Choi
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ki Cheon Kim
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Sung-Hwan Kim
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| | - Min-Seok Kim
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
130
|
Buschulte K, Hoffmann-Vold AM, Dobrota RD, Höger P, Krause A, Kreuter M. [Treatment of lung fibrosis in systemic rheumatic diseases (new treatment)]. Z Rheumatol 2021; 80:743-754. [PMID: 34505934 PMCID: PMC8429885 DOI: 10.1007/s00393-021-01067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
An interstitial lung disease represents a relevant organ manifestation in many systemic rheumatic diseases (connective tissue disease-interstitial lung disease, CTD-ILD). In 10% of the cases pulmonary fibrosis even results in an underlying systemic disease. The CTD-ILDs are frequently associated with a poor prognosis. Therefore, it is important to test patients with systemic rheumatic diseases timely and regularly for the presence of an ILD. Treatment decisions should be made together with pneumologists and rheumatologists, particularly with respect to the initiation of a specific treatment. Treatment is based on randomized studies only in a few cases and can mostly be derived from case control studies. For systemic sclerosis-associated ILD (SSc-ILD) antifibrotic treatment with nintedanib has also now been approved in addition to an immunosuppressive treatment. For other CTD-ILDs an antifibrotic treatment should be discussed in an interdisciplinary approach depending on the underlying disease corresponding to a progressively fibrosing ILD.
Collapse
Affiliation(s)
- Katharina Buschulte
- Zentrum für seltene und interstitielle Lungenerkrankungen, Pneumologie, Thoraxklinik, Universitätsklinikum Heidelberg und Deutsches Zentrum für Lungenforschung (DZL), Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | | | | | - Philipp Höger
- Zentrum für seltene und interstitielle Lungenerkrankungen, Pneumologie, Thoraxklinik, Universitätsklinikum Heidelberg und Deutsches Zentrum für Lungenforschung (DZL), Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Andreas Krause
- Abteilung für Rheumatologie, Klinische Immunologie und Osteologie, Immanuel Krankenhaus Berlin, Berlin, Deutschland
| | - Michael Kreuter
- Zentrum für seltene und interstitielle Lungenerkrankungen, Pneumologie, Thoraxklinik, Universitätsklinikum Heidelberg und Deutsches Zentrum für Lungenforschung (DZL), Röntgenstr. 1, 69126, Heidelberg, Deutschland.
| |
Collapse
|
131
|
Cyclophosphamide added to glucocorticoids in acute exacerbation of idiopathic pulmonary fibrosis (EXAFIP): a randomised, double-blind, placebo-controlled, phase 3 trial. THE LANCET RESPIRATORY MEDICINE 2021; 10:26-34. [PMID: 34506761 DOI: 10.1016/s2213-2600(21)00354-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The use of cyclophosphamide in patients with acute exacerbation of idiopathic pulmonary fibrosis (IPF) is unknown. Our study was designed to evaluate the efficacy and safety of four cyclophosphamide pulses in addition to high-dose methylprednisolone in this population. METHODS In this double-blind, placebo-controlled trial done in 35 departments across 31 hospitals in France, adult patients (≥18 years) with acute exacerbation of IPF and those with suspected acute exacerbation of IPF were randomly assigned in a 1:1 ratio using a web-based system to receive either intravenous pulses of cyclophosphamide (600 mg/m2) plus uromitexan as haemorrhagic cystitis prophylaxis (200 mg/m2) at the time of cyclophosphamide administration and then again, 4 h later, or placebo at days 0, 15, 30, and 60. Random assignment was stratified according to the severity of IPF and was block-balanced with variable block sizes of four or six patients. Patients receiving mechanical ventilation, with active infection, with active cancer, or who were registered on the lung transplant waiting list were excluded. All patients received standardised high-dose glucocorticoids. The investigators, patients, and the sponsor were masked to the treatment assignments. The primary endpoint was 3-month all-cause mortality, analysed by a χ2 test adhering to an intention-to-treat principle. The trial is now complete and registered with ClinicalTrials.gov, NCT02460588. FINDINGS Between Jan 22, 2016, and July 19, 2018, 183 patients were assessed for eligibility, of whom 120 patients were randomly assigned and 119 patients (62 [52%] with severe IPF) received at least one dose of cyclophosphamide (n=60) or placebo (n=59), all of whom were included in the intention-to-treat analysis. The 3-month all-cause mortality was 45% (27/60) in patients given cyclophosphamide compared with 31% (18/59) in the placebo group (difference 14·5% [95% CI -3·1 to 31·6]; p=0·10). Similar results were found after adjustment by IPF severity (odds ratio [OR] 1·89 [95% CI 0·89-4·04]). The risk of death at 3 months, independent of the treatment received, was higher with severe than non-severe IPF (OR 2·62 [1·12-6·12]) and was lower with the use of antifibrotic therapy (OR 0·33 [0·13-0·82]). Adverse events were similar between groups by 6 months (25 [42%] in the cyclophosphamide group vs 30 [51%] in the placebo group) and their proportion, including infections, did not differ. Overall infection was the main adverse event and occurred in 20 (33%) of 60 patients in the cyclophosphamide group versus 21 (36%) of 59 patients in the placebo group. INTERPRETATION In patients with acute exacerbation of IPF, adding intravenous cyclophosphamide pulses to glucocorticoids increased 3-month mortality. These findings provide evidence against the use of intravenous cyclophosphamide in such patients. FUNDING Programme Hospitalier de Recherche Clinique of the French Ministry of Health (PHRC 2014-502), Roche Pharmaceuticals.
Collapse
|
132
|
Wan H, Huang X, Cong P, He M, Chen A, Wu T, Dai D, Li W, Gao X, Tian L, Liang H, Xiong L. Identification of Hub Genes and Pathways Associated With Idiopathic Pulmonary Fibrosis via Bioinformatics Analysis. Front Mol Biosci 2021; 8:711239. [PMID: 34476240 PMCID: PMC8406749 DOI: 10.3389/fmolb.2021.711239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease whose etiology remains unknown. The purpose of this study was to explore hub genes and pathways related to IPF development and prognosis. Multiple gene expression datasets were downloaded from the Gene Expression Omnibus database. Weighted correlation network analysis (WGCNA) was performed and differentially expressed genes (DEGs) identified to investigate Hub modules and genes correlated with IPF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were performed on selected key genes. In the PPI network and cytoHubba plugin, 11 hub genes were identified, including ASPN, CDH2, COL1A1, COL1A2, COL3A1, COL14A1, CTSK, MMP1, MMP7, POSTN, and SPP1. Correlation between hub genes was displayed and validated. Expression levels of hub genes were verified using quantitative real-time PCR (qRT-PCR). Dysregulated expression of these genes and their crosstalk might impact the development of IPF through modulating IPF-related biological processes and signaling pathways. Among these genes, expression levels of COL1A1, COL3A1, CTSK, MMP1, MMP7, POSTN, and SPP1 were positively correlated with IPF prognosis. The present study provides further insights into individualized treatment and prognosis for IPF.
Collapse
Affiliation(s)
- Hanxi Wan
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Xinwei Huang
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Peilin Cong
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Mengfan He
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Aiwen Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Tingmei Wu
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Danqing Dai
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Wanrong Li
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Xiaofei Gao
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Li Tian
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Huazheng Liang
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| |
Collapse
|
133
|
Tian Z, Yao N, Wang F, Ruan L. Thymosin β4 Suppresses LPS-Induced Murine Lung Fibrosis by Attenuating Oxidative Injury and Alleviating Inflammation. Inflammation 2021; 45:59-73. [PMID: 34414534 DOI: 10.1007/s10753-021-01528-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
Inflammation plays a critical role in the progression of pulmonary fibrosis. Thymosin β4 (Tβ4) has antioxidant, anti-inflammatory, and antifibrotic effects. Although the potent protective role of Tβ4 in bleomycin-induced pulmonary fibrosis has been validated, the underlying mechanism is not clear; moreover, the influence of Tβ4 on lipopolysaccharide (LPS)-induced lung injury/fibrosis has not been reported. Expression of Tβ4 in fibrotic lung tissues was assessed by real-time quantitative reverse-transcription PCR (rt-PCR), immunohistochemistry (IHC), and western blotting. The effects of intraperitoneal adeno-associated virus-Tβ4 (AAV-Tβ4) on LPS-induced lung injury and fibrosis were observed through the evaluation of collagen deposition and α-smooth muscle actin (SMA) expression. In vitro tests with HPAEpiC and HLF-1 cells were performed to confirm the effects of Tβ4. In this study, we evaluated the role of Tβ4 in pulmonary fibrosis and explored the possible underlying mechanisms. Tβ4 was markedly upregulated in human or mouse fibrotic lung tissues. AAV-Tβ4 markedly alleviated LPS-induced oxidative damage, lung injury, inflammation, and fibrosis in mice. Our in vitro experiments also showed that LPS inhibited mitophagy and promoted inflammation via oxidative stress in HPAEpiC, and Tβ4 significantly attenuated LPS-induced mitophagy inhibition, inflammasome activation, and transforming growth factor-β (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in HPAEpiC. Moreover, Tβ4 suppressed the proliferation and attenuated the TGF-β1-induced activation of HLF-1 cells. In conclusion, Tβ4 alleviates LPS-induced lung injury, inflammation, and subsequent fibrosis in mice, suggesting that Tβ4 has a protective role in the pathogenesis of pulmonary fibrosis. Tβ4 is involved in attenuating oxidative injury, promoting mitophagy, and alleviating inflammation and fibrosis. Modulation of Tβ4 might be a novel strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China. .,Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China. .,Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Naijuan Yao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fei Wang
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Litao Ruan
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
134
|
Pulmonary Complications of Pediatric Hematopoietic Cell Transplantation. A National Institutes of Health Workshop Summary. Ann Am Thorac Soc 2021; 18:381-394. [PMID: 33058742 DOI: 10.1513/annalsats.202001-006ot] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Approximately 2,500 pediatric hematopoietic cell transplants (HCTs), most of which are allogeneic, are performed annually in the United States for life-threatening malignant and nonmalignant conditions. Although HCT is undertaken with curative intent, post-HCT complications limit successful outcomes, with pulmonary dysfunction representing the leading cause of nonrelapse mortality. To better understand, predict, prevent, and/or treat pulmonary complications after HCT, a multidisciplinary group of 33 experts met in a 2-day National Institutes of Health Workshop to identify knowledge gaps and research strategies most likely to improve outcomes. This summary of Workshop deliberations outlines the consensus focus areas for future research.
Collapse
|
135
|
Cage Environment Regulates Gut Microbiota Independent of Toll-Like Receptors. Infect Immun 2021; 89:e0018721. [PMID: 33941577 DOI: 10.1128/iai.00187-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome orchestrates epithelial homeostasis and both local and remote immunological responses. Critical to these regulatory interactions are innate immune receptors termed Toll-like receptors (TLRs). Studies to date have implicated innate immunity and Toll-like receptors in shaping key features of the gut microbiome. However, a variety of biological and environmental variables are also implicated in determining gut microbiota composition. In this report, we hypothesized that cohousing and environment dominated the regulation of the gut microbiota in animal models independent of innate immunity. To determine the importance of these variables, innate immunity, or environment in shaping gut microbiota, we used a randomized cohousing strategy and transgenic TLR-deficient mice. We have found that mice cohoused together by genotype exhibited limited changes over time in the composition of the gut microbiota. However, for mice randomized to cage, we report extensive changes in the gut microbiota, independent of TLR function, whereby the fecal microbiota of TLR-deficient mice converges with that of wild-type mice. TLR5-deficient mice in these experiments exhibit greater susceptibility to comparative changes in the microbiota than other TLR-deficient mice and wild-type mice. Our work has broad implications for the study of innate immunity and host-microbiota interactions. Given the profound impact that gut dysbiosis may have on immunity, this report highlights the potential impact of cohousing on the gut microbiota and indices of inflammation as outcomes in biological models of infectious or inflammatory disease.
Collapse
|
136
|
Abstract
The appreciation of human microbiome is gaining strong grounds in biomedical research. In addition to gut-brain axis, is the lung-brain axis, which is hypothesised to link pulmonary microbes to neurodegenerative disorders and behavioural changes. There is a need for analysis based on emerging studies to map out the prospects for lung-brain axis. In this review, relevant English literature and researches in the field of 'lung-brain axis' is reported. We recommend all the highlighted prospective studies to be integrated with an interdisciplinary approach. This might require conceptual research approaches based on physiology and pathophysiology. Multimodal aspects should include experimental animal units, while exploring the research gaps and making reference to the already existing human data. The overall microbiome medicine is gaining more ground. Aetiological paths and experimental recommendations as per prospective studies in this review will be an important guideline to develop effective treatments for any lung induced neurodegenerative diseases. An in-depth knowledge of the bi-directional communication between host and microbiome in the lung could help treatment to respiratory infections, alleviate stress, anxiety and enhanced neurological effects. The timely prevention and treatment of neurodegenerative diseases requires paradigm shift of the aetiology and more innovative experimentation.Impact statementThe overall microbiome medicine is gaining more ground. An in-depth knowledge of the bi-directional communication between host and microbiome in the lung could confer treatment to respiratory infections, alleviate stress, anxiety and enhanced neurological effects. Based on this review, we recommend all the highlighted prospective studies to be integrated and be given an interdisciplinary approach. This might require conceptual research approaches based on physiology and pathophysiology. Multimodal aspects should include experimental animal units; while exploring the research gaps and making reference to the already existing human data.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, Gambia
| | - Lucette Simbilyabo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan Provinces, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - John Jabang
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, Gambia
| | - Shakeel Ahmed Saleem
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Provinces, China
| |
Collapse
|
137
|
Abstract
The healthy lung was long thought of as sterile, but recent advances using molecular sequencing approaches have detected bacteria at low levels. Healthy lung bacteria largely reflect communities present in the upper respiratory tract that enter the lung via microaspiration, which is balanced by mechanical and immune clearance and likely involves limited local replication. The nature and dynamics of the lung microbiome, therefore, differ from those of ecological niches with robust self-sustaining microbial communities. Aberrant populations (dysbiosis) have been demonstrated in many pulmonary diseases not traditionally considered microbial in origin, and potential pathways of microbe-host crosstalk are emerging. The question now is whether and how dysbiotic microbiota contribute to initiation or perpetuation of injury. The fungal microbiome and virome are less well studied. This Review highlights features of the lung microbiome, unique considerations in studying it, examples of dysbiosis in selected disease, emerging concepts in lung microbiome-host interactions, and critical areas for investigation.
Collapse
|
138
|
Baker JM, Dickson RP. Is the lung microbiome alive? Lessons from Antarctic soil. Eur Respir J 2021; 58:58/1/2100321. [PMID: 34326174 DOI: 10.1183/13993003.00321-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/22/2023]
Affiliation(s)
- Jennifer M Baker
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Dept of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA .,Dept of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
| |
Collapse
|
139
|
Duckworth A, Longhurst HJ, Paxton JK, Scotton CJ. The Role of Herpes Viruses in Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:704222. [PMID: 34368196 PMCID: PMC8339799 DOI: 10.3389/fmed.2021.704222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Pulmonary fibrosis (PF) is a serious lung disease which can result from known genetic or environmental exposures but is more commonly idiopathic (IPF). In familial PF (FPF), the majority of identified causal genes play key roles in the maintenance of telomeres, the protective end structures of chromosomes. Recent evidence suggests that short telomeres may also be implicated causally in a significant proportion of idiopathic cases. The possible involvement of herpes viruses in PF disease incidence and progression has been examined for many years, with some studies showing strong, statistically significant associations and others reporting no involvement. Evidence is thus polarized and remains inconclusive. Here we review the reported involvement of herpes viruses in PF in both animals and humans and present a summary of the evidence to date. We also present several possible mechanisms of action of the different herpes viruses in PF pathogenesis, including potential contributions to telomere attrition and cellular senescence. Evidence for antiviral treatment in PF is very limited but suggests a potential benefit. Further work is required to definitely answer the question of whether herpes viruses impact PF disease onset and progression and to enable the possible use of targeted antiviral treatments to improve clinical outcomes.
Collapse
Affiliation(s)
- Anna Duckworth
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Hilary J. Longhurst
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Dyskeratosis Congenita (DC) Action, London, United Kingdom
| | - Jane K. Paxton
- Dyskeratosis Congenita (DC) Action, London, United Kingdom
| | - Chris J. Scotton
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
140
|
Abstract
Progress in the past 2 decades has led to widespread use of 2 medications to slow loss of lung function in patients with pulmonary fibrosis. Treatment of individual patients with currently available pharmacotherapies can be limited by side effects, and neither drug has a consistent effect on patient symptoms or function. Several promising new pharmacotherapies are under development. Comprehensive management of pulmonary fibrosis hinges on shared decision making. Patient and caregiver education, and early identification and management of symptoms and comorbidities, can help improve quality of life.
Collapse
Affiliation(s)
- Margaret L Salisbury
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, 1161 21st Avenue South, T-1209A Medical Center North, Nashville, TN 37232, USA.
| | - Marlies S Wijsenbeek
- Department of Respiratory Medicine, Centre for Interstitial Lung Diseases and Sarcoidosis, Erasmus Medical Center, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam 3015, GD, the Netherlands
| |
Collapse
|
141
|
Eskind CC, Shilts MH, Shaver CM, Das SR, Satyanarayana G. The respiratory microbiome after lung transplantation: Reflection or driver of respiratory disease? Am J Transplant 2021; 21:2333-2340. [PMID: 33749996 PMCID: PMC8926303 DOI: 10.1111/ajt.16568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 01/25/2023]
Abstract
With the introduction of high-throughput sequencing methods, our understanding of the human lower respiratory tract's inhabitants has expanded significantly in recent years. What is now termed the "lung microbiome" has been described for healthy patients, as well as people with chronic lung diseases and lung transplants. The lung microbiome of lung transplant recipients (LTRs) has proven to be unique compared with nontransplant patients, with characteristic findings associated with disease states, such as pneumonia, acute rejection, and graft failure. In this review, we summarize the current understanding of the lung microbiome in LTRs, not only focusing on bacteria but also highlighting key findings of the viral and the fungal community. Based on our knowledge of the lung microbiome in LTRs, we propose multiple opportunities for clinical use of the microbiome to improve outcomes in this population.
Collapse
Affiliation(s)
- Caroline Cohen Eskind
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meghan H. Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gowri Satyanarayana
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
142
|
Hérivaux A, Willis JR, Mercier T, Lagrou K, Gonçalves SM, Gonçales RA, Maertens J, Carvalho A, Gabaldón T, Cunha C. Lung microbiota predict invasive pulmonary aspergillosis and its outcome in immunocompromised patients. Thorax 2021; 77:283-291. [PMID: 34172558 PMCID: PMC8867272 DOI: 10.1136/thoraxjnl-2020-216179] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
Rationale Recent studies have revealed that the lung microbiota of critically ill patients is altered and predicts clinical outcomes. The incidence of invasive fungal infections, namely, invasive pulmonary aspergillosis (IPA), in immunocompromised patients is increasing, but the clinical significance of variations in lung bacterial communities is unknown. Objectives To define the contribution of the lung microbiota to the development and course of IPA. Methods and measurements We performed an observational cohort study to characterise the lung microbiota in 104 immunocompromised patients using bacterial 16S ribosomal RNA gene sequencing on bronchoalveolar lavage samples sampled on clinical suspicion of infection. Associations between lung dysbiosis in IPA and pulmonary immunity were evaluated by quantifying alveolar cytokines and chemokines and immune cells. The contribution of microbial signatures to patient outcome was assessed by estimating overall survival. Main results Patients diagnosed with IPA displayed a decreased alpha diversity, driven by a markedly increased abundance of the Staphylococcus, Escherichia, Paraclostridium and Finegoldia genera and a decreased proportion of the Prevotella and Veillonella genera. The overall composition of the lung microbiome was influenced by the neutrophil counts and associated with differential levels of alveolar cytokines. Importantly, the degree of bacterial diversity at the onset of IPA predicted the survival of infected patients. Conclusions Our results reveal the lung microbiota as an understudied source of clinical variation in patients at risk of IPA and highlight its potential as a diagnostic and therapeutic target in the context of respiratory fungal diseases.
Collapse
Affiliation(s)
- Anaïs Hérivaux
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Jesse R Willis
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toine Mercier
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Relber A Gonçales
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain .,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal .,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
143
|
Lipinski JH, Falkowski NR, Huffnagle GB, Erb-Downward JR, Dickson RP, Moore BB, O'Dwyer DN. Toll-like receptors, environmental caging, and lung dysbiosis. Am J Physiol Lung Cell Mol Physiol 2021; 321:L404-L415. [PMID: 34159791 DOI: 10.1152/ajplung.00002.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies have implicated lung microbiota in shaping local alveolar immune responses. Toll-like receptors are major sensors of microbiota and determinants of local epithelial homeostasis. The impact of toll-like receptor deficiency on lung microbiota is unknown. To determine whether the absence of toll-like receptors results in altered lung microbiota or dysbiosis, we compared lung microbiota in wild-type and toll-like receptor-deficient experimental mice using 16S ribosomal RNA gene quantification and sequencing. We used a randomized environmental caging strategy to determine the impact of toll-like receptors on lung microbiota. Lung microbiota are detectable in toll-like receptor-deficient experimental mice and exhibit considerable variability. The lung microbiota of toll-like receptor-deficient mice are altered in community composition (PERMANOVA P < 0.001), display reduced diversity (t test P = 0.0075), and bacterial burden (t test P = 0.016) compared with wild-type mice with intact toll-like receptors and associated signaling pathways. The lung microbiota of wild-type mice when randomized to cages with toll-like receptor-deficient mice converged with no significant difference in community composition (PERMANOVA P > 0.05) after 3 wk of cohousing. The lung microbiome of toll-like receptor-deficient mice is distinct from wild-type mice and may be less susceptible to the effects of caging as an environmental variable. Our observations support a role for toll-like receptor signaling in the shaping of lung microbiota.
Collapse
Affiliation(s)
- Jay H Lipinski
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicole R Falkowski
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Beth B Moore
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David N O'Dwyer
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
144
|
Qiu X, Bajinka O, Wang L, Wu G, Tan Y. High-fat diet promotes epithelial-mesenchymal transition through enlarged growth of opportunistic pathogens and the intervention of saturated hydrogen. Am J Transl Res 2021; 13:6016-6030. [PMID: 34306341 PMCID: PMC8290812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/25/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES This study investigated the effects and mechanism of high-fat diet on the epithelial-mesenchymal transition (EMT) of respiratory tract and the intervention of saturated hydrogen on it. METHODS 80 five-week-old C57BL6/J male mice were randomly divided into normal control group, H2 group, high-fat (HF) group and HF+H2 group, making 20 mice in each group. The weights of the mice were measured on weekly basis. Six mice from each group were executed at every second week. Blood samples were collected for lipid testing. Lung tissues were collected for 16S rRNA gene sequencing, HE staining, immunofluorescence and quantitative real-time PCR (qPCR). RESULTS Compared with the control group, the mice in the HF group showed increased inflammatory cell infiltration, decreased expression of e-cadherin (E-cad) and increased expression of Twist. There were significant differences in the composition of bacteria in the lung, and the expression of isocitrate lyase (ICL) genes in Pseudomonas aeruginosa, Staphylococcus aureus and Acinetobacter baumannii, which were significantly associated with asthma were seen with a significant increasing trend. After the treatment of saturated hydrogen, the changes in lung microbial population, lung tissue infiltration of inflammatory cells and the transformation of epithelial stroma caused by high-fat diet were moderately alleviated. CONCLUSION High-fat diet can promote inflammation and EMT in the lung by enlarging the growth of glyoxylic acid cycle-dependent bacteria, and the pathological process are partly alleviated by saturated hydrogen.
Collapse
Affiliation(s)
- Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
| |
Collapse
|
145
|
Trachalaki A, Tsitoura E, Mastrodimou S, Invernizzi R, Vasarmidi E, Bibaki E, Tzanakis N, Molyneaux PL, Maher TM, Antoniou K. Enhanced IL-1β Release Following NLRP3 and AIM2 Inflammasome Stimulation Is Linked to mtROS in Airway Macrophages in Pulmonary Fibrosis. Front Immunol 2021; 12:661811. [PMID: 34220810 PMCID: PMC8248801 DOI: 10.3389/fimmu.2021.661811] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Fibrotic Interstitial lung diseases (ILDs) are complex disorders of variable clinical behaviour. The majority of them cause significant morbidity, whilst Idiopathic Pulmonary Fibrosis (IPF) is recognised as the most relentless. NLRP3, AIM2, and NLRC4 inflammasomes are multiprotein complexes driving IL-1β release; a proinflammatory and profibrotic cytokine. Several pathogenetic factors associated with IPF are identified as inflammasome activators, including increases in mtROS and bacterial burden. Mitochondrial oxidation and alterations in bacterial burden in IPF and other ILDs may lead to augmented inflammasome activity in airway macrophages (AMs). IPF (n=14), non-IPF-ILDs (n=12) patients and healthy subjects (n=12) were prospectively recruited and AMs were isolated from bronchoalveolar lavage. IL-1β release resulting from NLRP3, AIM2 and NLRC4 inflammasomes stimulation in AMs were determined and baseline levels of mitochondrial ROS and microbial burden were also measured. Our results showed that NLRP3 was more inducible in IPF and other ILDs compared to controls. Additionally, following AIM2 activation IL-1β release was significantly higher in IPF compared to controls, whereas similar trends were observed in Non-IPF-ILDs. NLRC4 activation was similar across groups. mtROS was significantly associated with heightened NLRP3 and AIM2 activation, and mitochondrial antioxidant treatment limited inflammasome activation. Importantly, microbial burden was linked to baseline IL-1β release and AIM2 and IL-18 relative expression independently of mtROS. In conclusion, the above findings suggested a link between the overactivation of NLRP3 and AIM2 inflammasomes, driven by mitochondrial oxidation, in the pathogenesis of lung fibrosis while changes in the microbiota may prime the inflammasome in the lungs.
Collapse
Affiliation(s)
- Athina Trachalaki
- Laboratory of Molecular and Cellular Pneumonology, Respiratory Medicine Department, School of Medicine, University of Crete, Heraklion, Greece.,National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Royal Brompton Hospital, London, United Kingdom
| | - Eliza Tsitoura
- Laboratory of Molecular and Cellular Pneumonology, Respiratory Medicine Department, School of Medicine, University of Crete, Heraklion, Greece
| | - Semeli Mastrodimou
- Laboratory of Molecular and Cellular Pneumonology, Respiratory Medicine Department, School of Medicine, University of Crete, Heraklion, Greece
| | - Rachele Invernizzi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Eirini Vasarmidi
- Laboratory of Molecular and Cellular Pneumonology, Respiratory Medicine Department, School of Medicine, University of Crete, Heraklion, Greece
| | - Eleni Bibaki
- Laboratory of Molecular and Cellular Pneumonology, Respiratory Medicine Department, School of Medicine, University of Crete, Heraklion, Greece
| | - Nikolaos Tzanakis
- Laboratory of Molecular and Cellular Pneumonology, Respiratory Medicine Department, School of Medicine, University of Crete, Heraklion, Greece
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Royal Brompton Hospital, London, United Kingdom
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Royal Brompton Hospital, London, United Kingdom
| | - Katerina Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Respiratory Medicine Department, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
146
|
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, Maher TM, Tzouvelekis A, Ryerson CJ. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther 2021; 222:107798. [PMID: 33359599 PMCID: PMC8142468 DOI: 10.1016/j.pharmthera.2020.107798] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown cause characterized by relentless scarring of the lung parenchyma leading to reduced quality of life and earlier mortality. IPF is an age-related disorder, and with the population aging worldwide, the economic burden of IPF is expected to steadily increase in the future. The mechanisms of fibrosis in IPF remain elusive, with favored concepts of disease pathogenesis involving recurrent microinjuries to a genetically predisposed alveolar epithelium, followed by an aberrant reparative response characterized by excessive collagen deposition. Pirfenidone and nintedanib are approved for treatment of IPF based on their ability to slow functional decline and disease progression; however, they do not offer a cure and are associated with tolerability issues. In this review, we critically discuss how cutting-edge research in disease pathogenesis may translate into identification of new therapeutic targets, thus facilitate drug discovery. There is a growing portfolio of treatment options for IPF. However, targeting the multitude of profibrotic cytokines and growth factors involved in disease pathogenesis may require a combination of therapeutic strategies with different mechanisms of action.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| | | | - Mark G Jones
- NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Joyce S Lee
- University of Colorado, School of Medicine, Department of Medicine, Aurora, CO, United States
| | - Giulio Rossi
- Pathology Unit, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | | | - Toby M Maher
- National Heart and Lung Institute, Imperial College London and National Institute for Health Research Clinical Research Facility, Royal Brompton Hospital, London, UK; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| |
Collapse
|
147
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
148
|
Martinez FJ, Yow E, Flaherty KR, Snyder LD, Durheim MT, Wisniewski SR, Sciurba FC, Raghu G, Brooks MM, Kim DY, Dilling DF, Criner GJ, Kim H, Belloli EA, Nambiar AM, Scholand MB, Anstrom KJ, Noth I. Effect of Antimicrobial Therapy on Respiratory Hospitalization or Death in Adults With Idiopathic Pulmonary Fibrosis: The CleanUP-IPF Randomized Clinical Trial. JAMA 2021; 325:1841-1851. [PMID: 33974018 PMCID: PMC8114133 DOI: 10.1001/jama.2021.4956] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IMPORTANCE Alteration in lung microbes is associated with disease progression in idiopathic pulmonary fibrosis. OBJECTIVE To assess the effect of antimicrobial therapy on clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS Pragmatic, randomized, unblinded clinical trial conducted across 35 US sites. A total of 513 patients older than 40 years were randomized from August 2017 to June 2019 (final follow-up was January 2020). INTERVENTIONS Patients were randomized in a 1:1 allocation ratio to receive antimicrobials (n = 254) or usual care alone (n = 259). Antimicrobials included co-trimoxazole (trimethoprim 160 mg/sulfamethoxazole 800 mg twice daily plus folic acid 5 mg daily, n = 128) or doxycycline (100 mg once daily if body weight <50 kg or 100 mg twice daily if ≥50 kg, n = 126). No placebo was administered in the usual care alone group. MAIN OUTCOMES AND MEASURES The primary end point was time to first nonelective respiratory hospitalization or all-cause mortality. RESULTS Among the 513 patients who were randomized (mean age, 71 years; 23.6% women), all (100%) were included in the analysis. The study was terminated for futility on December 18, 2019. After a mean follow-up time of 13.1 months (median, 12.7 months), a total of 108 primary end point events occurred: 52 events (20.4 events per 100 patient-years [95% CI, 14.8-25.9]) in the usual care plus antimicrobial therapy group and 56 events (18.4 events per 100 patient-years [95% CI, 13.2-23.6]) in the usual care group, with no significant difference between groups (adjusted HR, 1.04 [95% CI, 0.71-1.53; P = .83]. There was no statistically significant interaction between the effect of the prespecified antimicrobial agent (co-trimoxazole vs doxycycline) on the primary end point (adjusted HR, 1.15 [95% CI 0.68-1.95] in the co-trimoxazole group vs 0.82 [95% CI, 0.46-1.47] in the doxycycline group; P = .66). Serious adverse events occurring at 5% or greater among those treated with usual care plus antimicrobials vs usual care alone included respiratory events (16.5% vs 10.0%) and infections (2.8% vs 6.6%); adverse events of special interest included diarrhea (10.2% vs 3.1%) and rash (6.7% vs 0%). CONCLUSIONS AND RELEVANCE Among adults with idiopathic pulmonary fibrosis, the addition of co-trimoxazole or doxycycline to usual care, compared with usual care alone, did not significantly improve time to nonelective respiratory hospitalization or death. These findings do not support treatment with these antibiotics for the underlying disease. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02759120.
Collapse
Affiliation(s)
| | - Eric Yow
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Kevin R. Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor
| | - Laurie D. Snyder
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Michael T. Durheim
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
- Department of Respiratory Medicine, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Stephen R. Wisniewski
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frank C. Sciurba
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ganesh Raghu
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle
| | - Maria M. Brooks
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dong-Yun Kim
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel F. Dilling
- Division of Pulmonary and Critical Care Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Hyun Kim
- Division of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis
| | - Elizabeth A. Belloli
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor
| | - Anoop M. Nambiar
- Division of Pulmonary and Critical Care Medicine, University of Texas Health San Antonio
| | - Mary Beth Scholand
- Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City
| | - Kevin J. Anstrom
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville
| |
Collapse
|
149
|
Baker JM, Hinkle KJ, McDonald RA, Brown CA, Falkowski NR, Huffnagle GB, Dickson RP. Whole lung tissue is the preferred sampling method for amplicon-based characterization of murine lung microbiota. MICROBIOME 2021; 9:99. [PMID: 33952355 PMCID: PMC8101028 DOI: 10.1186/s40168-021-01055-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Low-biomass microbiome studies (such as those of the lungs, placenta, and skin) are vulnerable to contamination and sequencing stochasticity, which obscure legitimate microbial signal. While human lung microbiome studies have rigorously identified sampling strategies that reliably capture microbial signal from these low-biomass microbial communities, the optimal sampling strategy for characterizing murine lung microbiota has not been empirically determined. Performing accurate, reliable characterization of murine lung microbiota and distinguishing true microbial signal from noise in these samples will be critical for further mechanistic microbiome studies in mice. RESULTS Using an analytic approach grounded in microbial ecology, we compared bacterial DNA from the lungs of healthy adult mice collected via two common sampling approaches: homogenized whole lung tissue and bronchoalveolar lavage (BAL) fluid. We quantified bacterial DNA using droplet digital PCR, characterized bacterial communities using 16S rRNA gene sequencing, and systematically assessed the quantity and identity of bacterial DNA in both specimen types. We compared bacteria detected in lung specimens to each other and to potential source communities: negative (background) control specimens and paired oral samples. By all measures, whole lung tissue in mice contained greater bacterial signal and less evidence of contamination than did BAL fluid. Relative to BAL fluid, whole lung tissue exhibited a greater quantity of bacterial DNA, distinct community composition, decreased sample-to-sample variation, and greater biological plausibility when compared to potential source communities. In contrast, bacteria detected in BAL fluid were minimally different from those of procedural, reagent, and sequencing controls. CONCLUSIONS An ecology-based analytical approach discriminates signal from noise in this low-biomass microbiome study and identifies whole lung tissue as the preferred specimen type for murine lung microbiome studies. Sequencing, analysis, and reporting of potential source communities, including negative control specimens and contiguous biological sites, are crucial for biological interpretation of low-biomass microbiome studies, independent of specimen type. Video abstract.
Collapse
Affiliation(s)
- Jennifer M Baker
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Kevin J Hinkle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Roderick A McDonald
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Christopher A Brown
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Nicole R Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Gary B Huffnagle
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Robert P Dickson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA.
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA.
| |
Collapse
|
150
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|