101
|
Peppas NA, Carr DA. Impact of Absorption and Transport on Intelligent Therapeutics and Nano-scale Delivery of Protein Therapeutic Agents. Chem Eng Sci 2009; 64:4553-4565. [PMID: 20161384 PMCID: PMC2782827 DOI: 10.1016/j.ces.2009.04.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The combination of materials design and advances in nanotechnology has led to the development of new therapeutic protein delivery systems. The pulmonary, nasal, buccal and other routes have been investigated as delivery options for protein therapy, but none result in improved patient compliances and patient quality of life as the oral route. For the oral administration of these new systems, an understanding of protein transport is essential because of the dynamic nature of the gastrointestinal tract and the barriers to transport that exist.Models have been developed to describe the transport between the gastrointestinal lumen and the bloodstream, and laboratory techniques like cell culture provide a means to investigate the absorption and transport of many therapeutic agents. Biomaterials, including stimuli-sensitive complexation hydrogels, have been investigated as promising carriers for oral delivery. However, the need to develop models that accurately predict protein blood concentration as a function of the material structure and properties still exists.
Collapse
Affiliation(s)
- Nicholas A. Peppas
- Center of Biomaterials, Drug Delivery, Bionanotechnology and Molecular Recognition, Departments of Chemical and Biomedical Engineering and College of Pharmacy, The University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712, USA
| | | |
Collapse
|
102
|
Maher S, Kennelly R, Bzik VA, Baird AW, Wang X, Winter D, Brayden DJ. Evaluation of intestinal absorption enhancement and local mucosal toxicity of two promoters. I. Studies in isolated rat and human colonic mucosae. Eur J Pharm Sci 2009; 38:291-300. [DOI: 10.1016/j.ejps.2009.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 08/04/2009] [Accepted: 09/01/2009] [Indexed: 11/27/2022]
|
103
|
Maher S, Wang X, Bzik V, McClean S, Brayden DJ. Evaluation of intestinal absorption and mucosal toxicity using two promoters. II. Rat instillation and perfusion studies. Eur J Pharm Sci 2009; 38:301-11. [DOI: 10.1016/j.ejps.2009.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 06/09/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
|
104
|
Matsuhisa K, Kondoh M, Takahashi A, Yagi K. Tight junction modulator and drug delivery. Expert Opin Drug Deliv 2009; 6:509-15. [PMID: 19413458 DOI: 10.1517/17425240902902315] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent progress in pharmaceutical technology based on genomic and proteomic research has provided many drug candidates, including not only chemicals but peptides, antibodies and nucleic acids. These candidates do not show pharmaceutical activity without their absorption into systemic flow and movement from the systemic flow into the target tissue. Epithelial and endothelial cell sheets play a pivotal role in the barrier between internal and external body and tissues. Tight junctions (TJs) between adjacent epithelial cells limit the movement of molecules through the intercellular space in epithelial and endothelial cell sheets. Thus, a promising strategy for drug delivery is the modulation of TJ components to allow molecules to pass through the TJ-based cellular barriers. In this review, we discuss recent progress in the development of TJ modulators and the possibility of absorption enhancers and drug-delivery systems based on TJ components.
Collapse
Affiliation(s)
- Koji Matsuhisa
- Department of Bio Functional Molecular Chemistry, Osaka University, Graduate School of Pharmaceutical Sciences, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
105
|
Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:892-910. [DOI: 10.1016/j.bbamem.2008.09.016] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 02/06/2023]
|
106
|
Fasano A. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1243-52. [PMID: 18832585 DOI: 10.2353/ajpath.2008.080192] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The anatomical and functional arrangement of the gastrointestinal tract suggests that this organ, beside its digestive and absorptive functions, regulates the trafficking of macromolecules between the environment and the host through a barrier mechanism. Under physiological circumstances, this trafficking is safeguarded by the competency of intercellular tight junctions, structures whose physiological modulation is mediated by, among others, the recently described protein zonulin. To prevent harm and minimize inflammation, the same paracellular pathway, in concert with the gut-associated lymphoid tissue and the neuroendocrine network, controls the equilibrium between tolerance and immunity to nonself antigens. The zonulin pathway has been exploited to deliver drugs, macromolecules, or vaccines that normally would not be absorbed through the gastrointestinal mucosal barrier. However, if the tightly regulated trafficking of macromolecules is jeopardized secondary to prolonged zonulin up-regulation, the excessive flow of nonself antigens in the intestinal submucosa can cause both intestinal and extraintestinal autoimmune disorders in genetically susceptible individuals. This new paradigm subverts traditional theories underlying the development of autoimmunity, which are based on molecular mimicry and/or the bystander effect, and suggests that the autoimmune process can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing intestinal barrier competency. Understanding the role of zonulin-dependent intestinal barrier dysfunction in the pathogenesis of autoimmune diseases is an area of translational research that encompasses many fields.
Collapse
Affiliation(s)
- Alessio Fasano
- University of Maryland School of Medicine, Mucosal Biology Research Center, Health Science Facility II, Baltimore, MD 21201, USA.
| |
Collapse
|
107
|
Somasekharan S, Brandt R, Iwamoto T, Tomich JM, Schultz BD. Epithelial barrier modulation by a channel forming peptide. J Membr Biol 2008; 222:17-30. [PMID: 18418541 DOI: 10.1007/s00232-008-9099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 02/21/2008] [Indexed: 01/07/2023]
Abstract
NC-1059 is a synthetic channel-forming peptide that provides for ion transport across, and transiently reduces the barrier integrity of, cultured epithelial monolayers derived from canine kidney (MDCK cells). Experiments were conducted to determine whether epithelial cells derived from other sources were similarly affected. Epithelial cells derived from human intestine (T-84), airway (Calu-3), porcine intestine (IPEC-J2) and reproductive duct (PVD9902) were grown on permeable supports. Basal short circuit current (Isc) was <3 microA cm(-2) for T-84, IPEC-J2 and PVD9902 cell monolayers and <8 microA cm(-2) for Calu-3 cells. Apical NC-1059 exposure caused, in all cell types, an increase in Isc to >15 microA cm(-2), indicative of net anion secretion or cation absorption, which was followed by an increase in transepithelial conductance (in mS cm(-2): T-84, 1.6 to 62; PVD9902, 0.2 to 51; IPEC-J2, 0.3 to 26; Calu-3, 2.3 to 13). These results are consistent with the peptide affecting transcellular ion movement, with a likely effect also on the paracellular route. NC-1059 exposure increased dextran permeation when compared to basal permeation, which documents an effect on the paracellular pathway. In order to evaluate membrane ion channels, experiments were conducted to study the dose dependence and stability of the NC-1059-induced membrane conductance in Xenopus laevis oocytes. NC-1059 induced a dose-dependent increase in oocyte membrane conductance that remained stable for greater than 2 h. The results demonstrate that NC-1059 increases transcellular conductance and paracellular permeation in a wide range of epithelia. These effects might be exploited to promote drug delivery across barrier epithelia.
Collapse
Affiliation(s)
- Suma Somasekharan
- Yale School of Medicine Cellular and Molecular Physiology, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
108
|
Li M, Oliver E, Kitchens KM, Vere J, Alkan SS, Tamiz AP. Structure-activity relationship studies of permeability modulating peptide AT-1002. Bioorg Med Chem Lett 2008; 18:4584-6. [PMID: 18667315 DOI: 10.1016/j.bmcl.2008.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 11/24/2022]
Abstract
AT-1002 a 6-mer synthetic peptide belongs to an emerging novel class of compounds that reversibly increase paracellular transport of molecules across the epithelial barrier. The aim of this project was to elaborate on the structure-activity relationship of this peptide with the specific goal to replace the P2 cysteine amino acid. Herein, we report the discovery of peptides that exhibit reversible permeability enhancement properties with an increased stability profile.
Collapse
Affiliation(s)
- Min Li
- Alba Therapeutics Corporation, 800 West Baltimore Street, Suite 400, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
109
|
Singh R, Singh S, Lillard JW. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci 2008; 97:2497-523. [PMID: 17918721 PMCID: PMC4627499 DOI: 10.1002/jps.21183] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Biological drugs are usually complex proteins and cannot be orally delivered due to problems related to degradation in the acidic and protease-rich environment of the gastrointestinal (GI) tract. The high molecular weight of these drugs often results in poor absorption into the periphery when administered orally. The most common route of administration for these therapeutic proteins is injection. Most of these proteins have short serum half-lives and need to be administered frequently or in high doses to be effective. So, difficulties in the administration of protein-based drugs provides the motivation for developing drug delivery systems (DDSs) capable of maintaining therapeutic drug levels without side effects as well as traversing the deleterious mucosal environment. Employing a polymer as an entrapment matrix is a common feature among the different types of systems currently being pursued for protein delivery. Protein release from these matrices can occur through various mechanisms, such as diffusion through or erosion of the polymer matrix, and sometimes a combination of both. Encapsulation of proteins in liposomes has also been a widely investigated technology for protein delivery. All of these systems have merit and our worthy of pursuit.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Microbiology & Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
110
|
Teply BA, Tong R, Jeong SY, Luther G, Sherifi I, Yim CH, Khademhosseini A, Farokhzad OC, Langer R, Cheng J. The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules. Biomaterials 2008; 29:1216-23. [PMID: 18082254 PMCID: PMC2268909 DOI: 10.1016/j.biomaterials.2007.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 11/09/2007] [Indexed: 11/24/2022]
Abstract
Protein drugs have low bioavailability after oral administration, which is due in part to fast transit of the drugs or drug delivery vehicles through the gastrointestinal tract. Increasing the time that the drugs spend in the intestine after dosing would allow for greater absorption and increased bioavailability. We developed a formulation strategy that can be used to prolong intestinal retention of drug delivery vehicles without substantial alterations to current polymeric encapsulation strategies. A model drug, insulin, was encapsulated in negatively charged poly(lactic-co-glycolic acid) (PLGA) microparticles, and the microparticles were subsequently mixed with positively charged micromagnets, whose size will prevent them from being absorbed. Stable complexes formed through electrostatic interaction. The complexes were effectively immobilized in vitro in a model of the mouse small intestine by application of an external magnetic field. Mice that were gavaged with radio-labeled complexes and fitted with a magnetic belt retained 32.5% of the (125)I-insulin in the small intestine compared with 5.4% for the control group 6h after administration (p=0.005). Furthermore, mice similarly gavaged with complexes encapsulating insulin (120 Units/kg) exhibited long-term glucose reduction in the groups with magnetic belts. The corresponding bioavailability of insulin was 5.11% compared with 0.87% for the control group (p=0.007).
Collapse
Affiliation(s)
- Benjamin A. Teply
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Rong Tong
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Seok Yoon Jeong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gaurav Luther
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ines Sherifi
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Christopher H. Yim
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, 75 Francis Street, Boston, MA 02115, USA
| | - Omid C. Farokhzad
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| |
Collapse
|
111
|
Abstract
Throughout much of the last century insulin served a central role in the advancement of peptide chemistry, pharmacology, cell signaling and structural biology. These discoveries have provided a steadily improved quantity and quality of life for those afflicted with diabetes. The collective work serves as a foundation for the development of insulin analogs and mimetics capable of providing more tailored therapy. Advancements in patient care have been paced by breakthroughs in core technologies, such as semisynthesis, high performance chromatography, rDNA-biosynthesis and formulation sciences. How the structural and conformational dynamics of this endocrine hormone elicit its biological response remains a vigorous area of study. Numerous insulin analogs have served to coordinate structural biology and biochemical signaling to provide a first level understanding of insulin action. The introduction of broad chemical diversity to the study of insulin has been limited by the inefficiency in total chemical synthesis, and the inherent limitations in rDNA-biosynthesis and semisynthetic approaches. The goals of continued investigation remain the delivery of insulin therapy where glycemic control is more precise and hypoglycemic liability is minimized. Additional objectives for medicinal chemists are the identification of superagonists and insulins more suitable for non-injectable delivery. The historical advancements in the synthesis of insulin analogs by multiple methods is reviewed with the specific structural elements of critical importance being highlighted. The functional refinement of this hormone as directed to improved patient care with insulin analogs of more precise pharmacology is reported.
Collapse
Affiliation(s)
- John P Mayer
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
112
|
Woitiski CB, Carvalho RA, Ribeiro AJ, Neufeld RJ, Veiga F. Strategies Toward the Improved Oral Delivery of Insulin Nanoparticles via Gastrointestinal Uptake and Translocation. BioDrugs 2008; 22:223-37. [DOI: 10.2165/00063030-200822040-00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
113
|
Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 2007; 59:1521-46. [PMID: 17881081 DOI: 10.1016/j.addr.2007.08.019] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 08/16/2007] [Indexed: 11/22/2022]
Abstract
The quest to eliminate the needle from insulin delivery and to replace it with non- or less-invasive alternative routes has driven rigorous pharmaceutical research to replace the injectable forms of insulin. Recently, various approaches have been studied involving many strategies using various technologies that have shown success in delivering insulin, which are designed to overcome the inherent barriers for insulin uptake across the gastrointestinal tract, mucosal membranes and skin. This review examines some of the many attempts made to develop alternative, more convenient routes for insulin delivery to avoid existing long-term dependence on multiple subcutaneous injections and to improve the pharmacodynamic properties of insulin. In addition, this article concentrates on the successes in this new millennium in developing potential non-invasive technologies and devices, and on major new milestones in modern insulin delivery for the effective treatment of diabetes.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
114
|
Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2007; 2:e1308. [PMID: 18074031 PMCID: PMC2110898 DOI: 10.1371/journal.pone.0001308] [Citation(s) in RCA: 345] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 11/21/2007] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Probiotics are proposed to positively modulate the intestinal epithelial barrier formed by intestinal epithelial cells (IECs) and intercellular junctions. Disruption of this border alters paracellular permeability and is a key mechanism for the development of enteric infections and inflammatory bowel diseases (IBDs). METHODOLOGY AND PRINCIPAL FINDINGS To study the in vivo effect of probiotic Escherichia coli Nissle 1917 (EcN) on the stabilization of the intestinal barrier under healthy conditions, germfree mice were colonized with EcN or K12 E. coli strain MG1655. IECs were isolated and analyzed for gene and protein expression of the tight junction molecules ZO-1 and ZO-2. Then, in order to analyze beneficial effects of EcN under inflammatory conditions, the probiotic was orally administered to BALB/c mice with acute dextran sodium sulfate (DSS) induced colitis. Colonization of gnotobiotic mice with EcN resulted in an up-regulation of ZO-1 in IECs at both mRNA and protein levels. EcN administration to DSS-treated mice reduced the loss of body weight and colon shortening. In addition, infiltration of the colon with leukocytes was ameliorated in EcN inoculated mice. Acute DSS colitis did not result in an anion secretory defect, but abrogated the sodium absorptive function of the mucosa. Additionally, intestinal barrier function was severely affected as evidenced by a strong increase in the mucosal uptake of Evans blue in vivo. Concomitant administration of EcN to DSS treated animals resulted in a significant protection against intestinal barrier dysfunction and IECs isolated from these mice exhibited a more pronounced expression of ZO-1. CONCLUSION AND SIGNIFICANCE This study convincingly demonstrates that probiotic EcN is able to mediate up-regulation of ZO-1 expression in murine IECs and confer protection from the DSS colitis-associated increase in mucosal permeability to luminal substances.
Collapse
|
115
|
Song KH, Fasano A, Eddington ND. Enhanced nasal absorption of hydrophilic markers after dosing with AT1002, a tight junction modulator. Eur J Pharm Biopharm 2007; 69:231-7. [PMID: 18039562 DOI: 10.1016/j.ejpb.2007.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 09/02/2007] [Accepted: 10/22/2007] [Indexed: 01/22/2023]
Abstract
AT1002 is a six-mer synthetic peptide, H-FCIGRL-OH, that retains the delta G and Zot biological activity of reversibly opening tight junctions and increases the paracellular transport of drugs. The objective of this study was to evaluate the possible use of AT1002 in enhancing the nasal availability of macromolecules using large paracellular markers as model agents. Male Sprague-Dawley rats cannulated in the jugular vein were randomly assigned to receive radiolabelled paracellular markers, [14C]PEG4000 or [14C]inulin, with/without AT1002, for each intranasal study. The plasma concentration of PEG4000 with AT1002 (10mg/kg) was significantly higher than that from PEG4000 control over 360 min following intranasal administration. The AUC0-360 min and Cmax from the PEG4000/AT1002 (10mg/kg) treatment were statistically (p<0.05) increased to 235% and 357%, of control, respectively. When inulin was administered with AT1002 (10 mg/kg), the plasma concentration was significantly higher (p<0.05) than control over 360 min, and increases (p<0.05) of 292% and 315% for AUC0-360 min and Cmax over control were observed, respectively. AT1002 significantly increased the nasal absorption of molecular weight markers, PEG4000 and inulin. This study suggests that AT1002 may be used to enhance the systemic availability of macromolecules when administered concurrently.
Collapse
Affiliation(s)
- Keon-Hyoung Song
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
116
|
Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release 2007; 122:141-50. [PMID: 17707540 DOI: 10.1016/j.jconrel.2007.05.019] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 05/10/2007] [Accepted: 05/17/2007] [Indexed: 02/02/2023]
Abstract
The potential utility of vitamin B12 carrier system for the oral delivery of conjugated peptides/proteins and enhancement of nanoparticles (NPs) transport has been demonstrated. The present study aims to optimize the effectiveness of VB12-NPs conjugates using different levels of cross-linking, linked with different VB(12)-coatings and evaluates in animal models to investigate an efficient insulin carrier. Amino alkyl VB12 derivatives suitable for oral delivery were synthesized at 5'hydoxy ribose and e-propionamide sites via carbamate and ester/amide linkages, and were coupled to succinic acid modified dextran NPs of varied cross-linking. VB12 binding was confirmed by XPS analysis, and was quantified by HPLC (4.0 to 5.7% w/w of NPs). These polydisperse NPs conjugates showed higher size, high insulin entrapment and faster insulin release with low levels of cross-linking. These VB12-NPs conjugates (150-300 nm) showed profound (70-75% blood glucose reductions) and prolonged (54 h) anti-diabetic effects with biphasic behaviour in STZ diabetic rats. NPs with the low levels of cross-linking were found to be superior carriers, and were more effective with VB12 derivatives of carbamate linkage. The pharmacological availability relative to SC insulin was found to be 29.4%, which was superior compared to NPs conjugate of ester linked VB12 (1.5 fold) and relatively higher cross-linked particles (1.1 fold). Further, the NPs carrier demonstrated a similar oral insulin efficacy in congenital diabetic mice (60% reduction at 20 h). Significant quantities of plasma insulin were found in both animal models (231 and 197 muIU/ml). At two investigated doses, the carrier system shows dose response. Pre-dosing with a large excess of free VB12 minimized the observed activity, indicating predominance of VB12 mediated uptake. It is concluded that VB12-dextran NPs conjugate is a viable carrier for peroral insulin delivery to treat diabetics.
Collapse
Affiliation(s)
- Kishore B Chalasani
- Pharmacology Division, Indian Institute of Chemical Technology, Tarnaka, Hyderabad AP, India
| | | | | | | | | |
Collapse
|
117
|
Abstract
Absorption enhancers have been investigated since the 1960s, in order to assist the transfer of drugs across the paracellular space in the intestinal epithelium. However, few absorption enhancers are presently used clinically, due to the difficulty of developing enhancers with high specificity and low toxicity. Using high-throughput genomic techniques, new drug candidates such as, non-Lipinski molecules, peptides, antibodies and nucleic acids, are being discovered, so the need for oral drug delivery strategies using absorption enhancers is gaining importance. The key to addressing this issue is to understand the molecular mechanism of the paracellular route in epithelial cell sheets. Towards this end, basic research in cell biology has revealed the components that regulate the paracellular route, and how the transport of substances is regulated. Based on these findings, novel strategies for enhancing drug absorption have been proposed. In this article, the authors first survey the development of absorption enhancers, then outline recent progress in the cell biology of tight junctions, and finally discuss novel approaches for absorption enhancers based on these advances.
Collapse
Affiliation(s)
- Masuo Kondoh
- Osaka University, Department of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
118
|
Maher S, Feighery L, Brayden DJ, McClean S. Melittin as a permeability enhancer II: in vitro investigations in human mucus secreting intestinal monolayers and rat colonic mucosae. Pharm Res 2007; 24:1346-56. [PMID: 17380268 DOI: 10.1007/s11095-007-9246-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Melittin has shown potential as a non-cytotoxic absorption enhancer in Caco-2 monolayers. Our objectives were to assess in vitro efficacy and cytotoxicity of melittin in two intestinal permeability models and investigate the potential mechanism by which melittin might enhance gastrointestinal absorption. MATERIALS AND METHODS The effects of melittin were examined in the mucus-secreting intestinal cell monolayers, HT29-MTX-E12 (E12), using transepithelial electrical resistance (TER), transmission electron microscopy (TEM) and the MTT viability assay. The effects of melittin on TER, permeability and short circuit current (Isc) were also investigated in rat colon mucosae mounted in Ussing chambers. Ion transporting capacity of tissue was measured in response to secretagogues as surrogate markers of cytotoxicity. Melittin stability was examined by a means of a hemolytic assay. The mechanism by which melittin decreases TER across the rat mucosa was examined with a range of enzymatic inhibitors. RESULTS Apical addition of melittin resulted in a reversible non-cytotoxic concentration-dependent decrease in TER across E12 monolayers, which was independent of the presence of mucus. Apical addition of melittin reduced TER and increased the permeability of [(14)C]-mannitol across rat colonic mucosae. The melittin-induced drop in TER in rat colon was significantly attenuated by W7 suggesting partial mediation by calmodulin. CONCLUSIONS The rapid and reversible nature of melittin's permeation enhancing properties and its limited cytotoxicity in polarized intestinal epithelia, suggests a potential drug delivery role for the peptide in oral formulations of poorly absorbed drugs.
Collapse
Affiliation(s)
- Sam Maher
- ITT Dublin, Belgard Road, Tallaght, Dublin, Ireland
| | | | | | | |
Collapse
|
119
|
Maher S, Feighery L, Brayden DJ, McClean S. Melittin as an epithelial permeability enhancer I: investigation of its mechanism of action in Caco-2 monolayers. Pharm Res 2007; 24:1336-45. [PMID: 17373574 DOI: 10.1007/s11095-007-9288-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 01/19/2007] [Indexed: 02/07/2023]
Abstract
PURPOSE Melittin is an amphipathic antimicrobial peptide which has been shown to enhance the permeability of mannitol and reduce transepithelial electrical resistance (TER) across Caco-2 monolayers. The aim of this work was to further examine the potential of melittin as a paracellular permeability enhancer and to investigate the mechanism of interaction with tight junction proteins in Caco-2. MATERIALS AND METHODS The permeability of a range of fluorescent markers of differing molecular weights across monolayers was examined and immunofluorescence and western blotting analysis of tight junction proteins were also carried out. The mechanism of TER reduction was also examined using cell signalling inhibitors. RESULTS Apical but not basolateral addition of melittin increased the permeability of a range FITC-dextrans (4-70 kDa) across monolayers. Melittin effects were reversible and no cytotoxicity was evident in polarized Caco-2 epithelia at the concentrations used. Altered expression of ZO-1, E-cadherin and F-actin was also detected. The phospholipase A2 inhibitors, aristolochic acid and indomethacin and the cyclooxygenase inhibitor, piroxicam, partially attenuated melittin-induced TER reduction, suggesting that part of the mechanism by which melittin opens tight junctions involves prostaglandin signalling. CONCLUSIONS Apically-added melittin opens tight junctions, causing dramatic TER reductions with significant increases in flux of dextrans. These effects appear mediated in part via PLA2 and involve alterations in specific tight junction proteins.
Collapse
Affiliation(s)
- Sam Maher
- Institute of Technology Tallaght Dublin, Belgard Road, Tallaght, Dublin, Ireland
| | | | | | | |
Collapse
|
120
|
Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 2007; 117:163-70. [PMID: 17141909 DOI: 10.1016/j.jconrel.2006.10.023] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/04/2006] [Accepted: 10/17/2006] [Indexed: 11/18/2022]
Abstract
Nanoparticles prepared with a blend of a biodegradable polyester (poly(-epsilon-caprolactone)) and a polycationic non-biodegradable acrylic polymer (Eudragit RS) have been used as a drug carrier for oral administration of insulin. The rate of encapsulation of insulin was around 96%. The therapeutic efficiency of oral insulin nanoparticles (25, 50 and 100 IU/kg) in diabetic rats and the intestinal uptake of fluorescein isothiocyanate (FITC) labelled insulin were studied. When administered orally by force-feeding to diabetic rats, insulin nanoparticles decreased fasted glycemia in a dose dependant manner with a maximal effect observed with 100 IU/kg. These insulin nanoparticles also increased serum insulin levels and improved the glycemic response to an oral glucose challenge for a prolonged period of time. FITC-Insulin-loaded nanoparticles strongly adhered to the intestinal mucosa and labeled insulin, either released and/or still inside nanoparticles, was mainly taken up by the Peyer's patches. It is concluded that polymeric nanoparticles allows the preservation of insulin's biological activity. In addition, the antidiabetic effect can be explained by the mucoadhesive properties of the polycationic polymer (Eudragit) RS) allowing the intestinal uptake of insulin.
Collapse
Affiliation(s)
- Christiane Damgé
- INSERM U734-EA 3452, Laboratory of Pharmaceutical Technology, School of Pharmacy, 5 rue Albert Lebrun, BP 80403, 54001 Nancy Cedex, France
| | | | | |
Collapse
|
121
|
Chittchang M, Mitra AK, Johnston TP. Interplay of Secondary Structure and Charge on the Diffusion of a Polypeptide through Negatively Charged Aqueous Pores. Pharm Res 2007; 24:502-11. [PMID: 17245654 DOI: 10.1007/s11095-006-9166-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE This study was conducted to investigate the interplay of secondary structure and charge of a polypeptide on its permeability through negatively charged pores of synthetic porous membranes and Caco-2 cell monolayers. MATERIALS AND METHODS Poly(D-glutamic acid) [Poly(D-Glu)] was used as a model polypeptide. Transport studies were conducted at 37 degrees C through both track-etched polycarbonate membranes (using side-by-side diffusion cells) and Caco-2 cell monolayers. Apparent permeability coefficients and diffusion coefficients were calculated. RESULTS When diffusion was unhindered, poly(D-Glu) appeared to be transported at the same rate regardless of whether it existed in the random coil or the alpha-helix secondary structure. When moderately hindered diffusion was evaluated, poly(D-Glu) with partial alpha-helix secondary structure, exhibited significantly greater transport than when the polypeptide predominantly existed as the highly negatively charged random coil. This trend was reversed when the diffusion was severely hindered by the tight junctions of the Caco-2 cell monolayers. CONCLUSIONS Neither charge, nor secondary structure, played a significant role in the unhindered diffusion of poly(D-Glu). When the molecules were moderately hindered, polypeptide/membrane charge interactions significantly influenced the rate of aqueous diffusion. As the overall molecular dimensions of the polypeptide approached the pore size, the inherent molecular flexibility of the random coil secondary structure overcame the effect of charge repulsion.
Collapse
Affiliation(s)
- Montakarn Chittchang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Katz Pharmacy Building, 5005 Rockhill Road, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
122
|
Chalasani KB, Russell-Jones GJ, Yandrapu SK, Diwan PV, Jain SK. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 2006; 117:421-9. [PMID: 17239471 DOI: 10.1016/j.jconrel.2006.12.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/29/2006] [Accepted: 12/04/2006] [Indexed: 11/17/2022]
Abstract
In spite of great potential, effective oral delivery of many vitamin B(12)-peptide/protein drug conjugates does not occur due to the limited uptake capacity of the VB(12) transport system, loss of bioactivity of native protein and/or intrinsic factor affinity of VB(12) and liability to GI degradation. In order to overcome these shortcomings in a two pronged way, we have endeavoured to develop a VB(12)-Nanoparticles (NPs) system to enhance the uptake capacity of both NPs and VB(12) transport to deliver orally effective insulin. NPs were prepared using different molecular weight dextrans and epichlorohydrin as cross-linker by an emulsion method. NPs surface was modified with succinic anhydride, and conjugated with amino VB(12) derivatives of carbamate linkage. VB(12) attachment was confirmed by IR, XPS analysis, and was quantified by HPLC (4.0 to 4.4% w/w of NPs). The pre-formed NPs conjugates (Zave=160-250 nm; polydisperse) were loaded with 2, 3 and 4% w/w of insulin, and the entrapment was found to be 45-70%. NPs conjugates were found to protect 65-83% of entrapped insulin against in vitro gut proteases. In vitro release studies exhibit an initial burst followed by diffusion controlled first order kinetics with 75-95% release within 48 h. After oral administration of these carriers (20 IU/kg), a nadir of 70-75% reduction in plasma glucose was found in 5 h, reached basal levels in 8-10 h, and a prolonged second phase was found until 54 h. The % pharmacological availability (PA) of 70 K NPs conjugate containing 2, 3 and 4% w/w insulin was 1.1, 1.9 and 2.6 fold higher, respectively compared to NPs without VB(12); consistent with the hypothesis that uptake was mediated by the vitamin B(12) transport. NPs of 70 K dextran showed 1.4 fold PA compared to 10 K while negligible action was observed with 200 K. The potential utilities of VB(12)-NPs carrier as an oral delivery platform of proteins, especially insulin via dextran-coated particles necessities further elaborate investigations.
Collapse
Affiliation(s)
- Kishore B Chalasani
- Pharmacology Division, Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500 007. A.P., India
| | | | | | | | | |
Collapse
|
123
|
Abstract
PURPOSE OF REVIEW Tight junctions are intercellular seams sealing and preventing the entrance of microorganisms or unwanted substances from the luminal compartment. They also define the border between the basolateral and apical membranes of polarized cells, thus enabling the normal transcellular vectorial transport typical of epithelial function. Their major components are claudin and occludin proteins. Tight junctions are now recognized as having more specific properties in cell function. This review will concentrate on novel findings related to tight junctions in polarized cells. RECENT FINDINGS Tight junctions are regulated, interacting with the cell cytoskeleton and being responsible for the reabsorption of molecules. The latter has been exemplified by the discovery of claudin 16 (paracellin-1) as the gene product responsible for the hypomagnesaemia with hypercalciuria syndrome. Pathogenic bacteria and viruses target and use the tight-junction machinery to invade multicellular organisms. SUMMARY Tight-junction-targeted research may help not only in the future design of novel therapies against invading microorganisms, but also may promote passage of medications through the normally sealed epithelial barrier. In addition, the regulatory properties of tight junctions may help in the understanding of still unanswered aspects of epithelial ion transport.
Collapse
Affiliation(s)
- Daniel Landau
- Department of Pediatrics, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
124
|
Abstract
AIM To develop a stable self-emulsifying formulation for oral delivery of insulin. METHODS Caco-2 cell line and diabetic beagles were used as in vitro and in vivo models to study the absorption mechanism and the hypoglycemic efficacy of the formulation. In addition, various physicochemical parameters of the formulation such as droplet size, insulin encapsulation efficiency and stability were evaluated. RESULTS This formulation enabled changes in barrier properties of Caco-2 monolayers, as referred by transepithelial electrical resistance (TEER) and apparent permeability coefficients (P(app)) of the paracellular marker ranitidine (20-fold greater than control) but not transcellular marker propranolol, suggesting that the opening of tight junctions was involved. In diabetic beagle dogs, the bioavailability of this formulation was up to 15.2% at a dose of 2.5 IU/kg in comparison with the hypoglycemic effect of native insulin (0.5 IU/kg) delivered by subcutaneous injection. CONCLUSION This formulation, recently approved by the China State Food and Drug Administration to enter clinical trials, was stable, degradation-protected and absorption-enhanced, and provided a promising formulation for oral insulin delivery.
Collapse
Affiliation(s)
- Er-li Ma
- State Key Laboratory of Bio-membrane and Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
125
|
MOTLEKAR NUSRATA, FASANO ALESSIO, WACHTEL MITCHELLS, YOUAN BIBOTTIC. Zonula occludens toxin synthetic peptide derivative AT1002 enhances in vitro and in vivo intestinal absorption of low molecular weight heparin. J Drug Target 2006; 14:321-9. [PMID: 16882552 PMCID: PMC1994914 DOI: 10.1080/10611860600613316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zonula occludens toxin (Zot) is an enterotoxin obtained from the bacterium vibrio cholerae that has been shown to reversibly and safely open the tight junctions and enhance paracellular transport. AT1002 is a novel synthetic hexapeptide derived from Zot. The hypothesis to be tested in this study is that AT1002 enhances the oral absorption of ardeparin, a low molecular weight heparin (LMWH). To test this hypothesis, drug transport through Caco-2 cell monolayers was monitored in the presence and absence of AT1002. Regional permeability studies using rat intestine were performed. Cell viability in the presence of various concentrations of enhancer was determined. The absorption of ardeparin after oral administration in rats was measured by anti-factor Xa assay. Furthermore, the eventual mucosal and epithelial damage was histologically evaluated. Higher ardeparin permeability (approximately 2-fold) compared to control was observed in the presence of 0.025% of AT1002. Regional permeability studies revealed that the permeability of ardeparin across the duodenal membrane was improved by the AT1002. Cell viability studies showed no significant cytotoxicity below 0.0028% of AT1002. In the presence of 100 microg/kg of AT1002, ardeparin oral bioavailability was significantly increased (F(relative/s.c) approximately 20.5%). Furthermore, AT1002 at a dose of 100 microg/kg did not induce any observable morphological damage on gastrointestinal (GI) tissues in vivo. These in vivo and in vitro results suggest that the co-administration of LMWH with AT1002 may be a useful delivery strategy to increase its permeability and hence oral absorption.
Collapse
Affiliation(s)
- NUSRAT A. MOTLEKAR
- Department of Pharmaceutical Sciences, Texas Tech University
Health Sciences Center, School of Pharmacy, Amarillo, TX, USA
| | - ALESSIO FASANO
- Division of Pediatric Gastroenterology and Nutrition,
Department of Pediatrics, University of Maryland School of Medicine, Baltimore,
MD, USA, and
| | - MITCHELL S. WACHTEL
- Divisions of Anatomic Pathology and Research, Department of
Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - BI-BOTTI C. YOUAN
- Department of Pharmaceutical Sciences, Texas Tech University
Health Sciences Center, School of Pharmacy, Amarillo, TX, USA
- Correspondence: B.-B. C. Youan, Texas Tech University Health
Sciences Center, School of Pharmacy, 1300 Coulter Drive, Amarillo, TX 79106,
USA. Tel: 1 806 356 4015. Ext. 236. Fax: 1 806 354 4034. E-mail:
| |
Collapse
|
126
|
des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006; 116:1-27. [PMID: 17050027 DOI: 10.1016/j.jconrel.2006.08.013] [Citation(s) in RCA: 819] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/08/2006] [Indexed: 12/15/2022]
Abstract
Peptides and proteins remain poorly bioavailable upon oral administration. One of the most promising strategies to improve their oral delivery relies on their association with colloidal carriers, e.g. polymeric nanoparticles, stable in gastrointestinal tract, protective for encapsulated substances and able to modulate physicochemical characteristics, drug release and biological behavior. The mechanisms of transport of these nanoparticles across intestinal mucosa are reviewed. In particular, the influence of size and surface properties on their non-specific uptake or their targeted uptake by enterocytes and/or M cells is discussed. Enhancement of their uptake by appropriate cells, i.e. M cells by (i) modeling surface properties to optimize access to and transport by M cells (ii) identifying surface markers specific to human M cell allowing targeting to M cells and nanoparticles transcytosis is illustrated. Encouraging results upon in vivo testing are reported but low bioavailability and lack of control on absorbed dose slow down products development. Vaccines are certainly the most promising applications for orally delivered nanoparticles.
Collapse
Affiliation(s)
- Anne des Rieux
- Université Catholique de Louvain, Unité de Pharmacie Galénique, Avenue E. Mounier, 73-20, 1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
127
|
Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. Eur J Pharm Sci 2006; 29:183-97. [PMID: 16777391 DOI: 10.1016/j.ejps.2006.04.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 04/24/2006] [Indexed: 01/15/2023]
Abstract
Recent advances in the discovery and delivery of drugs to cure chronic diseases are achieved by combination of intelligent material design with advances in nanotechnology. Since many drugs act as protagonists or antagonists to different chemicals in the body, a delivery system that can respond to the concentrations of certain molecules in the body is invaluable. For this purpose, intelligent therapeutics or "smart drug delivery" calls for the design of the newest generation of sensitive materials based on molecular recognition. Biomimetic polymeric networks can be prepared by designing interactions between the building blocks of biocompatible networks and the desired specific ligands and by stabilizing these interactions by a three-dimensional structure. These structures are at the same time flexible enough to allow for diffusion of solvent and ligand into and out of the networks. Synthetic networks that can be designed to recognize and bind biologically significant molecules are of great importance and influence a number of emerging technologies. These synthetic materials can be used as unique systems or incorporated into existing drug delivery technologies that can aid in the removal or delivery of biomolecules and restore the natural profiles of compounds in the body.
Collapse
|
128
|
Cheng J, Teply BA, Jeong SY, Yim CH, Ho D, Sherifi I, Jon S, Farokhzad OC, Khademhosseini A, Langer RS. Magnetically Responsive Polymeric Microparticles for Oral Delivery of Protein Drugs. Pharm Res 2006; 23:557-64. [PMID: 16388405 DOI: 10.1007/s11095-005-9444-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE Protein drugs cannot be delivered efficiently through oral routes. To address this challenge, we evaluated the effect of prolonged gastrointestinal transit on the bioavailability of insulin carried by magnetically responsive microparticles in the presence of an external magnetic field. METHODS Magnetite nanocrystals and insulin were coencapsulated into poly(lactide-co-glycolide) (PLGA) microparticles and their effects on hypoglycemia were evaluated in mice in the presence of a circumferentially applied external magnetic field. RESULTS A single administration of 100 U/kg of insulin-magnetite-PLGA microparticles to fasted mice resulted in a reduction of blood glucose levels of up to 43.8% in the presence of an external magnetic field for 20 h (bioavailability = 2.77 +/- 0.46 and 0.87 +/- 0.29% based on glucose and ELISA assay, respectively), significantly higher than similarly dosed mice without a magnetic field (bioavailability = 0.66 +/- 0.56 and 0.30 +/- 0.06%, based on glucose and ELISA assay, respectively). CONCLUSIONS A substantially improved hypoglycemic effect was observed in mice that were orally administered with insulin-magnetite-PLGA microparticles in the presence of an external magnetic field, suggesting that magnetic force can be used to improve the efficiency of orally delivered protein therapeutics.
Collapse
Affiliation(s)
- Jianjun Cheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Menon D, Karyekar CS, Fasano A, Lu R, Eddington ND. Enhancement of brain distribution of anticancer agents using ΔG, the 12kDa active fragment of ZOT. Int J Pharm 2005; 306:122-31. [PMID: 16274945 DOI: 10.1016/j.ijpharm.2005.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/16/2005] [Accepted: 09/13/2005] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the ability of DeltaG, the 12 kDa active fragment of ZOT, to increase the brain distribution of MTX and paclitaxel, two commonly used anticancer agents with poor distribution into the brain. METHODS As part of dose estimation of DeltaG, [14C]-sucrose (40 microCi/kg), a hydrophilic paracellular marker, was co-administered with DeltaG (0, 400 and 800 microg/kg) with and without protease inhibitors to male Sprague-Dawley rats (n=3 per group) via an intracarotid cannula. MTX (50 mg/kg) and [3H]-paclitaxel (120 microCi/kg) were co-administered with the effective doses of DeltaG determined from the above study via the intracarotid cannula. Animals were euthanized by carbon dioxide asphyxiation at the specified time periods and brain and plasma samples were analyzed for the respective drug. RESULTS The brain distribution of [14C]-sucrose was significantly enhanced at both doses of DeltaG. A fold enhancement in the B/P ratios of 1.88 and 2.68 was observed at the 400 and 800 microg/kg doses respectively, when the protein was protected from metabolic degradation with PIs. DeltaG significantly increased the brain distribution of MTX at each of the doses administered, with over a seven-fold increase at the 600 microg/kg dose. [3H]-paclitaxel brain AUC(0-60 min) was significantly higher in the presence of DeltaG (800 microg/kg with PIs) with a 2.5-fold enhancement in brain exposure. CONCLUSIONS DeltaG significantly enhances the brain distribution of MTX (hydrophilic) and paclitaxel (lipophilic) and has the potential to be further developed as adjunct therapy to increase delivery of poorly permeable chemotherapeutic and other CNS targeted compounds.
Collapse
Affiliation(s)
- Divya Menon
- Pharmacokinetics Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, HSF II 543, Baltimore, MD 21201-6808, USA
| | | | | | | | | |
Collapse
|
130
|
Liang JF, Yang VC. Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochem Biophys Res Commun 2005; 335:734-8. [PMID: 16115469 DOI: 10.1016/j.bbrc.2005.07.142] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/21/2022]
Abstract
Cell-penetrating peptide (CPP) was linked to insulin to form insulin-CPP hybrids. The intestinal absorption efficiency of CPP hybridized insulin was 6-8 times increased compared to normal insulin as tested on Caco-2 cell monolayer, a widely used in vitro model for intestinal absorption. Insulin-CPP hybrid transportation seemed to be through an active and transcytosis-like mechanism. Importantly, insulin in hybrids kept intact after they passed through the Caco-2 cell monolayer. This study provides a new clue for oral insulin development.
Collapse
Affiliation(s)
- Jun F Liang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | |
Collapse
|
131
|
González-Mariscal L, Nava P, Hernández S. Critical Role of Tight Junctions in Drug Delivery across Epithelial and Endothelial Cell Layers. J Membr Biol 2005; 207:55-68. [PMID: 16477528 DOI: 10.1007/s00232-005-0807-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/19/2005] [Indexed: 11/28/2022]
Abstract
Epithelia in multicellular organisms constitute the frontier that separates the individual from the environment. Epithelia are sites of exchange as well as barriers, for the transit of ions and molecules from and into the organism. Therapeutic agents, in order to reach their target, frequently need to cross epithelial and endothelial sheets. Two routes are available for such purpose: the transcellular and the paracellular pathways. The former is employed by lipophilic drugs and by molecules selectively transported by channels, pumps and carriers present in the plasma membrane. Hydrophilic molecules cannot cross biological membranes, therefore their transepithelial transport could be significantly enhanced if they moved through the paracellular pathway. Transit through this route is regulated by tight junctions (TJs). The discovery in recent years of the molecular mechanisms of the TJ has allowed the design of different procedures to open the paracellular route in a reversible manner. These strategies could be used to enhance drug delivery across epithelial and endothelial barriers. The procedures employed include the use of peptides homologous to external loops of integral TJ proteins, silencing the expression of TJ proteins with antisense oligonucleotides and siRNAs as well as the use of toxins and proteins derived from microorganisms that target TJ proteins.
Collapse
Affiliation(s)
- L González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Ave. Politécnico Nacional 2508, Mexico D.F., 07360, Mexico.
| | | | | |
Collapse
|
132
|
Casartelli M, Corti P, Giovanna Leonardi M, Fiandra L, Burlini N, Pennacchio F, Giordana B. Absorption of albumin by the midgut of a lepidopteran larva. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:933-40. [PMID: 15935372 DOI: 10.1016/j.jinsphys.2005.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 04/18/2005] [Accepted: 04/18/2005] [Indexed: 05/02/2023]
Abstract
In the last decade, the study of peptide and protein absorption by the insect gut has received increasing attention because of the considerable impact this information may have on the development of new delivery strategies for insecticide macromolecules targeting haemocoelic receptors. Available experimental evidence in vivo suggests that, in insects, peptides and proteins can cross the intestinal barrier reaching the haemocoel, but the functional bases of this absorption pathway have not yet been thoroughly investigated. The current knowledge of the mechanisms involved in protein and polypeptide absorption in animals derives from the extensive studies performed in mammalian polarised epithelial cells, where the transcellular transport of proteins by transcytosis has been demonstrated. In this process, proteins are internalised at one pole of the cell and transported by cytoplasmic vesicular traffic to the opposite plasma membrane domain, where they are released with unchanged biological activity. Here we report data on albumin translocation across the isolated midgut of Bombyx mori caterpillars perfused in vitro. The functional properties of the transepithelial transport of this protein are described and, since absorption prevails over secretion, its lumen-to-haemolymph flux is characterised. Low-temperature incubations nearly abolish the transepithelial transport, while the peculiar physiological features of the larval midgut, i.e. the high lumen positive transepithelial voltage and the luminal alkaline pH, do not affect the flux. The obtained results indicate that albumin crosses B. mori larval midgut by transcytosis.
Collapse
Affiliation(s)
- Morena Casartelli
- Dipartimento di Biologia, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
Gastrointestinal patch systems with integrated multifunctions could surmount the challenges associated with conventional drug delivery. Several gastrointestinal patch systems provide bioadhesion, drug protection and unidirectional release. This combination of function could improve the overall oral bioavailability of large molecules that can currently be delivered only by injection, for example, epoetin-alpha and granulocyte-colony-stimulating factor, which are commonly used to treat chemotherapy-associated anemia and leukopenia, respectively. Furthermore, self-regulated release and cell-specific targeting provide additional 'smart' characteristics to this innovative therapeutic platform.
Collapse
Affiliation(s)
- Sarah L Tao
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
134
|
Snoeck V, Goddeeris B, Cox E. The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes Infect 2005; 7:997-1004. [PMID: 15925533 DOI: 10.1016/j.micinf.2005.04.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/17/2005] [Accepted: 03/07/2005] [Indexed: 11/28/2022]
Abstract
The intestinal epithelium is a critical interface between the organism and its environment. The cell polarity and structural properties of the enterocytes, limiting the amount of antigen reaching the epithelial surface, form the basis of the integrity of the epithelium. However, apart from their participation in digestive processes, the enterocytes perform more than just a passive barrier function. The resistance of the tight junctions regulates the paracellular transport of antigens. Furthermore, the enterocytes take up and process antigens, involving two functional pathways. In the major pathway, enzymes in the lysosomes degrade the antigens. In the minor direct transcytotic pathway, the antigens are not degraded and are released into the interstitial space. Moreover, the enterocytes can present processed antigens directly to T cells and are often directly involved in immune processes. In inflammatory conditions, the properties of the epithelial barrier and the outcome of the immune response to luminal antigens can be changed.
Collapse
Affiliation(s)
- Veerle Snoeck
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | |
Collapse
|
135
|
Salamat-Miller N, Johnston TP. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int J Pharm 2005; 294:201-16. [PMID: 15814245 DOI: 10.1016/j.ijpharm.2005.01.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 01/12/2005] [Accepted: 01/27/2005] [Indexed: 11/26/2022]
Abstract
The intent of this paper is to update the reader on various strategies which have been utilized to increase the paracellular permeability of protein and polypeptide drugs across the intestinal epithelium. Structural features of protein and polypeptide drugs, together with the natural anatomical and physiological features of the gastrointestinal (GI) tract, have made oral delivery of this class of compounds extremely challenging. Interest in the paracellular route for the transport of therapeutic proteins and polypeptides following oral administration has recently intensified and continues to be explored. The assumption that molecules with a large molecular weight are not able to diffuse through the tight junctions of the intestinal membrane has been challenged by current research, along with an increased understanding of tight junction physiology.
Collapse
Affiliation(s)
- Nazila Salamat-Miller
- Division of Pharmaceutical Sciences, Room 211A, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | |
Collapse
|
136
|
Lee S, Lee J, Lee DY, Kim SK, Lee Y, Byun Y. A new drug carrier, Nalpha-deoxycholyl-L: -lysyl-methylester, for enhancing insulin absorption in the intestine. Diabetologia 2005; 48:405-11. [PMID: 15739118 DOI: 10.1007/s00125-004-1658-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 10/28/2004] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The development of an orally active insulin formulation will offer great advantages over conventional injectable insulin therapy in the treatment of patients with diabetes mellitus. Since insulin absorption in the intestine is restricted by the natural physiological characteristics of insulin, we developed a small synthetic compound, Nalpha-deoxycholyl-L: -lysyl-methylester (DCK), as an insulin carrier to enhance oral delivery. METHODS Streptozotocin-induced diabetic rats orally received single doses of insulin (42 U/kg) or insulin/DCK formulation (10, 21, 30 and 42 U/kg) under fasting conditions. Blood glucose levels and plasma insulin concentrations were measured for 6 h following the administration of the agents. An OGTT was also performed immediately after the administration of the oral insulin/DCK formulation. RESULTS The administration of 21, 30 and 42 U/kg (based on insulin activity) of insulin/DCK formulation reduced plasma glucose levels by up to 33.0% (median; range 30.6-70.2%), 78.5% (39.4-86.8%) and 75.2% (67.0-87.4%), respectively, compared with baseline levels. Furthermore, plasma insulin concentrations were observed to rapidly increase. In the OGTT, the insulin/DCK formulation reduced the AUC0-240 for glucose by 30.8% (22.3-54.9%) (p<0.01), and stabilized glycaemia for up to 4 h. CONCLUSIONS/INTERPRETATION The results of this study demonstrate that the insulin/DCK formulation can be absorbed in the intestine and that it is biologically efficacious. We therefore suggest that this oral formulation could be used as an alternative to injectable insulin with enhanced clinical effects.
Collapse
Affiliation(s)
- S Lee
- Center for Cell and Macromolecular Therapy, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | | | | | | | | | |
Collapse
|
137
|
|
138
|
Abstract
In recent years there has been significant new interest in the development of transmucosal (mostly oral) pharmaceutical formulations for the delivery of therapeutic proteins. Emphasis has been given to the molecular design of new carriers for the delivery of insulin, calcitonin and various types of interferons for the treatment of diabetes, osteoporosis, multiple sclerosis and cancer. Most popular carriers include advanced designs of swollen hydrogels prepared from neutral or intelligent polymeric networks. In this review, the most successful of such systems are presented and their promise in the field described.
Collapse
Affiliation(s)
- Nicholas A Peppas
- University of Texas at Austin, Laboratory for Biomaterials, Drug Delivery, Bionanotechnology and Molecular Recognition, Department of Chemical Engineering, Austin, TX 78712, USA
| | | | | |
Collapse
|
139
|
Salama NN, Fasano A, Thakar M, Eddington ND. The impact of DeltaG on the oral bioavailability of low bioavailable therapeutic agents. J Pharmacol Exp Ther 2005; 312:199-205. [PMID: 15448170 DOI: 10.1124/jpet.104.073205] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low oral bioavailability continues to drive research toward identifying novel approaches to enhance drug delivery. Over the past few years, emphasis on the use of absorption enhancers has been overwhelming despite their major adverse effects. Zonula occludens toxin (Zot) was recently established as a safe and effective absorption enhancer, reversibly opening the tight junctions for hydrophilic markers and hydrophobic drugs across the small intestine and the blood brain barrier. DeltaG, the biologically active fragment of Zot, was isolated and shown to increase the in vitro transport and in vivo absorption of paracellular markers. The objective of this study was to examine the effect of DeltaG on the oral bioavailability of low bioavailable therapeutic agents. Jugular vein cannulated Sprague-Dawley rats were randomly assigned to receive the following treatments intraduodenally (ID): [(3)H]cyclosporin A, [(3)H]ritonavir, [(3)H]saquinavir, or [(3)H]acyclovir at (120 microCi/kg) alone, with protease inhibitors (PIs), or with DeltaG (720 microg/kg)/PI. Serial blood samples were collected, and plasma was analyzed for radioactivity. After ID administration with DeltaG/PI, C(max) significantly (p < 0.05) increased over a range of 197 to 5700%, whereas area under the plasma concentration time curve displayed significant increases extending over a range of 123.8 to 4990.3% for the investigated drugs. DeltaG significantly increased the in vivo oral absorption of some low bioavailable drugs in the presence of PI. This study suggests that DeltaG-mediated tight junction modulation, combined with metabolic protection, may be used to enhance the low oral bioavailability of certain drugs when administered concurrently.
Collapse
Affiliation(s)
- Noha N Salama
- Pharmacokinetics-Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
140
|
Salama NN, Fasano A, Thakar M, Eddington ND. The effect of delta G on the transport and oral absorption of macromolecules. J Pharm Sci 2004; 93:1310-9. [PMID: 15067707 DOI: 10.1002/jps.20052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Delta G (DeltaG) is the biologically active fragment of Zonula Occludens Toxin (Zot), an absorption enhancer, that reversibly opens the tight junctions of epithelial and endothelial cells in the small intestine and brain. This study evaluates the possible use of DeltaG in enhancing the oral bioavailability of macromolecules using large paracellular markers as model agents. The transport of [(14)C]Inulin and [(14)C]PEG4000 was evaluated across Caco-2 cells with DeltaG (0, 100, 180 microg/ml). The apparent permeability coefficients (P(app)) were calculated. The in vitro toxicity of DeltaG (180 microg/ml) was assessed. Sprague Dawley rats were dosed intraduodenally (ID) with the following treatments: [(14)C]Inulin or [(14)C]PEG4000 (30 microci/kg) w/o DeltaG (720 microg/kg)/protease inhibitors (PI). Blood was collected and plasma was analyzed for radioactivity. DeltaG (180 microg/ml) increased [(14)C]Inulin and [(14)C]PEG4000 P(app) by 82.6 and 24.4%, respectively, without any toxicity. After ID administration with DeltaG/PI, C(max) and AUC were significantly (p < 0.05) increased for both Inulin and PEG4000. However, Inulin displayed greater enhancement ratios in vitro and in vivo. This study suggests that DeltaG may be used to enhance the oral bioavailability of macromolecules (e.g., proteins) after coadministration through modulation of paracellular transport.
Collapse
Affiliation(s)
- Noha N Salama
- Pharmacokinetics-Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, 20 Penn Street, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
141
|
Campbell NB, Ruaux CG, Shifflett DE, Steiner JM, Williams DA, Blikslager AT. Physiological concentrations of bile salts inhibit recovery of ischemic-injured porcine ileum. Am J Physiol Gastrointest Liver Physiol 2004; 287:G399-407. [PMID: 15087278 DOI: 10.1152/ajpgi.00310.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown rapid in vitro recovery of barrier function in porcine ischemic-injured ileal mucosa, attributable principally to reductions in paracellular permeability. However, these experiments did not take into account the effects of luminal contents, such as bile salts. Therefore, the objective of this study was to evaluate the role of physiological concentrations of deoxycholic acid in recovery of mucosal barrier function. Porcine ileum was subjected to 45 min of ischemia, after which mucosa was mounted in Ussing chambers and exposed to varying concentrations of deoxycholic acid. The ischemic episode resulted in significant reductions in transepithelial electrical resistance (TER), which recovered to control levels of TER within 120 min, associated with significant reductions in mucosal-to-serosal (3)H-labeled mannitol flux. However, treatment of ischemic-injured tissues with 10(-5) M deoxycholic acid significantly inhibited recovery of TER with significant increases in mucosal-to-serosal (3)H-labeled mannitol flux, whereas 10(-6) M deoxycholic acid had no effect. Histological evaluation at 120 min revealed complete restitution regardless of treatment, indicating that the breakdown in barrier function was due to changes in paracellular permeability. Similar effects were noted with the application of 10(-5) M taurodeoxycholic acid, and the effects of deoxycholic acid were reversed with application of the Ca(2+)-mobilizing agent thapsigargin. Deoxycholic acid at physiological concentrations significantly impairs recovery of epithelial barrier function by an effect on paracellular pathways, and these effects appear to be Ca(2+) dependent.
Collapse
Affiliation(s)
- Nigel B Campbell
- Dept. of Clinical Sciences, College of Veterinary Medicine, North Carolina State Univ., Raleigh, NC 27606, USA
| | | | | | | | | | | |
Collapse
|
142
|
Broughman JR, Brandt RM, Hastings C, Iwamoto T, Tomich JM, Schultz BD. Channel-forming peptide modulates transepithelial electrical conductance and solute permeability. Am J Physiol Cell Physiol 2004; 286:C1312-23. [PMID: 15151917 DOI: 10.1152/ajpcell.00426.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NC-1059, a synthetic channel-forming peptide, transiently increases transepithelial electrical conductance (g(TE)) and ion transport (as indicated by short-circuit current) across Madin-Darby canine kidney (MDCK) cell monolayers in a time- and concentration-dependent manner when apically exposed. g(TE) increases from <2 to >40 mS/cm(2) over the low to middle micromolar range. Dextran polymer (9.5 but not 77 kDa) permeates the monolayer following apical NC-1059 exposure, suggesting that modulation of the paracellular pathway accounts for changes in g(TE). However, concomitant alterations in junctional protein localization (zonula occludens-1, occludin) and cellular morphology are not observed. Effects of NC-1059 on MDCK g(TE) occur in nominally Cl(-)- and Na(+)-free apical media, indicating that permeation by these ions is not required for effects on g(TE), although two-electrode voltage-clamp assays with Xenopus oocytes suggest that both Cl(-) and Na(+) permeate NC-1059 channels with a modest Cl(-) permselectivity (P(Cl):P(Na) = 1.3). MDCK monolayers can be exposed to multiple NC-1059 treatments over days to weeks without diminution of response, alteration in the time course, or loss of responsiveness to physiological and pharmacological secretagogues. Together, these results suggest that NC-1059 represents a valuable tool to investigate tight junction regulation and may be a lead compound for therapeutic interventions.
Collapse
Affiliation(s)
- James R Broughman
- Department of Anatomy and Physiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
143
|
Whitehead K, Shen Z, Mitragotri S. Oral delivery of macromolecules using intestinal patches: applications for insulin delivery. J Control Release 2004; 98:37-45. [PMID: 15245887 DOI: 10.1016/j.jconrel.2004.04.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 04/17/2004] [Indexed: 10/26/2022]
Abstract
Oral drug delivery, though attractive compared to injections, cannot be utilized for the administration of peptides and proteins due to poor epithelial permeability and proteolytic degradation within the gastrointestinal tract. A novel method is described that utilizes mucoadhesive intestinal patches to deliver therapeutic doses of insulin into systemic circulation. Intestinal patches localize insulin near the mucosa and protect it from proteolytic degradation. In vitro experiments confirmed the secure adhesion of patches to the intestine and the release of insulin from the patches. In vivo experiments performed via jejunal administration showed that intestinal insulin patches with doses in the range of 1-10 U/kg induced dose-dependent hypoglycemia in normal rats with a maximum drop in blood glucose levels of 75% observed at a dose of 10 U/kg. These studies demonstrate that reduction in blood glucose levels comparable to that induced by subcutaneous injections can be achieved via enteral insulin absorption with doses only 2-10-fold higher than subcutaneous doses.
Collapse
Affiliation(s)
- Kathryn Whitehead
- Department of Chemical Engineering, University of California, Engineering II building, Santa Barbara 93106, USA
| | | | | |
Collapse
|
144
|
Lee A, White N, van der Walle CF. The intestinal zonula occludens toxin (ZOT) receptor recognises non-native ZOT conformers and localises to the intercellular contacts. FEBS Lett 2003; 555:638-42. [PMID: 14675787 DOI: 10.1016/s0014-5793(03)01348-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A preliminary structural analysis of Vibrio cholerae zonula occludens toxin (ZOT) was made by equilibrium denaturation and circular dichroism. ZOT is a structurally unstable protein in aqueous solution (DeltaG((H2O)) 3.82 kcal/mol), the putative intra- and extracellular domains unfold co-operatively, with complete denaturation via observed conformational intermediates. Refolding of denatured ZOT is not dependent on disulphide bridge formation. Partial refolding of a maltose binding protein-ZOT fusion did not prevent its specific binding to the ZOT receptor on Caco-2 cells. Immuno-gold labelling showed that the ZOT receptor localises to the intercellular contacts between cells in a confluent monolayer.
Collapse
Affiliation(s)
- Alvin Lee
- Pharmaceutical Sciences, Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK
| | | | | |
Collapse
|
145
|
Marinaro M, Fasano A, De Magistris MT. Zonula occludens toxin acts as an adjuvant through different mucosal routes and induces protective immune responses. Infect Immun 2003; 71:1897-902. [PMID: 12654806 PMCID: PMC152047 DOI: 10.1128/iai.71.4.1897-1902.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zonula occludens toxin (Zot) is produced by Vibrio cholerae and has the ability to increase mucosal permeability by reversibly affecting the structure of tight junctions. Because of this property, Zot is a promising tool for mucosal drug and antigen (Ag) delivery. Here we show that Zot acts as a mucosal adjuvant to induce long-lasting and protective immune responses upon mucosal immunization of mice. Indeed, the intranasal delivery of ovalbumin with two different recombinant forms of Zot in BALB/c mice resulted in high Ag-specific serum immunoglobulin G titers that were maintained over the course of a year. Moreover, His-Zot induced humoral and cell-mediated responses to tetanus toxoid in C57BL/6 mice and protected the mice against a systemic challenge with tetanus toxin. In addition, we found that Zot also acts as an adjuvant through the intrarectal route and that it has very low immunogenicity compared to the adjuvant Escherichia coli heat-labile enterotoxin. Finally, by using an octapeptide representing the putative binding site of Zot and of its endogenous analogue zonulin, we provide evidence that Zot may bind a mucosal receptor on nasal mucosa and may mimic an endogenous regulator of tight junctions to deliver Ags in the submucosa. In conclusion, Zot is a novel and effective mucosal adjuvant that may be useful for the development of mucosal vaccines.
Collapse
Affiliation(s)
- Mariarosaria Marinaro
- Laboratory of Bacteriology and Medical Mycology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | |
Collapse
|
146
|
Abstract
The rapid integration of new technologies by the pharmaceutical industry has resulted in numerous breakthroughs in the discovery, development and manufacturing of pharmaceutical products. In particular, the commercial-scale production of high-purity recombinant proteins has resulted in important additions to treatment options for many large therapeutic areas. In addition to proteins, other macromolecules, such as the animal-derived mucopolysaccharide heparins, have also seen dramatic growth as injectable pharmaceutical products. To date, macromolecules have been limited as therapeutics by the fact that they cannot be orally delivered. This article will address the current status and future possibilities of oral macromolecular drug delivery.
Collapse
Affiliation(s)
- Michael Goldberg
- Emisphere Technologies Inc, 765 Old Saw Mill River Road Tarrytown, New York 10591, USA.
| | | |
Collapse
|
147
|
Tao SL, Lubeley MW, Desai TA. Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery. J Control Release 2003; 88:215-28. [PMID: 12628329 DOI: 10.1016/s0168-3659(03)00005-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oral delivery is the preferred route of drug administration. However, the breakdown of molecules and low levels of absorption in the gastrointestinal system render the oral delivery of proteins and peptides ineffective. Bioadhesive delivery devices can be used to circumvent these problems by protecting the drug from gastrointestinal denaturation, localizing and prolonging a drug at a specific target site, and maintaining direct contact with the intestinal cells, thereby increasing the drug concentration gradient. Microfabrication technology may offer some potential advantages over conventional delivery technologies. The benefits of microfabrication include the ability to tailor the size, shape, reservoir volume, and surface characteristics of the drug delivery vehicle. In this study, bioadhesive properties were introduced to microfabricated poly(methyl methacrylate) (PMMA) microdevices by attachment of lectins, a group of proteins capable of specifically targeting cells in the gastrointestinal tract. In this process, the PMMA microdevices were chemically modified by aminolysis to yield amine-terminated surfaces. Avidin molecules were covalently bound to the surface of the particles using a hydroxysuccinimide catalyzed carbodiimide reagent and then incubated in an aqueous solution of biotinylated lectin. The lectin-modified microdevices were examined in vitro in terms of their bioadhesive characteristics.
Collapse
Affiliation(s)
- Sarah L Tao
- Department of Bioengineering, University of Illinois, Chicago 60607, USA
| | | | | |
Collapse
|
148
|
Abstract
A vigorous research effort has been undertaken worldwide to replace injectable insulin by a more comfortable and painless delivery method. Several routes have been explored for their suitability with respect to insulin degradation in the human body. Considerable progress has been made in achieving the common goal for a convenient and equally effective insulin delivery. This article reviews the different routes available for insulin administration and the many successful developments that have been made in recent years for improving that particular route for a much better insulin delivery.
Collapse
Affiliation(s)
- Naushad M Khan Ghilzai
- Department of Pharmaceutical Sciences, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois 60515, USA.
| |
Collapse
|
149
|
Abstract
Microfabrication techniques which permit the creation of therapeutic delivery systems that possess a combination of structural, mechanical, and perhaps electronic features may surmount challenges associated with conventional delivery of therapy. In this review, delivery concepts are presented which capitalize on the strengths of microfabrication. Possible applications include micromachined silicon membranes to create implantable biocapsules for the immunoisolation of pancreatic islet cells-as a possible treatment for diabetes-and sustained release of injectable drugs needed over long time periods. Asymmetrical, drug-loaded microfabricated particles with specific ligands linked to the surface are proposed for improving oral bioavailability of peptide (and perhaps protein) drugs. In addition, microfabricated drug delivery systems ranging from transdermal microneedles to implantable microchips will be discussed.
Collapse
Affiliation(s)
- Sarah L Tao
- Department of Bioengineering, University of Illinois at Chicago, 851 S Morgan Street, Chicago, IL 60607, USA
| | | |
Collapse
|
150
|
Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, Drago S, Congia M, Fasano A. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 2003; 52:218-23. [PMID: 12524403 PMCID: PMC1774976 DOI: 10.1136/gut.52.2.218] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Despite the progress made in understanding the immunological aspects of the pathogenesis of coeliac disease (CD), the early steps that allow gliadin to cross the intestinal barrier are still largely unknown. The aim of this study was to establish whether gliadin activates a zonulin dependent enterocyte intracellular signalling pathway(s) leading to increased intestinal permeability. METHODS The effect of gliadin on the enterocyte actin cytoskeleton was studied on rat intestinal epithelial (IEC-6) cell cultures by fluorescence microscopy and spectrofluorimetry. Zonulin concentration was measured on cell culture supernatants by enzyme linked immunosorbent assay. Transepithelial intestinal resistance (Rt) was measured on ex vivo intestinal tissues mounted in Ussing chambers. RESULTS Incubation of cells with gliadin led to a reversible protein kinase C (PKC) mediated actin polymerisation temporarily coincident with zonulin release. A significant reduction in Rt was observed after gliadin addition on rabbit intestinal mucosa mounted in Ussing chambers. Pretreatment with the zonulin inhibitor FZI/0 abolished the gliadin induced actin polymerisation and Rt reduction but not zonulin release. CONCLUSIONS Gliadin induces zonulin release in intestinal epithelial cells in vitro. Activation of the zonulin pathway by PKC mediated cytoskeleton reorganisation and tight junction opening leads to a rapid increase in intestinal permeability.
Collapse
Affiliation(s)
- M G Clemente
- Department of Biomedical Sciences and Biotechnology, 2nd Pediatric Clinic, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|