101
|
Atlas Y, Gorin C, Novais A, Marchand MF, Chatzopoulou E, Lesieur J, Bascetin R, Binet-Moussy C, Sadoine J, Lesage M, Opsal-Vital S, Péault B, Monnot C, Poliard A, Girard P, Germain S, Chaussain C, Muller L. Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials 2020; 268:120594. [PMID: 33387754 DOI: 10.1016/j.biomaterials.2020.120594] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Blood perfusion of grafted tissue constructs is a hindrance to the success of stem cell-based therapies by limiting cell survival and tissue regeneration. Implantation of a pre-vascularized network engineered in vitro has thus emerged as a promising strategy for promoting blood supply deep into the construct, relying on inosculation with the host vasculature. We aimed to fabricate in vitro tissue constructs with mature microvascular networks, displaying perivascular recruitment and basement membrane, taking advantage of the angiogenic properties of dental pulp stem cells and self-assembly of endothelial cells into capillaries. Using digital scanned light-sheet microscopy, we characterized the generation of dense microvascular networks in collagen hydrogels and established parameters for quantification of perivascular recruitment. We also performed original time-lapse analysis of stem cell recruitment. These experiments demonstrated that perivascular recruitment of dental pulp stem cells is driven by PDGF-BB. Recruited stem cells participated in deposition of vascular basement membrane and vessel maturation. Mature microvascular networks thus generated were then compared to those lacking perivascular coverage generated using stem cell conditioned medium. Implantation in athymic nude mice demonstrated that in vitro maturation of microvascular networks improved blood perfusion and cell survival within the construct. Taken together, these data demonstrate the strong potential of in vitro production of mature microvasculature for improving cell-based therapies.
Collapse
Affiliation(s)
- Yoann Atlas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France; Sorbonne Université, Collège doctoral, Paris, France
| | - Caroline Gorin
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France
| | - Anita Novais
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France
| | - Marion F Marchand
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France; Sorbonne Université, Collège doctoral, Paris, France
| | - Eirini Chatzopoulou
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France
| | - Julie Lesieur
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France
| | - Rumeyza Bascetin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Clément Binet-Moussy
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Jeremy Sadoine
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France
| | - Matthieu Lesage
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Sibylle Opsal-Vital
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France
| | - Bruno Péault
- Department of Orthopaedic Surgery, UCLA and Orthopaedic Hospital, Orthopaedic Hospital Research Center, Los Angeles, United States; Center for Cardiovascular Science, MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Anne Poliard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France
| | - Philippe Girard
- Institut Jacques Monod, UMR7592 CNRS, Université de Paris, Paris, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Catherine Chaussain
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France.
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France.
| |
Collapse
|
102
|
Chemokine mediated signalling within arteries promotes vascular smooth muscle cell recruitment. Commun Biol 2020; 3:734. [PMID: 33277595 PMCID: PMC7719186 DOI: 10.1038/s42003-020-01462-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023] Open
Abstract
The preferential accumulation of vascular smooth muscle cells (vSMCs) on arteries versus veins during early development is a well-described phenomenon, but the molecular pathways underlying this polarization are not well understood. In zebrafish, the cxcr4a receptor (mammalian CXCR4) and its ligand cxcl12b (mammalian CXCL12) are both preferentially expressed on arteries at time points consistent with the arrival and differentiation of the first vSMCs during vascular development. We show that autocrine cxcl12b/cxcr4 activity leads to increased production of the vSMC chemoattractant ligand pdgfb by endothelial cells in vitro and increased expression of pdgfb by arteries of zebrafish and mice in vivo. Additionally, we demonstrate that expression of the blood flow-regulated transcription factor klf2a in primitive veins negatively regulates cxcr4/cxcl12 and pdgfb expression, restricting vSMC recruitment to the arterial vasculature. Together, this signalling axis leads to the differential acquisition of vSMCs at sites where klf2a expression is low and both cxcr4a and pdgfb are co-expressed, i.e. arteries during early development. Stratman et al. provide evidence linking the cxcl12b/cxcr4a signaling axis in endothelial cells to an increased release of platelet-derived growth factor b, leading to the recruitment of smooth muscle cells to developing arteries. This signalling axis is suppressed in the venous endothelium during early development by the high expression of blood flow-regulated transcription factor klf2a.
Collapse
|
103
|
Valle IB, Schuch LF, da Silva JM, Gala-García A, Diniz IMA, Birbrair A, Abreu LG, Silva TA. Pericyte in Oral Squamous Cell Carcinoma: A Systematic Review. Head Neck Pathol 2020; 14:1080-1091. [PMID: 32506378 PMCID: PMC7669928 DOI: 10.1007/s12105-020-01188-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The microenvironment of oral cancer is highly dynamic and has been proved to affect tumor progression. Pericytes are blood vessels surrounding cells that have recently gained attention for their roles in vascular and cancer biology. The objective of the present study was to survey the scientific literature for conclusive evidence about whether pericytes are part of blood vessels in oral squamous cell carcinoma (OSCC) and their roles in the tumor microenvironment and clinical outcomes. A systematic electronic search was undertaken in Medline Ovid, PubMed, Web of Science, and Scopus. Eligibility criteria were: publications adopting in vivo models of OSCC that included pericyte detection and assessment by pericyte markers (e.g., α-smooth muscle actin, neuron-glial antigen 2 and platelet-derived growth factor receptor-β). The search yielded seven eligible studies (from 2008 to 2018). The markers most commonly used for pericyte detection were α-smooth muscle actin and neuron-glial antigen 2. The studies reviewed showed the presence of immature vessels exhibiting a reduction of pericyte coverage in OSCC and indicated that anti-cancer therapies could contribute to vessel normalization and pericyte regain. The pericyte population is significantly affected during OSCC development and cancer therapy. While these findings might suggest a role for pericytes in OSCC progression, the limited data available do not allow us to conclude whether they modify the tumor microenvironment and clinical outcome.
Collapse
Affiliation(s)
- Isabella Bittencourt Valle
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lauren Frenzel Schuch
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janine Mayra da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alfonso Gala-García
- Department of Genetics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Guimarães Abreu
- Department of Child's and Adolescent's Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Room 3105. Pampulha, Belo Horizonte, MG, CEP: 31.270-901, Brazil.
| |
Collapse
|
104
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
105
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
106
|
Morofuji Y, Nakagawa S. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Curr Pharm Des 2020; 26:1466-1485. [PMID: 32091330 PMCID: PMC7499354 DOI: 10.2174/1381612826666200224112534] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into practical clinical implementation. Despite the advances in the technology used in drug discovery, the development of drugs for central nervous system diseases remains challenging. The failure rate for new drugs targeting important central nervous system diseases is high compared to most other areas of drug discovery. The main reason for the failure is the poor penetration efficacy across the blood-brain barrier. The blood-brain barrier represents the bottleneck in central nervous system drug development and is the most important factor limiting the future growth of neurotherapeutics. Meanwhile, drug repositioning has been becoming increasingly popular and it seems a promising field in central nervous system drug development. In vitro blood-brain barrier models with high predictability are expected for drug development and drug repositioning. In this review, the recent progress of in vitro BBB models and the drug repositioning for central nervous system diseases will be discussed.
Collapse
Affiliation(s)
- Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
107
|
Nadeem T, Bogue W, Bigit B, Cuervo H. Deficiency of Notch signaling in pericytes results in arteriovenous malformations. JCI Insight 2020; 5:125940. [PMID: 33148887 PMCID: PMC7710269 DOI: 10.1172/jci.insight.125940] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Arteriovenous malformations (AVMs) are high-flow lesions directly connecting arteries and veins. In the brain, AVM rupture can cause seizures, stroke, and death. Patients with AVMs exhibit reduced coverage of the vessels by pericytes, the mural cells of microvascular capillaries; however, the mechanism underlying this pericyte reduction and its association with AVM pathogenesis remains unknown. Notch signaling has been proposed to regulate critical pericyte functions. We hypothesized that Notch signaling in pericytes is crucial to maintain pericyte homeostasis and prevent AVM formation. We inhibited Notch signaling specifically in perivascular cells and analyzed the vasculature of these mice. The retinal vessels of mice with deficient perivascular Notch signaling developed severe AVMs, together with a significant reduction in pericytes and vascular smooth muscle cells (vSMC) in the arteries, while vSMCs were increased in the veins. Vascular malformations and pericyte loss were also observed in the forebrain of embryonic mice deficient for perivascular Notch signaling. Moreover, the loss of Notch signaling in pericytes downregulated Pdgfrb levels and increased pericyte apoptosis, pointing to a critical role for Notch in pericyte survival. Overall, our findings reveal a mechanism of AVM formation and highlight the Notch signaling pathway as an essential mediator in this process.
Collapse
|
108
|
Bowers SLK, Kemp SS, Aguera KN, Koller GM, Forgy JC, Davis GE. Defining an Upstream VEGF (Vascular Endothelial Growth Factor) Priming Signature for Downstream Factor-Induced Endothelial Cell-Pericyte Tube Network Coassembly. Arterioscler Thromb Vasc Biol 2020; 40:2891-2909. [PMID: 33086871 DOI: 10.1161/atvbaha.120.314517] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE In this work, we have sought to define growth factor requirements and the signaling basis for different stages of human vascular morphogenesis and maturation. Approach and Results: Using a serum-free model of endothelial cell (EC) tube morphogenesis in 3-dimensional collagen matrices that depends on a 5 growth factor combination, SCF (stem cell factor), IL (interleukin)-3, SDF (stromal-derived factor)-1α, FGF (fibroblast growth factor)-2, and insulin (factors), we demonstrate that VEGF (vascular endothelial growth factor) pretreatment of ECs for 8 hours (ie, VEGF priming) leads to marked increases in the EC response to the factors which includes; EC tip cells, EC tubulogenesis, pericyte recruitment and proliferation, and basement membrane deposition. VEGF priming requires VEGFR2, and the effect of VEGFR2 is selective to the priming response and does not affect factor-dependent tubulogenesis in the absence of priming. Key molecule and signaling requirements for VEGF priming include RhoA, Rock1 (Rho-kinase), PKCα (protein kinase C α), and PKD2 (protein kinase D2). siRNA suppression or pharmacological blockade of these molecules and signaling pathways interfere with the ability of VEGF to act as an upstream primer of downstream factor-dependent EC tube formation as well as pericyte recruitment. VEGF priming was also associated with the formation of actin stress fibers, activation of focal adhesion components, upregulation of the EC factor receptors, c-Kit, IL-3Rα, and CXCR4 (C-X-C chemokine receptor type 4), and upregulation of EC-derived PDGF (platelet-derived growth factor)-BB, PDGF-DD, and HB-EGF (heparin-binding epidermal growth factor) which collectively affect pericyte recruitment and proliferation. CONCLUSIONS Overall, this study defines a signaling signature for a separable upstream VEGF priming step, which can activate ECs to respond to downstream factors that are necessary to form branching tube networks with associated mural cells.
Collapse
Affiliation(s)
- Stephanie L K Bowers
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Scott S Kemp
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Kalia N Aguera
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Gretchen M Koller
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Joshua C Forgy
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - George E Davis
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| |
Collapse
|
109
|
Fitzsimmons REB, Ireland RG, Zhong A, Soos A, Simmons CA. Assessment of fibrin-collagen co-gels for generating microvessels ex vivousing endothelial cell-lined microfluidics and multipotent stromal cell (MSC)-induced capillary morphogenesis. Biomed Mater 2020; 16. [PMID: 33086195 DOI: 10.1088/1748-605x/abc38f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 01/28/2023]
Abstract
One aspect of the challenge of engineering viable tissues ex vivo is the generation of perfusable microvessels of varying diameters. In this work, we take the approach of using hydrogel-based microfluidics seeded with endothelial cells (ECs) to form small artery/vein-like vessels, in conjunction with using the self-assembly behavior of ECs to form capillary-like vessels when co-cultured with multipotent stromal cells (MSCs). In exploring this approach, we focused on investigating collagen, fibrin, and various collagen-fibrin co-gel formulations for their potential suitability as serving as scaffold materials by surveying their angiogencity and mechanical properties. Fibrin and co-gels successfully facilitated multicellular EC sprouting, whereas collagen elicited a migration response of individual ECs, unless supplemented with the PKC (protein kinase C)-activator, phorbol 12-myristate 13-acetate. Collagen scaffolds were also found to severely contract when embedded with mesenchymal cells, but this contraction could be abrogated with the addition of fibrin. Increasing collagen content within co-gel formulations, however, imparted a higher compressive modulus and allowed for the reliable formation of intact hydrogel-based microchannels which could then be perfused. Given the bioactivity and mechanical benefits of fibrin and collagen, respectively, collagen-fibrin co-gels are a promising scaffold option for generating vascularized tissue constructs.
Collapse
Affiliation(s)
- Ross E B Fitzsimmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, CANADA
| | - Ronald G Ireland
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, CANADA
| | - Aileen Zhong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, CANADA
| | - Agnes Soos
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, CANADA
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, CANADA
| |
Collapse
|
110
|
Iizuka O, Kawamura S, Tero A, Uemura A, Miura T. Remodeling mechanisms determine size distributions in developing retinal vasculature. PLoS One 2020; 15:e0235373. [PMID: 33052908 PMCID: PMC7556457 DOI: 10.1371/journal.pone.0235373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
The development of retinal blood vessels has extensively been used as a model to study vascular pattern formation. To date, various quantitative measurements, such as size distribution have been performed, but the relationship between pattern formation mechanisms and these measurements remains unclear. In the present study, we first focus on the islands (small regions subdivided by the capillary network). We quantitatively measured the island size distribution in the retinal vascular network and found that it tended to exhibit an exponential distribution. We were able to recapitulate this distribution pattern in a theoretical model by implementing the stochastic disappearance of vessel segments around arteries could reproduce the observed exponential distribution of islands. Second, we observed that the diameter distribution of the retinal artery segment obeyed a power law. We theoretically showed that an equal bifurcation branch pattern and Murray’s law could reproduce this pattern. This study demonstrates the utility of examining size distribution for understanding the mechanisms of vascular pattern formation.
Collapse
Affiliation(s)
- Osamu Iizuka
- School of Medicine, Kyushu University, Fukuoka, Japan
| | | | - Atsushi Tero
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
111
|
Pu X, Du L, Hu Y, Fan Y, Xu Q. Stem/Progenitor Cells and Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2020; 41:167-178. [PMID: 33028095 DOI: 10.1161/atvbaha.120.315052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by endothelial dysfunction and vascular remodeling. Despite significant advancement in our understanding of the pathogenesis of PAH in recent years, treatment options for PAH are limited and their prognosis remains poor. PAH is now seen as a severe pulmonary arterial vasculopathy with structural changes driven by excessive vascular proliferation and inflammation. Perturbations of a number of cellular and molecular mechanisms have been described, including pathways involving growth factors, cytokines, metabolic signaling, elastases, and proteases, underscoring the complexity of the disease pathogenesis. Interestingly, emerging evidence suggests that stem/progenitor cells may have an impact on disease development and therapy. In preclinical studies, stem/progenitor cells displayed an ability to promote endothelial repair of dysfunctional arteries and induce neovascularization. The stem cell-based therapy for PAH are now under active investigation. This review article will briefly summarize the updates in the research field, with a special focus on the contribution of stem/progenitor cells to lesion formation via influencing vascular cell functions and highlight the potential clinical application of stem/progenitor cell therapy to PAH.
Collapse
Affiliation(s)
- Xiangyuan Pu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (X.P., L.D., Y.H., Q.X.)
| | - Luping Du
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (X.P., L.D., Y.H., Q.X.)
| | - Yanhua Hu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (X.P., L.D., Y.H., Q.X.)
| | - Ye Fan
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.)
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (X.P., L.D., Y.H., Q.X.)
| |
Collapse
|
112
|
Eyre JJ, Williams RL, Levis HJ. A human retinal microvascular endothelial-pericyte co-culture model to study diabetic retinopathy in vitro. Exp Eye Res 2020; 201:108293. [PMID: 33039459 DOI: 10.1016/j.exer.2020.108293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022]
Abstract
This human primary co-culture model using human retinal microvascular endothelial cells (hREC) and human retinal pericyte cells (hRP) aims to improve current understanding of the cellular changes occurring in the retinal microvasculature during diabetic retinopathy (DR). Currently, patients often present in clinic with late-stage DR, only when vision becomes impaired. Therefore, new strategies for earlier detection in clinic, combined with novel pharmaceutical and cellular interventions are essential in order to slow or halt the progression of DR from background to sight-threatening stage. This co-culture model can be used as a simple, replicable in vitro tool to discover and assess novel drug therapies and improve fundamental understanding of alterations to cell behaviour in the human retinal microvasculature during DR. hRP and hREC were cultured for up to 21 days in normoxic (20%) or hypoxic (2%) oxygen levels and physiological (5.5 mM) or very high (33 mM) glucose, to maintain a healthy, or induce a diabetic-like phenotype in vitro. Mono- or co-cultured hREC and hRP were seeded 1:1 in healthy (20% oxygen and 5.5 mM glucose) or diabetic-like (2% oxygen and 33 mM glucose) conditions, on either side of untreated polyethylene terephthalate (PET) transwell inserts, and cultured for 21 days. Mono- and co-cultures were analysed for changes in metabolic activity, angiogenic response and junctional protein expression, using immunofluorescence antibody labelling, flow cytometry and multiplex ELISA technology. hRP and hREC were successfully co-cultured, and the glucose and oxygen concentrations selected for the in vitro healthy and diabetic-like conditions were sufficient for cell viability and EC monolayer integrity, with evidence of an angiogenic response in diabetic-like conditions within the 21 day timeframe. Angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) secretion were all increased, whilst hepatocyte growth factor (hHGF), tissue inhibitor for metalloproteinase-2 (TIMP-2) and interleukin-8 (IL-8) secretion were all reduced in the in vitro diabetic-like conditions. The secretion profile of co-cultures was different to mono-cultures, highlighting the importance of using co-culture models to collect data more reflective of the close relationship between hRP-hREC in vivo. Previous groups have developed useful co-culture models utilising non-human, immortalised or large vessel-sourced cells to explore changes to the vasculature during hypoxia and/or high glucose insult. In this study the use of human primary, retina-specific microvascular cells, mono- and co-cultured, collected over a longer culture period, has enabled detection of changes that may have been missed in previous models.
Collapse
Affiliation(s)
- Jessica J Eyre
- Department of Eye and Vision Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, United Kingdom.
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, United Kingdom.
| | - Hannah J Levis
- Department of Eye and Vision Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, United Kingdom.
| |
Collapse
|
113
|
Ngo MT, Harley BAC. Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials 2020; 255:120207. [PMID: 32569868 PMCID: PMC7396313 DOI: 10.1016/j.biomaterials.2020.120207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
The vasculature is a key component of the tissue microenvironment. Traditionally known for its role in providing nutrients and oxygen to surrounding cells, the vasculature is now also acknowledged to provide signaling cues that influence biological outcomes in regeneration and disease. These cues come from the cells that comprise vasculature, as well as the dynamic biophysical and biochemical properties of the surrounding extracellular matrix that accompany vascular development and remodeling. In this review, we illustrate the larger role of the vasculature in the context of regenerative biology and cancer progression. We describe cellular, biophysical, biochemical, and metabolic components of vascularized microenvironments. Moreover, we provide an overview of multidimensional angiogenic biomaterials that have been developed to promote therapeutic vascularization and regeneration, as well as to mimic elements of vascularized microenvironments as a means to uncover mechanisms by which vasculature influences cancer progression and therapy.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
114
|
Gloaguen C, Raimundo AF, Elie C, Schmitt A, Floriani M, Favard S, Monneret D, Imbert-Bismut F, Weiss N, Deli MA, Tack K, Lestaevel P, Benadjaoud MA, Legendre A. Passage of uranium through human cerebral microvascular endothelial cells: influence of time exposure in mono- and co-culture in vitro models. Int J Radiat Biol 2020; 96:1597-1607. [PMID: 32990492 DOI: 10.1080/09553002.2020.1828655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Depleted uranium (DU) has several civilian and military applications. The effects of this emerging environmental pollutant on human health raise some concerns. Previous experimental studies have shown that uranium (U) exposure can disturb the central nervous system. A small quantity of U reaches the brain via the blood, but the effects on the blood-brain barrier (BBB) remain unclear. MATERIALS AND METHODS In the present work, two cell culture models were exposed to DU for different times to study its cytotoxicity, paracellular permeability and extracellular concentration of U. The well-known immortalized human cerebral microvascular endothelial cells, hCMEC/D3, were cultured on the filter in the first model. In the second model, human primary cells of pericytes were cultured under the filter to understand the influence of cell environment after U exposure. RESULTS The results show that U is not cytotoxic to hCMEC/D3 cells or pericytes until 500 µM (1.6 Bq.L-1). In addition, acute or chronic low-dose exposure of U did not disturb permeability and was conserved in both cell culture models. However, U is able to reach the brain compartment. During the first hours of exposure, the passage of U to the abluminal compartment was significantly reduced in the presence of pericytes. Electronic microscopy studies evidenced the formation of needlelike structures, like urchin-shaped precipitates, from 1 h of exposure. Analytical microscopy confirmed the U composition of these precipitates. Interestingly, precipitated U was detected only in endothelial cells and not in pericytes. U was localized in multilamellar or multivesicular bodies along the endo-lysosomal pathway, suggesting the involvement of these traffic vesicles in U sequestration and/or elimination. CONCLUSIONS We show for the first time the in vitro passage of U across a human cerebral microvascular endothelial cells, and the intracellular localization of U precipitates without any cytotoxicity or modification of paracellular permeability. The difference between the results obtained with monolayers and co-culture models with pericytes illustrates the need to use complex in vitro models in order to mimic the neurovascular unit. Further in vivo studies should be performed to better understand the passage of U across the blood-brain barrier potentially involved in behavioral consequences.
Collapse
Affiliation(s)
- C Gloaguen
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, PSE-SANTE/SERAMED, Fontenay aux Roses, France
| | - A F Raimundo
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, PSE-SANTE/SERAMED, Fontenay aux Roses, France
| | - C Elie
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, PSE-SANTE/SERAMED, Fontenay aux Roses, France
| | - A Schmitt
- Electronic Microscopy Facility, INSERM UMR 1016, Cochin Institute, Paris, France
| | - M Floriani
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO Saint Paul Lez Durance, France
| | - S Favard
- Department of Metabolic Biochemistry, La Pitié- Salpétrière- Charles Foix University Hospital (APHP), Paris, France
| | - D Monneret
- Department of Metabolic Biochemistry, La Pitié- Salpétrière- Charles Foix University Hospital (APHP), Paris, France
| | - F Imbert-Bismut
- Department of Metabolic Biochemistry, La Pitié- Salpétrière- Charles Foix University Hospital (APHP), Paris, France
| | - N Weiss
- Sorbonne Université, Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM, Centre de Recherche Saint-Antoine, Assistance Publique - Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière Charles Foix, Département de Neurologie, Unité de réanimation neurologique, Paris, France.,Unité de réanimation neurologique, Pôle des Maladies du Système Nerveux, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique - Hôpitaux de Paris, et Institut de Neurosciences Translationnelles IHU-A-ICM, Paris, France
| | - M A Deli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - K Tack
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, PSE-SANTE/SERAMED, Fontenay aux Roses, France
| | - P Lestaevel
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, PSE-SANTE/SERAMED, Fontenay aux Roses, France
| | - M A Benadjaoud
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, PSE-SANTE/SERAMED, Fontenay aux Roses, France
| | - A Legendre
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, PSE-SANTE/SERAMED, Fontenay aux Roses, France
| |
Collapse
|
115
|
Imhof BA, Ballet R, Hammel P, Jemelin S, Garrido-Urbani S, Ikeya M, Matthes T, Miljkovic-Licina M. Olfactomedin-like 3 promotes PDGF-dependent pericyte proliferation and migration during embryonic blood vessel formation. FASEB J 2020; 34:15559-15576. [PMID: 32997357 DOI: 10.1096/fj.202000751rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Pericytes promote vessel stability and their dysfunction causes pathologies due to blood vessel leakage. Previously, we reported that Olfactomedin-like 3 (Olfml3) is a matricellular protein with proangiogenic properties. Here, we explored the role of Olfml3 in a knockout mouse model engineered to suppress this protein. The mutant mice exhibited vascular defects in pericyte coverage, suggesting that pericytes influence blood vessel formation in an Olfml3-dependent manner. Olfml3-deficient mice exhibited abnormalities in the vasculature causing partial lethality of embryos and neonates. Reduced pericyte coverage was observed at embryonic day 12.5 and persisted throughout development, resulting in perinatal death of 35% of Olfml3-deficient mice. Cultured Olfml3-deficient pericytes exhibited aberrant motility and altered pericyte association to endothelial cells. Furthermore, the proliferative response of Olfml3-/- pericytes upon PDGF-B stimulation was significantly diminished. Subsequent experiments revealed that intact PDGF-B signaling, mediated via Olfml3 binding, is required for pericyte proliferation and activation of downstream kinase pathways. Our findings suggest a model wherein pericyte recruitment to endothelial cells requires Olfml3 to provide early instructive cue and retain PDGF-B along newly formed vessels to achieve optimal angiogenesis.
Collapse
Affiliation(s)
- Beat A Imhof
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Romain Ballet
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Hammel
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Geneva, Switzerland
| | - Stéphane Jemelin
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Sarah Garrido-Urbani
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Makoto Ikeya
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Thomas Matthes
- Department of Oncology, Hematology Service, Geneva University Hospital, Geneva, Switzerland.,Department of Diagnostics, Clinical Pathology Service, Geneva University Hospital, Geneva, Switzerland.,Translational Research Centre in Oncohaematology, University of Geneva Medical School, Geneva, Switzerland
| | - Marijana Miljkovic-Licina
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland.,Department of Oncology, Hematology Service, Geneva University Hospital, Geneva, Switzerland.,Translational Research Centre in Oncohaematology, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
116
|
Motallebnejad P, Azarin SM. Chemically defined human vascular laminins for biologically relevant culture of hiPSC-derived brain microvascular endothelial cells. Fluids Barriers CNS 2020; 17:54. [PMID: 32912242 PMCID: PMC7488267 DOI: 10.1186/s12987-020-00215-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In recent years, differentiation of human induced pluripotent stem cells (hiPSCs) into brain-specific microvascular endothelial cells (iBMECs) has frequently been used to model the blood-brain barrier (BBB). However, there are limitations in the use of iBMECs for in vitro studies, such as transendothelial electrical resistance (TEER) instability, weak junctional expression of VE-cadherin, and lack of proper fluid shear stress response. In vivo, the basement membrane (BM) composition of the BBB evolves throughout development, and laminins become the dominant component of the mature vascular BM. However, laminin isoforms of the endothelial BM have not been used for culture of differentiated iBMECs. The main goal of this study is to investigate the effect of different laminin isoforms of the endothelial BM on iBMEC functionality and to determine whether better recapitulation of the physiological BM in vitro can address the aforementioned limitations of iBMECs. METHODS Using a previously reported method, hiPSCs were differentiated into iBMECs. The influence of main laminins of the endothelial BM, LN 411 and LN 511, on iBMEC functionality was studied and compared to a collagen IV and fibronectin mixture (CN IV-FN). Quantitative RT-PCR, immunocytochemistry, and TEER measurement were utilized to assess gene and protein expression and barrier properties of iBMECs on different extracellular matrices. Single-channel microfluidic devices were used to study the effect of shear stress on iBMECs. RESULTS LN 511, but not LN 411, improved iBMEC barrier properties and resulted in more sustained TEER stability. Immunocytochemistry showed improved junctional protein expression compared to iBMECs cultured on CN IV-FN. iBMECs cultured on LN 511 showed a reduction of stress fibers, indicating resting endothelial phenotype, whereas gene expression analysis revealed upregulation of multiple genes involved in endothelial activation in iBMECs on CN IV-FN. Finally, culturing iBMECs on LN 511 enhanced physiological responses to shear stress, including morphological changes and enhanced junctional protein association. CONCLUSION LN 511 improves the functionality and long-term barrier stability of iBMECs. Our findings suggest that incorporation of physiologically relevant LN 511 in iBMEC culture would be beneficial for disease modeling applications and BBB-on-a-chip platforms that accommodate fluid flow.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
117
|
Cottarelli A, Corada M, Beznoussenko GV, Mironov AA, Globisch MA, Biswas S, Huang H, Dimberg A, Magnusson PU, Agalliu D, Lampugnani MG, Dejana E. Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/β-catenin signaling. Development 2020; 147:dev.185140. [PMID: 32747434 DOI: 10.1242/dev.185140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) blood vessels contain a functional blood-brain barrier (BBB) that is necessary for neuronal survival and activity. Although Wnt/β-catenin signaling is essential for BBB development, its downstream targets within the neurovasculature remain poorly understood. To identify targets of Wnt/β-catenin signaling underlying BBB maturation, we performed a microarray analysis that identified Fgfbp1 as a novel Wnt/β-catenin-regulated gene in mouse brain endothelial cells (mBECs). Fgfbp1 is expressed in the CNS endothelium and secreted into the vascular basement membrane during BBB formation. Endothelial genetic ablation of Fgfbp1 results in transient hypervascularization but delays BBB maturation in specific CNS regions, as evidenced by both upregulation of Plvap and increased tracer leakage across the neurovasculature due to reduced Wnt/β-catenin activity. In addition, collagen IV deposition in the vascular basement membrane is reduced in mutant mice, leading to defective endothelial cell-pericyte interactions. Fgfbp1 is required cell-autonomously in mBECs to concentrate Wnt ligands near cell junctions and promote maturation of their barrier properties in vitro Thus, Fgfbp1 is a crucial extracellular matrix protein during BBB maturation that regulates cell-cell interactions and Wnt/β-catenin activity.
Collapse
Affiliation(s)
- Azzurra Cottarelli
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy.,Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Monica Corada
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | | | | | - Maria A Globisch
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hua Huang
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Anna Dimberg
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Peetra U Magnusson
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA .,Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Grazia Lampugnani
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy .,Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy .,Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden.,Department of Oncology and Haemato-Oncology, School of Medicine, University of Milan, 20122 Milan, Italy
| |
Collapse
|
118
|
Kemp SS, Aguera KN, Cha B, Davis GE. Defining Endothelial Cell-Derived Factors That Promote Pericyte Recruitment and Capillary Network Assembly. Arterioscler Thromb Vasc Biol 2020; 40:2632-2648. [PMID: 32814441 DOI: 10.1161/atvbaha.120.314948] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We sought to identify and investigate the functional role of the major endothelial cell (EC)-derived factors that control pericyte recruitment to EC tubes and pericyte-induced tube maturation during capillary network formation. Approach and Results: We identify PDGF (platelet-derived growth factor)-BB, PDGF-DD, ET (endothelin)-1, TGF (transforming growth factor)-β, and HB-EGF (heparin-binding epidermal growth factor), as the key individual and combined regulators of pericyte assembly around EC tubes. Using novel pericyte only assays, we demonstrate that PDGF-BB, PDGF-DD, and ET-1 are the primary direct drivers of pericyte invasion. Their addition to pericytes induces invasion as if ECs were present. In contrast, TGF-β and HB-EGF have minimal ability to directly stimulate pericyte invasion. In contrast, TGF-β1 can act as an upstream pericyte primer to stimulate invasion in response to PDGFs and ET-1. HB-EGF stimulates pericyte proliferation along with PDGFs and ET-1. Using EC-pericyte cocultures, individual, or combined blockade of these EC-derived factors, or their pericyte receptors, using neutralizing antibodies or chemical inhibitors, respectively, interferes with pericyte recruitment and proliferation. As individual factors, PDGF-BB and ET-1 have the strongest impact on these events. However, when the blocking reagents are combined to interfere with each of the above factors or their receptors, more dramatic and profound blockade of pericyte recruitment, proliferation, and pericyte-induced basement membrane deposition occurs. Under these conditions, ECs form tubes that become much wider and less elongated as if pericytes were absent. CONCLUSIONS Overall, these new studies define and characterize a functional role for key EC-derived factors controlling pericyte recruitment, proliferation, and pericyte-induced basement membrane deposition during capillary network assembly.
Collapse
Affiliation(s)
- Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Kalia N Aguera
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Byeong Cha
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| |
Collapse
|
119
|
Bhattacharya A, Kaushik DK, Lozinski BM, Yong VW. Beyond barrier functions: Roles of pericytes in homeostasis and regulation of neuroinflammation. J Neurosci Res 2020; 98:2390-2405. [PMID: 32815569 DOI: 10.1002/jnr.24715] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Pericytes are contractile cells that extend along the vasculature to mediate key homeostatic functions of endothelial barriers within the body. In the central nervous system (CNS), pericytes are important contributors to the structure and function of the neurovascular unit, which includes endothelial cells, astrocytes and neurons. The understanding of pericytes has been marred by an inability to accurately distinguish pericytes from other stromal cells with similar expression of identifying markers. Evidence is now growing in favor of pericytes being actively involved in both CNS homeostasis and pathology of neurological diseases, including multiple sclerosis, spinal cord injury, and Alzheimer's disease among others. In this review, we discuss the current understanding on the characterization of pericytes, their roles in maintaining the integrity of the blood-brain barrier, and their contributions to neuroinflammation and neurorepair. Owing to its plethora of surface receptors, pericytes respond to inflammatory mediators such as CCL2 (monocyte chemoattractant protein-1) and tumor necrosis factor-α, in turn secreting CCL2, nitric oxide, and several cytokines. Pericytes can therefore act as promoters of both the innate and adaptive arms of the immune system. Much like professional phagocytes, pericytes also have the ability to clear up cellular debris and macromolecular plaques. Moreover, pericytes promote the activities of CNS glia, including in maturation of oligodendrocyte lineage cells for myelination. Conversely, pericytes can impair regenerative processes by contributing to scar formation. A better characterization of CNS pericytes and their functions would bode well for therapeutics aimed at alleviating their undesirable properties and enhancing their benefits.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- Department of Clinical Neurosciences, Hotchkiss Brain institute, University of Calgary, Calgary, AB, Canada
| | - Deepak Kumar Kaushik
- Department of Clinical Neurosciences, Hotchkiss Brain institute, University of Calgary, Calgary, AB, Canada
| | - Brian Mark Lozinski
- Department of Clinical Neurosciences, Hotchkiss Brain institute, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
120
|
Alexandrushkina N, Nimiritsky P, Eremichev R, Popov V, Arbatskiy M, Danilova N, Malkov P, Akopyan Z, Tkachuk V, Makarevich P. Cell Sheets from Adipose Tissue MSC Induce Healing of Pressure Ulcer and Prevent Fibrosis via Trigger Effects on Granulation Tissue Growth and Vascularization. Int J Mol Sci 2020; 21:E5567. [PMID: 32759725 PMCID: PMC7432086 DOI: 10.3390/ijms21155567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
We report a comparative study of multipotent mesenchymal stromal cells (MSC) delivered by injection, MSC-based cell sheets (CS) or MSC secretome to induce healing of cutaneous pressure ulcer in C57Bl/6 mice. We found that transplantation of CS from adipose-derived MSC resulted in reduction of fibrosis and recovery of skin structure with its appendages (hair and cutaneous glands). Despite short retention of CS on ulcer surface (3-7 days) it induced profound changes in granulation tissue (GT) structure, increasing its thickness and altering vascularization pattern with reduced blood vessel density and increased maturation of blood vessels. Comparable effects on GT vascularization were induced by MSC secretome, yet this treatment has failed to induce repair of skin with its appendages we observed in the CS group. Study of secretome components produced by MSC in monolayer or sheets revealed that CS produce more factors involved in pericyte chemotaxis and blood vessel maturation (PDGF-BB, HGF, G-CSF) but not sprouting inducer (VEGF165). Analysis of transcriptome using RNA sequencing and Gene Ontology mapping found in CS upregulation of proteins responsible for collagen binding and GT maturation as well as fatty acid metabolism enzymes known to be negative regulators of blood vessel sprouting. At the same time, downregulated transcripts were enriched by factors activating capillary growth, suggesting that in MSC sheets paracrine activity may shift towards matrix remodeling and maturation of vasculature, but not activation of blood vessel sprouting. We proposed a putative paracrine trigger mechanism potentially rendering an impact on GT vascularization and remodeling. Our results suggest that within sheets, MSC may change their functional state and spectrum of soluble factors that influence tissue repair and induce more effective skin healing inclining towards regeneration and reduced scarring.
Collapse
Affiliation(s)
- Natalya Alexandrushkina
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Peter Nimiritsky
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Roman Eremichev
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Mikhail Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Natalia Danilova
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
| | - Pavel Malkov
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Vsevolod Tkachuk
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Pavel Makarevich
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| |
Collapse
|
121
|
Abstract
Purpose of review Pericytes are essential components of capillaries in many tissues and organs, contributing to vessel stability and integrity, with additional contributions to microvascular function still being discovered. We review current and foundational studies identifying pericyte differentiation mechanics and their roles in the earliest stages of vessel formation. Recent findings Recent advances in pericyte-focused tools and models have illuminated critical aspects of pericyte biology including their roles in vascular development.Pericytes likely collaborate with endothelial cells undergoing vasculogenesis, initiating direct interactions during sprouting and intussusceptive angiogenesis. Pericytes also provide important regulation of vascular growth including mechanisms underlying vessel pruning, rarefaction, and subsequent regrowth.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Maruf Hoque
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clifton Houk
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA.,Previous Affiliations
| | - Jordan Darden
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA.,Previous Affiliations
| | - John C Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
122
|
Gürpınar T, Kosova F, Kurt FO, Cambaz SU, Yücel AT, Umur N, Tuğlu MI. Effect of geldanamycin on the expression of the matrix molecules and angiogenetic factors in a gastric cancer cell line. Biotech Histochem 2020; 96:111-116. [DOI: 10.1080/10520295.2020.1772507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- T. Gürpınar
- Department of Pharmacology, Medical Faculty, Manisa Celal Bayar University, Manisa, Turkey
| | - F. Kosova
- Department of Biology, School of Vocational Health Service, Manisa Celal Bayar University, Manisa, Turkey
| | - F. O. Kurt
- Department of Biology, Faculty of Science, Manisa Celal Bayar University, Manisa, Turkey
| | - S. U. Cambaz
- Department of Midwifery, Health Science Faculty, Manisa Celal Bayar University, Manisa, Turkey
| | - A. T. Yücel
- Department of Histology and Embryology, School of Vocational Health Service, ManisaCelal Bayar University, Manisa, Turkey
| | - N. Umur
- Department of Biochemistry, School of Vocational Health Service, Manisa Celal Bayar University, Manisa, Turkey
| | - M. I. Tuğlu
- Department of Histology and Embryology, Medical Faculty, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
123
|
Gholobova D, Terrie L, Mackova K, Desender L, Carpentier G, Gerard M, Hympanova L, Deprest J, Thorrez L. Functional evaluation of prevascularization in one-stage versus two-stage tissue engineering approach of human bio-artificial muscle. Biofabrication 2020; 12:035021. [PMID: 32357347 DOI: 10.1088/1758-5090/ab8f36] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A common shortcoming of current tissue engineered constructs is the lack of a functional vasculature, limiting their size and functionality. Prevascularization is a possible strategy to introduce vascular networks in these constructs. It includes among others co-culturing target cells with endothelial (precursor) cells that are able to form endothelial networks through vasculogenesis. In this paper, we compared two different prevascularization approaches of bio-artificial skeletal muscle tissue (BAM) in vitro and in vivo. In a one-stage approach, human muscle cells were directly co-cultured with endothelial cells in 3D. In a two-stage approach, a one week old BAM containing differentiated myotubes was coated with a fibrin hydrogel containing endothelial cells. The obtained endothelial networks were longer and better interconnected with the two-stage approach. We evaluated whether prevascularization had a beneficial effect on in vivo perfusion of the BAM and improved myotube survival by implantation on the fascia of the latissimus dorsi muscle of NOD/SCID mice for 5 or 14 d. Also in vivo, the two-stage approach displayed the highest vascular density. At day 14, anastomosis of implanted endothelial networks with the host vasculature was apparent. BAMs without endothelial networks contained longer and thicker myotubes in vitro, but their morphology degraded in vivo. In contrast, maintenance of myotube morphology was well supported in the two-stage prevascularized BAMs. To conclude, a two-stage prevascularization approach for muscle engineering improved the vascular density in the construct and supported myotube maintenance in vivo.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Wong PP, Muñoz-Félix JM, Hijazi M, Kim H, Robinson SD, De Luxán-Delgado B, Rodríguez-Hernández I, Maiques O, Meng YM, Meng Q, Bodrug N, Dukinfield MS, Reynolds LE, Elia G, Clear A, Harwood C, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Matchett KP, Henderson NC, Szlosarek PW, Dreger SA, Smith S, Jones JL, Gribben JG, Cutillas PR, Meier P, Sanz-Moreno V, Hodivala-Dilke KM. Cancer Burden Is Controlled by Mural Cell-β3-Integrin Regulated Crosstalk with Tumor Cells. Cell 2020; 181:1346-1363.e21. [PMID: 32473126 DOI: 10.1016/j.cell.2020.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/21/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-β3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-β3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell β3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by β3-integrin, providing a previously unrecognized mechanism of cancer growth control.
Collapse
Affiliation(s)
- Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - José M Muñoz-Félix
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Maruan Hijazi
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hyojin Kim
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Beatriz De Luxán-Delgado
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Irene Rodríguez-Hernández
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Oscar Maiques
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiong Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Natalia Bodrug
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthew Scott Dukinfield
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - George Elia
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Catherine Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Yu Wang
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | | | - Rajinder Singh
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Penglie Zhang
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Thomas J Schall
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Kylie P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Peter W Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sally A Dreger
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sally Smith
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
125
|
Kremer H, Gebauer J, Elvers-Hornung S, Uhlig S, Hammes HP, Beltramo E, Steeb L, Harmsen MC, Sticht C, Klueter H, Bieback K, Fiori A. Pro-angiogenic Activity Discriminates Human Adipose-Derived Stromal Cells From Retinal Pericytes: Considerations for Cell-Based Therapy of Diabetic Retinopathy. Front Cell Dev Biol 2020; 8:387. [PMID: 32582693 PMCID: PMC7295949 DOI: 10.3389/fcell.2020.00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a frequent diabetes-associated complication. Pericyte dropout can cause increased vascular permeability and contribute to vascular occlusion. Adipose-derived stromal cells (ASC) have been suggested to replace pericytes and restore microvascular support as potential therapy of DR. In models of DR, ASC not only generated a cytoprotective and reparative environment by the secretion of trophic factors but also engrafted and integrated into the retina in a pericyte-like fashion. The aim of this study was to compare the pro-angiogenic features of human ASC and human retinal microvascular pericytes (HRMVPC) in vitro. The proliferation and the expression of ASC and HRMVPC markers were compared. Adhesion to high glucose-conditioned endothelial extracellular matrix, mimicking the diabetic microenvironment, was measured. The angiogenesis-promoting features of both cell types and their conditioned media on human retinal endothelial cells (EC) were assessed. To identify a molecular basis for the observed differences, gene expression profiling was performed using whole-genome microarrays, and data were validated using PCR arrays and flow cytometry. Based on multiplex cytokine results, functional studies on selected growth factors were performed to assess their role in angiogenic support. Despite a distinct heterogeneity in ASC and HRMVPC cultures with an overlap of expressed markers, ASC differed functionally from HRMVPC. Most importantly, the pro-angiogenic activity was solely featured by ASC, whereas HRMVPC actively suppressed vascular network formation. HRMVPC, in contrast to ASC, showed impaired adhesion and proliferation on the high glucose-conditioned endothelial extracellular matrix. These data were supported by gene expression profiles with differentially expressed genes. The vessel-stabilizing factors were more highly expressed in HRMVPC, and the angiogenesis-promoting factors were more highly expressed in ASC. The vascular endothelial growth factor receptor-2 inhibition efficiently abolished the ASC angiogenic supportive capacities, whereas the addition of angiopoietin-1 and angiopoietin-2 did not alter these effects. Our results clearly show that ASC are pro-angiogenic, whereas HRMVPC are marked by anti-angiogenic/EC-stabilizing features. These data support ASC as pericyte replacement in DR but also suggest a careful risk-to-benefit analysis to take full advantage of the ASC therapeutic features.
Collapse
Affiliation(s)
- Heiner Kremer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Julian Gebauer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Susanne Elvers-Hornung
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Martin C Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Harald Klueter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,HEiKA-Heidelberg Karlsruhe Strategic Partnership, Karlsruhe Institute of Technology (KIT), Heidelberg University, Heidelberg, Germany
| | - Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,HEiKA-Heidelberg Karlsruhe Strategic Partnership, Karlsruhe Institute of Technology (KIT), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
126
|
Wang K, Man K, Liu J, Liu Y, Chen Q, Zhou Y, Yang Y. Microphysiological Systems: Design, Fabrication, and Applications. ACS Biomater Sci Eng 2020; 6:3231-3257. [PMID: 33204830 PMCID: PMC7668566 DOI: 10.1021/acsbiomaterials.9b01667] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microphysiological systems, including organoids, 3-D printed tissue constructs and organ-on-a-chips (organ chips), are physiologically relevant in vitro models and have experienced explosive growth in the past decades. Different from conventional, tissue culture plastic-based in vitro models or animal models, microphysiological systems recapitulate key microenvironmental characteristics of human organs and mimic their primary functions. The advent of microphysiological systems is attributed to evolving biomaterials, micro-/nanotechnologies and stem cell biology, which enable the precise control over the matrix properties and the interactions between cells, tissues and organs in physiological conditions. As such, microphysiological systems have been developed to model a broad spectrum of organs from microvasculature, eye, to lung and many others to understand human organ development and disease pathology and facilitate drug discovery. Multiorgans-on-a-chip systems have also been developed by integrating multiple associated organ chips in a single platform, which allows to study and employ the organ function in a systematic approach. Here we first discuss the design principles of microphysiological systems with a focus on the anatomy and physiology of organs, and then review the commonly used fabrication techniques and biomaterials for microphysiological systems. Subsequently, we discuss the recent development of microphysiological systems, and provide our perspectives on advancing microphysiological systems for preclinical investigation and drug discovery of human disease.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yang Liu
- North Texas Eye Research Institute, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Qi Chen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhou
- Department of Emergency, Xinqiao Hospital, Chongqing 400037, China
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
127
|
Premarathna AD, Ranahewa TH, Wijesekera SK, Harishchandra DL, Karunathilake KJK, Waduge RN, Wijesundara RRMKK, Jayasooriya AP, Wijewardana V, Rajapakse RPVJ. Preliminary screening of the aqueous extracts of twenty-three different seaweed species in Sri Lanka with in-vitro and in-vivo assays. Heliyon 2020; 6:e03918. [PMID: 32529057 PMCID: PMC7283164 DOI: 10.1016/j.heliyon.2020.e03918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/27/2020] [Accepted: 04/30/2020] [Indexed: 01/19/2023] Open
Abstract
Background Seaweeds are an important source of bioactive compounds which are applied in various aspects of medicinal investigations. The present study was conducted to investigate cytoxicity (in-vitro and in-vivo) and wound healing activity of different seaweed species in Sri Lanka. Methods Twenty-three seaweed samples, belonging to Phaeophyta (Brown), Chlorophyta (Green) and Rhodophyta (Red) were used for the experiments. Samples were collected from the inter-tidal and the sub-tidal habitats around Sri Lankan coast (Southern, Northern and North-western). Aqueous seaweed extracts were tested for cytotoxic and wound healing activity; in-vitro and in-vivo. To determine toxicity of aqueous seaweed extracts, brine shrimp lethality assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay on mouse fibroblasts (L929) cell line were performed. Cell migration induction of seaweed extracts was assessed by scratch wound healing assay using L929 cell line. Based on the our previous experiments S.ilicifolium (SW23) was selected for the in vivo study to confirm our hypothesis. Albino mice (BALB/c) were divided into three groups (12 in each) and a circular area (44.07 ± 02.51 mm2) of full skin was excised to create a wound in mice group II and III. Group III received aqueous extract of Sargasum illicifolium (400 mg/kg BW/day for 12 days, orally), Group II received distilled water for 12 days whereas Group I was used as the control group and it was tested without forming wounds and without providing any treatment. Further, the expression level of Tumor Necrosis Factor (TNF-α) and Transforming Growth Factor-β (TGF-β) via RT-PCR were measured every three days until the end of the experiment. Results Phytochemical tests showed positive results to flavonoids in all the selected green seaweeds and alkaloids were observed in red seaweeds. In the toxicity assay, red seaweed, Acanthophora spicifera (SW17) was found to be highly effective on nauplii of brine shrimp (LC50 = 0.072 μg/μl). LC50 value of green seaweed species, Caulerpa racemosa (SW02 and SW08) and Caulerpa sertularioides (SW10) was not found within the tested concentration series. The highest cytotoxic effect on L929 cell line was exhibited by aqueous extracts of red seaweed; Jania adhaereus with 50.70 ± 7.304% cell viability compared with control group. The highest cell migration activity was observed in L929 cell line group treated with extracts of green seaweed namely; Halimeda opuntin (SW07) and extracts of brown seaweed namely; Stoechospermum polypodioides (SW11). Extracts of S. illicifolium (SW23) exhibited a significantly enhanced wound healing activity in mice group III within three days (P < 0.05) with an open wound area of 17.35 ± 1.94 mm2 compared with control group (26.29 ± 2.42 mm2). TGF-β gene expression peaked on 6th day of post-wound and subsequently decreased on 9th day of post-wound in mice group III. TNF-α expression was suppressed in mice group III whereas it was elevated in group II. TGF-β expression is enhanced in the treatment group compared to the control group. Conclusions Aqueous extracts of selected seaweeds are a significant source of potential compounds with wound healing properties, which might be helpful in the healing of various wounds. This also infers that many species of brown and red seaweeds have the potential of wound healing, specifically, Sargasum illicifolium and Jania adhaereus could be a potential candidate for in-vivo studies related to wound healing and cancer therapy in the near future.
Collapse
Affiliation(s)
- Amal D Premarathna
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - T H Ranahewa
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S K Wijesekera
- Department of Zoology, Faculty of Natural Sciences, Open University, Kandy Regional Center, Polgolla, Sri Lanka
| | - D L Harishchandra
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - K J K Karunathilake
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Roshitha N Waduge
- Department of Pathobiology, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - R R M K K Wijesundara
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Anura P Jayasooriya
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka.,Department of Basic Veterinary Sciences, Faculty of Medical Sciences, University of West Indies, Trinidad and Tobago, West Indies
| | - Viskam Wijewardana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka.,Department Atomic Energy Agency (IAEA) Vienna, Austria
| | - R P V J Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
128
|
van Dijk CG, Louzao-Martinez L, van Mulligen E, Boermans B, Demmers JA, van den Bosch TP, Goumans MJ, Duncker DJ, Verhaar MC, Cheng C. Extracellular Matrix Analysis of Human Renal Arteries in Both Quiescent and Active Vascular State. Int J Mol Sci 2020; 21:E3905. [PMID: 32486169 PMCID: PMC7313045 DOI: 10.3390/ijms21113905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/30/2023] Open
Abstract
In vascular tissue engineering strategies, the addition of vascular-specific extracellular matrix (ECM) components may better mimic the in vivo microenvironment and potentially enhance cell-matrix interactions and subsequent tissue growth. For this purpose, the exact composition of the human vascular ECM first needs to be fully characterized. Most research has focused on characterizing ECM components in mature vascular tissue; however, the developing fetal ECM matches the active environment required in vascular tissue engineering more closely. Consequently, we characterized the ECM protein composition of active (fetal) and quiescent (mature) renal arteries using a proteome analysis of decellularized tissue. The obtained human fetal renal artery ECM proteome dataset contains higher levels of 15 ECM proteins versus the mature renal artery ECM proteome, whereas 16 ECM proteins showed higher levels in the mature tissue compared to fetal. Elastic ECM proteins EMILIN1 and FBN1 are significantly enriched in fetal renal arteries and are mainly produced by cells of mesenchymal origin. We functionally tested the role of EMILIN1 and FBN1 by anchoring the ECM secreted by vascular smooth muscle cells (SMCs) to glass coverslips. This ECM layer was depleted from either EMILIN1 or FBN1 by using siRNA targeting of the SMCs. Cultured endothelial cells (ECs) on this modified ECM layer showed alterations on the transcriptome level of multiple pathways, especially the Rho GTPase controlled pathways. However, no significant alterations in adhesion, migration or proliferation were observed when ECs were cultured on EMILIN1- or FNB1-deficient ECM. To conclude, the proteome analysis identified unique ECM proteins involved in the embryonic development of renal arteries. Alterations in transcriptome levels of ECs cultured on EMILIN1- or FBN1-deficient ECM showed that these candidate proteins could affect the endothelial (regenerative) response.
Collapse
Affiliation(s)
- Christian G.M. van Dijk
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
| | - Laura Louzao-Martinez
- Center for Proteomics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (L.L.-M.); (J.A.A.D.)
| | - Elise van Mulligen
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
| | - Bart Boermans
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
| | - Jeroen A.A. Demmers
- Center for Proteomics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (L.L.-M.); (J.A.A.D.)
| | | | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands;
| | - Dirk J. Duncker
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands;
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
| | - Caroline Cheng
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands;
| |
Collapse
|
129
|
Iendaltseva O, Orlova VV, Mummery CL, Danen EHJ, Schmidt T. Fibronectin Patches as Anchoring Points for Force Sensing and Transmission in Human Induced Pluripotent Stem Cell-Derived Pericytes. Stem Cell Reports 2020; 14:1107-1122. [PMID: 32470326 PMCID: PMC7355144 DOI: 10.1016/j.stemcr.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Pericytes (PCs) have been reported to contribute to the mechanoregulation of the capillary diameter and blood flow in health and disease. How this is realized remains poorly understood. We designed several models representing basement membrane (BM) in between PCs and endothelial cells (ECs). These models captured a unique protein organization with micron-sized FN patches surrounded by laminin (LM) and allowed to obtain quantitative information on PC morphology and contractility. Using human induced pluripotent stem cell-derived PCs, we could address mechanical aspects of mid-capillary PC behavior in vitro. Our results showed that PCs strongly prefer FN patches over LM for adhesion formation, have an optimal stiffness for spreading in the range of EC rigidity, and react in a non-canonical way with increased traction forces and reduced spreading on other stiffness then the optimal. Our approach opens possibilities to further study PC force regulation under well-controlled conditions.
Collapse
Affiliation(s)
- Olga Iendaltseva
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Einsteinweg 55, Leiden, South Holland 2333 CC, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, South Holland 2333 CC, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, South Holland, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, South Holland, the Netherlands
| | - Erik H J Danen
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, South Holland 2333 CC, the Netherlands.
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Einsteinweg 55, Leiden, South Holland 2333 CC, the Netherlands.
| |
Collapse
|
130
|
Comparison of skeletal and soft tissue pericytes identifies CXCR4 + bone forming mural cells in human tissues. Bone Res 2020; 8:22. [PMID: 32509378 PMCID: PMC7244476 DOI: 10.1038/s41413-020-0097-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Human osteogenic progenitors are not precisely defined, being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells (MSCs). Notably, select human pericytes can develop into bone-forming osteoblasts. Here, we sought to define the differentiation potential of CD146+ human pericytes from skeletal and soft tissue sources, with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte. CD146+CD31-CD45- pericytes were derived by fluorescence-activated cell sorting from human periosteum, adipose, or dermal tissue. Periosteal CD146+CD31-CD45- cells retained canonical features of pericytes/MSC. Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo, while soft tissue pericytes did not readily. Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts, and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes. Conversely, enrichment of CXCR4+ pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell. In sum, human skeletal and soft tissue pericytes differ in their basal abilities to form bone. Diversity exists in soft tissue pericytes, however, and CXCR4+ pericytes represent an osteoblastogenic, non-adipocytic cell precursor. Indeed, enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering.
Collapse
|
131
|
Pellicani R, Poletto E, Andreuzzi E, Paulitti A, Doliana R, Bizzotto D, Braghetta P, Colladel R, Tarticchio G, Sabatelli P, Bucciotti F, Bressan G, Iozzo RV, Colombatti A, Bonaldo P, Mongiat M. Multimerin-2 maintains vascular stability and permeability. Matrix Biol 2020; 87:11-25. [DOI: 10.1016/j.matbio.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
132
|
Control of Angiogenesis via a VHL/miR-212/132 Axis. Cells 2020; 9:cells9041017. [PMID: 32325871 PMCID: PMC7226144 DOI: 10.3390/cells9041017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
A common feature of tumorigenesis is the upregulation of angiogenesis pathways in order to supply nutrients via the blood for the growing tumor. Understanding how cells promote angiogenesis and how to control these processes pharmaceutically are of great clinical interest. Clear cell renal cell carcinoma (ccRCC) is the most common form of sporadic and inherited kidney cancer which is associated with excess neovascularization. ccRCC is highly associated with biallelic mutations in the von Hippel–Lindau (VHL) tumor suppressor gene. Although upregulation of the miR-212/132 family and disturbed VHL signaling have both been linked with angiogenesis, no evidence of a possible connection between the two has yet been made. We show that miRNA-212/132 levels are increased after loss of functional pVHL, the protein product of the VHL gene, in vivo and in vitro. Furthermore, we show that blocking miRNA-212/132 with anti-miRs can significantly alleviate the excessive vascular branching phenotype characteristic of vhl−/− mutant zebrafish. Moreover, using human umbilical vascular endothelial cells (HUVECs) and an endothelial cell/pericyte coculture system, we observed that VHL knockdown promotes endothelial cells neovascularization capacity in vitro, an effect which can be inhibited by anti-miR-212/132 treatment. Taken together, our results demonstrate an important role for miRNA-212/132 in angiogenesis induced by loss of VHL. Intriguingly, this also presents a possibility for the pharmaceutical manipulation of angiogenesis by modulating levels of MiR212/132.
Collapse
|
133
|
Du P, Da Costa ADS, Savitri C, Ha SS, Wang PY, Park K. An injectable, self-assembled multicellular microsphere with the incorporation of fibroblast-derived extracellular matrix for therapeutic angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110961. [PMID: 32487382 DOI: 10.1016/j.msec.2020.110961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Decellularized human lung fibroblast-derived matrix (hFDM) has demonstrated its excellent proangiogenic capability. In this study, we propose a self-assembled, injectable multicellular microspheres containing human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cell (MSCs), collagen hydrogel (Col), and hFDM toward therapeutic angiogenesis. Those multicellular microspheres are spontaneously formed by the mixtures of cell and hydrogel after being dropped on the parafilm for several hours. The size of microspheres can be manipulated via adjusting the initial volume of droplets and the culture period. The cells in the microspheres are highly viable. Multicellular microspheres show good capability of cell migration on 2D culture plate and also exhibit active cell sprouting in 3D environment (Col) forming capillary-like structures. We also find that multiple angiogenic-related factors are significantly upregulated with the multicellular microspheres prepared via Col and hFDM (Col/hFDM) than those prepared using Col alone or single cells (harvested from cocultured HUVECs/MSCs in monolayer). For therapeutic efficacy evaluation, three different groups of single cells, Col and Col/hFDM microspheres are injected to a hindlimb ischemic model, respectively, along with PBS injection as a control group. It is notable that Col/hFDM microspheres significantly improve the blood reperfusion and greatly attenuate the fibrosis level of the ischemic regions. In addition, Col/hFDM microspheres show higher cell engraftment level than that of the other groups. The incorporation of transplanted cells with host vasculature is detectable only with the treatment of Col/hFDM. Current results suggest that hFDM plays an important role in the multicellular microspheres for angiogenic cellular functions in vitro as well as in vivo. Taken together, our injectable multicellular microspheres (Col/hFDM) offer a very promising platform for cell delivery and tissue regenerative applications.
Collapse
Affiliation(s)
- Ping Du
- Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | | | - Cininta Savitri
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Sang Su Ha
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Peng-Yuan Wang
- Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
134
|
Gonzalez-Avila G, Sommer B, García-Hernández AA, Ramos C. Matrix Metalloproteinases' Role in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:97-131. [PMID: 32266655 DOI: 10.1007/978-3-030-40146-7_5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells evolve in the tumor microenvironment (TME) by the acquisition of characteristics that allow them to initiate their passage through a series of events that constitute the metastatic cascade. For this purpose, tumor cells maintain a crosstalk with TME non-neoplastic cells transforming them into their allies. "Corrupted" cells such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs) as well as neoplastic cells express and secrete matrix metalloproteinases (MMPs). Moreover, TME metabolic conditions such as hypoxia and acidification induce MMPs' synthesis in both cancer and stromal cells. MMPs' participation in TME consists in promoting events, for example, epithelial-mesenchymal transition (EMT), apoptosis resistance, angiogenesis, and lymphangiogenesis. MMPs also facilitate tumor cell migration through the basement membrane (BM) and extracellular matrix (ECM). The aim of the present chapter is to discuss MMPs' contribution to the evolution of cancer cells, their cellular origin, and their influence in the main processes that take place in the TME.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando García-Hernández
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
135
|
Affiliation(s)
- Minkyung Kang
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA
| | - Yao Yao
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA
| |
Collapse
|
136
|
Trout AL, Rutkai I, Biose IJ, Bix GJ. Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia. Int J Mol Sci 2020; 21:E679. [PMID: 31968632 PMCID: PMC7013765 DOI: 10.3390/ijms21020679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023] Open
Abstract
Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan's influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer's disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan's role in health and in cerebrovascular disease.
Collapse
Affiliation(s)
- Amanda L. Trout
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Ibolya Rutkai
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Ifechukwude J. Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
137
|
Δ9-tetrahydrocannabinol exposure during rat pregnancy leads to symmetrical fetal growth restriction and labyrinth-specific vascular defects in the placenta. Sci Rep 2020; 10:544. [PMID: 31953475 PMCID: PMC6969028 DOI: 10.1038/s41598-019-57318-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
1 in 5 women report cannabis use during pregnancy, with nausea cited as their primary motivation. Studies show that (-)-△9-tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in cannabis, causes fetal growth restriction, though the mechanisms are not well understood. Given the critical role of the placenta to transfer oxygen and nutrients from mother, to the fetus, any compromise in the development of fetal-placental circulation significantly affects maternal-fetal exchange and thereby, fetal growth. The goal of this study was to examine, in rats, the impact of maternal Δ9-THC exposure on fetal development, neonatal outcomes, and placental development. Dams received a daily intraperitoneal injection (i.p.) of vehicle control or Δ9-THC (3 mg/kg) from embryonic (E)6.5 through 22. Dams were allowed to deliver normally to measure pregnancy and neonatal outcomes, with a subset sacrificed at E19.5 for placenta assessment via immunohistochemistry and qPCR. Gestational Δ9-THC exposure resulted in pups born with symmetrical fetal growth restriction, with catch up growth by post-natal day (PND)21. During pregnancy there were no changes to maternal food intake, maternal weight gain, litter size, or gestational length. E19.5 placentas from Δ9-THC-exposed pregnancies exhibited a phenotype characterized by increased labyrinth area, reduced Epcam expression (marker of labyrinth trophoblast progenitors), altered maternal blood space, decreased fetal capillary area and an increased recruitment of pericytes with greater collagen deposition, when compared to vehicle controls. Further, at E19.5 labyrinth trophoblast had reduced glucose transporter 1 (GLUT1) and glucocorticoid receptor (GR) expression in response to Δ9-THC exposure. In conclusion, maternal exposure to Δ9-THC effectively compromised fetal growth, which may be a result of the adversely affected labyrinth zone development. These findings implicate GLUT1 as a Δ9-THC target and provide a potential mechanism for the fetal growth restriction observed in women who use cannabis during pregnancy.
Collapse
|
138
|
Yamazaki Y, Shinohara M, Yamazaki A, Ren Y, Asmann YW, Kanekiyo T, Bu G. ApoE (Apolipoprotein E) in Brain Pericytes Regulates Endothelial Function in an Isoform-Dependent Manner by Modulating Basement Membrane Components. Arterioscler Thromb Vasc Biol 2020; 40:128-144. [PMID: 31665905 PMCID: PMC7007705 DOI: 10.1161/atvbaha.119.313169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The ε4 allele of the APOE gene (APOE4) is the strongest genetic risk factor for Alzheimer disease when compared with the common ε3 allele. Although there has been significant progress in understanding how apoE4 (apolipoprotein E4) drives amyloid pathology, its effects on amyloid-independent pathways, in particular cerebrovascular integrity and function, are less clear. Approach and Results: Here, we show that brain pericytes, the mural cells of the capillary walls, differentially modulate endothelial cell phenotype in an apoE isoform-dependent manner. Extracellular matrix protein induction, tube-like structure formation, and barrier formation were lower with endothelial cells cocultured with pericytes isolated from apoE4-targeted replacement (TR) mice compared with those from apoE3-TR mice. Importantly, aged apoE4-targeted replacement mice had decreased extracellular matrix protein expression and increased plasma protein leakages compared with apoE3-TR mice. CONCLUSIONS ApoE4 impairs pericyte-mediated basement membrane formation, potentially contributing to the cerebrovascular effects of apoE4.
Collapse
Affiliation(s)
- Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | | | - Akari Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224
| | - Yan W. Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224
| | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| |
Collapse
|
139
|
Liu Q, Yang Y, Fan X. Microvascular pericytes in brain-associated vascular disease. Biomed Pharmacother 2020; 121:109633. [DOI: 10.1016/j.biopha.2019.109633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
|
140
|
Koller GM, Schafer C, Kemp SS, Aguera KN, Lin PK, Forgy JC, Griffin CT, Davis GE. Proinflammatory Mediators, IL (Interleukin)-1β, TNF (Tumor Necrosis Factor) α, and Thrombin Directly Induce Capillary Tube Regression. Arterioscler Thromb Vasc Biol 2019; 40:365-377. [PMID: 31852224 DOI: 10.1161/atvbaha.119.313536] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In this work, we examine the molecular basis for capillary tube regression and identify key proregressive factors, signaling pathways, and pharmacological antagonists of this process. Approach and Results: We demonstrate that the proinflammatory mediators, IL (interleukin)-1β, TNF (tumor necrosis factor) α, and thrombin, singly and in combination, are potent regulators of capillary tube regression in vitro. These proregressive factors, when added to endothelial cell-pericyte cocultures, led to selective loss of endothelial cell-lined tube networks, with retention and proliferation of pericytes despite the marked destruction of adjacent capillary tubes. Moreover, treatment of macrophages with the TLR (toll-like receptor) agonists Pam3CSK4 and lipopolysaccharide generates conditioned media with marked proregressive activity, that is completely blocked by a combination of neutralizing antibodies directed to IL-1β and TNFα but not to other factors. The same combination of blocking antibodies, as well as the anti-inflammatory cytokine IL-10, interfere with macrophage-dependent hyaloid vasculature regression in mice suggesting that proinflammatory cytokine signaling regulates capillary regression in vivo. In addition, we identified a capillary regression signaling signature in endothelial cells downstream of these proregressive agents that is characterized by increased levels of ICAM-1 (intercellular adhesion molecule-1), phospho-p38, and phospho-MLC2 (myosin light chain-2) and decreased levels of phospho-Pak2, acetylated tubulin, phospho-cofilin, and pro-caspase3. Finally, we identified combinations of pharmacological agents (ie, FIST and FISTSB) that markedly rescue the proregressive activities of IL-1β, TNFα, and thrombin, individually and in combination. CONCLUSIONS Overall, these new studies demonstrate that the major proinflammatory mediators, IL-1β, TNFα, and thrombin, are key regulators of capillary tube regression-a critical pathological process regulating human disease.
Collapse
Affiliation(s)
- Gretchen M Koller
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Christopher Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (C.S., C.T.G.), University of Oklahoma Health Sciences Center
| | - Scott S Kemp
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Kalia N Aguera
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Prisca K Lin
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Joshua C Forgy
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (C.S., C.T.G.), University of Oklahoma Health Sciences Center.,Department of Cell Biology (C.T.G.), University of Oklahoma Health Sciences Center
| | - George E Davis
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| |
Collapse
|
141
|
Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 2019; 235:119708. [PMID: 31999964 DOI: 10.1016/j.biomaterials.2019.119708] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Skeletal muscle tissue can be created in vitro by tissue engineering approaches, based on differentiation of muscle stem cells. Several approaches exist and generally result in three dimensional constructs composed of multinucleated myofibers to which we refer as myooids. Engineering methods date back to 3 decades ago and meanwhile a wide range of cell types and scaffold types have been evaluated. Nevertheless, in most approaches, myooids remain very small to allow for diffusion-mediated nutrient supply and waste product removal, typically less than 1 mm thick. One of the shortcomings of current in vitro skeletal muscle organoid development is the lack of a functional vascular structure, thus limiting the size of myooids. This is a challenge which is nowadays applicable to almost all organoid systems. Several approaches to obtain a vascular structure within myooids have been proposed. The purpose of this review is to give a concise overview of these approaches.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - H Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
142
|
Zhou Y, Liu C, He J, Dong L, Zhu H, Zhang B, Feng X, Weng W, Cheng K, Yu M, Wang H. KLF2 + stemness maintains human mesenchymal stem cells in bone regeneration. Stem Cells 2019; 38:395-409. [PMID: 31721356 DOI: 10.1002/stem.3120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/01/2019] [Indexed: 01/04/2023]
Abstract
Mesenchymal stem cells (MSCs), which are undifferentiated stem cells with the property of stemness and the potential to differentiate into multiple lineages, including osteoblasts, have attracted a great deal of attention in bone tissue engineering. Consistent with the heterogeneity of MSCs, various surface markers have been used. However, it is still unclear which markers of MSCs are best for cell amplification in vitro and later bone regeneration in vivo. Krüppel-like Factor 2 (KLF2) is an important indicator of the stemness of human MSCs (hMSCs) and as early vascularization is also critical for bone regeneration, we used KLF2 as a novel in vitro marker for MSCs and investigated the angiogenesis and osteogenesis between KLF2+ MSCs and endothelial cells (ECs). We found a synergistic interaction between hMSCs and human umbilical vein ECs (HUVECs) in that KLF2+ stemness-maintained hMSCs initially promoted the angiogenesis of HUVECs, which in turn more efficiently stimulated the osteogenesis of hMSCs. In fact, KLF2+ hMSCs secreted angiogenic factors initially, with some of the cells then differentiating into pericytes through the PDGF-BB/PDGFR-β signaling pathway, which improved blood vessel formation. The matured HUVECs in turn synergistically enhanced the osteogenesis of KLF2+ hMSCs through upregulated vascular endothelial growth factor. A three-dimensional coculture model using cell-laden gelatin methacrylate (GelMA) hydrogel further confirmed these results. This study provides insight into the stemness-directed synergistic interaction between hMSCs and HUVECs, and our results will have a profound impact on further strategies involving the application of KLF2+ hMSC/HUVEC-laden GelMA hydrogel in vascular network bioengineering and bone regeneration.
Collapse
Affiliation(s)
- Ying Zhou
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Liu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianxiang He
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Huiyong Zhu
- The First Affiliated Hospital of Medical College, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Bin Zhang
- The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoxia Feng
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenjian Weng
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Kui Cheng
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- The First Affiliated Hospital of Medical College, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Huiming Wang
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- The First Affiliated Hospital of Medical College, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
143
|
Gautam J, Miner JH, Yao Y. Loss of Endothelial Laminin α5 Exacerbates Hemorrhagic Brain Injury. Transl Stroke Res 2019; 10:705-718. [PMID: 30693425 PMCID: PMC6663661 DOI: 10.1007/s12975-019-0688-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
Endothelial cells make laminin-411 and laminin-511. Although laminin-411 is well studied, the role of laminin-511 remains largely unknown due to the embryonic lethality of lama5-/- mutants. In this study, we generated endothelium-specific lama5 conditional knockout (α5-TKO) mice and investigated the biological functions of endothelial lama5 in blood-brain barrier (BBB) maintenance under homeostatic conditions and the pathogenesis of intracerebral hemorrhage (ICH). First, the BBB integrity of α5-TKO mice was measured under homeostatic conditions. Next, ICH was induced in α5-TKO mice and their littermate controls using the collagenase model. Various parameters, including injury volume, neuronal death, neurological score, brain edema, BBB integrity, inflammatory cell infiltration, and gliosis, were examined at various time points after injury. Under homeostatic conditions, comparable levels of IgG or exogenous tracers were detected in α5-TKO and control mice. Additionally, no differences in tight junction expression, pericyte coverage, and astrocyte polarity were found in these mice. After ICH, α5-TKO mice displayed enlarged injury volume, increased neuronal death, elevated BBB permeability, exacerbated infiltration of inflammatory cells (leukocytes, neutrophils, and mononuclear cells), aggravated gliosis, unchanged brain edema, and worse neurological function, compared to the controls. These findings suggest that endothelial lama5 is dispensable for BBB maintenance under homeostatic conditions but plays a beneficial role in ICH.
Collapse
Affiliation(s)
- Jyoti Gautam
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
144
|
Attrill E, Ramsay C, Ross R, Richards S, Sutherland BA, Keske MA, Eringa E, Premilovac D. Metabolic-vascular coupling in skeletal muscle: A potential role for capillary pericytes? Clin Exp Pharmacol Physiol 2019; 47:520-528. [PMID: 31702069 DOI: 10.1111/1440-1681.13208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
The matching of capillary blood flow to metabolic rate of the cells within organs and tissues is a critical microvascular function which ensures appropriate delivery of hormones and nutrients, and the removal of waste products. This relationship is particularly important in tissues where local metabolism, and hence capillary blood flow, must be regulated to avoid a mismatch between nutrient demand and supply that would compromise normal function. The consequences of a mismatch in microvascular blood flow and metabolism are acutely apparent in the brain and heart, where a sudden cessation of blood flow, for example following an embolism, acutely manifests as stroke or myocardial infarction. Even in more resilient tissues such as skeletal muscle, a short-term mismatch reduces muscle performance and exercise tolerance, and can cause intermittent claudication. In the longer-term, a microvascular-metabolic mismatch in skeletal muscle reduces insulin-mediated muscle glucose uptake, leading to disturbances in whole-body metabolic homeostasis. While the notion that capillary blood flow is fine-tuned to meet cellular metabolism is well accepted, the mechanisms that control this function and where and how different parts of the vascular tree contribute to capillary blood flow regulation remain poorly understood. Here, we discuss the emerging evidence implicating pericytes, mural cells that surround capillaries, as key mediators that match tissue metabolic demand with adequate capillary blood flow in a number of organs, including skeletal muscle.
Collapse
Affiliation(s)
- Emily Attrill
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Ciaran Ramsay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Renee Ross
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Stephen Richards
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Brad A Sutherland
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Michelle A Keske
- The Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Vic., Australia
| | - Etto Eringa
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Dino Premilovac
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| |
Collapse
|
145
|
Mukwaya A, Mirabelli P, Lennikov A, Thangavelu M, Ntzouni M, Jensen L, Peebo B, Lagali N. Revascularization after angiogenesis inhibition favors new sprouting over abandoned vessel reuse. Angiogenesis 2019; 22:553-567. [PMID: 31486010 PMCID: PMC6863948 DOI: 10.1007/s10456-019-09679-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Abstract
Inhibiting pathologic angiogenesis can halt disease progression, but such inhibition may offer only a temporary benefit, followed by tissue revascularization after treatment stoppage. This revascularization, however, occurs by largely unknown phenotypic changes in pathologic vessels. To investigate the dynamics of vessel reconfiguration during revascularization, we developed a model of reversible murine corneal angiogenesis permitting longitudinal examination of the same vasculature. Following 30 days of angiogenesis inhibition, two types of vascular structure were evident: partially regressed persistent vessels that were degenerate and barely functional, and fully regressed, non-functional empty basement membrane sleeves (ebms). While persistent vessels maintained a limited flow and retained collagen IV+ basement membrane, CD31+ endothelial cells (EC), and α-SMA+ pericytes, ebms were acellular and expressed only collagen IV. Upon terminating angiogenesis inhibition, transmission electron microscopy and live imaging revealed that revascularization ensued by a rapid reversal of EC degeneracy in persistent vessels, facilitating their phenotypic normalization, vasodilation, increased flow, and subsequent new angiogenic sprouting. Conversely, ebms were irreversibly sealed from the circulation by excess collagen IV deposition that inhibited EC migration and prevented their reuse. Fully and partially regressed vessels therefore have opposing roles during revascularization, where fully regressed vessels inhibit new sprouting while partially regressed persistent vessels rapidly reactivate and serve as the source of continued pathologic angiogenesis.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
| | - Pierfrancesco Mirabelli
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
- Mason Eye Institute, Ophthalmology-Retinal Vascular Service Hospital MA102C, Missouri, MO, USA
| | - Muthukumar Thangavelu
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
- Department of BIN Convergence Technology & Dept PolymerNano Sci & Tech, Chonbuk National University, Jeonju, Republic of Korea
| | - Maria Ntzouni
- Electron Microscopy and Histology Laboratory, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden.
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
146
|
Payne LB, Zhao H, James CC, Darden J, McGuire D, Taylor S, Smyth JW, Chappell JC. The pericyte microenvironment during vascular development. Microcirculation 2019; 26:e12554. [PMID: 31066166 PMCID: PMC6834874 DOI: 10.1111/micc.12554] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
Vascular pericytes provide critical contributions to the formation and integrity of the blood vessel wall within the microcirculation. Pericytes maintain vascular stability and homeostasis by promoting endothelial cell junctions and depositing extracellular matrix (ECM) components within the vascular basement membrane, among other vital functions. As their importance in sustaining microvessel health within various tissues and organs continues to emerge, so does their role in a number of pathological conditions including cancer, diabetic retinopathy, and neurological disorders. Here, we review vascular pericyte contributions to the development and remodeling of the microcirculation, with a focus on the local microenvironment during these processes. We discuss observations of their earliest involvement in vascular development and essential cues for their recruitment to the remodeling endothelium. Pericyte involvement in the angiogenic sprouting context is also considered with specific attention to crosstalk with endothelial cells such as through signaling regulation and ECM deposition. We also address specific aspects of the collective cell migration and dynamic interactions between pericytes and endothelial cells during angiogenic sprouting. Lastly, we discuss pericyte contributions to mechanisms underlying the transition from active vessel remodeling to the maturation and quiescence phase of vascular development.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
| | - Huaning Zhao
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
| | - Carissa C. James
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jordan Darden
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David McGuire
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sarah Taylor
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
| | - James W. Smyth
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biological Sciences, College of Science, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - John C. Chappell
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
147
|
Brandt MM, van Dijk CGM, Maringanti R, Chrifi I, Kramann R, Verhaar MC, Duncker DJ, Mokry M, Cheng C. Transcriptome analysis reveals microvascular endothelial cell-dependent pericyte differentiation. Sci Rep 2019; 9:15586. [PMID: 31666598 PMCID: PMC6821775 DOI: 10.1038/s41598-019-51838-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/10/2019] [Indexed: 11/11/2022] Open
Abstract
Microvascular homeostasis is strictly regulated, requiring close interaction between endothelial cells and pericytes. Here, we aimed to improve our understanding of how microvascular crosstalk affects pericytes. Human-derived pericytes, cultured in absence, or presence of human endothelial cells, were studied by RNA sequencing. Compared with mono-cultured pericytes, a total of 6704 genes were differentially expressed in co-cultured pericytes. Direct endothelial contact induced transcriptome profiles associated with pericyte maturation, suppression of extracellular matrix production, proliferation, and morphological adaptation. In vitro studies confirmed enhanced pericyte proliferation mediated by endothelial-derived PDGFB and pericyte-derived HB-EGF and FGF2. Endothelial-induced PLXNA2 and ACTR3 upregulation also triggered pericyte morphological adaptation. Pathway analysis predicted a key role for TGFβ signaling in endothelial-induced pericyte differentiation, whereas the effect of signaling via gap- and adherens junctions was limited. We demonstrate that endothelial cells have a major impact on the transcriptional profile of pericytes, regulating endothelial-induced maturation, proliferation, and suppression of ECM production.
Collapse
Affiliation(s)
- Maarten M Brandt
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ranganath Maringanti
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ihsan Chrifi
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk J Duncker
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michal Mokry
- Epigenomics facility, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
148
|
Chiaverina G, di Blasio L, Monica V, Accardo M, Palmiero M, Peracino B, Vara-Messler M, Puliafito A, Primo L. Dynamic Interplay between Pericytes and Endothelial Cells during Sprouting Angiogenesis. Cells 2019; 8:cells8091109. [PMID: 31546913 PMCID: PMC6770602 DOI: 10.3390/cells8091109] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Vascular physiology relies on the concerted dynamics of several cell types, including pericytes, endothelial, and vascular smooth muscle cells. The interactions between such cell types are inherently dynamic and are not easily described with static, fixed, experimental approaches. Pericytes are mural cells that support vascular development, remodeling, and homeostasis, and are involved in a number of pathological situations including cancer. The dynamic interplay between pericytes and endothelial cells is at the basis of vascular physiology and few experimental tools exist to properly describe and study it. Here we employ a previously developed ex vivo murine aortic explant to study the formation of new blood capillary-like structures close to physiological situation. We develop several mouse models to culture, identify, characterize, and follow simultaneously single endothelial cells and pericytes during angiogenesis. We employ microscopy and image analysis to dissect the interactions between cell types and the process of cellular recruitment on the newly forming vessel. We find that pericytes are recruited on the developing sprout by proliferation, migrate independently from endothelial cells, and can proliferate on the growing capillary. Our results help elucidating several relevant mechanisms of interactions between endothelial cells and pericytes.
Collapse
Affiliation(s)
- Giulia Chiaverina
- Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy.
- Department of Oncology, University of Turin, 10060 Candiolo, Italy.
| | - Laura di Blasio
- Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy.
- Department of Oncology, University of Turin, 10060 Candiolo, Italy.
| | - Valentina Monica
- Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy.
- Department of Oncology, University of Turin, 10060 Candiolo, Italy.
| | - Massimo Accardo
- Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy.
| | - Miriam Palmiero
- Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy.
- Department of Oncology, University of Turin, 10060 Candiolo, Italy.
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy.
| | - Marianela Vara-Messler
- Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy.
- Department of Oncology, University of Turin, 10060 Candiolo, Italy.
| | - Alberto Puliafito
- Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy.
- Department of Oncology, University of Turin, 10060 Candiolo, Italy.
| | - Luca Primo
- Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy.
- Department of Oncology, University of Turin, 10060 Candiolo, Italy.
| |
Collapse
|
149
|
Abstract
INTRODUCTION The life cycle of infantile hemangioma (IH) and secretion of follicle-stimulating hormone (FSH) are identical. We previously have shown that IH contains the FSH receptor (FSHR). The purpose of this study was to identify which cell type(s) in IH expresses FSHR. METHODS Human proliferating IH tissues obtained during a clinically indicated surgical procedure were used. Paraffin sections and isolated cell populations (endothelial, pericyte, stem cell) were subjected to immunofluorescence for FSHR. Tissues were costained with DAPI, anti-α smooth muscle actin, or biotinylated Ulex Europaeus Agglutinin I to identify nuclei, pericytes, and endothelial cells, respectively. Whole tissue and purified single cell populations underwent polymerase chain reaction (PCR) for FSHR. Positive control specimens (ovary, sertoli cells) and negative control tissues (skin/subcutis, hepatic cells) were included. RESULTS Immunofluorescence of 9 IHs demonstrated that FSHR was enriched in pericytes compared with endothelial cells. Follicle-stimulating hormone receptor was expressed in 6 of 6 whole tissue IHs along with the positive control via PCR. Follicle-stimulating hormone receptor was not present in the negative control samples. Four of 5 sets of pericytes expressed FSHR by PCR. Neither IH endothelial cells, IH stem cells, nor negative control cells exhibited FSHR by PCR. CONCLUSIONS Because the secretion of FSH correlates with the growth pattern of IH, FSH might be involved in the disease process. Follicle-stimulating hormone receptor is enriched in the pericytes of IH, suggesting that this cell type may be involved in the pathogenesis of the tumor.
Collapse
|
150
|
Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A, Braga de Freitas G, Gonçalves RA, Gupta D, Gupta R, Ha SR, Hemming IA, Jaggar M, Jakobsen E, Kumari P, Lakkappa N, Marsh APL, Mitlöhner J, Ogawa Y, Paidi RK, Ribeiro FC, Salamian A, Saleem S, Sharma S, Silva JM, Singh S, Sulakhiya K, Tefera TW, Vafadari B, Yadav A, Yamazaki R, Seidenbecher CI. The energetic brain - A review from students to students. J Neurochem 2019; 151:139-165. [PMID: 31318452 DOI: 10.1111/jnc.14829] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
Collapse
Affiliation(s)
- Melina Paula Bordone
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Haley E Titus
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Artem V Diuba
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatsiana G Dubouskaya
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Eric Ehrke
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Andiara Espindola de Freitas
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Richa Gupta
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sharon R Ha
- Baylor College of Medicine, Houston, Texas, USA
| | - Isabel A Hemming
- Brain Growth and Disease Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Crawley, Australia
| | - Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Punita Kumari
- Defense Institute of Physiology and allied sciences, Defense Research and Development Organization, Timarpur, Delhi, India
| | - Navya Lakkappa
- Department of Pharmacology, JSS college of Pharmacy, Ooty, India
| | - Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jessica Mitlöhner
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Yuki Ogawa
- The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | | | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Suraiya Saleem
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
| | - Shripriya Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Tesfaye Wolde Tefera
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Behnam Vafadari
- Institute of environmental medicine, UNIKA-T, Technical University of Munich, Munich, Germany
| | - Anuradha Yadav
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Reiji Yamazaki
- Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|