101
|
Immunohistochemical Study on Glucagon-Like Peptide-1(GLP-1) and Pituitary Adenylate Cyclase Activating Peptide (PACAP) in the Small Intestine of <i>Muscovy </i>Duck during the Prehatching and Posthatching Periods. J Poult Sci 2014. [DOI: 10.2141/jpsa.0120167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
102
|
Abstract
Individual meals are products of a complex interaction of signals related to both short-term and long-term availability of energy stores. In addition to maintaining the metabolic demands of the individual in the short term, levels of energy intake must also maintain and defend body weight over longer periods. To accomplish this, satiety pathways are regulated by a sophisticated network of endocrine and neuroendocrine pathways. Higher brain centers modulate meal size through descending inputs to caudal brainstem regions responsible for the motor pattern generators associated with ingestion. Gastric and intestinal signals interact with central nervous system pathways to terminate food intake. These inputs can be modified as a function of internal metabolic signals, external environmental influences, and learning to regulate meal size.
Collapse
|
103
|
Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc Nutr Soc 2013; 73:34-46. [PMID: 24131508 DOI: 10.1017/s0029665113003601] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing and it is estimated that by 2030 approximately 366 million people will be diagnosed with this condition. The use of dipeptidyl peptidase IV (DPP-IV) inhibitors is an emerging strategy for the treatment of T2DM. DPP-IV is a ubiquitous aminodipeptidase that cleaves incretins such as glucagon like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), resulting in a loss in their insulinotropic activity. Synthetic DPP-IV drug inhibitors are being used to increase the half-life of the active GLP-1 and GIP. Dietary intervention is accepted as a key component in the prevention and management of T2DM. Therefore, identification of natural food protein-derived DPP-IV inhibitors is desirable. Peptides with DPP-IV inhibitory activity have been identified in a variety of food proteins. This review aims to provide an overview of food protein hydrolysates as a source of the DPP-IV inhibitory peptides with particular focus on milk proteins. In addition, the proposed modes of inhibition and structure-activity relationship of peptide inhibitors are discussed. Milk proteins and associated peptides also display insulinotropic activity and help regulate blood glucose in healthy and diabetic subjects. Therefore, milk protein derived peptide inhibitors may be a unique multifunctional peptide approach for the management of T2DM.
Collapse
|
104
|
Mieczkowska A, Irwin N, Flatt PR, Chappard D, Mabilleau G. Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality. Bone 2013; 56:337-42. [PMID: 23851294 DOI: 10.1016/j.bone.2013.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022]
Abstract
Bone is permanently remodeled by a complex network of local, hormonal and neuronal factors that affect osteoclast and osteoblast biology. In this context, a role for gastro-intestinal hormones has been proposed based on evidence that bone resorption dramatically falls after a meal. Glucose-dependent insulinotropic polypeptide (GIP) is one of the candidate hormones as its receptor, glucose-dependent insulinotropic polypeptide receptor (GIPR), is expressed in bone. In the present study we investigated bone strength and quality by three-point bending, quantitative x-ray microradiography, microCT, qBEI and FTIR in a GIPR knockout (GIPR KO) mouse model and compared with control wild-type (WT) animals. Animals with a deletion of the GIPR presented with a significant reduction in ultimate load (--11%), stiffness (-16%), total absorbed (-28%) and post-yield energies (-27%) as compared with WT animals. Furthermore, despite no change in bone outer diameter, the bone marrow diameter was significantly increased and as a result cortical thickness was significantly decreased by 20% in GIPR deficient animals. Bone resorption at the endosteal surface was significantly increased whilst bone formation was unchanged in GIPR deficient animals. Deficient animals also presented with a pronounced reduction in the degree of mineralization of bone matrix. Furthermore, the amount of mature cross-links of collagen matrix was significantly reduced in GIPR deficient animals and was associated with lowered intrinsic material properties. Taken together, these data support a positive effect of the GIPR on bone strength and quality.
Collapse
|
105
|
Nielsen ST, Krogh-Madsen R, Møller K. Glucose metabolism in critically ill patients: are incretins an important player? J Intensive Care Med 2013; 30:201-8. [PMID: 24065782 DOI: 10.1177/0885066613503291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023]
Abstract
Critical illness afflicts millions of people worldwide and is associated with a high risk of organ failure and death or an adverse outcome with persistent physical or cognitive deficits. Spontaneous hyperglycemia is common in critically ill patients and is associated with an adverse outcome compared to normoglycemia. Insulin is used for treating hyperglycemia in the critically ill patients but may be complicated by hypoglycemia, which is difficult to detect in these patients and which may lead to serious neurological sequelae and death. The incretin hormone, glucagon-like peptide (GLP) 1, stimulates insulin secretion and inhibits glucagon release both in healthy individuals and in patients with type 2 diabetes (T2DM). Compared to insulin, GLP-1 appears to be associated with a lower risk of severe hypoglycemia, probably because the magnitude of its insulinotropic action is dependent on blood glucose (BG). This is taken advantage of in the treatment of patients with T2DM, for whom GLP-1 analogs have been introduced during the recent years. Infusion of GLP-1 also lowers the BG level in critically ill patients without causing severe hypoglycemia. The T2DM and critical illness share similar characteristics and are, among other things, both characterized by different grades of systemic inflammation and insulin resistance. The GLP-1 might be a potential new treatment target in critically ill patients with stress-induced hyperglycemia.
Collapse
Affiliation(s)
- Signe Tellerup Nielsen
- Centre of Inflammation and Metabolism, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- Centre of Inflammation and Metabolism, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Kirsten Møller
- Centre of Inflammation and Metabolism, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark Neurointensive Care Unit, Department of Neuroanaesthesia, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
106
|
Luttikhold J, de Ruijter FM, van Norren K, Diamant M, Witkamp RF, van Leeuwen PAM, Vermeulen MAR. Review article: the role of gastrointestinal hormones in the treatment of delayed gastric emptying in critically ill patients. Aliment Pharmacol Ther 2013; 38:573-83. [PMID: 23879699 DOI: 10.1111/apt.12421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/27/2012] [Accepted: 07/01/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Delayed gastric emptying limits the administration of enteral nutrition, leading to malnutrition, which is associated with higher mortality and morbidity. Currently available prokinetics have limitations in terms of sustained efficacy and side effects. AIM To summarise the mechanisms of action and to discuss the possible utility of gastrointestinal hormones to prevent or treat delayed gastric emptying in critically ill patients. METHODS We searched PubMed for articles discussing 'delayed gastric emptying', 'enteral nutrition', 'treatment', 'gastrointestinal hormones', 'prokinetic', 'agonist', 'antagonist' and 'critically ill patients'. RESULTS Motilin and ghrelin receptor agonists initiate the migrating motor complex in the stomach, which accelerates gastric emptying. Cholecystokinin, glucagon-like peptide-1 and peptide YY have an inhibiting effect on gastric emptying; therefore, antagonising these gastrointestinal hormones may have therapeutic potential. Other gastrointestinal hormones appear less promising. CONCLUSIONS Manipulation of endogenous secretion, physiological replacement and administration of gastrointestinal hormones in pharmacological doses is likely to have therapeutic potential in the treatment of delayed gastric emptying. Future challenges in this field will include the search for candidates with improved selectivity and favourable kinetic properties.
Collapse
Affiliation(s)
- J Luttikhold
- Department of Surgery, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
107
|
Palumbo P, Ditlevsen S, Bertuzzi A, De Gaetano A. Mathematical modeling of the glucose–insulin system: A review. Math Biosci 2013; 244:69-81. [DOI: 10.1016/j.mbs.2013.05.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
|
108
|
Shin HS, Ingram JR, McGill AT, Poppitt SD. Lipids, CHOs, proteins: can all macronutrients put a 'brake' on eating? Physiol Behav 2013; 120:114-23. [PMID: 23911804 DOI: 10.1016/j.physbeh.2013.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/09/2013] [Accepted: 07/23/2013] [Indexed: 01/18/2023]
Abstract
The gastrointestinal (GI) tract and specifically the most distal part of the small intestine, the ileum, has become a renewed focus of interest for mechanisms targeting appetite suppression. The 'ileal brake' is stimulated when energy-containing nutrients are delivered beyond the duodenum and jejunum and into the ileum, and is named for the feedback loop which slows or 'brakes' gastric emptying and duodeno-jejunal motility. More recently it has been hypothesized that the ileal brake also promotes secretion of satiety-enhancing GI peptides and suppresses hunger, placing a 'brake' on food intake. Postprandial delivery of macronutrients to the ileum, other than unavailable carbohydrates (CHO) which bypass absorption in the small intestine en route to fermentation in the large bowel, is an uncommon event and hence this brake mechanism is rarely activated following a meal. However the ability to place a 'brake' on food intake through delivery of protected nutrients to the ileum is both intriguing and challenging. This review summarizes the current clinical and experimental evidence for activation of the ileal brake by the three food macronutrients, with emphasis on eating behavior and satiety as well as GI function. While clinical studies have shown that exposure of the ileum to lipids, CHOs and proteins may activate GI components of the ileal brake, such as decreased gut motility, gastric emptying and secretion of GI peptides, there is less evidence as yet to support a causal relationship between activation of the GI brake by these macronutrients and the suppression of food intake. The predominance of evidence for an ileal brake on eating comes from lipid studies, where direct lipid infusion into the ileum suppresses both hunger and food intake. Outcomes from oral feeding studies are less conclusive with no evidence that 'protected' lipids have been successfully delivered into the ileum in order to trigger the brake. Whether CHO or protein may induce the ileal brake and suppress food intake has to date been little investigated, although both clearly have GI mediated effects. This review provides an overview of the mechanisms and mediators of activation of the ileal brake and assesses whether it may play an important role in appetite suppression.
Collapse
Affiliation(s)
- H S Shin
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
109
|
Zhu L, Li Y, Qiu L, Su M, Wang X, Xia C, Qu Y, Li J, Li J, Xiong B, Shen J. Design and Synthesis of 4-(2,4,5-Trifluorophenyl)butane-1,3-diamines as Dipeptidyl Peptidase IV Inhibitors. ChemMedChem 2013; 8:1104-16. [DOI: 10.1002/cmdc.201300104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/19/2013] [Indexed: 11/07/2022]
|
110
|
Steinert RE, Feinle-Bisset C, Geary N, Beglinger C. DIGESTIVE PHYSIOLOGY OF THE PIG SYMPOSIUM: Secretion of gastrointestinal hormones and eating control1. J Anim Sci 2013; 91:1963-73. [DOI: 10.2527/jas.2012-6022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- R. E. Steinert
- University of Adelaide Discipline of Medicine and Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, Adelaide, SA 5005, Australia
| | - C. Feinle-Bisset
- University of Adelaide Discipline of Medicine and Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, Adelaide, SA 5005, Australia
| | - N. Geary
- Zielackerstrasse 10, 8603 Schwerzenbach, Switzerland
| | - C. Beglinger
- Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, 4030, Switzerland
| |
Collapse
|
111
|
Alterations in gut hormones after laparoscopic sleeve gastrectomy: a prospective clinical and laboratory investigational study. Ann Surg 2013; 257:647-54. [PMID: 23108120 DOI: 10.1097/sla.0b013e31826e1846] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the effect of laparoscopic sleeve gastrectomy (LSG) on fasting and meal-stimulated release of the gut hormones ghrelin, pancreatic polypeptide (PP), peptide-YY (PYY), glucagon-like peptide-1 (GLP-1), and amylin and of the adipocytokine leptin. BACKGROUND Mounting evidence suggests that the mechanisms of weight loss and the improvement in glucose metabolism seen after LSG are related not only to gastric restriction but also to neurohormonal changes. METHODS : Fasting and postprandial levels at 60 and 120 minutes after a standard test meal of the above peptides and glucose metabolism indices were evaluated in 15 consecutive morbidly obese (MO) subjects before and 6 and 12 months after LSG. As study controls, 15 lean subjects matched for age and sex were also assessed. RESULTS Body mass index values notably decreased at 6 and 12 months (P < 0.01), postoperatively. In addition, an overall improvement of the glycemic profile of MO patients was noted. After LSG, markedly decreased fasting and postprandial levels of ghrelin, amylin, and leptin were observed. A significant postprandial increase of PYY and GLP-1 levels was also noted postoperatively. Interestingly, significantly increased levels of PP were noted only at 60 minutes postprandially after LSG. CONCLUSIONS LSG markedly improved glucose homeostasis and generated significant changes in ghrelin, PP, PYY, GLP-1, amylin, and leptin levels. These multiple hormonal actions may have several beneficial effects on the underlying mechanism of weight loss, demonstrating that LSG could be more than just a restrictive bariatric operation.
Collapse
|
112
|
Gaudin-Audrain C, Irwin N, Mansur S, Flatt PR, Thorens B, Baslé M, Chappard D, Mabilleau G. Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice. Bone 2013; 53:221-30. [PMID: 23220186 DOI: 10.1016/j.bone.2012.11.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 12/12/2022]
Abstract
A role for the gastro-intestinal tract in controlling bone remodeling is suspected since serum levels of bone remodeling markers are affected rapidly after a meal. Glucose-dependent insulinotropic polypeptide (GIP) represents a suitable candidate in mediating this effect. The aim of the present study was to investigate the effect of total inhibition of GIP signaling on trabecular bone volume, microarchitecture and quality. We used GIP receptor (GIPR) knockout mice and investigated trabecular bone volume and microarchitecture by microCT and histomorphometry. GIPR-deficient animals at 16 weeks of age presented with a significant (20%) increase in trabecular bone mass accompanied by an increase (17%) in trabecular number. In addition, the number of osteoclasts and bone formation rate was significantly reduced and augmented, respectively in these animals when compared with wild-type littermates. These modifications of trabecular bone microarchitecture are linked to a remodeling in the expression pattern of adipokines in the GIPR-deficient mice. On the other hand, despite significant enhancement in bone volume, intrinsic mechanical properties of the bone matrix was reduced as well as the distribution of bone mineral density and the ratio of mature/immature collagen cross-links. Taken together, these results indicate an increase in trabecular bone volume in GIPR KO animals associated with a reduction in bone quality.
Collapse
|
113
|
Identification of the primary mechanism of action of an insulin secretagogue from meal test data in healthy volunteers based on an integrated glucose-insulin model. J Pharmacokinet Pharmacodyn 2012. [DOI: 10.1007/s10928-012-9281-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
114
|
Abstract
Hormones from the gastrointestinal (GI) tract are released following food ingestion and trigger a range of physiological responses including the coordination of appetite and glucose homoeostasis. The aim of this review is to discuss the pathways by which food ingestion triggers secretion of cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) and the altered patterns of gut hormone release observed following gastric bypass surgery. Our understanding of how ingested nutrients trigger secretion of these gut hormones has increased dramatically, as a result of physiological studies in human subjects and animal models and in vitro studies on cell lines and primary intestinal cultures. Specialised enteroendocrine cells located within the gut epithelium are capable of directly detecting a range of nutrient stimuli through a range of receptors and transporters. It is concluded that the arrival of nutrients at the apical surface of enteroendocrine cells is a major stimulus for gut hormone release, thereby coupling these endocrine signals to the arrival of absorbed nutrients in the bloodstream.
Collapse
Affiliation(s)
- Fiona M Gribble
- Cambridge Institute for Medical Research, WT/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
115
|
Eelderink C, Schepers M, Preston T, Vonk RJ, Oudhuis L, Priebe MG. Slowly and rapidly digestible starchy foods can elicit a similar glycemic response because of differential tissue glucose uptake in healthy men. Am J Clin Nutr 2012; 96:1017-24. [PMID: 22990033 DOI: 10.3945/ajcn.112.041947] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previously we observed that the consumption of pasta and bread resulted in a similar glycemic response, despite a slower intestinal influx rate of glucose from the pasta. Underlying mechanisms of this effect were not clear. OBJECTIVE The objective was to investigate the differences in glucose kinetics and hormonal response after consumption of products with slow and rapid in vivo starch digestibility but with a similar glycemic response. DESIGN Ten healthy male volunteers participated in a crossover study and consumed (13)C-enriched wheat bread or pasta while receiving a primed-continuous D-[6,6-(2)H(2)]glucose infusion. The dual-isotope technique enabled calculation of the following glucose kinetics: rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR). In addition, postprandial plasma concentrations of glucose, insulin, glucagon, and glucose-dependent insulinotropic polypeptide (GIP) were analyzed. RESULTS GIP concentrations after pasta consumption were lower than after bread consumption and strongly correlated with the RaE (r = 0.82, P < 0.01). The insulin response was also lower after pasta consumption (P < 0.01). In accordance with the low insulin response, the GCR was lower after pasta consumption, which explained the high glycemic response despite a low RaE. CONCLUSIONS Slower intestinal uptake of glucose from a starchy food product can result in lower postprandial insulin and GIP concentrations, but not necessarily in a lower glycemic response, because of a slower GCR. Even without being able to reduce postprandial glycemia, products with slowly digestible starch can have beneficial long-term effects. These types of starchy products cannot be identified by using the glycemic index and therefore another classification system may be necessary. This trial was registered at controlled-trials.com as ISRCTN42106325.
Collapse
Affiliation(s)
- Coby Eelderink
- Center for Medical Biomics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | | | | | | | |
Collapse
|
116
|
Poreba MA, Dong CX, Li SK, Stahl A, Miner JH, Brubaker PL. Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells. Am J Physiol Endocrinol Metab 2012; 303:E899-907. [PMID: 22871340 PMCID: PMC3469616 DOI: 10.1152/ajpendo.00116.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The antidiabetic intestinal L cell hormone glucagon-like peptide-1 (GLP-1) enhances glucose-dependent insulin secretion and inhibits gastric emptying. GLP-1 secretion is stimulated by luminal oleic acid (OA), which crosses the cell membrane by an unknown mechanism. We hypothesized that L cell fatty acid transport proteins (FATPs) are essential for OA-induced GLP-1 release. Therefore, the murine GLUTag L cell model was used for immunoblotting, [(3)H]OA uptake assay, and GLP-1 secretion assay as determined by radioimmunoassay following treatment with OA ± phloretin, sulfo-N-succinimidyl oleate, or siRNA against FATP4. FATP4(-/-) and cluster-of-differentiation 36 (CD36)(-/-) mice received intraileal OA, and plasma GLP-1 was measured by sandwich immunoassay. GLUTag cells were found to express CD36, FATP1, FATP3, and FATP4. The cells demonstrated specific (3)H[OA] uptake that was dose-dependently inhibited by 500 and 1,000 μM unlabeled OA (P < 0.001). Cell viability was not altered by treatment with OA. Phloretin and sulfo-N-succinimidyl oleate, inhibitors of protein-mediated transport and CD36, respectively, also decreased [(3)H]OA uptake, as did knockdown of FATP4 by siRNA transfection (P < 0.05-0.001). OA dose-dependently increased GLP-1 secretion at 500 and 1,000 μM (P < 0.001), whereas phloretin, sulfo-N-succinimidyl oleate, and FATP4 knockdown decreased this response (P < 0.05-0.01). FATP4(-/-) mice displayed lower plasma GLP-1 at 60 min in response to intraileal OA (P < 0.05), whereas, unexpectedly, CD36(-/-) mice displayed higher basal GLP-1 levels (P < 0.01) but a normal response to intraileal OA. Together, these findings demonstrate a key role for FATP4 in OA-induced GLP-1 secretion from the murine L cell in vitro and in vivo, whereas the precise role of CD36 remains unclear.
Collapse
Affiliation(s)
- M A Poreba
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
117
|
Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem Biophys Res Commun 2012; 427:600-5. [PMID: 23022524 DOI: 10.1016/j.bbrc.2012.09.104] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic β cells. In the present study, we have identified the expression of TGR5 in pancreatic β cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated Gα(s) and caused an increase in intracellular cAMP and Ca(2+). OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective Gα(s) inhibitor) or U73122 (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, U73122 or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G(s)/cAMP/Ca(2+) pathway. 8-pCPT-2'-O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic β cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.
Collapse
Affiliation(s)
- Divya P Kumar
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Lu WJ, Yang Q, Yang L, Lee D, D'Alessio D, Tso P. Chylomicron formation and secretion is required for lipid-stimulated release of incretins GLP-1 and GIP. Lipids 2012; 47:571-80. [PMID: 22297815 DOI: 10.1007/s11745-011-3650-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 12/15/2011] [Indexed: 11/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins produced in the intestine that play a central role in glucose metabolism and insulin secretion. Circulating concentrations of GLP-1 and GIP are low and can be difficult to assay in rodents. These studies utilized the novel intestinal lymph fistula model we have established to investigate the mechanism of lipid-stimulated incretin secretion. Peak concentrations of GLP-1 and GIP following an enteral lipid stimulus (Liposyn) were significantly higher in intestinal lymph than portal venous plasma. To determine whether lipid-stimulated incretin secretion was related to chylomicron formation Pluronic L-81 (L-81), a surfactant inhibiting chylomicron synthesis, was given concurrently with Liposyn. The presence of L-81 almost completely abolished the increase in lymph triglyceride seen with Liposyn alone (P < 0.001). Inhibition of chylomicron formation with L-81 reduced GLP-1 secretion into lymph compared to Liposyn stimulation alone (P = 0.034). The effect of L-81 relative to Liposyn alone had an even greater effect on GIP secretion, which was completely abolished (P = 0.004). These findings of a dramatic effect of L-81 on lymph levels of GLP-1 and GIP support a strong link between intestinal lipid absorption and incretin secretion. The relative difference in the effect of L-81 on the two incretins provides further support that nutrient-stimulation of GIP and GLP-1 is via distinct mechanisms.
Collapse
Affiliation(s)
- Wendell J Lu
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | | | |
Collapse
|
119
|
Ahmad Z, Rasouli M, Azman AZF, Omar AR. Evaluation of insulin expression and secretion in genetically engineered gut K and L-cells. BMC Biotechnol 2012; 12:64. [PMID: 22989329 PMCID: PMC3469342 DOI: 10.1186/1472-6750-12-64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/17/2012] [Indexed: 12/25/2022] Open
Abstract
Background Gene therapy could provide an effective treatment of diabetes. Previous studies have investigated the potential for several cell and tissue types to produce mature and active insulin. Gut K and L-cells could be potential candidate hosts for gene therapy because of their special features. Results In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant. Conclusion The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.
Collapse
Affiliation(s)
- Zalinah Ahmad
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | | | | | | |
Collapse
|
120
|
Woerle HJ, Carneiro L, Derani A, Göke B, Schirra J. The role of endogenous incretin secretion as amplifier of glucose-stimulated insulin secretion in healthy subjects and patients with type 2 diabetes. Diabetes 2012; 61:2349-58. [PMID: 22721966 PMCID: PMC3425423 DOI: 10.2337/db11-1701] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In order to quantify the role of incretins in first- and second-phase insulin secretion (ISR) in type 2 diabetes mellitus (T2DM), a double-blind, randomized study with 12 T2DM subjects and 12 healthy subjects (HS) was conducted using the hyperglycemic clamp technique together with duodenal nutrition perfusion and intravenous infusion of the glucagon-like peptide 1 (GLP-1) receptor antagonist exendin(9-39). Intravenous glucose alone resulted in a significantly greater first- and second-phase ISR in HS compared with T2DM subjects. Duodenal nutrition perfusion augmented both first- and second-phase ISR but first-phase ISR more in T2DM subjects (approximately eight- vs. twofold). Glucose-related stimulation of ISR contributed only 20% to overall ISR. Infusion with exendin(9-39) significantly reduced first- and second-phase ISR in both HS and T2DM subjects. Thus, both GLP-1 and non-GLP-1 incretins contribute to the incretin effect. In conclusion, both phases of ISR are impaired in T2DM. In particular, the responsiveness to glucose in first-phase ISR is blunted. GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) secretions are unaltered. The absolute incretin effect is reduced in T2DM; its relative importance, however, appears to be increased, highlighting its role as an important amplifier of first-phase ISR in T2DM.
Collapse
Affiliation(s)
- Hans Juergen Woerle
- Department of Internal Medicine II, Clinical Research Unit, Clinical Center of the Ludwig Maximilians University, Campus Grosshadern, Munich, Germany.
| | | | | | | | | |
Collapse
|
121
|
Burattini R, Morettini M. Identification of an integrated mathematical model of standard oral glucose tolerance test for characterization of insulin potentiation in health. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 107:248-261. [PMID: 21803437 DOI: 10.1016/j.cmpb.2011.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 05/14/2011] [Accepted: 07/04/2011] [Indexed: 05/31/2023]
Abstract
Two new formulations, respectively denominated INT_M1 and INT_M2, of an integrated mathematical model to describe the glycemic and insulinemic responses to a 75 g oral glucose tolerance test (OGTT) are proposed and compared. The INT_M1 assumes a single compartment for the intestine and the derivative of a power exponential function for the gastric emptying rate, while, in the INT_M2, a nonlinear three-compartment system model is adopted to produce a more realistic, multiphase gastric emptying rate. Both models were implemented in a Matlab-based, two-step procedure for estimation of seven adjustable coefficients characterizing the gastric emptying rate and the incretin, insulin and glucose kinetics. Model behaviour was tested vs. mean plasma glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), glucose and insulin measurements from two different laboratories, where glycemic profiles observed during a 75 g OGTT were matched in healthy subjects (HC1- and HC2-group, respectively) by means of an isoglycemic intravenous glucose (I-IVG) infusion. Under the hypothesis of an additive effect of GLP-1 and GIP on insulin potentiation, our results demonstrated a substantial equivalence of the two models in matching the data. Model parameter estimates showed to be suitable markers of differences observed in the OGTT and matched I-IVG responses from the HC1-group compared to the HC2-group. Model implementation in our two-step parameter estimation procedure enhances the possibility of a prospective application for individualization of the incretin effect in a single subject, when his/her data are plugged in.
Collapse
Affiliation(s)
- Roberto Burattini
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy.
| | | |
Collapse
|
122
|
Effect of the GLP-1 analog liraglutide on satiation and gastric sensorimotor function during nutrient-drink ingestion. Int J Obes (Lond) 2012; 37:693-8. [PMID: 22846777 DOI: 10.1038/ijo.2012.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND/AIM Liraglutide, a glucagon-like peptide-1 analog, induces weight loss. We investigated whether liraglutide affects gastric accommodation and satiation by measuring the intragastric pressure (IGP) during nutrient-drink consumption and using the barostat technique. METHODS Ten healthy volunteers (HVs) were tested after placebo, 0.3, 0.6 or 1.2 mg liraglutide administration. IGP was studied during intragastric nutrient-drink (1.5 kcal ml(-1)) infusion (60 ml min(-1)), while the HVs scored their satiation on a graded scale until maximal satiation. In a separate session, isobaric distentions were performed using the barostat with stepwise increments of 2 mm Hg starting from minimal distending pressure, although HVs scored their perception; gastric volume was monitored 30 min before and until 60 min after ingestion of 200 ml of nutrient drink. Data are presented as mean±s.e.m. comparisons were performed with ANOVA (P<0.05 was significant). RESULTS During nutrient-drink infusion, IGP decreased with 4.1±0.7, 3.0±0.4, 2.1±0.3 and 2.6±0.4 mm Hg (placebo, 0.3, 0.6 and 1.2 mg liraglutide, respectively; P<0.05). The maximum-tolerated volume was not different, except after treatment with 1.2 mg liraglutide (695±135 ml) compared with placebo (1008±197 ml; P<0.05); however, 1.2 mg liraglutide induced nausea in all volunteers. In the barostat study, liraglutide did not affect the perception or compliance, but significantly decreased gastric accommodation to the meal (168±27 vs 78.8±36.4 ml after treatment with placebo and 0.6 mg liraglutide, respectively; P<0.05). CONCLUSION Although no effect on perception, compliance or satiation was observed, liraglutide inhibited gastric accommodation. Whether this effect is involved in the anorectic effect of liraglutide remains to be determined.
Collapse
|
123
|
Chen Y, Li ZY, Yang Y, Zhang HJ. Uncoupling protein 2 regulates glucagon-like peptide-1 secretion in L-cells. World J Gastroenterol 2012; 18:3451-7. [PMID: 22807616 PMCID: PMC3396199 DOI: 10.3748/wjg.v18.i26.3451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/07/2012] [Accepted: 04/21/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether uncoupling protein 2 (UCP2) affects oleic acid-induced secretion of glucagon-like peptide-1 (GLP-1) in L-cells.
METHODS: mRNA and protein expression of UCP2 were analyzed in human NCI-H716 cells, which serve as a model for enteroendocrine L-cells, by quantitative reverse transcription-polymerase chain reaction and Western blotting before and after treatment with oleic acid. Localization of UCP2 and GLP-1 in NCI-H716 cells was assessed by immunofluorescence labeling. NCI-H716 cells were transiently transfected with a small interfering RNA (siRNA) that targets UCP2 (siUCP2) or with a non-specific siRNA using Lipofectamine 2000. The concentrations of bioactive GLP-1 in the medium were measured by enzyme linked immunosorbent assay.
RESULTS: Both GLP-1 and UCP2 granules were expressed mainly in the cytoplasm of NCI-H716 cells. NCI-H716 cells that secreted GLP-1 also expressed UCP2. Time-course experiments revealed that release of GLP-1 from NCI-H716 cells into the medium reached a maximum at 120 min and remained stable until at least 180 min after treatment with oleic acid (the level of GLP-1 increased about 2.3-fold as compared with the level of GLP-1 in the control cells, P < 0.05). In an experiment to determine dose dependence, stimulation of NCI-H716 cells with ≤ 8 mmol oleic acid led to a concentration-dependent release of GLP-1 into the medium; 10 mmol oleic acid diminished the release of GLP-1. Furthermore, GLP-1 secretion induced by oleic acid from NCI-H716 cells that were transfected with siUCP2 decreased to 41.8%, as compared with NCI-H716 cells that were transfected with a non-specific siRNA (P < 0.01).
CONCLUSION: UCP2 affected GLP-1 secretion induced by oleic acid. UCP2 plays an important role in L-cell secretion that is induced by free fatty acids.
Collapse
|
124
|
Diakogiannaki E, Gribble FM, Reimann F. Nutrient detection by incretin hormone secreting cells. Physiol Behav 2012; 106:387-93. [PMID: 22182802 PMCID: PMC3361765 DOI: 10.1016/j.physbeh.2011.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/29/2011] [Accepted: 12/03/2011] [Indexed: 12/24/2022]
Abstract
The hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulintropic polypeptide (GIP) are secreted after a meal. Like other enteroendocrine hormones they help to orchestrate the bodies' response to the availability of newly absorbable nutrients and are noteworthy as they stimulate postprandial insulin secretion, underlying what is known as the incretin effect. GLP-1-mimetics are now widely used in the treatment of type 2 diabetes and advantages over older insulinotropic therapies include weight loss. An alternative treatment regime might be the recruitment of endogenous GLP-1, however, very little is known about the physiological control of enteroendocrine responses. This review focuses on the molecular mechanisms to detect nutrient arrival in the gut that have been implicated within the incretin secreting cells.
Collapse
Affiliation(s)
| | | | - Frank Reimann
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
125
|
Toghaw P, Matone A, Lenbury Y, De Gaetano A. Bariatric surgery and T2DM improvement mechanisms: a mathematical model. Theor Biol Med Model 2012; 9:16. [PMID: 22587410 PMCID: PMC3586953 DOI: 10.1186/1742-4682-9-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/23/2012] [Indexed: 02/06/2023] Open
Abstract
Background Consensus exists that several bariatric surgery procedures produce a rapid improvement of glucose homeostasis in obese diabetic patients, improvement apparently uncorrelated with the degree of eventual weight loss after surgery. Several hypotheses have been suggested to account for these results: among these, the anti-incretin, the ghrelin and the lower-intestinal dumping hypotheses have been discussed in the literature. Since no clear-cut experimental results are so far available to confirm or disprove any of these hypotheses, in the present work a mathematical model of the glucose-insulin-incretin system has been built, capable of expressing these three postulated mechanisms. The model has been populated with critically evaluated parameter values from the literature, and simulations under the three scenarios have been compared. Results The modeling results seem to indicate that the suppression of ghrelin release is unlikely to determine major changes in short-term glucose control. The possible existence of an anti-incretin hormone would be supported if an experimental increase of GIP concentrations were evident post-surgery. Given that, on the contrary, collected evidence suggests that GIP concentrations decrease post-surgery, the lower-intestinal dumping hypothesis would seem to describe the mechanism most likely to produce the observed normalization of Type 2 Diabetes Mellitus (T2DM) after bariatric surgery. Conclusions The proposed model can help discriminate among competing hypotheses in a context where definitive data are not available and mechanisms are still not clear.
Collapse
Affiliation(s)
- Puntip Toghaw
- Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | | | | |
Collapse
|
126
|
Ma J, Pilichiewicz AN, Feinle-Bisset C, Wishart JM, Jones KL, Horowitz M, Rayner CK. Effects of variations in duodenal glucose load on glycaemic, insulin, and incretin responses in type 2 diabetes. Diabet Med 2012; 29:604-8. [PMID: 22004512 DOI: 10.1111/j.1464-5491.2011.03496.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Postprandial glucagon-like peptide-1 (GLP-1) secretion and the 'incretin effect' have been reported to be deficient in Type 2 diabetes, but most studies have not controlled for variations in the rate of gastric emptying. We evaluated blood glucose, and plasma insulin, GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) responses to intraduodenal glucose in Type 2 diabetes, and compared these with data from healthy controls. METHODS Eight males with well-controlled Type 2 diabetes, managed by diet alone, were studied on four occasions in single-blind, randomized order. Blood glucose, and plasma insulin, GLP-1, and GIP were measured during 120-min intraduodenal glucose infusions at 1 kcal/min (G1), 2 kcal/min (G2) and 4 kcal/min (G4) or saline control. RESULTS Type 2 patients had higher basal (P < 0.0005) and incremental (P < 0.0005) blood glucose responses to G2 and G4, when compared with healthy controls. In both groups, the stimulation of insulin and GLP-1 by increasing glucose loads was not linear; responses to G1 and G2 were minimal, whereas responses to G4 were much greater (P < 0.005 for each) (incremental area under the GLP-1 curve 224 ± 65, 756 ± 331 and 2807 ± 473 pmol/l.min, respectively, in Type 2 patients and 373 ± 231, 505 ± 161 and 1742 ± 456 pmol/l.min, respectively, in healthy controls). The GLP-1 responses appeared comparable in the two groups. In both groups there was a load-dependent increase in plasma GIP with no difference between them. CONCLUSIONS In patients with well-controlled Type 2 diabetes, blood glucose, insulin and GLP-1 responses are critically dependent on the small intestinal glucose load, and GLP-1 responses are not deficient.
Collapse
Affiliation(s)
- J Ma
- University of Adelaide, Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
127
|
Zhang H, Li J, Liang X, Luo Y, Zen K, Zhang CY. Uncoupling protein 2 negatively regulates glucose-induced glucagon-like peptide 1 secretion. J Mol Endocrinol 2012; 48:151-8. [PMID: 22257551 DOI: 10.1530/jme-11-0114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is known that endogenous levels of the incretin hormone glucagon-like peptide 1 (GLP1) can be enhanced by various secretagogues, but the mechanism underlying GLP1 secretion is still not fully understood. We assessed the possible effect of uncoupling protein 2 (UCP2) on GLP1 secretion in mouse intestinal tract and NCI-H716 cells, a well-characterized human enteroendocrine L cell model. Localization of UCP2 and GLP1 in the gastrointestinal tract was assessed by immunofluorescence staining. Ucp2 mRNA levels in gut were analyzed by quantitative RT-PCR. Human NCI-H716 cells were transiently transfected with siRNAs targeting UCP2. The plasma and ileum tissue levels of GLP1 (7-36) amide were measured using an ELISA kit. UCP2 was primarily expressed in the mucosal layer and colocalized with GLP1 in gastrointestinal mucosa. L cells secreting GLP1 also expressed UCP2. After glucose administration, UCP2-deficient mice showed increased glucose-induced GLP1 secretion compared with wild-type littermates. GLP1 secretion increased after NCI-H716 cells were transfected with siRNAs targeting UCP2. UCP2 was markedly upregulated in ileum tissue from ob/ob mice, and GLP1 secretion decreased compared with normal mice. Furthermore, GLP1 secretion increased after administration of genipin by oral gavage. Taken together, these results reveal an inhibitory role of UCP2 in glucose-induced GLP1 secretion.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Biological Sciences, Jiangsu Diabetes Center, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
128
|
Steinert RE, Meyer-Gerspach AC, Beglinger C. The role of the stomach in the control of appetite and the secretion of satiation peptides. Am J Physiol Endocrinol Metab 2012; 302:E666-73. [PMID: 22215654 DOI: 10.1152/ajpendo.00457.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is widely accepted that gastric parameters such as gastric distention provide a direct negative feedback signal to inhibit eating; moreover, gastric and intestinal signals have been reported to synergize to promote satiation. However, there are few human data exploring the potential interaction effects of gastric and intestinal signals in the short-term control of appetite and the secretion of satiation peptides. We performed experiments in healthy subjects receiving either a rapid intragastric load or a continuous intraduodenal infusion of glucose or a mixed liquid meal. Intraduodenal infusions (3 kcal/min) were at rates comparable with the duodenal delivery of these nutrients under physiological conditions. Intraduodenal infusions of glucose elicited only weak effects on appetite and the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). In contrast, identical amounts of glucose delivered intragastrically markedly suppressed appetite (P < 0.05) paralleled by greatly increased plasma levels of GLP-1 and PYY (≤3-fold, P < 0.05). Administration of the mixed liquid meal showed a comparable phenomenon. In contrast to GLP-1 and PYY, plasma ghrelin was suppressed to a similar degree with both intragastric and intraduodenal nutrients. Our data confirm that the stomach is an important element in the short-term control of appetite and suggest that gastric and intestinal signals interact to mediate early fullness and satiation potentially by increased GLP-1 and PYY secretions.
Collapse
Affiliation(s)
- Robert E Steinert
- Dept. of Biomedicine and Div. of Gastroenterology, Univ. Hospital Basel, Basel, Switzerland.
| | | | | |
Collapse
|
129
|
Amin A, Murphy KG. Nutritional sensing and its utility in treating obesity. Expert Rev Endocrinol Metab 2012; 7:209-221. [PMID: 30764012 DOI: 10.1586/eem.12.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity remains a major worldwide health problem, with current medical treatments being poorly effective. Nutrient sensing allows organs such as the GI tract and the brain to recognize and respond to fuel substrates such as carbohydrates, protein and fats. Specialized neural and hormonal pathways exist to facilitate and regulate these chemosensory mechanisms. Manipulation of factors involved in either central or peripheral chemosensory pathways may provide possible targets for the manipulation of appetite. However, further research is required to assess the utility of this approach to developing novel anti-obesity agents.
Collapse
Affiliation(s)
- Anjali Amin
- a Section of Investigative Medicine, Faculty of Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Kevin G Murphy
- b Section of Investigative Medicine, Faculty of Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
130
|
Trahair LG, Horowitz M, Rayner CK, Gentilcore D, Lange K, Wishart JM, Jones KL. Comparative effects of variations in duodenal glucose load on glycemic, insulinemic, and incretin responses in healthy young and older subjects. J Clin Endocrinol Metab 2012; 97:844-51. [PMID: 22238398 DOI: 10.1210/jc.2011-2583] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Aging is associated with deteriorating glucose tolerance. Studies assessing glucose tolerance and subsequent insulin and incretin hormone release often fail to take into account the rate of gastric emptying when evaluating these responses. OBJECTIVE Our objective was to determine the comparative effects of variations in the small intestinal glucose load on the glycemic, insulinemic, and incretin responses in healthy young and older subjects. MATERIALS AND METHODS Twelve healthy young (six males, six females; age 22.2±2.3 yr) and 12 older (six males, six females; age 68.7±1.0 yr) subjects had measurements of blood glucose, serum insulin and plasma incretin hormones [glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP)] and calculations of insulin resistance (homeostatic model assessment) and β-cell function corrected for insulin sensitivity, before and during intraduodenal infusions of glucose at 1, 2, or 3 kcal/min or saline for 60 minutes. The study was double-blinded and randomized, and performed in the Discipline of Medicine at the Royal Adelaide Hospital. RESULTS At baseline, blood glucose and serum insulin were slightly higher in the older subjects (P<0.001), whereas GLP-1 and GIP were comparable between groups. In both groups, the glycemic, insulinemic, and GLP-1 responses were dependent on the duodenal glucose load in a nonlinear fashion (P<0.001). The glycemic response was greater (P<0.001) in the older subjects, whereas GLP-1 and GIP responses were comparable between groups. The older subjects were more insulin resistant (P<0.001) and had impaired β-cell function, particularly at higher glucose loads (P<0.05). CONCLUSION When glucose is infused into the small intestine at equal rates in healthy young and older subjects, GLP-1 and GIP responses are comparable, indicating that impaired incretin secretion does not account for age-related glucose intolerance.
Collapse
Affiliation(s)
- Laurence G Trahair
- University of Adelaide, Discipline of Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
GLP-1 receptors are expressed in the brain, especially in the regions responsible for the regulation of food intake, and intracerebroventricular injection of GLP-1 results in inhibition of food intake. Peripheral administration of GLP-1 dose-dependently enhances satiety and reduces food intake in normal and obese subjects as well as in type 2 diabetic patients. So far, the mechanisms by which GLP-1 exerts its effects are not completely clear. Interactions with neurons in the gastrointestinal tract or possibly direct access to the brain through the blood-brain barrier as observed in rats are possible and discussed in this chapter as well as a novel hypothesis based on the finding that GLP-1 is also expressed in taste cells. Finally, the role of GLP-1 receptor agonists as a possible treatment option in obesity is discussed as well as the role of GLP-1 in the effects of bariatric surgery on adiposity and glucose homeostasis.
Collapse
|
132
|
Gorboulev V, Schürmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepaj R, Parker HE, Gribble FM, Reimann F, Lang F, Wiese S, Sabolic I, Sendtner M, Koepsell H. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012; 61:187-96. [PMID: 22124465 PMCID: PMC3237647 DOI: 10.2337/db11-1029] [Citation(s) in RCA: 513] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/19/2011] [Indexed: 12/15/2022]
Abstract
To clarify the physiological role of Na(+)-D-glucose cotransporter SGLT1 in small intestine and kidney, Sglt1(-/-) mice were generated and characterized phenotypically. After gavage of d-glucose, small intestinal glucose absorption across the brush-border membrane (BBM) via SGLT1 and GLUT2 were analyzed. Glucose-induced secretion of insulinotropic hormone (GIP) and glucagon-like peptide 1 (GLP-1) in wild-type and Sglt1(-/-) mice were compared. The impact of SGLT1 on renal glucose handling was investigated by micropuncture studies. It was observed that Sglt1(-/-) mice developed a glucose-galactose malabsorption syndrome but thrive normally when fed a glucose-galactose-free diet. In wild-type mice, passage of D-glucose across the intestinal BBM was predominantly mediated by SGLT1, independent the glucose load. High glucose concentrations increased the amounts of SGLT1 and GLUT2 in the BBM, and SGLT1 was required for upregulation of GLUT2. SGLT1 was located in luminal membranes of cells immunopositive for GIP and GLP-1, and Sglt1(-/-) mice exhibited reduced glucose-triggered GIP and GLP-1 levels. In the kidney, SGLT1 reabsorbed ∼3% of the filtered glucose under normoglycemic conditions. The data indicate that SGLT1 is 1) pivotal for intestinal mass absorption of d-glucose, 2) triggers the glucose-induced secretion of GIP and GLP-1, and 3) triggers the upregulation of GLUT2.
Collapse
Affiliation(s)
- Valentin Gorboulev
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Helmut Kipp
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Alexander Jaschke
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Dirk Klessen
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Alexandra Friedrich
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Stephan Scherneck
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Timo Rieg
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Robyn Cunard
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Maike Veyhl-Wichmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Aruna Srinivasan
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Daniela Balen
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rexhep Rexhepaj
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Helen E. Parker
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, U.K
| | - Fiona M. Gribble
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, U.K
| | - Frank Reimann
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, U.K
| | - Florian Lang
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Stefan Wiese
- Department of Cell Morphology and Molecular Neurobiology, University of Bochum, Bochum, Germany
| | - Ivan Sabolic
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Michael Sendtner
- Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
133
|
Hillman M, Eriksson L, Mared L, Helgesson K, Landin-Olsson M. Reduced levels of active GLP-1 in patients with cystic fibrosis with and without diabetes mellitus. J Cyst Fibros 2011; 11:144-9. [PMID: 22138561 DOI: 10.1016/j.jcf.2011.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 12/21/2022]
Abstract
Glucagon like peptide 1 (GLP-1) is an incretin hormone released as a bioactive peptide from intestinal L-cells in response to eating. It acts on target cells and exerts several functions as stimulating insulin and inhibiting glucagon. It is quickly deactivated by the serine protease dipeptidyl peptidase IV (DPP-IV) as an important regulatory mechanism. GLP-1 analogues are used as antidiabetic drugs in patients with type 2 diabetes. We served patients with cystic fibrosis (CF, n=29), cystic fibrosis related diabetes (CFRD, n=19) and healthy controls (n=18) a standardized breakfast (23 g protein, 25 g fat and 76 g carbohydrates) after an overnight fasting. Blood samples were collected before meal as well as 15, 30, 45 and 60 min after the meal in tubes prefilled with a DPP-IV inhibitor. The aim of the study was to compare levels of GLP-1 in patients with CF, CFRD and in healthy controls. We found that active GLP-1 was significantly decreased in patients with CF and CFRD compared to in healthy controls (p<0.01). However, levels in patients with CFRD tended to be lower but were not significantly lower than in patients with CF without diabetes (p=0.06). Total GLP-1 did not differ between the groups, which points to that the inactive form of GLP-1 is more pronounced in CF patients. The endogenous insulin production (measured by C-peptide) was significantly lower in patients with CFRD as expected. However, levels in non-diabetic CF patients did not differ from the controls. We suggest that the decreased levels of GLP-1 could affect the progression toward CFRD and that more studies need to be performed in order to evaluate a possible treatment with GLP-1 analogues in CF-patients.
Collapse
Affiliation(s)
- Magnus Hillman
- Department of Clinical Sciences, Biomedical Center, Lund University, Sweden.
| | | | | | | | | |
Collapse
|
134
|
Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology 2011; 152:4610-9. [PMID: 21971158 DOI: 10.1210/en.2011-1485] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1(7-36NH2) (GLP-1) is secreted by the intestinal L cell in response to both nutrient and neural stimulation, resulting in enhanced glucose-dependent insulin secretion. GLP-1 is therefore an attractive therapeutic for the treatment of type 2 diabetes. The antidiabetic drug, metformin, is known to increase circulating GLP-1 levels, although its mechanism of action is unknown. Direct effects of metformin (5-2000 μm) or another AMP kinase activator, aminoimidazole carboxamide ribonucleotide (100-1000 μm) on GLP-1 secretion were assessed in murine human NCI-H716, and rat FRIC L cells. Neither agent stimulated GLP-1 secretion in any model, despite increasing AMP kinase phosphorylation (P < 0.05-0.01). Treatment of rats with metformin (300 mg/kg, per os) or aminoimidazole carboxamide ribonucleotide (250 mg/kg, sc) increased plasma total GLP-1 over 2 h, reaching 37 ± 9 and 29 ± 9 pg/ml (P < 0.001), respectively, compared with basal (7 ± 1 pg/ml). Plasma activity of the GLP-1-degrading enzyme, dipeptidylpeptidase-IV, was not affected by metformin treatment. Pretreatment with the nonspecific muscarinic antagonist, atropine (1 mg/kg, iv), decreased metformin-induced GLP-1 secretion by 55 ± 11% (P < 0.05). Pretreatment with the muscarinic (M) 3 receptor antagonist, 1-1-dimethyl-4-diphenylacetoxypiperidinium iodide (500 μg/kg, iv), also decreased the GLP-1 area under curve, by 48 ± 8% (P < 0.05), whereas the antagonists pirenzepine (M1) and gallamine (M2) had no effect. Furthermore, chronic bilateral subdiaphragmatic vagotomy decreased basal secretion compared with sham-operated animals (7 ± 1 vs. 13 ± 1 pg/ml, P < 0.001) but did not alter the GLP-1 response to metformin. In contrast, pretreatment with the gastrin-releasing peptide antagonist, RC-3095 (100 μg/kg, sc), reduced the GLP-1 response to metformin, by 55 ± 6% (P < 0.01) at 30 min. These studies elucidate the mechanism underlying metformin-induced GLP-1 secretion and highlight the benefits of using metformin with dipeptidylpeptidase-IV inhibitors in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Andrew J Mulherin
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
135
|
Durvasula K, Thulé PM, Sambanis A. Combinatorial insulin secretion dynamics of recombinant hepatic and enteroendocrine cells. Biotechnol Bioeng 2011; 109:1074-82. [PMID: 22094821 DOI: 10.1002/bit.24373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/31/2011] [Indexed: 12/29/2022]
Abstract
One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies.
Collapse
Affiliation(s)
- Kiranmai Durvasula
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
136
|
Abstract
The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are gut peptides which are secreted by endocrine cells in the intestinal mucosa. Their plasma concentrations increase quickly following food ingestion, and carbohydrate, fat, and protein have all been shown to stimulate GLP-1 and GIP secretion. Although neural and hormonal mechanisms have also been proposed to regulate incretin hormone secretion, direct stimulation of the enteroendocrine cells by the presence of nutrients in the intestinal lumen is probably the most important factor in humans. The actions of the incretin hormones are crucial for maintaining normal islet function and glucose homeostasis. Furthermore, it is also now being recognized that incretin hormones may have other actions in addition to their glucoregulatory effects. Studies have shown that GLP-1 and GIP levels and actions may be perturbed in disease states, but interpretation of the precise relationship between disease and incretins is difficult. The balance of evidence seems to suggest that alterations in secretion and/or action of incretin hormones arise secondarily to the development of insulin resistance, glucose intolerance, and/or increases in body weight rather than being causative factors. However, these impairments may contribute to the deterioration of glycemic control in diabetic patients.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
137
|
Horner KM, Byrne NM, Cleghorn GJ, Näslund E, King NA. The effects of weight loss strategies on gastric emptying and appetite control. Obes Rev 2011; 12:935-51. [PMID: 21729233 DOI: 10.1111/j.1467-789x.2011.00901.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The gastrointestinal tract plays an important role in the improved appetite control and weight loss in response to bariatric surgery. Other strategies which similarly alter gastrointestinal responses to food intake could contribute to successful weight management. The aim of this review is to discuss the effects of surgical, pharmacological and behavioural weight loss interventions on gastrointestinal targets of appetite control, including gastric emptying. Gastrointestinal peptides are also discussed because of their integrative relationship in appetite control. This review shows that different strategies exert diverse effects and there is no consensus on the optimal strategy for manipulating gastric emptying to improve appetite control. Emerging evidence from surgical procedures (e.g. sleeve gastrectomy and Roux-en-Y gastric bypass) suggests a faster emptying rate and earlier delivery of nutrients to the distal small intestine may improve appetite control. Energy restriction slows gastric emptying, while the effect of exercise-induced weight loss on gastric emptying remains to be established. The limited evidence suggests that chronic exercise is associated with faster gastric emptying, which we hypothesize will impact on appetite control and energy balance. Understanding how behavioural weight loss interventions (e.g. diet and exercise) alter gastrointestinal targets of appetite control may be important to improve their success in weight management.
Collapse
Affiliation(s)
- K M Horner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
138
|
Steinert RE, Beglinger C. Nutrient sensing in the gut: interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides. Physiol Behav 2011; 105:62-70. [DOI: 10.1016/j.physbeh.2011.02.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 01/01/2023]
|
139
|
Abstract
Multiple approaches have been investigated with the ultimate goal of providing insulin independence to patients with either type 1 or type 2 diabetes. Approaches to produce insulin-secreting cells in culture, convert non-β-cells into functional β-cells or engineer autologous cells to express and secrete insulin in a meal-responsive manner have all been described. This research has been facilitated by significant improvements in both viral and non-viral gene delivery approaches that have enabled new experimental strategies. Many studies have examined possible avenues to confer islet cytoprotection against immune rejection, inflammation and apoptosis by genetic manipulation of islet cells prior to islet transplantation. Here we review several reports based on the reprogramming of pancreas and gut endocrine cells to treat diabetes.
Collapse
Affiliation(s)
- E Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
140
|
Calame W, Thomassen F, Hull S, Viebke C, Siemensma AD. Evaluation of satiety enhancement, including compensation, by blends of gum arabic. A methodological approach. Appetite 2011; 57:358-64. [DOI: 10.1016/j.appet.2011.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 05/04/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
|
141
|
Vermeulen MA, Richir MC, Garretsen MK, van Schie A, Ghatei MA, Holst JJ, Heijboer AC, Uitdehaag BM, Diamant M, Eekhoff EMW, van Leeuwen PA, Ligthart-Melis GC. Gastric emptying, glucose metabolism and gut hormones: Evaluation of a common preoperative carbohydrate beverage. Nutrition 2011; 27:897-903. [DOI: 10.1016/j.nut.2010.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/07/2010] [Indexed: 12/13/2022]
|
142
|
Usinger L, Hansen KB, Kristiansen VB, Larsen S, Holst JJ, Knop FK. Gastric emptying of orally administered glucose solutions and incretin hormone responses are unaffected by laparoscopic adjustable gastric banding. Obes Surg 2011; 21:625-32. [PMID: 21287292 DOI: 10.1007/s11695-011-0362-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Laparoscopic adjustable gastric banding (LAGB) provides weight loss in obese individuals and is associated with improved glucose homeostasis and resolution of type 2 diabetes. However, in most available reports, potentially inappropriate methodology has been applied when measuring the impact of LAGB on glucose intolerance. In order to clarify the applicability of the diagnostic 75 g-oral glucose tolerance test (OGTT) to measure the effect of LAGB on glucose metabolism, we investigated the effect of LAGB on gastric emptying for liquids as well as pancreatic and incretin hormone responses. METHODS Eight obese patients (three with normal glucose tolerance, three with impaired glucose tolerance, and two with type 2 diabetes; age 47.5 ± 1.1 years (mean±SEM); body mass index 44 ± 1 kg/m²; HbA(1)c 6.2 ± 0.4%) underwent a 75 g-oral glucose tolerance test with 1 g acetaminophen before and ~6 weeks after LAGB. RESULTS A small weight reduction was seen after LAGB (125 ± 8 vs. 121 ± 8 kg, P = 0.014). No differences in determinants of gastric emptying were observed before and after LAGB (area under the serum acetaminophen curve 10.1 ± 0.6 vs. 9.8 ± 0.5 mM x 4 h, P = 0.8; peak acetaminophen concentration 62 ± 3 vs. 61 ± 3 μM, P = 0.8; acetaminophen peak time 98 ± 6 vs. 100 ± 6 min, P = 0.9). No differences in plasma glucose, insulin, C-peptide, glucagon, glucose-dependent insulinotropic polypeptide, or glucagon-like peptide-1 responses to the OGTT were observed before as compared to after LAGB. CONCLUSIONS OGTT can be used to evaluate glucose tolerance in obese patients before and after LAGB without bias from changes in gastric emptying. LAGB has no direct impact on incretin hormone secretion.
Collapse
Affiliation(s)
- Lotte Usinger
- Department of Internal Medicine M, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
143
|
Gerspach AC, Steinert RE, Schönenberger L, Graber-Maier A, Beglinger C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol Endocrinol Metab 2011; 301:E317-25. [PMID: 21540445 DOI: 10.1152/ajpendo.00077.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent identification of sweet taste receptors in the gastrointestinal tract has important implications in the control of food intake and glucose homeostasis. Lactisole can inhibit the sweet taste receptor T1R2/T1R3. The objective was to use lactisole as a probe to investigate the physiological role of T1R2/T1R3 by assessing the effect of T1R2/T1R3 blockade on GLP-1, PYY, and CCK release in response to 1) intragastric administration of nutrients or 2) intraduodenal perfusion of nutrients. The study was performed as a randomized, double-blind, placebo-controlled crossover study that included 35 healthy subjects. In part I, subjects received intragastrically 75 g of glucose in 300 ml of water or 500 ml of a mixed liquid meal with or without lactisole. In part II, subjects received an intraduodenal perfusion of glucose (29.3 g glucose/100 ml; rate: 2.5 ml/min for 180 min) or a mixed liquid meal (same rate) with or without lactisole. The results were that 1) lactisole induced a significant reduction in GLP-1 and PYY but not CCK secretion in both the intragastric and the intraduodenal glucose-stimulated parts (P ≤ 0.05), 2) comparison of the inhibitory effect of lactisole showed a significantly greater suppression of the hormone response in the intragastric part (P = 0.023), and 3) lactisole had no effect on liquid meal-stimulated parameters. We conclude that T1R2/T1R3 is involved in glucose-dependent secretion of satiation peptides. However, the results of the liquid meal-stimulated parts show that the receptor alone is not responsible for peptide secretion.
Collapse
Affiliation(s)
- A C Gerspach
- Phase 1 Research Unit, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
144
|
Saidpour A, Zahediasl S, Kimiagar M, Vafa M, Ghasemi A, Abadi A, Daneshpour MS, Zarkesh M. Fish oil and olive oil can modify insulin resistance and plasma desacyl-ghrelin in rats. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2011; 16:862-71. [PMID: 22279452 PMCID: PMC3263097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/29/2011] [Indexed: 12/03/2022]
Abstract
BACKGROUND Evidence exists for reciprocal effects of insulin and desacyl-ghrelin (DAG) concentration, but the association between different fatty acid saturation in high fat diet (HFD) and these hormones remain to be established. To evaluate the impact of different sources of dietary fat and the level of fatty acid saturation on plasma insulin and DAG levels and also the association of DAG with insulin action this study was carried out. METHODS Male weaning Wistar rats were randomly divided into four groups of HFDs, high fat butter (HF-B), high fat soy (HF-S), high fat olive (HF-O), high fat fish (HF-F), and a group of standard diet (SD). Blood samples were collected after 8 weeks and after they were fasted for 24 h. Body weight, food intake, plasma glucose, insulin, DAG and insulin resistance (HOMA-IR) were measured. RESULTS Plasma insulin levels at fed and fasted status, were significantly higher in rats on HF-B compared to those on SD, HF-F and HF-O diets (P<0.05). Insulin concentration in rats on HF-S was also higher than those on SD, HF-F and HF-O diets (P<0.05), in the feeding status. Insulin resistance was significantly higher in rats on HF-B, compared to those on SD, HF-F and HF-O (P<0.05). Rats that were fed with HF-B diet had lower fasting plasma DAG levels than the SD, HF-F and HF-O groups (P<0.05); furthermore, the HF-F group had significantly higher DAG level than the HF-S groups (P<0.05). CONCLUSIONS Fish and olive oils may hence contribute to lower insulin level and HOMA-IR by increasing DAG concentration and may have more health benefits than other fat sources in diets.
Collapse
Affiliation(s)
- Atoosa Saidpour
- Clinical Nutrition & Dietetics and Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Saleh Zahediasl
- Professor, Endocrine Research Center, Research Institute for Endocrine sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masoud Kimiagar
- Professor, Department of Clinical Nutrition & Dietetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,
Corresponding Author: Masoud Kimiagar, E-mail:
| | - Mohamadreza Vafa
- Associate Professor, School of Public Health, Tehran University of Medical Science, Iran
| | - Asghar Ghasemi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Abadi
- Associate Professor, Department of Statistic, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Daneshpour
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Zarkesh
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
145
|
Salinari S, Bertuzzi A, Mingrone G. Intestinal transit of a glucose bolus and incretin kinetics: a mathematical model with application to the oral glucose tolerance test. Am J Physiol Endocrinol Metab 2011; 300:E955-65. [PMID: 21364121 DOI: 10.1152/ajpendo.00451.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rate of appearance (R(a)) of exogenous glucose in plasma after glucose ingestion is presently measured by tracer techniques that cannot be used in standard clinical testing such as the oral glucose tolerance test (OGTT). We propose a mathematical model that represents in a simple way the gastric emptying, the transport of glucose along the intestinal tract, and its absorption from gut lumen into portal blood. The model gives the R(a) time course in terms of parameters with a physiological counterpart and provides an expression for the release of incretin hormones as related to glucose transit into gut lumen. Glucose absorption was represented by assuming two components related to a proximal and a distal transporter. Model performance was evaluated by numerical simulations. The model was then validated by fitting OGTT glucose and GLP-1 data in healthy controls and type 2 diabetic patients, and useful information was obtained for the rate of gastric emptying, the rate of glucose absorption, the R(a) profile, the insulin sensitivity, and the glucose effectiveness. Model-derived estimates of insulin sensitivity were well correlated (r = 0.929 in controls and 0.886 in diabetic patients) to data obtained from the euglycemic hyperinsulinemic clamp. Although the proposed OGTT analysis requires the measurement of an additional hormone concentration (GLP-1), it appears to be a reasonable choice since it avoids complex and expensive techniques, such as isotopes for glucose R(a) measurement and direct assessment of gastric emptying and intestinal transit, and gives additional correlated information, thus largely compensating for the extra expense.
Collapse
Affiliation(s)
- Serenella Salinari
- Department of Computer and System Science, University of Rome Sapienza, Rome, Italy.
| | | | | |
Collapse
|
146
|
Abstract
The two incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are key factors in the regulation of islet function and glucose metabolism, and incretin-based therapy for type 2 diabetes has gained considerable interest during recent years. Regulation of incretin hormone secretion is less well characterized. The main stimulus for incretin hormone secretion is presence of nutrients in the intestinal lumen, and carbohydrate, fat as well as protein all have the capacity to stimulate GIP and GLP-1 secretion. More recently, it has been established that a diurnal regulation exists with incretin hormone secretion to an identical meal being greater when the meal is served in the morning compared to in the afternoon. Finally, whether incretin hormone secretion is altered in disease states is an area with, so far, controversial results in different studies, although some studies have demonstrated reduced incretin hormone secretion in type 2 diabetes. This review summarizes our knowledge on regulation of incretin hormone secretion and its potential changes in disease states.
Collapse
Affiliation(s)
- Bo Ahrén
- Department of Clinical Sciences in Lund, Division of Medicine, Lund University, Lund, Sweden
| | | | | |
Collapse
|
147
|
Wu T, Rayner CK, Jones K, Horowitz M. Dietary effects on incretin hormone secretion. VITAMINS AND HORMONES 2011; 84:81-110. [PMID: 21094897 DOI: 10.1016/b978-0-12-381517-0.00003-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The delivery of nutrients from the stomach into the duodenum and their subsequent interaction with the small intestine to stimulate incretin hormone release are central determinants of the glycemic response. The incretin effect has hitherto been attributed to the secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) from enteroendocrine cells in the intestinal epithelium. A number of recent studies have yielded fundamental insights into the influence of individual nutrients on incretin release and the mechanisms involved in the detection of carbohydrates, fats, and proteins by enteroendocrine cells, including the K(ATP) channel, sodium-glucose cotransporter 1 (SGLT1), sweet taste receptors, G-protein-coupled receptors (GPRs), and oligopeptide transporter 1 (PepT1). Dietary modification, including modifying macronutrient composition or the consumption of "preloads" in advance of a meal, represents a novel approach to manipulate the incretin response and thereby regulate glucose homeostasis in patients with type 2 diabetes. This review focuses on the effects of individual nutrients on incretin hormone secretion, our current understanding of the signaling mechanisms that trigger secretion by enteroendocrine cells, and the therapeutic implications of these observations.
Collapse
Affiliation(s)
- Tongzhi Wu
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
148
|
K-cells and glucose-dependent insulinotropic polypeptide in health and disease. VITAMINS AND HORMONES 2011; 84:111-50. [PMID: 21094898 DOI: 10.1016/b978-0-12-381517-0.00004-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the 1970s, glucose-dependent insulinotropic polypeptide (GIP, formerly gastric inhibitory polypeptide), a 42-amino acid peptide hormone, was discovered through a search for enterogastrones and subsequently identified as an incretin, or an insulinotropic hormone secreted in response to intraluminal nutrients. Independent of the discovery of GIP, the K-cell was identified in small intestine by characteristic ultrastructural features. Subsequently, it was realized that K-cells are the predominant source of circulating GIP. The density of K-cells may increase under conditions including high-fat diet and obesity, and generally correlates with plasma GIP levels. In addition to GIP, K-cells secrete xenin, a peptide with as of yet poorly understood physiological functions, and GIP is often colocalized with the other incretin hormone glucagon-like peptide-1 (GLP-1). Differential posttranslational processing of proGIP produces 30 and 42 amino acid versions of GIP. Its secretion is elicited by intraluminal nutrients, especially carbohydrate and fat, through the action of SGLT1, GPR40, GPR120, and GPR119. There is also evidence of regulation of GIP secretion via neural pathways and somatostatin. Intracellular signaling mechanisms of GIP secretion are still elusive but include activation of adenylyl cyclase, protein kinase A (PKA), and protein kinase C (PKC). GIP has extrapancreatic actions on adipogenesis, neural progenitor cell proliferation, and bone metabolism. However, the clinical or physiological relevance of these extrapancreatic actions remain to be defined in humans. The application of GIP as a glucose-lowering drug is limited due to reduced efficacy in humans with type 2 diabetes and its potential obesogenic effects demonstrated by rodent studies. There is some evidence to suggest that a reduction in GIP production or action may be a strategy to reduce obesity. The meal-dependent nature of GIP release makes K-cells a potential target for genetically engineered production of satiety factors or glucose-lowering agents, for example, insulin. Transgenic mice engineered to produce insulin from intestinal K-cells are resistant to diabetes induced by a beta-cell toxin. Collectively, K-cells and GIP play important roles in health and disease, and both may be targets for novel therapies.
Collapse
|
149
|
Witte AB, Grybäck P, Jacobsson H, Näslund E, Hellström PM, Holst JJ, Hilsted L, Schmidt PT. Involvement of endogenous glucagon-like peptide-1 in regulation of gastric motility and pancreatic endocrine secretion. Scand J Gastroenterol 2011; 46:428-35. [PMID: 21114428 DOI: 10.3109/00365521.2010.537680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To study the role of endogenous glucagon-like peptide-1 (GLP-1) on gastric emptying rates of a solid meal as well as postprandial hormone secretion and glucose disposal. MATERIAL AND METHODS In nine healthy subjects, gastric emptying of a 310-kcal radio-labelled solid meal and plasma concentrations of insulin, glucagon and glucose were measured during infusion of saline or the GLP-1 receptor antagonist exendin(9-39)amide (Ex(9-39)) at 300 pmol·kg(-1)·min(-1). RESULTS Ex(9-39) infusion had no effect on the total gastric emptying curve, but changed the intra-gastric distribution of the meal. During infusion of Ex(9-39), more content stayed in the upper stomach (79.1 ± 2.5% of total during Ex(9-39) compared to 66.6 ± 5.7% during saline at 5 min). During Ex(9-39) infusion, higher concentrations of plasma glucagon were measured both before (after 40 min of Ex(9-39) infusion the glucagon level was 15.1 ± 0.7 pmol·L(-1) compared to 5.4 ± 1.4 during saline) and after the meal, and postprandial GLP-1 levels increased. Basal insulin and glucose levels were not affected by Ex(9-39), but the postprandial rise of insulin and glucose enhanced during Ex(9-39). CONCLUSIONS Endogenous GLP-1 is involved in the regulation of gastric motility in relation to meal intake and also in the regulation of postprandial insulin and glucose levels. Furthermore, endogenous GLP-1 seems to tonically restrain glucagon secretion.
Collapse
Affiliation(s)
- Anne-Barbara Witte
- Department of Gastroenterology and Hepatology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J, Beglinger C. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr 2011; 30:524-32. [PMID: 21324568 DOI: 10.1016/j.clnu.2011.01.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 01/06/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND & AIMS Enteroendocrine cells are thought to directly sense nutrients via α-gustducin coupled taste receptors (originally identified in the oral epithelium) to modulate the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). METHODS We measured mRNA expression of α-gustducin and T1R3 along the human gut; immunohistochemistry was used to confirm co-localization with GLP-1. Functional implication of sweet taste receptors in glucose-stimulated secretion of GLP-1 and PYY was determined by intragastric infusion of glucose with or without lactisole (a sweet taste receptor antagonist) in 16 healthy subjects. RESULTS α-gustducin was expressed in a region-specific manner (predominantly in the proximal gut and less in ileum and colon, P < 0.05). Both, T1R3 and α-gustducin were co-localized with GLP-1. Glucose-stimulated secretions of GLP-1 (P = 0.026) and PYY (P = 0.034) were reduced by blocking sweet receptors with lactisole. CONCLUSION Key proteins implicated in taste signaling are present in the human gut and co-localized with GLP-1 suggesting that these proteins are functionally linked to peptide secretion from enteroendocrine cells. Glucose-stimulated secretion of GLP-1 and PYY is reduced by a sweet taste antagonist, suggesting the functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of both peptides in humans.
Collapse
Affiliation(s)
- R E Steinert
- Clinical Research Center, Department of Biomedicine, Switzerland.
| | | | | | | | | | | |
Collapse
|