101
|
Macek TA, Suzuki K, Asin K, Kimura H. Translational Development Strategies for TAK-063, a Phosphodiesterase 10A Inhibitor. Int J Neuropsychopharmacol 2020; 23:524-532. [PMID: 32598478 PMCID: PMC7689203 DOI: 10.1093/ijnp/pyaa042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 06/04/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND TAK-063 is an inhibitor of phosphodiesterase 10A (PDE10A), an enzyme highly expressed in medium spiny neurons of the striatum. PDE10A hydrolyzes both cyclic adenosine monophosphate and cyclic guanosine monophosphate and modulates dopamine signaling downstream of receptor activation in both direct and indirect pathways of the striatum. TAK-063 exhibited antipsychotic-like effects in animal models; however, the translatability of these models to the clinical manifestations of schizophrenia and the meaningfulness for new targets such as PDE10A has not been established. METHODS The TAK-063 phase 1 program included a comprehensive translational development strategy with the main objective of determining whether the antipsychotic-like pharmacodynamic effects seen in nonclinical models would translate to human subjects. To evaluate this objective, we conducted a single-rising dose study (84 healthy subjects), a positron emission tomography (PET) study (12 healthy subjects), a functional magnetic resonance imaging blood oxygen level-dependent (BOLD) study (27 healthy subjects), and a multiple-rising dose study that included people with schizophrenia (30 healthy Japanese subjects and 47 subjects with stable schizophrenia). In addition, assessments of cognition and electroencephalography (27 healthy subjects and 47 subjects with stable schizophrenia) were included. RESULTS PDE10A engagement by TAK-063 was verified with a novel PET radiotracer for use in primates and humans. TAK-063 showed favorable pharmacokinetic and safety profiles in humans, and TAK-063 reduced ketamine-induced changes in electroencephalography and BOLD signaling in animal models and healthy human subjects. In addition, analogous effects on cognition were observed in animal models and human subjects. CONCLUSIONS Overall, the phase 1 results showed some consistent evidence of antipsychotic activity. This translational strategy may be valuable for the future development of novel therapeutic approaches, even when relevant nonclinical models are not available.
Collapse
Affiliation(s)
| | | | - Karen Asin
- Takeda Development Center Americas, Inc., Deerfield, IL
| | | |
Collapse
|
102
|
Bove M, Tucci P, Dimonte S, Trabace L, Schiavone S, Morgese MG. Postnatal Antioxidant and Anti-inflammatory Treatments Prevent Early Ketamine-Induced Cortical Dysfunctions in Adult Mice. Front Neurosci 2020; 14:590088. [PMID: 33250707 PMCID: PMC7672215 DOI: 10.3389/fnins.2020.590088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Early brain insult, interfering with its maturation, may result in psychotic-like disturbances in adult life. Redox dysfunctions and neuroinflammation contribute to long-term psychiatric consequences due to neurodevelopmental abnormalities. Here, we investigated the effects of early pharmacological modulation of the redox and inflammatory states, through celastrol, and indomethacin administration, on reactive oxygen species (ROS) amount, levels of malondialdehyde (MDA) and antioxidant enzymes (superoxide dismutase 1, SOD1, glutathione, GSH, and catalase, CAT), as well as of pro-inflammatory cytokines (tumor necrosis factor-alpha, TNF-α, interleukin-6, IL-6, and interleukin-1 beta, IL-1β), in the prefrontal cortex of adult mice exposed to a neurotoxic insult, i.e. ketamine administration, in postnatal life. Early celastrol or indomethacin prevented ketamine-induced elevations in cortical ROS production. MDA levels in ketamine-treated mice, also administered with celastrol, were comparable with the control ones. Indomethacin also prevented the increase in lipid peroxidation following early ketamine administration. Whereas no significant differences were detected in SOD1, GSH, and CAT levels between ketamine and saline-administered mice, celastrol elevated the cortical amount of these antioxidant enzymes and the same effect was induced by indomethacin per se. Both celastrol and indomethacin prevented ketamine-induced enhancement in TNF-α and IL-1β levels, however, they had no effects on increased IL-6 amount resulting from ketamine exposure in postnatal life. In conclusion, our data suggest that an early increase in cortical ROS scavenging and reduction of lipid peroxidation, via the enhancement of antioxidant defense, together with inhibition of neuroinflammation, may represent a therapeutic opportunity against psychotic-like disturbances resulting, later in life, from the effects of a neurotoxic insult on the developing brain.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | |
Collapse
|
103
|
Koh MT, Gallagher M. Using internal memory representations in associative learning to study hallucination-like phenomenon. Neurobiol Learn Mem 2020; 175:107319. [PMID: 33010386 PMCID: PMC7655598 DOI: 10.1016/j.nlm.2020.107319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/23/2022]
Abstract
Studies of Pavlovian conditioning have enriched our understanding of how relations among events can adaptively guide behavior through the formation and use of internal mental representations. In this review, we illustrate how internal representations flexibly integrate new updated information in reinforcer revaluation to influence relationships to impact actions and outcomes. We highlight representation-mediated learning to show the similarities in properties and functions between internally generated and directly activated representations, and how normal perception of internal representations could contribute to hallucinations. Converging evidence emerges from recent behavioral and neural activation studies using animal models of schizophrenia as well as clinical studies in patients to support increased tendencies in these populations to evoke internal representations from prior associative experience that approximate hallucination-like percepts. The heightened propensity is dependent on dopaminergic activation which is known to be sensitive to hippocampal overexcitability, a condition that has been observed in patients with psychosis. This presents a network that overlaps with cognitive neural circuits and offers a fresh approach for the development of therapeutic interventions targeting psychosis.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA.
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
104
|
Labouesse MA, Cola RB, Patriarchi T. GPCR-Based Dopamine Sensors-A Detailed Guide to Inform Sensor Choice for In vivo Imaging. Int J Mol Sci 2020; 21:E8048. [PMID: 33126757 PMCID: PMC7672611 DOI: 10.3390/ijms21218048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how dopamine (DA) encodes behavior depends on technologies that can reliably monitor DA release in freely-behaving animals. Recently, red and green genetically encoded sensors for DA (dLight, GRAB-DA) were developed and now provide the ability to track release dynamics at a subsecond resolution, with submicromolar affinity and high molecular specificity. Combined with rapid developments in in vivo imaging, these sensors have the potential to transform the field of DA sensing and DA-based drug discovery. When implementing these tools in the laboratory, it is important to consider there is not a 'one-size-fits-all' sensor. Sensor properties, most importantly their affinity and dynamic range, must be carefully chosen to match local DA levels. Molecular specificity, sensor kinetics, spectral properties, brightness, sensor scaffold and pharmacology can further influence sensor choice depending on the experimental question. In this review, we use DA as an example; we briefly summarize old and new techniques to monitor DA release, including DA biosensors. We then outline a map of DA heterogeneity across the brain and provide a guide for optimal sensor choice and implementation based on local DA levels and other experimental parameters. Altogether this review should act as a tool to guide DA sensor choice for end-users.
Collapse
Affiliation(s)
- Marie A. Labouesse
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Reto B. Cola
- Anatomy and Program in Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland;
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
105
|
Wengler K, Goldberg AT, Chahine G, Horga G. Distinct hierarchical alterations of intrinsic neural timescales account for different manifestations of psychosis. eLife 2020; 9:e56151. [PMID: 33107431 PMCID: PMC7591251 DOI: 10.7554/elife.56151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hierarchical perceptual-inference models of psychosis may provide a holistic framework for understanding psychosis in schizophrenia including heterogeneity in clinical presentations. Particularly, hypothesized alterations at distinct levels of the perceptual-inference hierarchy may explain why hallucinations and delusions tend to cluster together yet sometimes manifest in isolation. To test this, we used a recently developed resting-state fMRI measure of intrinsic neural timescale (INT), which reflects the time window of neural integration and captures hierarchical brain gradients. In analyses examining extended sensory hierarchies that we first validated, we found distinct hierarchical INT alterations for hallucinations versus delusions in the auditory and somatosensory systems, thus providing support for hierarchical perceptual-inference models of psychosis. Simulations using a large-scale biophysical model suggested local elevations of excitation-inhibition ratio at different hierarchical levels as a potential mechanism. More generally, our work highlights the robustness and utility of INT for studying hierarchical processes relevant to basic and clinical neuroscience.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Columbia UniversityNew YorkUnited States
- New York State Psychiatric InstituteNew YorkUnited States
| | | | - George Chahine
- Department of Psychiatry, Yale UniversityNew HavenUnited States
| | - Guillermo Horga
- Department of Psychiatry, Columbia UniversityNew YorkUnited States
- New York State Psychiatric InstituteNew YorkUnited States
| |
Collapse
|
106
|
Cavanagh SE, Lam NH, Murray JD, Hunt LT, Kennerley SW. A circuit mechanism for decision-making biases and NMDA receptor hypofunction. eLife 2020; 9:e53664. [PMID: 32988455 PMCID: PMC7524553 DOI: 10.7554/elife.53664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Decision-making biases can be features of normal behaviour, or deficits underlying neuropsychiatric symptoms. We used behavioural psychophysics, spiking-circuit modelling and pharmacological manipulations to explore decision-making biases during evidence integration. Monkeys showed a pro-variance bias (PVB): a preference to choose options with more variable evidence. The PVB was also present in a spiking circuit model, revealing a potential neural mechanism for this behaviour. To model possible effects of NMDA receptor (NMDA-R) antagonism on this behaviour, we simulated the effects of NMDA-R hypofunction onto either excitatory or inhibitory neurons in the model. These were then tested experimentally using the NMDA-R antagonist ketamine, a pharmacological model of schizophrenia. Ketamine yielded an increase in subjects' PVB, consistent with lowered cortical excitation/inhibition balance from NMDA-R hypofunction predominantly onto excitatory neurons. These results provide a circuit-level mechanism that bridges across explanatory scales, from the synaptic to the behavioural, in neuropsychiatric disorders where decision-making biases are prominent.
Collapse
Affiliation(s)
- Sean Edward Cavanagh
- Department of Clinical and Movement Neurosciences, University College LondonLondonUnited Kingdom
| | - Norman H Lam
- Department of Physics, Yale UniversityNew HavenUnited States
| | - John D Murray
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Laurence Tudor Hunt
- Department of Clinical and Movement Neurosciences, University College LondonLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
- Max Planck-UCL Centre for Computational Psychiatry and Aging, University College LondonLondonUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Steven Wayne Kennerley
- Department of Clinical and Movement Neurosciences, University College LondonLondonUnited Kingdom
| |
Collapse
|
107
|
Brakatselos C, Delis F, Asprogerakas MZ, Lekkas P, Tseti I, Tzimas PS, Petrakis EA, Halabalaki M, Skaltsounis LA, Antoniou K. Cannabidiol Modulates the Motor Profile and NMDA Receptor-related Alterations Induced by Ketamine. Neuroscience 2020; 454:105-115. [PMID: 32950556 DOI: 10.1016/j.neuroscience.2020.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/01/2023]
Abstract
Cannabidiol (CBD) is a non-addictive ingredient of cannabis with antipsychotic potential, while ketamine (KET), an uncompetitive NMDA receptor inhibitor, has been extensively used as a psychotomimetic. Only few studies have focused on the role of CBD on the KET-induced motor profile, while no study has investigated the impact of CBD on KET-induced alterations in NMDA receptor subunit expression and ERK phosphorylation state, in brain regions related to the neurobiology and treatment of schizophrenia. Therefore, the aim of the present study is to evaluate the role of CBD on KET-induced motor response and relevant glutamatergic signaling in the prefrontal cortex, the nucleus accumbens, the dorsal and ventral hippocampus. The present study demonstrated that CBD pre-administration did not reverse KET-induced short-lasting hyperactivity, but it prolonged it over time. CBD alone decreased motor activity at the highest dose tested (30 mg/kg) while KET increased motor activity at the higher doses (30, 60 mg/kg). Moreover, KET induced regionally-dependent alterations in NR1 and NR2B expression and ERK phosphorylation that were reversed by CBD pre-administration. Interestingly, in the nucleus accumbens KET per se reduced NR2B and p-ERK levels, while the CBD/KET combination increased NR2B and p-ERK levels, as compared to control. This study is the first to show that CBD prolongs KET-induced motor stimulation and restores KET-induced effects on glutamatergic signaling and neuroplasticity-related markers. These findings contribute to the understanding of CBD effects on the behavioral and neurobiological profiles of psychotogenic KET.
Collapse
Affiliation(s)
- Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Michail-Zois Asprogerakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ioulia Tseti
- INTERMED: Pharmaceutical Laboratories Ioulia and Eirini Tseti, Kaliftaki 27, 14564 Athens, Greece
| | - Petros S Tzimas
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Eleftherios A Petrakis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Leandros A Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
108
|
Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophr Res 2020; 223:59-70. [PMID: 33071070 DOI: 10.1016/j.schres.2020.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Research into the neurobiological processes that may lead to the onset of schizophrenia places growing emphasis on the glutamatergic system and brain development. Preclinical studies have shown that neurodevelopmental, genetic, and environmental factors contribute to glutamatergic dysfunction and schizophrenia-related phenotypes. Clinical research has suggested that altered brain glutamate levels may be present before the onset of psychosis and relate to outcome in those at clinical high risk. After psychosis onset, glutamate dysfunction may also relate to the degree of antipsychotic response and clinical outcome. These findings support ongoing efforts to develop pharmacological interventions that target the glutamate system and could suggest that glutamatergic compounds may be more effective in specific patient subgroups or illness stages. In this review, we consider the updated glutamate hypothesis of schizophrenia, from a neurodevelopmental perspective, by reviewing recent preclinical and clinical evidence, and discuss the potential implications for novel therapeutics.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
109
|
Ketamine as a mental health treatment: Are acute psychoactive effects associated with outcomes? A systematic review. Behav Brain Res 2020; 392:112629. [DOI: 10.1016/j.bbr.2020.112629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/17/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
|
110
|
Wu JL, Haberman RP, Gallagher M, Koh MT. Probing for Conditioned Hallucinations Through Neural Activation in a Ketamine Mouse Model of Schizophrenia. Neurosci Bull 2020; 36:937-941. [PMID: 32367251 PMCID: PMC7410946 DOI: 10.1007/s12264-020-00507-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jenny L Wu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rebecca P Haberman
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
111
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
112
|
Yamazaki M, Honda S, Tamaki K, Irie M, Mihara T. Effects of (+)-bicuculline, a GABAa receptor antagonist, on auditory steady state response in free-moving rats. PLoS One 2020; 15:e0236363. [PMID: 32706815 PMCID: PMC7380603 DOI: 10.1371/journal.pone.0236363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Auditory steady-state responses (ASSRs) are states in which the electrical activity of the brain reacts steadily to repeated auditory stimuli. They are known to be useful for testing the functional integrity of neural circuits in the cortex, as well as for their capacity to generate synchronous activity in both human and animal models. Furthermore, abnormal gamma oscillations on ASSR are typically observed in patients with schizophrenia (SZ). Changes in neural synchrony may reflect aberrations in cortical gamma-aminobutyric acid (GABA) neurotransmission. However, GABA’s impact and effects related to ASSR are still unclear. Here, we examined the effect of a GABAa receptor antagonist, (+)-bicuculline, on ASSR in free-moving rats. (+)-Bicuculline (1, 2 and 4 mg/kg, sc) markedly and dose-dependently reduced ASSR signals, consistent with current hypotheses. In particular, (+)-bicuculline significantly reduced event-related spectral perturbations (ERSPs) at 2 and 4 mg/kg between 10 and 30 minutes post-dose. Further, bicuculline (2 and 4 mg/kg) significantly and dose-dependently increased baseline gamma power. Furthermore, the occurrence of convulsions was consistent with the drug’s pharmacokinetics. For example, high doses of (+)-bicuculline such as those greater than 880 ng/g in the brain induced convulsion. Additionally, time-dependent changes in ERSP with (+)-bicuculline were observed in accordance with drug concentration. This study partially unraveled the contribution of GABAa receptor signals to the generation of ASSR.
Collapse
Affiliation(s)
- Mayako Yamazaki
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
- * E-mail:
| | - Sokichi Honda
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Keisuke Tamaki
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Megumi Irie
- Analysis & Pharmacokinetics Research Labs., Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Takuma Mihara
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
113
|
Zhang Z, Zhang M, Luo Y, Ni X, Lu H, Wen Y, Fan N. Preliminary comparative analysis of kynurenine pathway metabolites in chronic ketamine users, schizophrenic patients, and healthy controls. Hum Psychopharmacol 2020; 35:e2738. [PMID: 32352599 DOI: 10.1002/hup.2738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The serum kynurenine pathway metabolites kynurenic acid (KYNA), kynurenine (KYN), and tryptophan (TRP) were examined in chronic ketamine users and in schizophrenic patients. The correlations of the metabolites with sociodemographic data, clinical characteristics, and drug use status were analyzed. METHODS Seventy-nine healthy controls, 78 ketamine users, and 80 schizophrenic patients were recruited. Serum TRP, KYN, and KYNA levels were measured by high-performance liquid chromatography following tandem mass spectrometry (MS/MS). Psychotic symptoms were evaluated using the positive and negative syndrome scale (PANSS), the Beck Depression Inventory (BDI), and the Beck Anxiety Inventory (BAI). RESULTS Serum levels of TRP, KYNA, and KYN (in ketamine users only) were lower in ketamine users and schizophrenic patients than in controls (p < .05). TRP and KYN were lower in ketamine users than in schizophrenic patients (p < .01). KYNA levels were positively correlated with the current frequency of ketamine use in ketamine users (p = .031), and serum KYNA levels were negatively correlated with the duration of schizophrenia (p = .015). CONCLUSION TRP, KYNA, and KYN were lower in chronic ketamine users than in controls, and the alterations were in the same direction as those observed in schizophrenic patients.
Collapse
Affiliation(s)
- Zhaohua Zhang
- Department of Substance Dependence, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Minling Zhang
- Department of Substance Dependence, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yayan Luo
- Department of Substance Dependence, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiaojia Ni
- Department of Substance Dependence, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Haoyang Lu
- Department of Substance Dependence, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuguan Wen
- Department of Substance Dependence, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ni Fan
- Department of Substance Dependence, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| |
Collapse
|
114
|
Kaushik R, Lipachev N, Matuszko G, Kochneva A, Dvoeglazova A, Becker A, Paveliev M, Dityatev A. Fine structure analysis of perineuronal nets in the ketamine model of schizophrenia. Eur J Neurosci 2020; 53:3988-4004. [PMID: 32510674 DOI: 10.1111/ejn.14853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Perineuronal nets (PNNs) represent a highly condensed specialized form of brain extracellular matrix (ECM) enwrapping mostly parvalbumin-positive interneurons in the brain in a mesh-like fashion. PNNs not only regulate the onset and completion of the critical period during postnatal brain development, control cell excitability, and synaptic transmission but are also implicated in several brain disorders including schizophrenia. Holes in the perineuronal nets, harboring the synaptic contacts, along with hole-surrounding ECM barrier can be viewed as PNN compartmentalization units that might determine the properties of synapses and heterosynaptic communication. In this study, we developed a novel open-source script for Fiji (ImageJ) to semi-automatically quantify structural alterations of PNNs such as the number of PNN units, area, mean intensity of PNN marker expression in 2D and 3D, shape parameters of PNN units in the ketamine-treated Sprague-Dawley rat model of schizophrenia using high-resolution confocal microscopic images. We discovered that the mean intensity of ECM within PNN units is inversely correlated with the area and the perimeter of the PNN holes. The intensity, size, and shape of PNN units proved to be three major principal factors to describe their variability. Ketamine-treated rats had more numerous but smaller and less circular PNN units than control rats. These parameters allowed to correctly classify individual PNNs as derived from control or ketamine-treated groups with ≈85% reliability. Thus, the proposed multidimensional analysis of PNN units provided a robust and comprehensive morphometric fingerprinting of fine ECM structure abnormalities in the experimental model of schizophrenia.
Collapse
Affiliation(s)
- Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Nikita Lipachev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Gabriela Matuszko
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anastasia Kochneva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anastasia Dvoeglazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mikhail Paveliev
- Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
115
|
Baradits M, Bitter I, Czobor P. Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls. Psychiatry Res 2020; 288:112938. [PMID: 32315875 DOI: 10.1016/j.psychres.2020.112938] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022]
Abstract
Quasi-stable electrical fields in the EEG, called microstates carry information on the dynamics of large scale brain networks. Using machine learning techniques, we explored whether abnormalities in microstates can be used to classify patients with schizophrenia and healthy controls. We applied multivariate pattern analysis of microstate features to create a specified feature set to represent microstate characteristics. Machine learning approaches using these features for classification of patients with schizophrenia were compared with prior EEG based machine learning studies. Our microstate segmentation in both patients with schizophrenia and healthy controls yielded topographies that were similar to the normative database established earlier by Koenig et al. Our machine learning model was based on large sample size, low number of features and state-of-art K-fold cross-validation technique. The multivariate analysis revealed three patterns of correlated features, which yielded an AUC of 0.84 for the group separation (accuracy: 82.7%, sensitivity/specificity: 83.5%/85.3%). Microstate segmentation of resting state EEG results in informative features to discriminate patients with schizophrenia from healthy individuals. Moreover, alteration in microstate measures may represent disturbed activity of networks in patients with schizophrenia.
Collapse
Affiliation(s)
- Máté Baradits
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| | - István Bitter
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Pál Czobor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
116
|
Examining fMRI time-series entropy as a marker for brain E/I balance with pharmacological neuromodulation in a non-human primate translational model. Neurosci Lett 2020; 728:134984. [PMID: 32315710 DOI: 10.1016/j.neulet.2020.134984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 11/23/2022]
Abstract
Recently, there has been a lot of interest in the neuroimaging community in exploring fMRI time-series measures of local neuronal activity and excitation/inhibition (E/I) balance in the brain. In this preliminary study we probed the sensitivity of widely used sample entropy (SE) measure at multiple scales to controlled alteration of the brain's E/I balance in non-human primates (NHPs) with a well-characterized sub-anesthetic ketamine infusion fMRI model. We found that SE failed to detect the expected changes in E/I balance induced by ketamine. Subsequently, noticing that the complexity in the time series contributing SE could be dominated by non-neuronal noise in this experimental setting, we developed a new time-series measure called restricted sample entropy (RSE) by restricting SE estimations to regular portions of the fMRI time-series. RSE was able to adequately reflect the increased excitatory activity engendered by disinhibition of glutamergic neurons, through sub-anesthetic ketamine infusion. These results show that RSE is potentially a powerful tool for examining local neural activity, E/I balance, and alterations in brain state.
Collapse
|
117
|
Occhieppo VB, Basmadjian OM, Marchese NA, Silvero C MJ, Rodríguez A, Armonelli S, Becerra MC, Baiardi G, Bregonzio C. AT 1 -R is involved in the development of long-lasting, region-dependent and oxidative stress-independent astrocyte morphological alterations induced by Ketamine. Eur J Neurosci 2020; 54:5705-5716. [PMID: 32320503 DOI: 10.1111/ejn.14756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2023]
Abstract
Astrocytes play an essential role in the genesis, maturation and regulation of the neurovascular unit. Multiple evidence support that astrocyte reactivity has a close relationship to neurovascular unit dysfunction, oxidative stress and inflammation, providing a suitable scenario for the development of mental disorders. Ketamine has been proposed as a single-use antidepressant treatment in major depression, and its antidepressant effects have been associated with anti-inflammatory properties. However, Ketamine long-lasting effects over the neurovascular unit components remain unclear. Angiotensin II AT1 receptor (AT1 -R) blockers have anti-inflammatory, antioxidant and neuroprotective effects. The present work aims to distinguish the acute and long-term Ketamine effects over astrocytes response extended to other neurovascular unit components, and the involvement of AT1 -R, in prefrontal cortex and ventral tegmental area. Male Wistar rats were administered with AT1 -R antagonist Candesartan/Vehicle (days 1-10) and Ketamine/Saline (days 6-10). After 14 days drug-free, at basal conditions or after Ketamine Challenge, the brains were processed for oxidative stress analysis, cresyl violet staining and immunohistochemistry for glial, neuronal activation and vascular markers. Repeated Ketamine administration induced long-lasting region-dependent astrocyte reactivity and morphological alterations, and neuroadaptative changes observed as exacerbated oxidative stress and neuronal activation, prevented by the AT1 -R blockade. Ketamine Challenge decreased microglial and astrocyte reactivity and augmented cellular apoptosis, independently of previous treatment. Overall, AT1 -R is involved in the development of neuroadaptative changes induced by repeated Ketamine administration but does not interfere with the acute effects supporting the potential use of AT1 -R blockers as a Ketamine complementary therapy in mental disorders.
Collapse
Affiliation(s)
- Victoria B Occhieppo
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Osvaldo M Basmadjian
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia A Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Jazmin Silvero C
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Anahí Rodríguez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Samanta Armonelli
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET) Universidad Nacional de Córdoba Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
118
|
Manduca JD, Thériault RK, Williams OOF, Rasmussen DJ, Perreault ML. Transient Dose-dependent Effects of Ketamine on Neural Oscillatory Activity in Wistar-Kyoto Rats. Neuroscience 2020; 441:161-175. [PMID: 32417341 DOI: 10.1016/j.neuroscience.2020.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Ketamine is a promising therapeutic for treatment-resistant depression (TRD) but is associated with an array of short-term psychomimetic side-effects. These disparate drug effects may be elicited through the modulation of neural circuit activity. The purpose of this study was to therefore delineate dose- and time-dependent changes in ketamine-induced neural oscillatory patterns in regions of the brain implicated in depression. Wistar-Kyoto rats were used as a model system to study these aspects of TRD neuropathology whereas Wistar rats were used as a control strain. Animals received a low (10 mg/kg) or high (30 mg/kg) dose of ketamine and temporal changes in neural oscillatory activity recorded from the prefrontal cortex (PFC), cingulate cortex (Cg), and nucleus accumbens (NAc) for ninety minutes. Effects of each dose of ketamine on immobility in the forced swim test were also evaluated. High dose ketamine induced a transient increase in theta power in the PFC and Cg, as well as a dose-dependent increase in gamma power in these regions 10-min, but not 90-min, post-administration. In contrast, only low dose ketamine normalized innate deficits in fast gamma coherence between the NAc-Cg and PFC-Cg, an effect that persisted at 90-min post-injection. These low dose ketamine-induced oscillatory alterations were accompanied by a reduction in immobility time in the forced swim test. These results show that ketamine induces time-dependent effects on neural oscillations at specific frequencies. These drug-induced changes may differentially contribute to the psychomimetic and therapeutic effects of the drug.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada
| | - Rachel-Karson Thériault
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada; Collaborative Neuroscience Program, University of Guelph (ON), Canada
| | - Olivia O F Williams
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada
| | - Duncan J Rasmussen
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada; Collaborative Neuroscience Program, University of Guelph (ON), Canada.
| |
Collapse
|
119
|
McGinnis MM, Parrish BC, McCool BA. Withdrawal from chronic ethanol exposure increases postsynaptic glutamate function of insular cortex projections to the rat basolateral amygdala. Neuropharmacology 2020; 172:108129. [PMID: 32418906 DOI: 10.1016/j.neuropharm.2020.108129] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 05/03/2020] [Indexed: 12/28/2022]
Abstract
A key feature of alcohol use disorder (AUD) is negative affect during withdrawal, which often contributes to relapse and is thought to be caused by altered brain function, especially in circuits that are important mediators of emotional behaviors. Both the agranular insular cortex (AIC) and the basolateral amygdala (BLA) regulate emotions and are sensitive to ethanol-induced changes in synaptic plasticity. The AIC and BLA are reciprocally connected; and the effects of chronic ethanol exposure on this circuit have yet to be explored. Here, we use a combination of optogenetics and electrophysiology to examine the pre- and postsynaptic changes that occur to AIC-BLA synapses following withdrawal from 7- or 10-days of chronic intermittent ethanol (CIE) exposure. While CIE/withdrawal did not alter presynaptic glutamate release probability from AIC inputs, withdrawal from 10, but not 7, days of CIE increased AMPA receptor-mediated postsynaptic function at these synapses. Additionally, NMDA receptor-mediated currents evoked by electrical stimulation of the external capsule, which contains AIC afferents, were also increased during withdrawal. Notably, a single subanesthetic dose of ketamine administered at the onset of withdrawal prevented the withdrawal-induced increases in both AMPAR and NMDAR postsynaptic function. Ketamine also prevented the withdrawal-induced increases in anxiety-like behavior measured using the elevated zero maze. Together, these findings suggest that chronic ethanol exposure increases postsynaptic function within the AIC-BLA circuit and that ketamine can prevent ethanol withdrawal-induced alterations in synaptic plasticity and negative affect.
Collapse
Affiliation(s)
- Molly M McGinnis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Brian C Parrish
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
120
|
Matrov D, Imbeault S, Kanarik M, Shkolnaya M, Schikorra P, Miljan E, Shimmo R, Harro J. Comprehensive mapping of cytochrome c oxidase activity in the rat brain after sub-chronic ketamine administration. Acta Histochem 2020; 122:151531. [PMID: 32131979 DOI: 10.1016/j.acthis.2020.151531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Ketamine is a noncompetitive antagonist of glutamatergic N-methyl-d-aspartate receptors. Its acute effects on healthy volunteers and schizophrenia patients mimic some acute psychotic, but also cognitive and negative symptoms of schizophrenia, and subchronic treatment with ketamine has been used as an animal model of psychotic disorders. Glutamatergic neurotransmission is tightly coupled to oxidative metabolism in the brain. Quantitative histochemical mapping of cytochrome c oxidase (COX) activity, which reflect long-term energy metabolism, was carried out in rats that received a daily subanaesthetic dose (30 mg/kg) of ketamine for 10 days. In total, COX activity was measured in 190 brain regions to map out metabolic adaptations to the subchronic administration of ketamine. Ketamine treatment was associated with elevated COX activity in nine brain sub-regions in sensory thalamus, basal ganglia, cortical areas, hippocampus and superior colliculi. Changes in pairwise correlations between brain regions were studied with differential correlation analysis. Ketamine treatment was associated with the reduction of positive association between brain regions in 66 % of the significant comparisons. Different layers of the superior colliculi showed the strongest effects. Changes in other visual and auditory brain centres were also of note. The locus coeruleus showed opposite pattern of increased coupling to mainly limbic brain regions in ketamine-treated rats. Our study replicated commonly observed activating effects of ketamine in the hippocampus, cingulate cortex, and basal ganglia. The current study is the first to extensively map the oxidative metabolism in the CNS in the ketamine model of schizophrenia. It shows that ketamine treatment leads to the re-organization of activity in sensory and memory-related brain circuits.
Collapse
Affiliation(s)
- Denis Matrov
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Sophie Imbeault
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Marianna Shkolnaya
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Patricia Schikorra
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Ergo Miljan
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Ruth Shimmo
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jaanus Harro
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
121
|
Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol Ther 2020; 210:107520. [PMID: 32165136 DOI: 10.1016/j.pharmthera.2020.107520] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
While neurotransmitter dysfunction represents a key component in mental illnesses, there is now a wide agreement for a central pathophysiological hub that includes hormones, neuroinflammation, redox mechanisms as well as oxidative stress. With respect to oxidation-reduction (redox) mechanisms, preclinical and clinical evidence suggests that an imbalance in the pro/anti-oxidative homeostasis toward the increased production of substances with oxidizing potential may contribute to the etiology and manifestation of different psychiatric disorders. The substantial and continous demand for energy renders the brain highly susceptible to disturbances in its energy supply, especially following exposure to stressful events, which may lead to overproduction of reactive oxygen and nitrogen species under conditions of perturbed antioxidant defenses. This will eventually induce different molecular alterations, including extensive protein and lipid peroxidation, increased blood-brain barrier permeability and neuroinflammation, which may contribute to the changes in brain function and morphology observed in mental illnesses. This view may also reconcile different key concepts for psychiatric disorders, such as the neurodevelopmental origin of these diseases, as well as the vulnerability of selective cellular populations that are critical for specific functional abnormalities. The possibility to pharmacologically modulate the redox system is receiving increasing interest as a novel therapeutic strategy to counteract the detrimental effects of the unbalance in brain oxidative mechanisms. This review will describe the main mechanisms and mediators of the redox system and will examine the alterations of oxidative stress found in animal models of psychiatric disorders as well as in patients suffering from mental illnesses, such as schizophrenia and major depressive disorder. In addition, it will discuss studies that examined the effects of psychotropic drugs, including antipsychotics and antidepressants, on the oxidative balance as well as studies that investigated the effectiveness of a direct modulation of oxidative mechanisms in counteracting the behavioral and functional alterations associated with psychiatric disorders, which supports the promising role of the redox system as a novel therapeutic target for the improved treatment of brain disorders.
Collapse
|
122
|
George MY, Menze ET, Esmat A, Tadros MG, El-Demerdash E. Potential therapeutic antipsychotic effects of Naringin against ketamine-induced deficits in rats: Involvement of Akt/GSK-3β and Wnt/β-catenin signaling pathways. Life Sci 2020; 249:117535. [PMID: 32151688 DOI: 10.1016/j.lfs.2020.117535] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
AIM Schizophrenia is a chronic, disabling and one of the major neurological illnesses affecting nearly 1% of the global population. Currently available antipsychotic medications possess limited effects. The current research aimed at investigating potential therapeutic add-on benefit to enhance the effects of clozapine anti-schizophrenic. MAIN METHODS To induce schizophrenia, ketamine was administered at a dose of 25 mg/kg i.p. for 14 consecutive days. Naringin was administered to Wistar rats at a dose of 100 mg/kg orally, alone or in combination with clozapine 5 mg/kg i.p from day 8 to day 14. Furthermore, behavioral tests were conducted to evaluate positive, negative and cognitive symptoms of schizophrenia. In addition, neurotransmitters' levels were detected using HPLC. Moreover, oxidative stress markers were assessed using spectrophotometry. Furthermore, apoptotic and wnt/β-catenin pathway markers were determined using western blotting (Akt, GSK-3β and β-catenin), colorimetric methods (Caspase-3) and immunohistochemistry (Bax, Bcl2 and cytochrome c). KEY FINDINGS Ketamine induced positive, negative and cognitive schizophrenia symptoms together with neurotransmitters' imbalance. In addition, ketamine treatment caused significant glutathione depletion, lipid peroxidation and reduction in catalase activity. Naringin and/or clozapine treatment significantly attenuated ketamine-induced schizophrenic symptoms and oxidative injury. Additionally, ketamine provoked apoptosis via increasing Bax/Bcl2 expression, caspase-3 activity, and Cytochrome C and Akt protein expression while naringin/clozapine treatment significantly inhibited this apoptotic effect. Moreover, naringin activated the neurodevelopmental wnt/β-catenin signaling pathway evidenced by increasing pGSK-3β and reducing pβ-catenin protein expression. SIGNIFICANCE These findings may suggest that naringin possesses a potential therapeutic add-on effect against ketamine-induced schizophrenia.
Collapse
Affiliation(s)
- Mina Y George
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - E El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
123
|
Sultana R, Lee CC. Expression of Behavioral Phenotypes in Genetic and Environmental Mouse Models of Schizophrenia. Front Behav Neurosci 2020; 14:29. [PMID: 32184711 PMCID: PMC7058961 DOI: 10.3389/fnbeh.2020.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/07/2020] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by multifactorial etiology involving complex interactions among genetic and environmental factors. "Multiple-hit" models of the disorder can explain its variable incidence and prevalence in related individuals. Hence, there is a dire need to understand these interactions in the emergence of schizophrenia. To test these factors in the emergence of schizophrenia-like behaviors, we employed a genetic mouse model of the disorder (harboring the DISC1 mutation) along with various environmental insults, such as early life stress (maternal separation of pups) and/or pharmacological interventions (ketamine injections). When assessed on a battery of behavioral tests, we found that environmental interventions affect the severity of behavioral phenotypes in terms of increased negative behavior, as shown by reduced mobility in the forced swim and tail suspension tests, and changes to positive and cognitive symptoms, such as increased locomotion and disrupted PPI along with reduced working memory, respectively. Among the various interventions, the genetic mutation had the most profound effect on behavioral aberrations, followed by an environmental intervention by ketamine injections and ketamine-injected animals that were maternally separated during early postnatal days. We conclude that although environmental factors increased the prevalence of aberrant behavioral phenotypes, genetic background is still the predominant influence on phenotypic alterations in these mouse models of schizophrenia.
Collapse
Affiliation(s)
- Razia Sultana
- Neural Systems Laboratory, Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
124
|
Xie R, Hong S, Ye Y, Wang X, Chen F, Yang L, Yan Y, Liao L. Ketamine Affects the Expression of ErbB4 in the Hippocampus and Prefrontal Cortex of Rats. J Mol Neurosci 2020; 70:962-967. [PMID: 32096126 DOI: 10.1007/s12031-020-01502-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a severe chronic neuropsychiatric disorder, and its exact pathogenesis remains unclear. This study investigated the effect of ketamine on the expression of ErbB4 (considered a schizophrenia candidate gene) in the hippocampus and prefrontal cortex of rats. Rats were randomly divided into four groups: control, low-dose, medium-dose and high-dose groups. The low-dose, medium-dose and high-dose groups were intraperitoneally injected with 15 mg/kg, 30 mg/kg and 60 mg/kg ketamine, respectively, twice a day (9:00 a.m. and 9:00 p.m.); the control group was administered normal saline. The treatment lasted 7 days. After treatment, rats were euthanized, and their brain tissues were collected and then analyzed by immunohistochemistry. The results of immunohistochemistry staining demonstrated that the ErbB4 protein was expressed exclusively in the CA3 region of the hippocampus and the Cg1 region of the prefrontal cortex. Ketamine administration significantly decreased the expression of ErbB4 in a dose-dependent manner. The high-dose ketamine treatment was found to be optimal for establishing a rat model for schizophrenia. Ketamine induced symptoms similar to schizophrenia in humans. The ketamine-induced rat model for schizophrenia constructed in this study provides novel insights to better understand the pathogenic mechanisms of schizophrenia and aid in drug discovery.
Collapse
Affiliation(s)
- Runfang Xie
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, People's Republic of China
| | - Shijun Hong
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, People's Republic of China
| | - Yi Ye
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xueyan Wang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Chen
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lin Yang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Youyi Yan
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Linchuan Liao
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
125
|
Multiple rare inherited variants in a four generation schizophrenia family offer leads for complex mode of disease inheritance. Schizophr Res 2020; 216:288-294. [PMID: 31813803 PMCID: PMC8958857 DOI: 10.1016/j.schres.2019.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 02/01/2023]
Abstract
Schizophrenia is a clinically and genetically heterogeneous neuropsychiatric disorder, with a polygenic basis but identification of the specific determinants is a continuing challenge. In this study, we analyzed a multigenerational family, with all healthy individuals in the first two generations, and four progeny affected with schizophrenia in the subsequent two generations, using whole exome sequencing. We identified five rare protein sequence altering heterozygous variants, in five different genes namely SMARCA5, PDE1B, TNIK, SMARCA2 and FLRT shared among all affected members and predicted to be damaging. Variants in SMARCA5 and PDE1B were inherited from the unaffected father whereas variants in TNIK, SMARCA2 and FLRT1 were inherited from the unaffected mother in all the three affected individuals in the third generation; and notably all these five variants were transmitted by an affected mother to her affected son. Microsatellite based analysis lent a modest linkage support (LOD score of 1.2; θ=0.0 at each variant). Of note, analysis of exome data of an ancestry matched unrelated schizophrenia cohort (n = 350), revealed a total of 16 rare variants (MAF < 0.01) in these five genes. Interestingly, these five genes involved in neurodevelopmental and/or neurotransmitter signaling processes are implicated in the etiology of schizophrenia previously. This study provides good evidence for a likely cumulative contribution of multiple rare variants from disease relevant genes with a threshold effect in disease development and seems to explain the unusual disease transmission pattern generally witnessed in such conditions, but warrants extensive replication efforts in families with similar complex disease inheritance profiles.
Collapse
|
126
|
Yurgelun-Todd DA, Renshaw PF, Goldsmith P, Uz T, Macek TA. A randomized, placebo-controlled, phase 1 study to evaluate the effects of TAK-063 on ketamine-induced changes in fMRI BOLD signal in healthy subjects. Psychopharmacology (Berl) 2020; 237:317-328. [PMID: 31773211 PMCID: PMC7018803 DOI: 10.1007/s00213-019-05366-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022]
Abstract
RATIONALE Phosphodiesterase 10A inhibitor TAK-063 has shown effects that suggest efficacy in schizophrenia treatment. OBJECTIVE This randomized, double-blind, placebo-controlled, incomplete-crossover study investigated effects of single oral administration of TAK-063 on ketamine-induced changes in blood oxygen level-dependent (BOLD) signal in healthy males. METHODS Healthy men aged 18 to 45 years with normal magnetic resonance imaging (MRI) scans and electroencephalogram measurements at screening were eligible. Each subject was randomized to one of nine treatment schedules: all subjects received placebo and two of three doses of TAK-063 followed by ketamine. The primary endpoint was ketamine-induced brain activity in select regions of the brain during resting state. Secondary endpoints included pharmacokinetic parameters of TAK-063, proportion of subjects with treatment-emergent adverse events (AEs), and percentage of subjects meeting criteria for abnormal safety laboratory tests and vital sign measurements. RESULTS The study comprised 27 subjects. Prior to ketamine infusion, TAK-063 exerted region-specific effects on resting state functional MRI (fMRI) BOLD signal. After ketamine administration, TAK-063 reduced the Cohen's effect size for resting-state fMRI BOLD signal in key brain regions examined, and exerted similar effects on BOLD signal during the working memory task across all doses. TAK-063 was safe and well tolerated. CONCLUSIONS Our results are consistent with non-clinical studies of ketamine and TAK-063 and clinical studies of ketamine and risperidone. It is unknown whether these data are predictive of potential antipsychotic efficacy, and further analyses are required.
Collapse
Affiliation(s)
| | - Perry F Renshaw
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT, 84108, USA
| | - Paul Goldsmith
- Takeda Development Center Europe, Ltd., 61 Aldwych, London, WC2B 4AE, UK
| | - Tolga Uz
- Takeda Development Center Americas, Inc., One Takeda Parkway, Deerfield, IL, 60015, USA
| | - Thomas A Macek
- Takeda Development Center Americas, Inc., One Takeda Parkway, Deerfield, IL, 60015, USA
| |
Collapse
|
127
|
Kaminski J, Gleich T, Fukuda Y, Katthagen T, Gallinat J, Heinz A, Schlagenhauf F. Association of Cortical Glutamate and Working Memory Activation in Patients With Schizophrenia: A Multimodal Proton Magnetic Resonance Spectroscopy and Functional Magnetic Resonance Imaging Study. Biol Psychiatry 2020; 87:225-233. [PMID: 31521336 DOI: 10.1016/j.biopsych.2019.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cognitive deficits such as working memory (WM) impairment are core features of schizophrenia. One candidate marker for the integrity of synaptic neurotransmission necessary for cognitive processes is glutamate. It is frequently postulated that antipsychotic medication possibly alters functional mechanisms in the living brain. We tested in vivo for group differences in activation of the dorsolateral prefrontal cortex (DLPFC) during WM performance and the association with glutamate concentration in DLPFC depending on medication status. METHODS A total of 90 subjects (35 control subjects, 36 medicated patients, and 19 unmedicated patients) contributed magnetic resonance spectroscopy data. We estimated glutamate in left DLPFC. Subjects performed an n-back WM task (2-back vs. 0-back) during functional magnetic resonance imaging, and local activation in left DLPFC was measured. For analysis of association with medication status, we calculated linear regression models including an interaction effect with group. RESULTS Medicated and unmedicated patients with schizophrenia showed impaired performance. We found significantly reduced WM activation in left DLPFC in medicated patients and a trendwise reduction in unmedicated patients as compared with control subjects. We found no group difference in local glutamate concentration. However, we found differential effects of medication status on the association between local glutamate concentration and WM activation in left DLPFC, with a positive association in unmedicated patients but not in medicated patients. CONCLUSIONS We provide evidence that WM-dependent activation is associated with glutamate concentration in unmedicated patients with schizophrenia. Our finding points to putative allostatic changes that affect the functioning of the brain and might be altered through medication.
Collapse
Affiliation(s)
- Jakob Kaminski
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| | - Tobias Gleich
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yu Fukuda
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Teresa Katthagen
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Gallinat
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
128
|
Fan N, An L, Zhang M, He H, Zhou Y, Ou Y. GRIN2B Gene Polymorphism in Chronic Ketamine Users. Am J Addict 2020; 29:105-110. [PMID: 31957106 DOI: 10.1111/ajad.12984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/07/2019] [Accepted: 12/15/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Ni Fan
- Guangzhou Huiai HospitalThe Affiliated Brain Hospital of Guangzhou Medical University 36 Mingxin Road, Liwan District Guangzhou Guangdong 510370 China
| | - Lina An
- Guangzhou Huiai HospitalThe Affiliated Brain Hospital of Guangzhou Medical University 36 Mingxin Road, Liwan District Guangzhou Guangdong 510370 China
| | - Minling Zhang
- Guangzhou Huiai HospitalThe Affiliated Brain Hospital of Guangzhou Medical University 36 Mingxin Road, Liwan District Guangzhou Guangdong 510370 China
| | - Hongbo He
- Guangzhou Huiai HospitalThe Affiliated Brain Hospital of Guangzhou Medical University 36 Mingxin Road, Liwan District Guangzhou Guangdong 510370 China
| | - Yanling Zhou
- Guangzhou Huiai HospitalThe Affiliated Brain Hospital of Guangzhou Medical University 36 Mingxin Road, Liwan District Guangzhou Guangdong 510370 China
| | - Yufen Ou
- Guangzhou Huiai HospitalThe Affiliated Brain Hospital of Guangzhou Medical University 36 Mingxin Road, Liwan District Guangzhou Guangdong 510370 China
| |
Collapse
|
129
|
Bera K, Kamajaya A, Shivange AV, Muthusamy AK, Nichols AL, Borden PM, Grant S, Jeon J, Lin E, Bishara I, Chin TM, Cohen BN, Kim CH, Unger EK, Tian L, Marvin JS, Looger LL, Lester HA. Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum. Front Cell Neurosci 2019; 13:499. [PMID: 31798415 PMCID: PMC6874132 DOI: 10.3389/fncel.2019.00499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The target for the “rapid” (<24 h) antidepressant effects of S-ketamine is unknown, vitiating programs to rationally develop more effective rapid antidepressants. To describe a drug’s target, one must first understand the compartments entered by the drug, at all levels—the organ, the cell, and the organelle. We have, therefore, developed molecular tools to measure the subcellular, organellar pharmacokinetics of S-ketamine. The tools are genetically encoded intensity-based S-ketamine-sensing fluorescent reporters, iSKetSnFR1 and iSKetSnFR2. In solution, these biosensors respond to S-ketamine with a sensitivity, S-slope = delta(F/F0)/(delta[S-ketamine]) of 0.23 and 1.9/μM, respectively. The iSKetSnFR2 construct allows measurements at <0.3 μM S-ketamine. The iSKetSnFR1 and iSKetSnFR2 biosensors display >100-fold selectivity over other ligands tested, including R-ketamine. We targeted each of the sensors to either the plasma membrane (PM) or the endoplasmic reticulum (ER). Measurements on these biosensors expressed in Neuro2a cells and in human dopaminergic neurons differentiated from induced pluripotent stem cells (iPSCs) show that S-ketamine enters the ER within a few seconds after appearing in the external solution near the PM, then leaves as rapidly after S-ketamine is removed from the extracellular solution. In cells, S-slopes for the ER and PM-targeted sensors differ by <2-fold, indicating that the ER [S-ketamine] is less than 2-fold different from the extracellular [S-ketamine]. Organelles represent potential compartments for the engagement of S-ketamine with its antidepressant target, and potential S-ketamine targets include organellar ion channels, receptors, and transporters.
Collapse
Affiliation(s)
- Kallol Bera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aron Kamajaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Anand K Muthusamy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Stephen Grant
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Janice Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Elaine Lin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ishak Bishara
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Theodore M Chin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Elizabeth K Unger
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
130
|
Schiavone S, Tucci P, Trabace L, Morgese MG. Early Celastrol Administration Prevents Ketamine-Induced Psychotic-Like Behavioral Dysfunctions, Oxidative Stress and IL-10 Reduction in The Cerebellum of Adult Mice. Molecules 2019; 24:molecules24213993. [PMID: 31694174 PMCID: PMC6864687 DOI: 10.3390/molecules24213993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Administration of subanesthetic doses of ketamine during brain maturation represents a tool to mimic an early insult to the central nervous system (CNS). The cerebellum is a key player in psychosis pathogenesis, to which oxidative stress also contributes. Here, we investigated the impact of early celastrol administration on behavioral dysfunctions in adult mice that had received ketamine (30 mg/kg i.p.) at postnatal days (PNDs) 7, 9, and 11. Cerebellar levels of 8-hydroxydeoxyguanosine (8-OHdG), NADPH oxidase (NOX) 1 and NOX2, as well as of the calcium-binding protein parvalbumin (PV), were also assessed. Furthermore, celastrol effects on ketamine-induced alterations of proinflammatory (TNF-α, IL-6 and IL-1β) and anti-inflammatory (IL-10) cytokines in this brain region were evaluated. Early celastrol administration prevented ketamine-induced discrimination index decrease at adulthood. The same was found for locomotor activity elevations and increased close following and allogrooming, whereas no beneficial effects on sniffing impairment were detected. Ketamine increased 8-OHdG in the cerebellum of adult mice, which was also prevented by early celastrol injection. Cerebellar NOX1 levels were enhanced at adulthood following postnatal ketamine exposure. Celastrol per se induced NOX1 decrease in the cerebellum. This effect was more significant in animals that were early administered with ketamine. NOX2 levels did not change. Ketamine administration did not affect PV amount in the cerebellum. TNF-α levels were enhanced in ketamine-treated animals; however, this was not prevented by early celastrol administration. While no changes were observed for IL-6 and IL-1β levels, ketamine determined a reduction of cerebellar IL-10 expression, which was prevented by early celastrol treatment. Our results suggest that NOX inhibition during brain maturation prevents the development of psychotic-like behavioral dysfunctions, as well as the increased cerebellar oxidative stress and the reduction of IL-10 in the same brain region following ketamine exposure in postnatal life. This opens novel neuroprotective opportunities against early detrimental insults occurring during brain development.
Collapse
|
131
|
Palaniyappan L. Inefficient neural system stabilization: a theory of spontaneous resolutions and recurrent relapses in psychosis. J Psychiatry Neurosci 2019; 44:367-383. [PMID: 31245961 PMCID: PMC6821513 DOI: 10.1503/jpn.180038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
A striking feature of psychosis is its heterogeneity. Presentations of psychosis vary from transient symptoms with no functional consequence in the general population to a tenacious illness at the other extreme, with a wide range of variable trajectories in between. Even among patients with schizophrenia, who are diagnosed on the basis of persistent deterioration, marked variation is seen in response to treatment, frequency of relapses and degree of eventual recovery. Existing theoretical accounts of psychosis focus almost exclusively on how symptoms are initially formed, with much less emphasis on explaining their variable course. In this review, I present an account that links several existing notions of the biology of psychosis with the variant clinical trajectories. My aim is to incorporate perspectives of systems neuroscience in a staging framework to explain the individual variations in illness course that follow the onset of psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- From the Department of Psychiatry and Robarts Research Institute, University of Western Ontario and Lawson Health Research Institute, London, Ont., Canada
| |
Collapse
|
132
|
Abd-Elrazek A, Elnawawy T. The Effect of Minor Doses of Olanzapine-Solid Lipid Nanoparticles on an Animal Model of Schizophrenia (Neurochemical and Behavioral Study) and the Side Effect. DRUG DELIVERY LETTERS 2019; 9:308-320. [DOI: 10.2174/2210303109666190619103230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/03/2019] [Accepted: 05/08/2019] [Indexed: 09/02/2023]
Abstract
Background and Objective:Olanzapine (OLZ) is an atypical psychotic agent; the poor bioavailability of olanzapine is the most important issue in its treatment. The present work was carried out to evaluate the oral form of olanzapine solid lipid nanoparticles (OLZ-SLN) to overcome its poor bioavailability and compare between the effect of different doses of OLZ and OLZ-SLN on ketamineinduced schizophrenic-like symptoms. The study was extended to evaluate the adverse effects of subchronic administration of these doses of OLZ and its SLN.Methods:OLZ-SLN was prepared by hot homogenization, particle size, zeta potential and in vitro release and entrapping efficiency studies were performed. In order to assess the effective dose in the treatment of schizophrenia, the effect of different doses of OLZ and OLZ-SLN on open field was assessed and passive avoidance tests were carried out. The test was performed to examine the effects of excitatory and inhibitory amino acids, as well as dopamine and serotonin levels in the brain regions.Results and Conclusion:The new oral formula showed high stability and sustained release. The administration of low and high dose of OLZ-SLN equivalent to (1/10 and 1/20 from the therapeutic dose before ketamine attenuated the behavioral abnormalities by blocking the effect of ketamine-induced increase in glutamate, dopamine and serotonin levels and enhanced apoptosis were studied in the brain areas. In addition, the sub-chronic treatment with OLZ-SLN showed no adverse effect while the treatment with OLZ free form did.
Collapse
Affiliation(s)
- Areeg Abd-Elrazek
- Department of Physiology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Tayseer Elnawawy
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
133
|
Ranson A, Broom E, Powell A, Chen F, Major G, Hall J. Top-Down Suppression of Sensory Cortex in an NMDAR Hypofunction Model of Psychosis. Schizophr Bull 2019; 45:1349-1357. [PMID: 30945745 PMCID: PMC6811829 DOI: 10.1093/schbul/sby190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conceptual and computational models have been advanced that propose that perceptual disturbances in psychosis, such as hallucinations, may arise due to a disruption in the balance between bottom-up (ie sensory) and top-down (ie from higher brain areas) information streams in sensory cortex. However, the neural activity underlying this hypothesized alteration remains largely unexplored. Pharmacological N-methyl-d-aspartate receptor (NMDAR) antagonism presents an attractive model to examine potential changes as it acutely recapitulates many of the symptoms of schizophrenia including hallucinations, and NMDAR hypofunction is strongly implicated in the pathogenesis of schizophrenia as evidenced by large-scale genetic studies. Here we use in vivo 2-photon imaging to measure frontal top-down signals from the anterior cingulate cortex (ACC) and their influence on activity of the primary visual cortex (V1) in mice during pharmacologically induced NMDAR hypofunction. We find that global NMDAR hypofunction causes a significant increase in activation of top-down ACC axons, and that surprisingly this is associated with an ACC-dependent net suppression of spontaneous activity in V1 as well as a reduction in V1 sensory-evoked activity. These findings are consistent with a model in which perceptual disturbances in psychosis are caused in part by aberrant top-down frontal cortex activity that suppresses the transmission of sensory signals through early sensory areas.
Collapse
Affiliation(s)
- Adam Ranson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eluned Broom
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Anna Powell
- School of Psychology, Cardiff University, Cardiff, UK
| | - Fangli Chen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Guy Major
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
134
|
Adhikari BM, Dukart J, Hipp JF, Forsyth A, McMillan R, Muthukumaraswamy SD, Ryan MC, Hong LE, Eickhoff SB, Jahandshad N, Thompson PM, Rowland LM, Kochunov P. Effects of ketamine and midazolam on resting state connectivity and comparison with ENIGMA connectivity deficit patterns in schizophrenia. Hum Brain Mapp 2019; 41:767-778. [PMID: 31633254 PMCID: PMC7267897 DOI: 10.1002/hbm.24838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Subanesthetic administration of ketamine is a pharmacological model to elicit positive and negative symptoms of psychosis in healthy volunteers. We used resting‐state pharmacological functional MRI (rsPhfMRI) to identify cerebral networks affected by ketamine and compared them to the functional connectivity (FC) in schizophrenia. Ketamine can produce sedation and we contrasted its effects with the effects of the anxiolytic drug midazolam. Thirty healthy male volunteers (age = 19–37 years) underwent a randomized, three‐way, cross‐over study consisting of three imaging sessions, with 48 hr between sessions. A session consisted of a control period followed by infusion of placebo or ketamine or midazolam. The ENIGMA rsfMRI pipeline was used to derive two long‐distance (seed‐based and dual‐regression) and one local (regional homogeneity, ReHo) FC measures. Ketamine induced significant reductions in the connectivity of the salience network (Cohen's d: 1.13 ± 0.28, p = 4.0 × 10−3), auditory network (d: 0.67 ± 0.26, p = .04) and default mode network (DMN, d: 0.63 ± 0.26, p = .05). Midazolam significantly reduced connectivity in the DMN (d: 0.77 ± 0.27, p = .03). The effect sizes for ketamine for resting networks showed a positive correlation (r = .59, p = .07) with the effect sizes for schizophrenia‐related deficits derived from ENIGMA's study of 261 patients and 327 controls. Effect sizes for midazolam were not correlated with the schizophrenia pattern (r = −.17, p = .65). The subtraction of ketamine and midazolam patterns showed a significant positive correlation with the pattern of schizophrenia deficits (r = .68, p = .03). RsPhfMRI reliably detected the shared and divergent pharmacological actions of ketamine and midazolam on cerebral networks. The pattern of disconnectivity produced by ketamine was positively correlated with the pattern of connectivity deficits observed in schizophrenia, suggesting a brain functional basis for previously poorly understood effects of the drug.
Collapse
Affiliation(s)
- Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juergen Dukart
- F. Hoffmann-La Roche, Pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joerg F Hipp
- F. Hoffmann-La Roche, Pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Neda Jahandshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
135
|
Applying vinpocetine to reverse synaptic ultrastructure by regulating BDNF-related PSD-95 in alleviating schizophrenia-like deficits in rat. Compr Psychiatry 2019; 94:152122. [PMID: 31473552 DOI: 10.1016/j.comppsych.2019.152122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schizophrenia is a mental disorder characterized by hyperlocomotion, cognitive symptoms, and social withdrawal. Brain-derived neurotrophic factor (BDNF) and postsynaptic density (PSD)-95 are related to schizophrenia-like deficits via regulating the synaptic ultrastructure, and play a role in drug therapy. Vinpocetine is a nootropic phosphodiesterase-1 (PDE-1) inhibitor that can reverse ketamine-induced schizophrenia-like deficits by increasing BDNF expression. However, the effects of vinpocetine on alleviating schizophrenia-like deficits via reversing the synaptic ultrastructure by regulating BDNF-related PSD-95 have not been sufficiently studied. METHODS In this study, the schizophrenic model was built using ketamine (30 mg/kg) for 14 consecutive days. The effect of vinpocetine on reversing schizophrenia-like behaviors was examined via behavioral testing followed by treatment with certain doses of vinpocetine (20 mg/kg, i.p.). The BDNF and PSD-95 levels in the posterior cingulate cortex (PCC) were measured using biochemical assessments. In addition, the synaptic ultrastructure was observed using transmission electron microscopy (TEM). RESULTS Ketamine induced drastic schizophrenia-like behaviors, lower protein levels of BDNF and PSD-95, and a change in the synaptic ultrastructure in the PCC. After treatment, the vinpocetine revealed a marked amendment in schizophrenia-like behaviors induced by ketamine, including higher locomotor behavior, lower cognitive behavior, and social withdrawal defects. Vinpocetine could increase the PSD-95 protein level by up-regulating the expression of BDNF. In addition, the synaptic ultrastructure was changed after vinpocetine administration, including a reduction in the thickness and curvature of the synaptic interface, as well as an increase in synaptic cleft width in the PCC. CONCLUSION Vinpocetine can reverse the synaptic ultrastructure by regulating BDNF-related PSD-95 to alleviate schizophrenia-like deficits induced by ketamine in rats.
Collapse
|
136
|
Turktan M, Yilmaz MB, Hatipoglu Z, Ilgaz S, Barc ED, Oksuz H, Akillioglu K, Ozcengiz D. Molecular determinants of behavioral changes induced by neonatal ketamine and dexmedetomidine application. J Neural Transm (Vienna) 2019; 126:1577-1588. [PMID: 31522257 DOI: 10.1007/s00702-019-02081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/08/2019] [Indexed: 01/29/2023]
Abstract
Ketamine (KET), an anesthetic, analgesic, and a sedative N-methyl-D-aspartate (NMDA) receptor antagonist agent, exposure during neonatal period may lead to learning impairment, behavioral abnormalities, and cognitive decline in the later years of life. In recent studies, it has been reported that sedative-acting α2 agonist dexmedetomidine (DEX), which is commonly used in clinical practice with KET, has neuroprotective effects and prevents the undesirable effects of anesthesia. To elucidate the underlying mechanisms of these actions, we investigated the interaction between NMDA receptors α2 adrenoceptor and adulthood behaviors in neonatally KET and/or DEX administrated mice. Balb/c male mice were administrated with saline, KET (75 mg/kg), DEX (10 µg/kg), or KET + DEX (75 mg/kg + 10 µg/kg) on postnatal day 7. During adulthood (8-10 weeks old) mice were subjected to elevated plus maze, open field, and Morris water maze tests. After behavioral tests, hippocampus samples were extracted for mRNA expression studies of NMDAR subunits (GluN1, GluN2A, and GluN2B) and α2 adrenoceptor subunits (α2A, α2B, and α2C) by real-time PCR. Ketamine increased horizontal and vertical locomotor activity (p < 0.01) and impaired spatial learning-memory (p < 0.05). DEX increased anxiety-like behavior (p < 0.01), but did not affect spatial learning-memory and locomotor activity. KET + DEX impaired spatial learning-memory (p < 0.01), increased horizontal locomotor activity (p < 0.01), and anxiety-like behavior (p < 0.05). Our study implies that DEX cannot prevent the adverse effects of KET, on spatial learning-memory, and locomotor activity. In addition to this, it can be thought that during brain development, there is an interaction between NMDAR and α2 adrenoceptor systems.
Collapse
Affiliation(s)
- Mediha Turktan
- Department of Anesthesiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Mehmet Bertan Yilmaz
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Zehra Hatipoglu
- Department of Anesthesiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Seda Ilgaz
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Esma Deniz Barc
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Hale Oksuz
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Kubra Akillioglu
- Department of Medical Physiology, Faculty of Medicine, Cukurova University, 01330, Adana, Turkey.
| | - Dilek Ozcengiz
- Department of Anesthesiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
137
|
Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J Neural Transm (Vienna) 2019; 126:1637-1651. [PMID: 31529297 PMCID: PMC6856257 DOI: 10.1007/s00702-019-02080-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/08/2019] [Indexed: 02/05/2023]
Abstract
Parvalbumin interneurons are fast-spiking GABAergic neurons that provide inhibitory control of cortical and subcortical circuits and are thought to be a key locus of the pathophysiology underlying schizophrenia. In view of the contradictory results regarding the nature of parvalbumin post-mortem findings in schizophrenia, we conducted a quantitative meta-analysis of the data on parvalbumin cell density and parvalbumin mRNA levels in pre-frontal regions in the brains of patients with schizophrenia (n = 274) compared with healthy controls (n = 275). The results suggest that parvalbumin interneurons are reduced in density in the frontal cortex of patients with schizophrenia (Hedges’ g = − 0.27; p = 0.03) and there is a non-significant reduction in parvalbumin mRNA levels (g = − 0.44; p = 0.12). However, certain methodological issues need to be considered in interpreting such results and are discussed in more detail. A meta-regression was conducted for post-mortem interval and year of publication as covariates which were both non-significant, except in the mRNA meta-analysis where post-mortem interval was found to be significant. Overall our findings provide tentative support for the hypothesis that the GABAergic system is deficient in schizophrenia and that parvalbumin-containing interneurons offer a potential target for treatment. However, further well-controlled studies that examine multiple regions and layers are warranted to determine whether parvalbumin alterations are region or layer specific and to test the robustness of the findings further.
Collapse
|
138
|
Lebin JA, Akhavan AR, Hippe DS, Gittinger MH, Pasic J, McCoy AM, Vrablik MC. Psychiatric Outcomes of Patients With Severe Agitation Following Administration of Prehospital Ketamine. Acad Emerg Med 2019; 26:889-896. [PMID: 30873690 DOI: 10.1111/acem.13725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ketamine is an emerging drug used in the management of undifferentiated, severe agitation in the prehospital setting. However, prior work has indicated that ketamine may exacerbate psychotic symptoms in patients with schizophrenia. The objective of this study was to describe psychiatric outcomes in patients who receive prehospital ketamine for severe agitation. METHODS This is a retrospective cohort study, conducted at two tertiary academic medical centers, utilizing chart review of patients requiring prehospital sedation for severe agitation from January 1, 2014, to June 30, 2016. Patients received either intramuscular (IM) versus intravenous (IV) ketamine or IM versus IV benzodiazepine. The primary outcome was psychiatric inpatient admission with secondary outcomes including ED psychiatric evaluation and nonpsychiatric inpatient admission. Generalized estimating equations and Fisher's exact tests were used to compare cohorts. RESULTS During the study period, 141 patient encounters met inclusion with 59 (42%) receiving prehospital ketamine. There were no statistically significant differences between the ketamine and benzodiazepine cohorts for psychiatric inpatient admission (6.8% vs. 2.4%, difference = 4.3%, 95% CI = -2% to 12%, p = 0.23) or ED psychiatric evaluation (8.6% vs. 15%, difference = -6.8%, 95% CI = -18% to 5%, p = 0.23). Patients with schizophrenia who received ketamine did not require psychiatric inpatient admission (17% vs. 10%, difference = 6.7%, 95% CI = -46% to 79%, p = 0.63) or ED psychiatric evaluation (17% vs. 50%, difference = -33%, 95% CI = -100% to 33%, p = 0.55) significantly more than those who received benzodiazepines, although the subgroup was small (n = 16). While there was no significant difference in the nonpsychiatric admission rate between the ketamine and benzodiazepine cohorts (35% vs. 51%, p = 0.082), nonpsychiatric admissions in the benzodiazepine cohort were largely driven by intubation (63% vs. 3.8%, difference = 59%, 95% CI = 38% to 79%, p < 0.001). CONCLUSIONS Administration of prehospital ketamine for severe agitation was not associated with an increase in the rate of psychiatric evaluation in the emergency department or psychiatric inpatient admission when compared with benzodiazepine treatment, regardless of the patient's psychiatric history.
Collapse
Affiliation(s)
- Jacob A. Lebin
- Department of Emergency Medicine University of Washington Seattle WA
| | - Arvin R. Akhavan
- Department of Emergency Medicine University of Washington Seattle WA
| | | | | | - Jagoda Pasic
- Department of Psychiatry University of Washington Seattle WA
| | - Andrew M. McCoy
- Department of Emergency Medicine University of Washington Seattle WA
| | - Marie C. Vrablik
- Department of Emergency Medicine University of Washington Seattle WA
| |
Collapse
|
139
|
Zou Y, Zhang H, Chen X, Ji W, Mao L, Lei H. Age-dependent effects of (+)-MK801 treatment on glutamate release and metabolism in the rat medial prefrontal cortex. Neurochem Int 2019; 129:104503. [PMID: 31299416 DOI: 10.1016/j.neuint.2019.104503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022]
Abstract
NMDAR antagonist treatments in adolescent/young adult rodents are associated with augmented glutamate (Glu) release and perturbed Glu/glutamine (Gln) metabolism in the medial prefrontal cortex (mPFC) resembling those found in first-episode schizophrenia. Few studies, however, investigated NMDAR antagonist-induced changes in the adult mPFC and whether there is an age-dependence to this end. In this study, the effects of acute/repeated (+)-MK801 treatment on Glu release/metabolism were measured in the mPFC of male adolescent (postnatal day 30) and adult (14 weeks) rats. Acute (+)-MK801 treatment at 0.5 mg/kg body weight induced an approximately 4-fold increase of extracellular Glu concentration in the adolescent rats, and repeated treatment for 6 consecutive days significantly increased the levels of Glu + Gln (Glx) and glial metabolites 7 days after the last dose. Histologically (+)-MK801 treatments induced reactive astrocytosis and elevated oxidative stress in the mPFC of adolescent rats, without causing evident neuronal degeneration in the region. All (+)-MK801-induced changes observed in the mPFC of adolescent rats were not present or evident in the adult rats, suggesting that the treatments might have caused less disinhibition in the adult mPFC than in the adolescent mPFC. In conclusion, the effects of (+)-MK801 treatments on the Glu release/metabolism in the mPFC were found to be age-dependent; and the adult mPFC is likely equipped with more robust neurobiological mechanisms to preserve excitatory-inhibitory balance in response to NMDAR hypofunction.
Collapse
Affiliation(s)
- Yijuan Zou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Hui Zhang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xi Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Sciences, Beijing, 100190, PR China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Sciences, Beijing, 100190, PR China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
140
|
Comparison of the effects of 1MeTIQ and olanzapine on performance in the elevated plus maze test and monoamine metabolism in the brain after ketamine treatment. Pharmacol Biochem Behav 2019; 181:17-27. [DOI: 10.1016/j.pbb.2019.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
|
141
|
Curic S, Leicht G, Thiebes S, Andreou C, Polomac N, Eichler IC, Eichler L, Zöllner C, Gallinat J, Steinmann S, Mulert C. Reduced auditory evoked gamma-band response and schizophrenia-like clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 2019; 44:1239-1246. [PMID: 30758327 PMCID: PMC6785009 DOI: 10.1038/s41386-019-0328-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
Abstract
Abnormal gamma-band oscillations (GBO) have been frequently associated with the pathophysiology of schizophrenia. GBO are modulated by glutamate, a neurotransmitter, which is continuously discussed to shape the complex symptom spectrum in schizophrenia. The current study examined the effects of ketamine, a glutamate N-methyl-D-aspartate receptor (NMDAR) antagonist, on the auditory-evoked gamma-band response (aeGBR) and psychopathological outcomes in healthy volunteers to investigate neuronal mechanisms of psychotic behavior. In a placebo-controlled, randomized crossover design, the aeGBR power, phase-locking factor (PLF) during a choice reaction task, the Positive and Negative Syndrome Scale (PANSS) and the Altered State of Consciousness (5D-ASC) Rating Scale were assessed in 25 healthy subjects. Ketamine was applied in a subanaesthetic dose. Low-resolution brain electromagnetic tomography was used for EEG source localization. Significant reductions of the aeGBR power and PLF were identified under ketamine administration compared to placebo (p < 0.01). Source-space analysis of aeGBR generators revealed significantly reduced current source density (CSD) within the anterior cingulate cortex during ketamine administration. Ketamine induced an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01) and increased response times (p < 0.001) and error rates (p < 0.01). Only negative symptoms were significantly associated with an aeGBR power decrease (p = 0.033) as revealed by multiple linear regression. These findings argue for a substantial role of the glutamate system in the mediation of dysfunctional gamma band responses and negative symptomatology of schizophrenia and are compatible with the NMDAR hypofunction hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Stjepan Curic
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute for Sex Research and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Thiebes
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Andreou
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Psychotic Disorders, University Psychiatric Hospital, University of Basel, Basel, Switzerland
| | - Nenad Polomac
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Iris-Carola Eichler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Eichler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Zöllner
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus Liebig University, Gießen, Germany
| |
Collapse
|
142
|
Fitzgerald PJ, Watson BO. In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp Brain Res 2019; 237:1593-1614. [PMID: 31079238 PMCID: PMC6584243 DOI: 10.1007/s00221-019-05556-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Antidepressant drugs are a standard biological treatment for various neuropsychiatric disorders, yet relatively little is known about their electrophysiologic and synaptic effects on mood systems that set moment-to-moment emotional tone. In vivo electrical recording of local field potentials (LFPs) and single neuron spiking has been crucial for elucidating important details of neural processing and control in many other systems, and yet electrical approaches have not been broadly applied to the actions of antidepressants on mood-related circuits. Here we review the literature encompassing electrophysiologic effects of antidepressants in animals, including studies that examine older drugs, and extending to more recently synthesized novel compounds, as well as rapidly acting antidepressants. The existing studies on neuromodulator-based drugs have focused on recording in the brainstem nuclei, with much less known about their effects on prefrontal or sensory cortex. Studies on neuromodulatory drugs have moreover focused on single unit firing patterns with less emphasis on LFPs, whereas the rapidly acting antidepressant literature shows the opposite trend. In a synthesis of this information, we hypothesize that all classes of antidepressants could have common final effects on limbic circuitry. Whereas NMDA receptor blockade may induce a high powered gamma oscillatory state via direct and fast alteration of glutamatergic systems in mood-related circuits, neuromodulatory antidepressants may induce similar effects over slower timescales, corresponding with the timecourse of response in patients, while resetting synaptic excitatory versus inhibitory signaling to a normal level. Thus, gamma signaling may provide a biomarker (or “neural readout”) of the therapeutic effects of all classes of antidepressants.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| |
Collapse
|
143
|
Mahmoud GS, Sayed SA, Abdelmawla SN, Amer MA. Positive effects of systemic sodium benzoate and olanzapine treatment on activities of daily life, spatial learning and working memory in ketamine-induced rat model of schizophrenia. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:21-30. [PMID: 31149324 PMCID: PMC6526385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sodium Benzoate (SB) significantly improved positive, negative, and cognitive symptoms as add on treatment in schizophrenia. Olanzapine (Ola), the most effective atypical antipsychotic drug, has been linked to hepatic steatosis, acute kidney injury, reproductive side effects and poor effect on negative symptoms in some patients. GOALS is to compare the efficacy and check the safety of long-term monotherapy with SB 0.01 mg/Kg versus Ola on male cognitive, memory, hepatic, renal and testicular functions in rat model of schizophrenia. METHODS 48 young adult male rats were divided into 6 groups; C: control; O: received Ola; SB: received SB; K: received single IP ketamine (Ket) injection; K+O: received Ola and Ket and K+SB: received SB and Ket. Ola and SB given orally for 3 or 10 weeks for behavioral or serological studies respectively. We measured activities of daily life (ADL), spatial learning and memory in radial arm water maze (RAWM), serum parameters of hepatic, renal and testicular functions. RESULTS Both Ola and SB significantly improved hoarding and burrowing, caused significant decrease in time to reach target (TRT), working memory errors (WME) in K+O and K+SB groups compared to K group. Ola caused significant increase in ALT, AST and creatinine and decrease in serum LH, testosterone compared to controls. SB caused significant rise in serum LH, ALT, AST and decrease in protein and albumin compared to both C and O groups. CONCLUSION Both Ola and SB improved ADL, cognitive and memory functions. Although SB saved testicular and renal functions, it worsened liver function compared to Ola.
Collapse
Affiliation(s)
- Ghada S Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| | - Sally A Sayed
- Department of Medical Physiology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| | | | | |
Collapse
|
144
|
Su T, Lu Y, Geng Y, Lu W, Chen Y. How could N-Methyl-D-Aspartate Receptor Antagonists Lead to Excitation Instead of Inhibition? BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2018.2018.9050009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a family of ionotropic glutamate receptors mainly known to mediate excitatory synaptic transmission and plasticity. Interestingly, low-dose NMDAR antagonists lead to increased, instead of decreased, functional connectivity; and they could cause schizophrenia- and/or antidepressant-like behavior in both humans and rodents. In addition, human genetic evidences indicate that NMDAR loss of function mutations underlie certain forms of epilepsy, a disease featured with abnormal brain hyperactivity. Together, they all suggest that under certain conditions, NMDAR activation actually lead to inhibition, but not excitation, of the global neuronal network. Apparently, these phenomena are rather counterintuitive to the receptor's basic role in mediating excitatory synaptic transmission. How could it happen? Recently, this has become a crucial question in order to fully understand the complexity of NMDAR function, particularly in disease. Over the past decades, different theories have been proposed to address this question. These include theories of “NMDARs on inhibitory neurons are more sensitive to antagonism”, or “basal NMDAR activity actually inhibits excitatory synapse”, etc. Our review summarizes these efforts, and also provides an introduction of NMDARs, inhibitory neurons, and their relationships with the related diseases. Advances in the development of novel NMDAR pharmacological tools, particularly positive allosteric modulators, are also included to provide insights into potential intervention strategies.
Collapse
Affiliation(s)
- Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
145
|
Childers R, Vilke G. Ketamine for Acute Agitation. CURRENT EMERGENCY AND HOSPITAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40138-019-00177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
146
|
Fleming LM, Javitt DC, Carter CS, Kantrowitz JT, Girgis RR, Kegeles LS, Ragland JD, Maddock RJ, Lesh TA, Tanase C, Robinson J, Potter WZ, Carlson M, Wall MM, Choo TH, Grinband J, Lieberman J, Krystal JH, Corlett PR. A multicenter study of ketamine effects on functional connectivity: Large scale network relationships, hubs and symptom mechanisms. NEUROIMAGE-CLINICAL 2019; 22:101739. [PMID: 30852397 PMCID: PMC6411494 DOI: 10.1016/j.nicl.2019.101739] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Ketamine is an uncompetitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist. It induces effects in healthy individuals that mimic symptoms associated with schizophrenia. We sought to root these experiences in altered brain function, specifically aberrant resting state functional connectivity (rsfMRI). In the present study, we acquired rsfMRI data under ketamine and placebo in a between-subjects design and analyzed seed-based measures of rsfMRI using large-scale networks, dorsolateral prefrontal cortex (DLPFC) and sub-nuclei of the thalamus. We found ketamine-induced alterations in rsfMRI connectivity similar to those seen in patients with schizophrenia, some changes that may be more comparable to early stages of schizophrenia, and other connectivity signatures seen in patients that ketamine did not recreate. We do not find any circuits from our regions of interest that correlates with positive symptoms of schizophrenia in our sample, although we find that DLPFC connectivity with ACC does correlate with a mood measure. These results provide support for ketamine's use as a model of certain biomarkers of schizophrenia, particularly for early or at-risk patients. Ketamine altered connectivity in default mode network, thalamus and DLPFC at rest. Similar patterns of altered connectivity are seen with ketamine as in psychotic patients. Mood symptoms correlated with DLPFC connectivity with ACC and frontal orbital cortex.
Collapse
Affiliation(s)
- Leah M Fleming
- Department of Psychiatry, Yale University, New Haven, CT, United States of America; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States of America
| | - Daniel C Javitt
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America; Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States of America
| | - Cameron S Carter
- Department of Psychiatry, University of California, Davis, United States of America
| | - Joshua T Kantrowitz
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America; Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States of America
| | - Ragy R Girgis
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Lawrence S Kegeles
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - John D Ragland
- Department of Psychiatry, University of California, Davis, United States of America
| | - Richard J Maddock
- Department of Psychiatry, University of California, Davis, United States of America
| | - Tyler A Lesh
- Department of Psychiatry, University of California, Davis, United States of America
| | - Costin Tanase
- Department of Psychiatry, University of California, Davis, United States of America
| | - James Robinson
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States of America
| | - William Z Potter
- National Institute of Mental Health, Rockville, MD, United States of America
| | - Marlene Carlson
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Melanie M Wall
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America; National Institute of Mental Health, Rockville, MD, United States of America
| | - Tse-Hwei Choo
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Jack Grinband
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Jeffrey Lieberman
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - John H Krystal
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| | - Philip R Corlett
- Department of Psychiatry, Yale University, New Haven, CT, United States of America.
| |
Collapse
|
147
|
Cheung HM, Yew DTW. Effects of Perinatal Exposure to Ketamine on the Developing Brain. Front Neurosci 2019; 13:138. [PMID: 30853884 PMCID: PMC6395450 DOI: 10.3389/fnins.2019.00138] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Initially used as an analgesic and anesthetic, ketamine has unfortunately been abused as a popular recreational party drug due to its psychotropic effects. Over the last decade, ketamine has also emerged as an effective rapid-onset anti-depressant. The increasingly widespread use and misuse of the drug in infants and pregnant women has posed a concern about the neurotoxicity of ketamine to the immature brains of developing fetuses and children. In this review, we summarize recent research findings on major possible mechanisms of perinatal ketamine-induced neurotoxicity. We also briefly summarize the neuroprotective effects of ketamine in the presence of noxious stimuli. Future actions include implementation of more drug abuse education and prevention campaigns to raise the public’s awareness of the harmful effects of ketamine abuse; further investigations to justify the clinical use of ketamine as analgesic, anesthetic and anti-depressant; and further studies to develop alternatives to ketamine or treatments that can alleviate the detrimental effects of ketamine use, especially in infants and pregnant women.
Collapse
Affiliation(s)
- Hoi Man Cheung
- School of Chinese Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Hong Kong College of Technology, Sha Tin, Hong Kong
| | - David Tai Wai Yew
- School of Chinese Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Hong Kong College of Technology, Sha Tin, Hong Kong
| |
Collapse
|
148
|
McMillan R, Forsyth A, Campbell D, Malpas G, Maxwell E, Dukart J, Hipp JF, Muthukumaraswamy S. Temporal dynamics of the pharmacological MRI response to subanaesthetic ketamine in healthy volunteers: A simultaneous EEG/fMRI study. J Psychopharmacol 2019; 33:219-229. [PMID: 30663520 DOI: 10.1177/0269881118822263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pharmacological magnetic resonance imaging has been used to investigate the neural effects of subanaesthetic ketamine in healthy volunteers. However, the effect of ketamine has been modelled with a single time course and without consideration of physiological noise. AIMS This study aimed to investigate ketamine-induced alterations in resting neural activity using conventional pharmacological magnetic resonance imaging analysis techniques with physiological noise correction, and a novel analysis utilising simultaneously recorded electroencephalography data. METHODS Simultaneous electroencephalography/functional magnetic resonance imaging and physiological data were collected from 30 healthy male participants before and during a subanaesthetic intravenous ketamine infusion. RESULTS Consistent with previous literature, we show widespread cortical blood-oxygen-level dependent signal increases and decreased blood-oxygen-level dependent signals in the subgenual anterior cingulate cortex following ketamine. However, the latter effect was attenuated by the inclusion of motion regressors and physiological correction in the model. In a novel analysis, we modelled the pharmacological magnetic resonance imaging response with the power time series of seven electroencephalography frequency bands. This showed evidence for distinct temporal time courses of neural responses to ketamine. No electroencephalography power time series correlated with decreased blood-oxygen-level dependent signal in the subgenual anterior cingulate cortex. CONCLUSIONS We suggest the decrease in blood-oxygen-level dependent signals in the subgenual anterior cingulate cortex typically seen in the literature is the result of physiological noise, in particular cardiac pulsatility. Furthermore, modelling the pharmacological magnetic resonance imaging response with a single temporal model does not completely capture the full spectrum of neuronal dynamics. The use of electroencephalography regressors to model the response can increase confidence that the pharmacological magnetic resonance imaging is directly related to underlying neural activity.
Collapse
Affiliation(s)
- Rebecca McMillan
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna Forsyth
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Doug Campbell
- 2 Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- 2 Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- 2 Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Juergen Dukart
- 3 F. Hoffmann-La Roche, Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland.,4 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,5 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joerg F Hipp
- 3 F. Hoffmann-La Roche, Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Suresh Muthukumaraswamy
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
149
|
Dong H, Yang C, Shen Y, Liu L, Liu M, Hao W. Effects of ketamine use on psychotic disorders and symptoms in male, methamphetamine-dependent subjects. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:276-284. [PMID: 30640573 DOI: 10.1080/00952990.2018.1559849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Repeated and extensive methamphetamine or ketamine use may cause psychotic symptoms. Whether the chronic and combined use of these substances has a greater psychotic effect is still unknown. OBJECTIVES To examine the effect of different levels of ketamine use on psychotic disorders and symptoms in male methamphetamine-dependent subjects. METHODS A cross-sectional, structured, and clinical interview method was used to examine the differences in DSM-IV-TR Axis I psychotic disorders and symptoms among methamphetamine-dependent subjects in three categories: 205 with no ketamine use, 38 with occasional ketamine use, and 72 with ketamine abuse or dependence from compulsory rehabilitation centers. RESULTS Both methamphetamine-dependent subjects with occasional ketamine use and those with ketamine abuse or dependence had a higher prevalence of psychotic disorders than those who had not used ketamine (p = 0.021; p < 0.001). Subjects who used ketamine occasionally had a higher prevalence of referential and persecutory delusions (p < 0.001; p = 0.013) and auditory hallucinations (p = 0.030), and those with ketamine abuse or dependence had a higher prevalence of referential and persecutory delusions (p = 0.005; p = 0.021), compared with those who had not used ketamine. There was no significant difference in any psychotic disorders or symptoms between subjects with occasional ketamine use and those with ketamine abuse or dependence. CONCLUSIONS The combination of methamphetamine and ketamine was associated with greater psychotic effects than methamphetamine alone. Both occasional ketamine use and ketamine abuse or dependence were associated with increased psychotic symptoms and disorders in methamphetamine-dependent males.
Collapse
Affiliation(s)
- Huixi Dong
- a Mental Health Center of Xiangya Hospital , Central South University , Changsha , Hunan , China.,b Department of Psychiatry & Mental Health Institute of the Second Xiangya Hospital , Central South University, National Clinical Research Center on Mental Disorders & National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China
| | - Cheng Yang
- b Department of Psychiatry & Mental Health Institute of the Second Xiangya Hospital , Central South University, National Clinical Research Center on Mental Disorders & National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China
| | - Yidong Shen
- b Department of Psychiatry & Mental Health Institute of the Second Xiangya Hospital , Central South University, National Clinical Research Center on Mental Disorders & National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China
| | - Liang Liu
- c Wuxi Mental Health Center , Nanjing Medical University , Wuxi , Jiangsu , China
| | - Mengqi Liu
- b Department of Psychiatry & Mental Health Institute of the Second Xiangya Hospital , Central South University, National Clinical Research Center on Mental Disorders & National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China
| | - Wei Hao
- b Department of Psychiatry & Mental Health Institute of the Second Xiangya Hospital , Central South University, National Clinical Research Center on Mental Disorders & National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China
| |
Collapse
|
150
|
Kraeuter AK, Guest PC, Sarnyai Z. The Therapeutic Potential of Ketogenic Diet Throughout Life: Focus on Metabolic, Neurodevelopmental and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:77-101. [PMID: 31493223 DOI: 10.1007/978-3-030-25650-0_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter reviews the efficacy of the ketogenic diet in a variety of neurodegenerative, neurodevelopmental and metabolic conditions throughout different stages of life. It describes conditions affecting children, metabolic disorders in adults and disorderrs affecting the elderly. We have focused on application of the ketogenic diet in clinical studies and in preclinical models and discuss the benefits and negative aspects of the diet. Finally, we highlight the need for further research in this area with a view of discovering novel mechanistic targets of the ketogenic diet, as a means of maximising the potential benefits/risks ratio.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Discipline of Biomedicine, College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia. .,Discipline of Biomedicine, College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| |
Collapse
|