101
|
Bagavant H, Durslewicz J, Pyclik M, Makuch M, Papinska JA, Deshmukh US. Age-associated B cell infiltration in salivary glands represents a hallmark of Sjögren's-like disease in aging mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580185. [PMID: 38405963 PMCID: PMC10888762 DOI: 10.1101/2024.02.13.580185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Sjögren's disease (SjD), characterized by circulating autoantibodies and exocrine gland inflammation, is typically diagnosed in women over 50 years of age. However, the contribution of age to SjD pathogenesis is unclear. C57BL/6 female mice at different ages were studied to investigate how aging influences the dynamics of salivary gland inflammation. Salivary glands were characterized for immune cell infiltration, inflammatory gene expression, oxidative stress, and saliva production. At 8 months, gene expression of several chemokines involved in immune cell trafficking was significantly elevated. At this age, Age-associated B cells (ABCs), a unique subset of B cells expressing the myeloid markers CD11b and/or CD11c, were preferentially enriched in the salivary glands compared to other organs like the spleen or liver. The salivary gland ABCs increased with age and positively correlated with increased CD4 T follicular helper cells. By 14 months, lymphocytic foci of well-organized T and B cells spontaneously developed in the salivary glands. In addition, the mice progressively developed high titers of serum autoantibodies. A subset of aged mice developed salivary gland dysfunction mimicking SjD patients. Our data demonstrates that aging is a significant confounding factor for SjD. Thus, aged female C57BL/6 mice are more appropriate and a valuable preclinical model for investigating SjD pathogenesis and novel therapeutic interventions.
Collapse
|
102
|
Bracken SJ, Suthers AN, DiCioccio RA, Su H, Anand S, Poe JC, Jia W, Visentin J, Basher F, Jordan CZ, McManigle WC, Li Z, Hakim FT, Pavletic SZ, Bhuiya NS, Ho VT, Horwitz ME, Chao NJ, Sarantopoulos S. Heightened TLR7 signaling primes BCR-activated B cells in chronic graft-versus-host disease for effector functions. Blood Adv 2024; 8:667-680. [PMID: 38113462 PMCID: PMC10839617 DOI: 10.1182/bloodadvances.2023010362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT Chronic graft-versus-host disease (cGVHD) is a debilitating, autoimmune-like syndrome that can occur after allogeneic hematopoietic stem cell transplantation. Constitutively activated B cells contribute to ongoing alloreactivity and autoreactivity in patients with cGVHD. Excessive tissue damage that occurs after transplantation exposes B cells to nucleic acids in the extracellular environment. Recognition of endogenous nucleic acids within B cells can promote pathogenic B-cell activation. Therefore, we hypothesized that cGVHD B cells aberrantly signal through RNA and DNA sensors such as Toll-like receptor 7 (TLR7) and TLR9. We found that B cells from patients and mice with cGVHD had higher expression of TLR7 than non-cGVHD B cells. Using ex vivo assays, we found that B cells from patients with cGVHD also demonstrated increased interleukin-6 production after TLR7 stimulation with R848. Low-dose B-cell receptor (BCR) stimulation augmented B-cell responses to TLR7 activation. TLR7 hyperresponsiveness in cGVHD B cells correlated with increased expression and activation of the downstream transcription factor interferon regulatory factor 5. Because RNA-containing immune complexes can activate B cells through TLR7, we used a protein microarray to identify RNA-containing antigen targets of potential pathological relevance in cGVHD. We found that many of the unique targets of active cGVHD immunoglobulin G (IgG) were nucleic acid-binding proteins. This unbiased assay identified the autoantigen and known cGVHD target Ro-52, and we found that RNA was required for IgG binding to Ro-52. Herein, we find that BCR-activated B cells have aberrant TLR7 signaling responses that promote potential effector responses in cGVHD.
Collapse
Affiliation(s)
- Sonali J. Bracken
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Amy N. Suthers
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Rachel A. DiCioccio
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Hsuan Su
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sarah Anand
- Division of Hematology and Medical Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Jonathan C. Poe
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Wei Jia
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Jonathan Visentin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
- UMR CNRS 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Fahmin Basher
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Collin Z. Jordan
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham NC
| | - William C. McManigle
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham NC
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Frances T. Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Steven Z. Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Nazmim S. Bhuiya
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Vincent T. Ho
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mitchell E. Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
103
|
Rauch E, Amendt T, Lopez Krol A, Lang FB, Linse V, Hohmann M, Keim AC, Kreutzer S, Kawengian K, Buchholz M, Duschner P, Grauer S, Schnierle B, Ruhl A, Burtscher I, Dehnert S, Kuria C, Kupke A, Paul S, Liehr T, Lechner M, Schnare M, Kaufmann A, Huber M, Winkler TH, Bauer S, Yu P. T-bet + B cells are activated by and control endogenous retroviruses through TLR-dependent mechanisms. Nat Commun 2024; 15:1229. [PMID: 38336876 PMCID: PMC10858178 DOI: 10.1038/s41467-024-45201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Endogenous retroviruses (ERVs) are an integral part of the mammalian genome. The role of immune control of ERVs in general is poorly defined as is their function as anti-cancer immune targets or drivers of autoimmune disease. Here, we generate mouse-strains where Moloney-Murine Leukemia Virus tagged with GFP (ERV-GFP) infected the mouse germline. This enables us to analyze the role of genetic, epigenetic and cell intrinsic restriction factors in ERV activation and control. We identify an autoreactive B cell response against the neo-self/ERV antigen GFP as a key mechanism of ERV control. Hallmarks of this response are spontaneous ERV-GFP+ germinal center formation, elevated serum IFN-γ levels and a dependency on Age-associated B cells (ABCs) a subclass of T-bet+ memory B cells. Impairment of IgM B cell receptor-signal in nucleic-acid sensing TLR-deficient mice contributes to defective ERV control. Although ERVs are a part of the genome they break immune tolerance, induce immune surveillance against ERV-derived self-antigens and shape the host immune response.
Collapse
Affiliation(s)
- Eileen Rauch
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041, Marburg, Germany
| | - Timm Amendt
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- The Francis Crick Institute, NW1 1AT, London, UK
| | | | - Fabian B Lang
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Vincent Linse
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Michelle Hohmann
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Apollo Ventures Holding GmbH, 20457, Hamburg, Germany
| | - Ann-Christin Keim
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Susanne Kreutzer
- Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Kevin Kawengian
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology and Metabolism, and Core Facility Small Animal Multispectral and Ultrasound Imaging, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Philipp Duschner
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Saskia Grauer
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Barbara Schnierle
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Andreas Ruhl
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Department of Infection Biology, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Sonja Dehnert
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Chege Kuria
- Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Alexandra Kupke
- Institute of Virology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Stephanie Paul
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, 07747, Jena, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Markus Schnare
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Andreas Kaufmann
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Magdalena Huber
- Institute of Sytems Immunology, Center for Tumor and Immunobiology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Thomas H Winkler
- Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stefan Bauer
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Philipp Yu
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany.
| |
Collapse
|
104
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
105
|
Dou DR, Zhao Y, Belk JA, Zhao Y, Casey KM, Chen DC, Li R, Yu B, Srinivasan S, Abe BT, Kraft K, Hellström C, Sjöberg R, Chang S, Feng A, Goldman DW, Shah AA, Petri M, Chung LS, Fiorentino DF, Lundberg EK, Wutz A, Utz PJ, Chang HY. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 2024; 187:733-749.e16. [PMID: 38306984 PMCID: PMC10949934 DOI: 10.1016/j.cell.2023.12.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/03/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024]
Abstract
Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.
Collapse
Affiliation(s)
- Diana R Dou
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yanding Zhao
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Derek C Chen
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingfei Yu
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suhas Srinivasan
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian T Abe
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katerina Kraft
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ceke Hellström
- Autoimmunity and Serology Profiling, Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Ronald Sjöberg
- Autoimmunity and Serology Profiling, Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sarah Chang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel W Goldman
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ami A Shah
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Petri
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorinda S Chung
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - David F Fiorentino
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Emma K Lundberg
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden; Departments of Bioengineering and Pathology, Stanford University, Stanford, CA, USA
| | - Anton Wutz
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Zurich, Switzerland
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
106
|
Dai D, Gu S, Han X, Ding H, Jiang Y, Zhang X, Yao C, Hong S, Zhang J, Shen Y, Hou G, Qu B, Zhou H, Qin Y, He Y, Ma J, Yin Z, Ye Z, Qian J, Jiang Q, Wu L, Guo Q, Chen S, Huang C, Kottyan LC, Weirauch MT, Vinuesa CG, Shen N. The transcription factor ZEB2 drives the formation of age-associated B cells. Science 2024; 383:413-421. [PMID: 38271512 PMCID: PMC7616037 DOI: 10.1126/science.adf8531] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Age-associated B cells (ABCs) accumulate during infection, aging, and autoimmunity, contributing to lupus pathogenesis. In this study, we screened for transcription factors driving ABC formation and found that zinc finger E-box binding homeobox 2 (ZEB2) is required for human and mouse ABC differentiation in vitro. ABCs are reduced in ZEB2 haploinsufficient individuals and in mice lacking Zeb2 in B cells. In mice with toll-like receptor 7 (TLR7)-driven lupus, ZEB2 is essential for ABC formation and autoimmune pathology. ZEB2 binds to +20-kb myocyte enhancer factor 2b (Mef2b)'s intronic enhancer, repressing MEF2B-mediated germinal center B cell differentiation and promoting ABC formation. ZEB2 also targets genes important for ABC specification and function, including Itgax. ZEB2-driven ABC differentiation requires JAK-STAT (Janus kinase-signal transducer and activator of transcription), and treatment with JAK1/3 inhibitor reduces ABC accumulation in autoimmune mice and patients. Thus, ZEB2 emerges as a driver of B cell autoimmunity.
Collapse
Affiliation(s)
- Dai Dai
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaxia Han
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yang Jiang
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Soonmin Hong
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinsong Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiwei Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yuting Qin
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yuke He
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jie Qian
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leah C. Kottyan
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew T. Weirauch
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carola G. Vinuesa
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
- Francis Crick Institute, London, UK
| | - Nan Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
107
|
Solomou EE, Kattamis A, Symeonidis A, Sirinian C, Salamaliki C, Tzanoudaki M, Diamantopoulos P, Plakoula E, Palasopoulou M, Giannakoulas N, Kontandreopoulou CN, Kollia P, Viniou NA, Galanopoulos A, Liossis SN, Vassilopoulos G. Increased age-associated B cells in patients with acquired aplastic anemia correlate with IFN-γ. Blood Adv 2024; 8:399-402. [PMID: 38011610 PMCID: PMC10820307 DOI: 10.1182/bloodadvances.2023010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
- Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Antonis Kattamis
- Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Argyris Symeonidis
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Chaido Sirinian
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Christina Salamaliki
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Marianna Tzanoudaki
- Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Eva Plakoula
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Maria Palasopoulou
- Department of Hematology, University of Thessaly Medical School, Larissa, Greece
| | | | | | - Panagoula Kollia
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | - George Vassilopoulos
- Department of Hematology, University of Thessaly Medical School, Larissa, Greece
| |
Collapse
|
108
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
109
|
Thorarinsdottir K, McGrath S, Forslind K, Agelii ML, Ekwall AKH, Jacobsson LTH, Rudin A, Mårtensson IL, Gjertsson I. Cartilage destruction in early rheumatoid arthritis patients correlates with CD21 -/low double-negative B cells. Arthritis Res Ther 2024; 26:23. [PMID: 38225658 PMCID: PMC10789032 DOI: 10.1186/s13075-024-03264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Involvement of B cells in the pathogenesis of rheumatoid arthritis (RA) is supported by the presence of disease-specific autoantibodies and the efficacy of treatment directed against B cells. B cells that express low levels of or lack the B cell receptor (BCR) co-receptor CD21, CD21-/low B cells, have been linked to autoimmune diseases, including RA. In this study, we characterized the CD21+ and CD21-/low B cell subsets in newly diagnosed, early RA (eRA) patients and investigated whether any of the B cell subsets were associated with autoantibody status, disease activity and/or joint destruction. METHODS Seventy-six eRA patients and 28 age- and sex-matched healthy donors were recruited. Multiple clinical parameters were assessed, including disease activity and radiographic joint destruction. B cell subsets were analysed in peripheral blood (PB) and synovial fluid (SF) using flow cytometry. RESULTS Compared to healthy donors, the eRA patients displayed an elevated frequency of naïve CD21+ B cells in PB. Amongst memory B cells, eRA patients had lower frequencies of the CD21+CD27+ subsets and CD21-/low CD27+IgD+ subset. The only B cell subset found to associate with clinical factors was the CD21-/low double-negative (DN, CD27-IgD-) cell population, linked with the joint space narrowing score, i.e. cartilage destruction. Moreover, in SF from patients with established RA, the CD21-/low DN B cells were expanded and these cells expressed receptor activator of the nuclear factor κB ligand (RANKL). CONCLUSIONS Cartilage destruction in eRA patients was associated with an expanded proportion of CD21-/low DN B cells in PB. The subset was also expanded in SF from established RA patients and expressed RANKL. Taken together, our results suggest a role for CD21-/low DN in RA pathogenesis.
Collapse
Affiliation(s)
- Katrin Thorarinsdottir
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Center for Rheumatology Research, University Hospital of Iceland, Reykjavík, Iceland
- Department of Immunology, University Hospital of Iceland, Reykjavík, Iceland
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Kristina Forslind
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University, Lund, Sweden
- Spenshult Research and Development Centre, Halmstad, Sweden
| | - Monica Leu Agelii
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lennart T H Jacobsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
110
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
111
|
Zhu DYD, Maurer DP, Castrillon C, Deng Y, Mohamed FAN, Ma M, Schmidt AG, Lingwood D, Carroll MC. Lupus-associated innate receptors drive extrafollicular evolution of autoreactive B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574739. [PMID: 38260501 PMCID: PMC10802414 DOI: 10.1101/2024.01.09.574739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In systemic lupus erythematosus, recent findings highlight the extrafollicular (EF) pathway as prominent origin of autoantibody-secreting cells (ASCs). CD21loCD11c+ B cells, associated with aging, infection, and autoimmunity, are contributors to autoreactive EF ASCs but have an obscure developmental trajectory. To study EF kinetics of autoreactive B cell in tissue, we adoptively transferred WT and gene knockout B cell populations into the 564Igi mice - an autoreactive host enriched with autoantigens and T cell help. Time-stamped analyses revealed TLR7 dependence in early escape of peripheral B cell tolerance and establishment of a pre-ASC division program. We propose CD21lo cells as precursors to EF ASCs due to their elevated TLR7 sensitivity and proliferative nature. Blocking receptor function reversed CD21 loss and reduced effector cell generation, portraying CD21 as a differentiation initiator and a possible target for autoreactive B cell suppression. Repertoire analysis further delineated proto-autoreactive B cell selection and receptor evolution toward self-reactivity. This work elucidates receptor and clonal dynamics in EF development of autoreactive B cells, and establishes modular, native systems to probe mechanisms of autoreactivity.
Collapse
Affiliation(s)
- Danni Yi-Dan Zhu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel P Maurer
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carlos Castrillon
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Yixiang Deng
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron G Schmidt
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Daniel Lingwood
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
112
|
Pattarabanjird T, Srikakulapu P, Ransegnola B, Marshall MA, Ghosheh Y, Gulati R, Durant C, Drago F, Taylor AM, Ley K, McNamara CA. Single-cell profiling of CD11c+ B cells in atherosclerosis. Front Immunol 2024; 14:1296668. [PMID: 38259450 PMCID: PMC10800418 DOI: 10.3389/fimmu.2023.1296668] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Circulating CD11c+ B cells, a novel subset of activated B cells, have been linked to autoimmunity and shown to expand with age. Atherosclerosis is an age-associated disease that involves innate and adaptive immune responses to modified self-antigens. Yet, the expression of CD11c on specific B-cell subtypes and its link to atherosclerosis are poorly understood. In this study, we characterized the frequency of CD11c+ B cells in tissues in mice with aging. We observed an age-associated increase in CD11c+ B cells in the spleen and bone marrow of ApoE-/- mice, and this was associated with an increase in aortic plaque. In addition, we also utilized single-cell multi-omics profiling of 60 human subjects undergoing advanced imaging for coronary artery disease (CAD) to subtype CD11c+ B cells and determine their frequency in subjects with high and low severity of CAD. Using unsupervised clustering, we identified four distinct clusters of CD11c+ B cells, which include CD27 and IgD double negative 2 (DN2), age-associated (ABC), CD11c+ unswitched memory (USWM), and activated Naïve (aNav) B cells. We observed an increase in the frequency of both ABC B cells and DN2 B cells in patients with high CAD severity. Pathway analysis further demonstrated augmentation of autophagy, IFNg signaling, and TLR signaling in DN2 cells in high-severity CAD patients. On the other hand, an increase in the negative regulator of BCR signaling through CD72 was found in ABC cells in low-severity CAD patients. Through investigating scRNAseq of atheroma, these DN2 cells were also found to infiltrate human coronary atheroma.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Brett Ransegnola
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Melissa A. Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Rishab Gulati
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Fabrizio Drago
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Angela M. Taylor
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Klaus Ley
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
113
|
Ni H, Wang Y, Yao K, Wang L, Huang J, Xiao Y, Chen H, Liu B, Yang CY, Zhao J. Cyclical palmitoylation regulates TLR9 signalling and systemic autoimmunity in mice. Nat Commun 2024; 15:1. [PMID: 38169466 PMCID: PMC10762000 DOI: 10.1038/s41467-023-43650-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes self-DNA and plays intricate roles in systemic lupus erythematosus (SLE). However, the molecular mechanism regulating the endosomal TLR9 response is incompletely understood. Here, we report that palmitoyl-protein thioesterase 1 (PPT1) regulates systemic autoimmunity by removing S-palmitoylation from TLR9 in lysosomes. PPT1 promotes the secretion of IFNα by plasmacytoid dendritic cells (pDCs) and TNF by macrophages. Genetic deficiency in or chemical inhibition of PPT1 reduces anti-nuclear antibody levels and attenuates nephritis in B6.Sle1yaa mice. In healthy volunteers and patients with SLE, the PPT1 inhibitor, HDSF, reduces IFNα production ex vivo. Mechanistically, biochemical and mass spectrometry analyses demonstrated that TLR9 is S-palmitoylated at C258 and C265. Moreover, the protein acyltransferase, DHHC3, palmitoylates TLR9 in the Golgi, and regulates TLR9 trafficking to endosomes. Subsequent depalmitoylation by PPT1 facilitates the release of TLR9 from UNC93B1. Our results reveal a posttranslational modification cycle that controls TLR9 response and autoimmunity.
Collapse
Affiliation(s)
- Hai Ni
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinuo Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongfang Xiao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyao Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China.
| | - Cliff Y Yang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Jijun Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
114
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
115
|
Pandey SP, Bhaskar R, Han SS, Narayanan KB. Autoimmune Responses and Therapeutic Interventions for Systemic Lupus Erythematosus: A Comprehensive Review. Endocr Metab Immune Disord Drug Targets 2024; 24:499-518. [PMID: 37718519 DOI: 10.2174/1871530323666230915112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/05/2023] [Accepted: 07/22/2023] [Indexed: 09/19/2023]
Abstract
Systemic Lupus Erythematosus (SLE) or Lupus is a multifactorial autoimmune disease of multiorgan malfunctioning of extremely heterogeneous and unclear etiology that affects multiple organs and physiological systems. Some racial groups and women of childbearing age are more susceptible to SLE pathogenesis. Impressive progress has been made towards a better understanding of different immune components contributing to SLE pathogenesis. Recent investigations have uncovered the detailed mechanisms of inflammatory responses and organ damage. Various environmental factors, pathogens, and toxicants, including ultraviolet light, drugs, viral pathogens, gut microbiome metabolites, and sex hormones trigger the onset of SLE pathogenesis in genetically susceptible individuals and result in the disruption of immune homeostasis of cytokines, macrophages, T cells, and B cells. Diagnosis and clinical investigations of SLE remain challenging due to its clinical heterogeneity and hitherto only a few approved antimalarials, glucocorticoids, immunosuppressants, and some nonsteroidal anti-inflammatory drugs (NSAIDs) are available for treatment. However, the adverse effects of renal and neuropsychiatric lupus and late diagnosis make therapy challenging. Additionally, SLE is also linked to an increased risk of cardiovascular diseases due to inflammatory responses and the risk of infection from immunosuppressive treatment. Due to the diversity of symptoms and treatment-resistant diseases, SLE management remains a challenging issue. Nevertheless, the use of next-generation therapeutics with stem cell and gene therapy may bring better outcomes to SLE treatment in the future. This review highlights the autoimmune responses as well as potential therapeutic interventions for SLE particularly focusing on the recent therapeutic advancements and challenges.
Collapse
Affiliation(s)
- Surya Prakash Pandey
- Aarogya Institute of Healthcare and Research, Jaipur, Rajasthan, 302033, India
- Department of Zoology, School of Science, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| |
Collapse
|
116
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
117
|
Olivieri G, Cotugno N, Palma P. Emerging insights into atypical B cells in pediatric chronic infectious diseases and immune system disorders: T(o)-bet on control of B-cell immune activation. J Allergy Clin Immunol 2024; 153:12-27. [PMID: 37890706 PMCID: PMC10842362 DOI: 10.1016/j.jaci.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.
Collapse
Affiliation(s)
- Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
118
|
Zimmermann J, van Haren SD, Diray-Arce J, Adriawan IR, Wørzner K, Krog RT, Guleed S, Hu T, Mortensen R, Dietrich J, Solbak SMØ, Levy O, Christensen D, Pedersen GK. Co-adjuvanting DDA/TDB liposomes with a TLR7 agonist allows for IgG2a/c class-switching in the absence of Th1 cells. NPJ Vaccines 2023; 8:189. [PMID: 38135685 PMCID: PMC10746746 DOI: 10.1038/s41541-023-00781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Class-switching to IgG2a/c in mice is a hallmark response to intracellular pathogens. T cells can promote class-switching and the predominant pathway for induction of IgG2a/c antibody responses has been suggested to be via stimulation from Th1 cells. We previously formulated CAF®01 (cationic liposomes containing dimethyldioctadecylammonium bromide (DDA) and Trehalose-6,6-dibehenate (TDB)) with the lipidated TLR7/8 agonist 3M-052 (DDA/TDB/3M-052), which promoted robust Th1 immunity in newborn mice. When testing this adjuvant in adult mice using the recombinant Chlamydia trachomatis (C.t.) vaccine antigen CTH522, it similarly enhanced IgG2a/c responses compared to DDA/TDB, but surprisingly reduced the magnitude of the IFN-γ+Th1 response in a TLR7 agonist dose-dependent manner. Single-cell RNA-sequencing revealed that DDA/TDB/3M-052 liposomes initiated early transcription of class-switch regulating genes directly in pre-germinal center B cells. Mixed bone marrow chimeras further demonstrated that this adjuvant did not require Th1 cells for IgG2a/c switching, but rather facilitated TLR7-dependent T-bet programming directly in B cells. This study underlines that adjuvant-directed IgG2a/c class-switching in vivo can occur in the absence of T-cell help, via direct activation of TLR7 on B cells and positions DDA/TDB/3M-052 as a powerful adjuvant capable of eliciting type I-like immunity in B cells without strong induction of Th1 responses.
Collapse
Affiliation(s)
- Julie Zimmermann
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Simon D van Haren
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Katharina Wørzner
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ricki T Krog
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Safia Guleed
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Tu Hu
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rasmus Mortensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Sara M Ø Solbak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
119
|
Tilstra JS, Kim M, Gordon RA, Leibler C, Cosgrove HA, Bastacky S, Nickerson KM, Shlomchik MJ. B cell-intrinsic Myd88 regulates disease progression in murine lupus. J Exp Med 2023; 220:e20230263. [PMID: 37787782 PMCID: PMC10541815 DOI: 10.1084/jem.20230263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Nucleic acid-specific Toll-like receptors (TLRs) have been implicated in promoting disease pathogenesis in systemic lupus erythematosus (SLE). Whether such TLRs mediate disease onset, progression, or both remains undefined; yet the answer to this question has important therapeutic implications. MyD88 is an essential adaptor that acts downstream of IL-1 family receptors and most TLRs. Both global and B cell-specific Myd88 deficiency ameliorated disease in lupus-prone mice when constitutively deleted. To address whether Myd88 was needed to sustain ongoing disease, we induced B cell-specific deletion of Myd88 after disease onset in MRL.Faslpr mice using an inducible Cre recombinase. B cell-specific deletion of Myd88 starting after disease onset resulted in ameliorated glomerulonephritis and interstitial inflammation. Additionally, treated mice had reduced autoantibody formation and an altered B cell compartment with reduced ABC and plasmablast numbers. These experiments demonstrate the role of MyD88 in B cells to sustain disease in murine lupus. Therefore, targeting MyD88 or its upstream activators may be a viable therapeutic option in SLE.
Collapse
Affiliation(s)
- Jeremy S. Tilstra
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minjung Kim
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachael A. Gordon
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claire Leibler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haylee A. Cosgrove
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin M. Nickerson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
120
|
Sullivan KA, Chapman C, Lu L, Ashbrook DG, Wang Y, Alduraibi FK, Lu C, Sun CW, Liu S, Williams RW, Mountz JD, Hsu HC. Increased development of T-bet +CD11c + B cells predisposes to lupus in females: Analysis in BXD2 mouse and genetic crosses. Clin Immunol 2023; 257:109842. [PMID: 37981105 PMCID: PMC10799694 DOI: 10.1016/j.clim.2023.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Cardinal features of lupus include elevated B cell activation and autoantibody production with a female sex preponderance. We quantified interactions of sex and genetic variation on the development of autoimmune B-cell phenotypes and autoantibodies in the BXD2 murine model of lupus using a cohort of backcrossed progeny (BXD2 x C57BL/6J) x BXD2. Sex was the key factor leading to increased total IgG, IgG2b, and autoantibodies. The percentage of T-bet+CD11c+ IgD+ activated naive B cells (aNAV) was higher in females and was associated with increased T-bet+CD11c+ IgD- age-related B cells, Fas+GL7+ germinal center B cells, Cxcr5-Icos+ peripheral T-helper cells, and Cxcr5+Icos+ follicular T-helper cells. IFN-β was elevated in females. Variation in aNAV cells was mapped to Chr 7 in a locus that shows significant interactions between the female sex and heterozygous B/D variant. Our results suggest that activation of naive B cells forms the basis for the female-predominant development of autoantibodies in lupus-susceptible BXD2 mice.
Collapse
Affiliation(s)
- Kathryn A Sullivan
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey Chapman
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yong Wang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fatima K Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Changming Lu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao-Wang Sun
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shanrun Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Mountz
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
121
|
Hakimian D, Amer J, Jammal A, Shafrir A, Milgrom Y, Masarowah M, Hazou W, Ishay Y, Imam A, Francis A, Khalaileh A, Safadi R. Weaker SARS-CoV-2 vaccine responses in nonalcoholic fatty liver disease with advanced liver fibrosis. Vaccine X 2023; 15:100359. [PMID: 37885772 PMCID: PMC10598407 DOI: 10.1016/j.jvacx.2023.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 10/28/2023] Open
Abstract
Background SARS-CoV-2 vaccine responses that could harbor potential risks to chronic liver diseased patients. Aims To assess immune response following Pfizer's SARS-CoV-2 vaccine in patients with different liver fibrosis severities of nonalcoholic fatty liver disease (NAFLD). Methods Clinical and histological (NAS-score and fibrosis stage) characteristics of NAFLD patients before vaccine were correlated with serologic vaccine responses of two doses of the BNT162b2. Serum SARS-CoV-2 spike immunoglobulins (anti-S) were assessed on day seven following immunization (Liaison assay). Results The mean-age of patients (n = 157) was 56.9 ± 13.2 years (46.5 % males). 94.8 % had a positive response (anti-S levels ≥ 19 AU/ml). The anti-S cutoff of 200 AU/ml used to separate strong vs. weak responses. A strong response (anti-S titers ≥ 200 AU/ml) was observed in 93/157 (59.2 %) patients with a mean-age of 53.1 ± 13.8 years (45.2 % males). A weak response (anti-S titers < 200 AU/ml) was observed in 64/157 (40.8 %) cases with a mean-age of 62.3 ± 10.2 years (p < 0.0001). The strong response subgroup had lower metabolic comorbidities, including glucose hemostasis, hypertension, and dyslipidemia (p < 0.04). Moreover, the strong response subgroup had fibrosis stages F0-F2 (75.3 % vs. 56.3 %) and lower rates of advanced stages F3-F4 (24.7 % vs. 43.8 %). The F0-F2 subgroups had significantly higher rates of strong responses than the F3-F4 stages. The anti-S ≥ 200 and anti-S ≥ 400 AU/ml response achieved in 66 % and 36.8 % of the F0-F2 population was significantly higher than the 45.1 % (p = 0.006) and 23.5 % (p = 0.05) in the F3-F4 population, respectively. The Fib-4 calculations and Fibroscan evaluations were consistent with histologic fibrosis assessment. Conclusion Advanced liver fibrosis (assessed by histology, Fib-4, or Fibroscan) is a risk factor for lower response to Pfizer's BNT162b2 vaccine, and patients should be prioritized for the vaccine booster against SARS-CoV-2.
Collapse
Affiliation(s)
- David Hakimian
- Hadassah Medical Center, Liver insitute, Hadassah-Hebrew University Medical Center, Israel
| | - Johnny Amer
- Hadassah Medical Center, Liver insitute, Hadassah-Hebrew University Medical Center, Israel
| | - Alaa Jammal
- Hadassah Medical Center, Liver insitute, Hadassah-Hebrew University Medical Center, Israel
| | - Asher Shafrir
- Hadassah Medical Center, Liver insitute, Hadassah-Hebrew University Medical Center, Israel
| | - Yael Milgrom
- Hadassah Medical Center, Liver insitute, Hadassah-Hebrew University Medical Center, Israel
| | - Mohammad Masarowah
- Hadassah Medical Center, Liver insitute, Hadassah-Hebrew University Medical Center, Israel
| | - Wadi Hazou
- Hadassah Medical Center, Liver insitute, Hadassah-Hebrew University Medical Center, Israel
- Hadassah Medical Center, Department of Surgery, Jerusalem, Israel
| | - Yuval Ishay
- Hadassah Medical Center, Liver insitute, Hadassah-Hebrew University Medical Center, Israel
| | - Ashraf Imam
- Hadassah Medical Center, Department of Surgery, Jerusalem, Israel
| | - Adi Francis
- Hadassah Medical Center, Cardiac Care Unit, Holy Family Hospital, Bar-Ilan University, Nazareth, Israel
| | - Abed Khalaileh
- Hadassah Medical Center, Department of Surgery, Jerusalem, Israel
| | - Rifaat Safadi
- Hadassah Medical Center, Liver insitute, Hadassah-Hebrew University Medical Center, Israel
| |
Collapse
|
122
|
Smit V, de Mol J, Schaftenaar FH, Depuydt MAC, Postel RJ, Smeets D, Verheijen FWM, Bogers L, van Duijn J, Verwilligen RAF, Grievink HW, Bernabé Kleijn MNA, van Ingen E, de Jong MJM, Goncalves L, Peeters JAHM, Smeets HJ, Wezel A, Polansky JK, de Winther MPJ, Binder CJ, Tsiantoulas D, Bot I, Kuiper J, Foks AC. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc Res 2023; 119:2508-2521. [PMID: 37390467 PMCID: PMC10676459 DOI: 10.1093/cvr/cvad099] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 07/02/2023] Open
Abstract
AIMS Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans. METHODS AND RESULTS Here, we show that aging promotes advanced atherosclerosis in chow diet-fed Ldlr-/- mice, with increased incidence of calcification and cholesterol crystals. We observed systemic immunosenescence, including myeloid skewing and T-cells with more extreme effector phenotypes. Using a combination of single-cell RNA-sequencing and flow cytometry on aortic leucocytes of young vs. aged Ldlr-/- mice, we show age-related shifts in expression of genes involved in atherogenic processes, such as cellular activation and cytokine production. We identified age-associated cells with pro-inflammatory features, including GzmK+CD8+ T-cells and previously in atherosclerosis undefined CD11b+CD11c+T-bet+ age-associated B-cells (ABCs). ABCs of Ldlr-/- mice showed high expression of genes involved in plasma cell differentiation, co-stimulation, and antigen presentation. In vitro studies supported that ABCs are highly potent antigen-presenting cells. In cardiovascular disease patients, we confirmed the presence of these age-associated T- and B-cells in atherosclerotic plaques and blood. CONCLUSIONS Collectively, we are the first to provide comprehensive profiling of aged immunity in atherosclerotic mice and reveal the emergence of age-associated T- and B-cells in the atherosclerotic aorta. Further research into age-associated immunity may contribute to novel diagnostic and therapeutic tools to combat cardiovascular disease.
Collapse
Affiliation(s)
- Virginia Smit
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jill de Mol
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rimke J Postel
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diede Smeets
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Fenne W M Verheijen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laurens Bogers
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Janine van Duijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Robin A F Verwilligen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hendrika W Grievink
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eva van Ingen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maaike J M de Jong
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Lauren Goncalves
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Judith A H M Peeters
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Julia K Polansky
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Menno P J de Winther
- Amsterdam University Medical Centers—location AMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
123
|
Lee JL, Innocentin S, Silva-Cayetano A, Guillaume SM, Linterman MA. B Cells from Aged Mice Do Not Have Intrinsic Defects in Affinity Maturation in Response to Immunization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1506-1515. [PMID: 37756528 PMCID: PMC10627434 DOI: 10.4049/jimmunol.2300318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Affinity maturation, the progressive increase in serum Ab affinity after vaccination, is an essential process that contributes to an effective humoral response against vaccines and infections. Germinal centers are key for affinity maturation, because they are where B cells undergo somatic hypermutation of their Ig genes in the dark zone before going through positive selection in the light zone via interactions with T follicular helper cells and follicular dendritic cells. In aged mice, affinity maturation has been shown to be impaired after immunization, but whether B cell-intrinsic factors contribute to this defect remains unclear. In this study, we show that B cells from aged BCR transgenic mice are able to become germinal center B cells, which are capable of receiving positive selection signals to a similar extent as B cells from young adult mice. Consistent with this, aging also does not impact the ability of B cells to undergo somatic hypermutation and acquire affinity-enhancing mutations. By contrast, transfer of B cells from young adult BCR mice into aged recipients resulted in the impaired acquisition of affinity-enhancing mutations, demonstrating that the aged microenvironment causes altered affinity maturation.
Collapse
Affiliation(s)
- Jia Le Lee
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Silvia Innocentin
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Alyssa Silva-Cayetano
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Stephane M. Guillaume
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Michelle A. Linterman
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
124
|
He Z, He W, Hu C, Liao J, Deng W, Sun H, Huang Q, Chen W, Zhang L, Liu M, Dong J. Cross-species comparison illuminates the importance of iron homeostasis for splenic anti-immunosenescence. Aging Cell 2023; 22:e13982. [PMID: 37681451 PMCID: PMC10652311 DOI: 10.1111/acel.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Although immunosenescence may result in increased morbidity and mortality, many mammals have evolved effective immune coping strategies to extend their lifespans. Thus, the immune systems of long-lived mammals present unique models to study healthy longevity. To identify the molecular clues of anti-immunosenescence, we first built high-quality reference genome for a long-lived myotis bat, and then compared three long-lived mammals (i.e., bat, naked mole rat, and human) versus the short-lived mammal, mouse, in splenic immune cells at single-cell resolution. A close relationship between B:T cell ratio and immunosenescence was detected, as B:T cell ratio was much higher in mouse than long-lived mammals and significantly increased during aging. Importantly, we identified several iron-related genes that could resist immunosenescence changes, especially the iron chaperon, PCBP1, which was upregulated in long-lived mammals but dramatically downregulated during aging in all splenic immune cell types. Supportively, immune cells of mouse spleens contained more free iron than those of bat spleens, suggesting higher level of ROS-induced damage in mouse. PCBP1 downregulation during aging was also detected in hepatic but not pulmonary immune cells, which is consistent with the crucial roles of spleen and liver in organismal iron recycling. Furthermore, PCBP1 perturbation in immune cell lines would result in cellular iron dyshomeostasis and senescence. Finally, we identified two transcription factors that could regulate PCBP1 during aging. Together, our findings highlight the importance of iron homeostasis in splenic anti-immunosenescence, and provide unique insight for improving human healthspan.
Collapse
Affiliation(s)
- Ziqing He
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
- Faculty of Health SciencesUniversity of MacauMacauChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Weiya He
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
- Faculty of Health SciencesUniversity of MacauMacauChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Chuanxia Hu
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Jiayu Liao
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Wenjun Deng
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Haijian Sun
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
- Faculty of Health SciencesUniversity of MacauMacauChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Qingpei Huang
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Weilue Chen
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and UtilizationInstitute of Zoology, Guangdong Academy of SciencesGuangzhouChina
| | - Meiling Liu
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Ji Dong
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| |
Collapse
|
125
|
Haas KM. Noncanonical B Cells: Characteristics of Uncharacteristic B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1257-1265. [PMID: 37844278 PMCID: PMC10593487 DOI: 10.4049/jimmunol.2200944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/12/2023] [Indexed: 10/18/2023]
Abstract
B lymphocytes were originally described as a cell type uniquely capable of secreting Abs. The importance of T cell help in Ab production was revealed soon afterward. Following these seminal findings, investigators made great strides in delineating steps in the conventional pathway that B cells follow to produce high-affinity Abs. These studies revealed generalized, or canonical, features of B cells that include their developmental origin and paths to maturation, activation, and differentiation into Ab-producing and memory cells. However, along the way, examples of nonconventional B cell populations with unique origins, age-dependent development, tissue localization, and effector functions have been revealed. In this brief review, features of B-1a, B-1b, marginal zone, regulatory, killer, NK-like, age-associated, and atypical B cells are discussed. Emerging work on these noncanonical B cells and functions, along with the study of their significance for human health and disease, represents an exciting frontier in B cell biology.
Collapse
Affiliation(s)
- Karen M Haas
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
126
|
McCaw TR, Lofftus SY, Crompton JG. Clonal redemption of B cells in cancer. Front Immunol 2023; 14:1277597. [PMID: 37965337 PMCID: PMC10640973 DOI: 10.3389/fimmu.2023.1277597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Potentially self-reactive B cells constitute a large portion of the peripheral B cell repertoire in both mice and humans. Maintenance of autoreactive B cell populations could conceivably be detrimental to the host but their conservation throughout evolution suggests performance of a critical and beneficial immune function. We discuss herein how the process of clonal redemption may provide insight to preservation of an autoreactive B cell pool in the context of infection and autoimmunity. Clonal redemption refers to additional recombination or hypermutation events decreasing affinity for self-antigen, while increasing affinity for foreign antigens. We then review findings in murine models and human patients to consider whether clonal redemption may be able to provide tumor antigen-specific B cells and how this may or may not predispose patients to autoimmunity.
Collapse
Affiliation(s)
| | | | - Joseph G. Crompton
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, CA, United States
| |
Collapse
|
127
|
Yasaka K, Yamazaki T, Sato H, Shirai T, Cho M, Ishida K, Ito K, Tanaka T, Ogasawara K, Harigae H, Ishii T, Fujii H. Phospholipase D4 as a signature of toll-like receptor 7 or 9 signaling is expressed on blastic T-bet + B cells in systemic lupus erythematosus. Arthritis Res Ther 2023; 25:200. [PMID: 37840148 PMCID: PMC10577954 DOI: 10.1186/s13075-023-03186-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND In systemic lupus erythematosus (SLE), autoreactive B cells are thought to develop by-passing immune checkpoints and contribute to its pathogenesis. Toll-like receptor (TLR) 7 and 9 signaling have been implicated in their development and differentiation. Although some B cell subpopulations such as T-bet + double negative 2 (DN2) cells have been identified as autoreactive in the past few years, because the upregulated surface markers of those cells are not exclusive to them, it is still challenging to specifically target autoreactive B cells in SLE patients. METHODS Our preliminary expression analysis revealed that phospholipase D4 (PLD4) is exclusively expressed in plasmacytoid dendritic cells (pDCs) and B cells in peripheral blood mononuclear cells (PBMCs) samples. Monoclonal antibodies against human PLD4 were generated, and flow cytometry analyses were conducted for PBMCs from 23 healthy donors (HDs) and 40 patients with SLE. In vitro cell culture was also performed to study the conditions that induce PLD4 in B cells from HDs. Finally, recombinant antibodies were synthesized from subpopulations of PLD4 + B cells from a patient with SLE, and their antinuclear activity was measured through enzyme-linked immunosorbent assay. RESULTS pDCs from both groups showed comparable frequency of surface PLD4 expression. PLD4 + B cells accounted for only a few percent of HD B cells, whereas they were significantly expanded in patients with SLE (2.1% ± 0.4% vs. 10.8% ± 1.2%, P < 0.005). A subpopulation within PLD4 + B cells whose cell size was comparable to CD38 + CD43 + plasmablasts was defined as "PLD4 + blasts," and their frequencies were significantly correlated with those of plasmablasts (P < 0.005). PLD4 + blasts phenotypically overlapped with double negative 2 (DN2) cells, and, in line with this, their frequencies were significantly correlated with several clinical markers of SLE. In vitro assay using healthy PBMCs demonstrated that TLR7 or TLR9 stimulation was sufficient to induce PLD4 on the surface of the B cells. Finally, two out of three recombinant antibodies synthesized from PLD4 + blasts showed antinuclear activity. CONCLUSION PLD4 + B cells, especially "blastic" ones, are likely autoreactive B cells undergoing TLR stimulation. Therefore, PLD4 is a promising target marker in SLE treatment.
Collapse
Affiliation(s)
- Ken Yasaka
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Tomohide Yamazaki
- Research and Development Department, Ginkgo Biomedical Research Institute, SBI Biotech Co., Ltd., Tokyo, Japan
| | - Hiroko Sato
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Tsuyoshi Shirai
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Minkwon Cho
- Research and Development Department, Ginkgo Biomedical Research Institute, SBI Biotech Co., Ltd., Tokyo, Japan
| | - Koji Ishida
- Research and Development Department, Ginkgo Biomedical Research Institute, SBI Biotech Co., Ltd., Tokyo, Japan
| | - Koyu Ito
- Department of Immunobiology, Institute of Development Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Hypertension, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hideo Harigae
- Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomonori Ishii
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroshi Fujii
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
128
|
Thakolwiboon S, Mills EA, Yang J, Doty J, Belkin MI, Cho T, Schultz C, Mao-Draayer Y. Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. FRONTIERS IN AGING 2023; 4:1234572. [PMID: 37900152 PMCID: PMC10603254 DOI: 10.3389/fragi.2023.1234572] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Aging is associated with a progressive decline of innate and adaptive immune responses, called immunosenescence. This phenomenon links to different multiple sclerosis (MS) disease courses among different age groups. While clinical relapse and active demyelination are mainly related to the altered adaptive immunity, including invasion of T- and B-lymphocytes, impairment of innate immune cell (e.g., microglia, astrocyte) function is the main contributor to disability progression and neurodegeneration. Most patients with MS manifest the relapsing-remitting phenotype at a younger age, while progressive phenotypes are mainly seen in older patients. Current disease-modifying therapies (DMTs) primarily targeting adaptive immunity are less efficacious in older patients, suggesting that immunosenescence plays a role in treatment response. This review summarizes the recent immune mechanistic studies regarding immunosenescence in patients with MS and discusses the clinical implications of these findings.
Collapse
Affiliation(s)
| | - Elizabeth A. Mills
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer Yang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan Doty
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Martin I. Belkin
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Thomas Cho
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Charles Schultz
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
- Autoimmune Center of Excellence, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
129
|
Sachinidis A, Garyfallos A. Rho-kinase inhibitors to deplete age-associated B cells in systemic autoimmunity. Immunol Lett 2023; 262:36-38. [PMID: 37689314 DOI: 10.1016/j.imlet.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
130
|
Šlisere B, Arisova M, Aizbalte O, Salmiņa MM, Zolovs M, Levenšteins M, Mukāns M, Troickis I, Meija L, Lejnieks A, Bīlande G, Rosser EC, Oļeiņika K. Distinct B cell profiles characterise healthy weight and obesity pre- and post-bariatric surgery. Int J Obes (Lond) 2023; 47:970-978. [PMID: 37463992 PMCID: PMC10511309 DOI: 10.1038/s41366-023-01344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity-associated metabolic dysfunction and inflammation can be ameliorated by bariatric surgery. While obesity is also linked to impaired B cell activation, differentiation, and persistence in response to infection and vaccination little is known about post-operative immune B cell compartment and to what extent dysregulation in B cell pathways can be reversed. To bridge this gap in knowledge, we carried out in-depth evaluation of B cell composition in individuals with obesity prior to and following bariatric surgery compared to lean controls. SUBJECTS/METHODS We recruited individuals with obesity (BMI at least 35 kg/m2) before bariatric surgery (n = 21) and followed them up 6 months post-operatively (n = 17). As controls we recruited age- and sex-matched lean (BMI < 25) individuals (n = 18). We carried out comprehensive immunophenotyping of peripheral blood B cells as well as interrogated their association with inflammatory and metabolic parameters. RESULTS In obesity the balance of antigen-inexperienced and memory B cells in the peripheral blood is altered, with an expansion of naïve and a reduction in total memory B cells. 6 months following bariatric surgery this balance is restored. However, post-operative patients are uniquely characterised by an increase in B cell subsets associated with chronic inflammation - CD11c+CXCR5-IgD-CD27- double negative 2 (DN2) B cells and CD27+CD38++ plasmablasts. Correlations between B cells subsets, inflammatory and metabolic parameters were distinct in lean people and individuals with obesity pre- and post-bariatric surgery. CONCLUSIONS Bariatric surgery patients display a unique B cell profile 6 months post-operatively; this bears minimal resemblance to that of pre-operative patients and only partially overlaps with that of lean controls. Post-operative differences in the B cell compartment compared to lean controls are detected despite global amelioration of inflammation and restoration of metabolic health. Collectively, this indicates that bariatric surgery creates a specific immunometabolic state with potential implications for health outcomes.
Collapse
Affiliation(s)
- B Šlisere
- Department of Doctoral Studies, Riga Stradins University, Riga, Latvia
- Joint Laboratory, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
| | - M Arisova
- Department of Sports and Nutrition, Riga Stradins University, Riga, Latvia
- Daugavpils Regional Hospital, Daugavpils, Latvia
| | - O Aizbalte
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
- Institute of Public Health, Riga Stradins University, Riga, Latvia
| | - M M Salmiņa
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
| | - M Zolovs
- Statistics Unit, Riga Stradins University, Riga, Latvia
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia
| | | | - M Mukāns
- Statistics Unit, Riga Stradins University, Riga, Latvia
- Aiwa clinic, Riga, Latvia
| | | | - L Meija
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
- Institute of Public Health, Riga Stradins University, Riga, Latvia
| | - A Lejnieks
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - G Bīlande
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
- Aiwa clinic, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - E C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH and Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - K Oļeiņika
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia.
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
131
|
Ono C, Tanaka S, Myouzen K, Iwasaki T, Ueda M, Oda Y, Yamamoto K, Kochi Y, Baba Y. Upregulated Fcrl5 disrupts B cell anergy and causes autoimmune disease. Front Immunol 2023; 14:1276014. [PMID: 37841260 PMCID: PMC10569490 DOI: 10.3389/fimmu.2023.1276014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
B cell anergy plays a critical role in maintaining self-tolerance by inhibiting autoreactive B cell activation to prevent autoimmune diseases. Here, we demonstrated that Fc receptor-like 5 (Fcrl5) upregulation contributes to autoimmune disease pathogenesis by disrupting B cell anergy. Fcrl5-a gene whose homologs are associated with human autoimmune diseases-is highly expressed in age/autoimmunity-associated B cells (ABCs), an autoreactive B cell subset. By generating B cell-specific Fcrl5 transgenic mice, we demonstrated that Fcrl5 overexpression in B cells caused systemic autoimmunity with age. Additionally, Fcrl5 upregulation in B cells exacerbated the systemic lupus erythematosus-like disease model. Furthermore, an increase in Fcrl5 expression broke B cell anergy and facilitated toll-like receptor signaling. Thus, Fcrl5 is a potential regulator of B cell-mediated autoimmunity by regulating B cell anergy. This study provides important insights into the role of Fcrl5 in breaking B cell anergy and its effect on the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Tanaka
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiko Myouzen
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mahoko Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
132
|
Hopkin SJ, Pezhman L, Begum J, Kavanagh D, McGettrick HM, Iqbal AJ, Chimen M. Aging modulates homeostatic leukocyte trafficking to the peritoneal cavity in a sex-specific manner. J Leukoc Biol 2023; 114:301-314. [PMID: 37309034 PMCID: PMC10533226 DOI: 10.1093/jleuko/qiad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/28/2023] [Accepted: 04/28/2023] [Indexed: 06/14/2023] Open
Abstract
Aging is associated with exacerbated systemic inflammation (inflammaging) and the progressive loss of immune system function (immunosenescence). Leukocyte migration is necessary for effective immunity; however, dysregulated trafficking of leukocytes into tissue contributes to inflammaging and the development of age-related inflammatory diseases. Aging modulates leukocyte trafficking under inflammatory conditions; however, whether aging modulates leukocyte trafficking under homeostatic conditions remains to be elucidated. Although immune responses are evidently sexually dimorphic, limited studies have investigated the effect of sex on age-related changes to leukocyte trafficking processes. Here, we investigated age-related and sex-specific changes to the leukocyte populations within the peritoneal cavity of young (3-mo), middle-aged (18-mo) and old (21-mo) male and female wild-type mice in the steady state. We found an age-related increase in the number of leukocytes within the peritoneal cavity of female mice, predominantly B cells, which may reflect increased trafficking through this tissue with age. This was accompanied by an increased inflammatory environment within the aged cavity, including increased levels of chemoattractants, including B cell chemoattractants CXCL13 and CCL21, soluble adhesion molecules, and proinflammatory cytokines, which was more pronounced in aged female mice. Intravital microscopy techniques revealed altered vascular structure and increased vascular permeability within the peritoneal membrane of aged female mice, which may support increased leukocyte trafficking to the cavity with age. Together, these data indicate that aging affects homeostatic leukocyte trafficking processes in a sex-specific fashion.
Collapse
Affiliation(s)
- Sophie J Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Laleh Pezhman
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jenefa Begum
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Dean Kavanagh
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Myriam Chimen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
133
|
Khan S, Chakraborty M, Wu F, Chen N, Wang T, Chan YT, Sayad A, Vásquez JDS, Kotlyar M, Nguyen K, Huang Y, Alibhai FJ, Woo M, Li RK, Husain M, Jurisica I, Gehring AJ, Ohashi PS, Furman D, Tsai S, Winer S, Winer DA. B Cells Promote T Cell Immunosenescence and Mammalian Aging Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556363. [PMID: 38529494 PMCID: PMC10962733 DOI: 10.1101/2023.09.12.556363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.
Collapse
Affiliation(s)
- Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Mainak Chakraborty
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Fei Wu
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Nan Chen
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Tao Wang
- Department of Physiology, University of Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1X8, Canada
| | - Yi Tao Chan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, ON M5G 2C1, Canada
| | - Juan Diego Sánchez Vásquez
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
| | - Khiem Nguyen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Yingxiang Huang
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Faisal J. Alibhai
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
| | - Minna Woo
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, ON M5G 1L7, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Division of Cardiac Surgery, University Health Network, University of Toronto, ON M5G IL7, Canada
| | - Mansoor Husain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1X8, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, ON M5S 2E4, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adam J. Gehring
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto Center for Liver Disease & Schwartz Reisman Liver Research Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, ON M5G 2C1, Canada
| | - David Furman
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2RS, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
134
|
Chung MKY, Gong L, Kwong DL, Lee VH, Lee AW, Guan X, Kam N, Dai W. Functions of double-negative B cells in autoimmune diseases, infections, and cancers. EMBO Mol Med 2023; 15:e17341. [PMID: 37272217 PMCID: PMC10493577 DOI: 10.15252/emmm.202217341] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/06/2023] Open
Abstract
Most mature B cells can be divided into four subtypes based on the expression of the surface markers IgD and CD27: IgD+ CD27- naïve B cells, IgD+ CD27+ unswitched memory B cells, IgD- CD27+ switched memory B cells, and IgD- CD27- double-negative (DN) B cells. Despite their small population size in normal peripheral blood, DN B cells play integral roles in various diseases. For example, they generate autoimmunity in autoimmune conditions, while these cells may generate both autoimmune and antipathogenic responses in COVID-19, or act in a purely antipathogenic capacity in malaria. Recently, DN B cells have been identified in nasopharyngeal carcinoma and non-small-cell lung cancers, where they may play an immunosuppressive role. The distinct functions that DN B cells play in different diseases suggest that they are a heterogeneous B-cell population. Therefore, further study of the mechanisms underlying the involvement of DN B cells in these diseases is essential for understanding their pathogenesis and the development of therapeutic strategies. Further research is thus warranted to characterize the DN B-cell population in detail.
Collapse
Affiliation(s)
- Michael King Yung Chung
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Dora Lai‐Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Victor Ho‐Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ann Wing‐Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Xin‐Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ngar‐Woon Kam
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Laboratory for Synthetic Chemistry and Chemical BiologyHong Kong (SAR)China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
135
|
Ramirez De Oleo I, Kim V, Atisha-Fregoso Y, Shih AJ, Lee K, Diamond B, Kim SJ. Phenotypic and functional characteristics of murine CD11c+ B cells which is suppressed by metformin. Front Immunol 2023; 14:1241531. [PMID: 37744368 PMCID: PMC10512061 DOI: 10.3389/fimmu.2023.1241531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Since the description of age-associated or autoimmune-associated B cells (ABCs), there has been a growing interest in the role of these cells in autoimmunity. ABCs are differently defined depending on the research group and are heterogenous subsets. Here, we sought to characterize ABCs in Sle1/2/3 triple congenic (TC) mice, which is a well accepted mouse model of lupus. Compared to follicular (FO) B cells, ABCs have many distinct functional properties, including antigen presentation. They express key costimulatory molecules for T cell activation and a distinct profile of cytokines. Moreover, they exhibit an increased capacity for antigen uptake. ABCs were also compared with germinal center (GC) B cells, which are antigen activated B cell population. There are several phenotypic similarities between ABCs and GC B cells, but GC B cells do not produce proinflammatory cytokines or take up antigen. While T cell proliferation and activation is induced by both FO B and ABCs in an antigen-dependent manner, ABCs induce stronger T cell receptor signaling in naïve CD4+ T cells and preferentially induce differentiation of T follicular helper (Tfh) cells. We found that ABCs exhibit a distinct transcriptomic profile which is focused on metabolism, cytokine signaling and antigen uptake and processing. ABCs exhibit an increase in both glycolysis and oxidative phosphorylation compared to FO B cells. Treatment of ABCs with metformin suppresses antigen presentation by decreasing antigen uptake, resulting in decreased Tfh differentiation. Taken together, these findings define a fundamental connection between metabolism and function within ABCs.
Collapse
Affiliation(s)
- Ivan Ramirez De Oleo
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Vera Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Yemil Atisha-Fregoso
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Andrew J. Shih
- Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Kyungwoo Lee
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Biology at Hofstra University, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| | - Sun Jung Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| |
Collapse
|
136
|
Steuten J, Bos AV, Kuijper LH, Claireaux M, Olijhoek W, Elias G, Duurland MC, Jorritsma T, Marsman C, Paul AGA, Garcia Vallejo JJ, van Gils MJ, Wieske L, Kuijpers TW, Eftimov F, van Ham SM, Ten Brinke A. Distinct dynamics of antigen-specific induction and differentiation of different CD11c +Tbet + B-cell subsets. J Allergy Clin Immunol 2023; 152:689-699.e6. [PMID: 36858158 DOI: 10.1016/j.jaci.2023.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.
Collapse
Affiliation(s)
- Juulke Steuten
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Amélie V Bos
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter Olijhoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariel C Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Casper Marsman
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
137
|
Bogers L, Kuiper KL, Smolders J, Rip J, van Luijn MM. Epstein-Barr virus and genetic risk variants as determinants of T-bet + B cell-driven autoimmune diseases. Immunol Lett 2023; 261:66-74. [PMID: 37451321 DOI: 10.1016/j.imlet.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.
Collapse
Affiliation(s)
- Laurens Bogers
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Kirsten L Kuiper
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Joost Smolders
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands; MS Center ErasMS, Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands; Netherlands Institute for Neuroscience, Neuroimmunology research group, Amsterdam 1105 BA, The Netherlands
| | - Jasper Rip
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Marvin M van Luijn
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
138
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Clin Lab Med 2023; 43:467-483. [PMID: 37481324 DOI: 10.1016/j.cll.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
139
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
140
|
Ferreira IATM, Lee CYC, Foster WS, Abdullahi A, Dratva LM, Tuong ZK, Stewart BJ, Ferdinand JR, Guillaume SM, Potts MOP, Perera M, Krishna BA, Peñalver A, Cabantous M, Kemp SA, Ceron-Gutierrez L, Ebrahimi S, Lyons P, Smith KGC, Bradley J, Collier DA, McCoy LE, van der Klaauw A, Thaventhiran JED, Farooqi IS, Teichmann SA, MacAry PA, Doffinger R, Wills MR, Linterman MA, Clatworthy MR, Gupta RK. Atypical B cells and impaired SARS-CoV-2 neutralization following heterologous vaccination in the elderly. Cell Rep 2023; 42:112991. [PMID: 37590132 DOI: 10.1016/j.celrep.2023.112991] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.
Collapse
Affiliation(s)
- Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - William S Foster
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lisa M Dratva
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Stephane M Guillaume
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Martin O P Potts
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marianne Perera
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Benjamin A Krishna
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Peñalver
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Mia Cabantous
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Steven A Kemp
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Soraya Ebrahimi
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Paul Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - John Bradley
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dami A Collier
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Agatha van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, Cambridge, UK
| | | | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, Cambridge, UK
| | | | - Paul A MacAry
- National University of Singapore, Singapore, Singapore
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michelle A Linterman
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK.
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK; Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK.
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
141
|
Cosgrove HA, Gingras S, Kim M, Bastacky S, Tilstra JS, Shlomchik MJ. B cell-intrinsic TLR7 expression drives severe lupus in TLR9-deficient mice. JCI Insight 2023; 8:e172219. [PMID: 37606042 PMCID: PMC10543715 DOI: 10.1172/jci.insight.172219] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
The endosomal Toll-like receptor 7 (TLR7) is a major driver of murine and human systemic lupus erythematosus (SLE). The role of TLR7 in lupus pathogenesis is enhanced when the regulatory role of TLR9 is absent. TLR7 signaling in plasmacytoid DCs (pDC) is generally thought to be a major driver of the IFN response and disease pathology; however, the cell types in which TLR7 acts to mediate disease have not been distinguished. To address this, we selectively deleted TLR7 in either CD11c+ cells or CD19+ cells; using a TLR7-floxed allele, we created on the lupus-prone MRL/lpr background, along with a BM chimera strategy. Unexpectedly, TLR7 deficiency in CD11c+ cells had no impact on disease, while TLR7 deficiency in CD19+ B cells yielded mild suppression of proteinuria and a trend toward reduced glomerular disease. However, in TLR9-deficient MRL/lpr mice with accelerated SLE, B cell-specific TLR7 deficiency greatly improved disease. These results support revision of the mechanism by which TLR7 drives lupus and highlight a cis regulatory interaction between the protective TLR9 and the pathogenic TLR7 within the B cell compartment. They suggest B cell-directed, dual TLR7 antagonism/TLR9 agonism or dual TLR7/9 antagonism as a potential future therapeutic strategy to treat SLE.
Collapse
Affiliation(s)
| | | | | | | | - Jeremy S. Tilstra
- Department of Immunology
- Department of Medicine, and
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
142
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
143
|
Zeng B, Moi D, Tolley L, Molotkov N, Frazer IH, Perry C, Dolcetti R, Mazzieri R, Cruz JLG. Skin-Grafting and Dendritic Cell "Boosted" Humanized Mouse Models Allow the Pre-Clinical Evaluation of Therapeutic Cancer Vaccines. Cells 2023; 12:2094. [PMID: 37626903 PMCID: PMC10453599 DOI: 10.3390/cells12162094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Vaccines have been hailed as one of the most remarkable medical advancements in human history, and their potential for treating cancer by generating or expanding anti-tumor T cells has garnered significant interest in recent years. However, the limited efficacy of therapeutic cancer vaccines in clinical trials can be partially attributed to the inadequacy of current preclinical mouse models in recapitulating the complexities of the human immune system. In this study, we developed two innovative humanized mouse models to assess the immunogenicity and therapeutic effectiveness of vaccines targeting human papillomavirus (HPV16) antigens and delivering tumor antigens to human CD141+ dendritic cells (DCs). Both models were based on the transference of human peripheral blood mononuclear cells (PBMCs) into immunocompromised HLA-A*02-NSG mice (NSG-A2), where the use of fresh PBMCs boosted the engraftment of human cells up to 80%. The dynamics of immune cells in the PBMC-hu-NSG-A2 mice demonstrated that T cells constituted the vast majority of engrafted cells, which progressively expanded over time and retained their responsiveness to ex vivo stimulation. Using the PBMC-hu-NSG-A2 system, we generated a hyperplastic skin graft model expressing the HPV16-E7 oncogene. Remarkably, human cells populated the skin grafts, and upon vaccination with a DNA vaccine encoding an HPV16-E6/E7 protein, rapid rejection targeted to the E7-expressing skin was detected, underscoring the capacity of the model to mount a vaccine-specific response. To overcome the decline in DC numbers observed over time in PBMC-hu-NSG-A2 animals, we augmented the abundance of CD141+ DCs, the specific targets of our tailored nanoemulsions (TNEs), by transferring additional autologous PBMCs pre-treated in vitro with the growth factor Flt3-L. The Flt3-L treatment bolstered CD141+ DC numbers, leading to potent antigen-specific CD4+ and CD8+ T cell responses in vivo, which caused the regression of pre-established triple-negative breast cancer and melanoma tumors following CD141+ DC-targeting TNE vaccination. Notably, using HLA-A*02-matching PBMCs for humanizing NSG-A2 mice resulted in a delayed onset of graft-versus-host disease and enhanced the efficacy of the TNE vaccination compared with the parental NSG strain. In conclusion, we successfully established two humanized mouse models that exhibited strong antigen-specific responses and demonstrated tumor regression following vaccination. These models serve as valuable platforms for assessing the efficacy of therapeutic cancer vaccines targeting HPV16-dysplastic skin and diverse tumor antigens specifically delivered to CD141+ DCs.
Collapse
Affiliation(s)
- Bijun Zeng
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Davide Moi
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Lynn Tolley
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Natalie Molotkov
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ian Hector Frazer
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Christopher Perry
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Otolaryngology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jazmina L. G. Cruz
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
144
|
Aghamohamadi N, Shahba F, Zarezadeh Mehrabadi A, Khorramdelazad H, Karimi M, Falak R, Emameh RZ. Age-dependent immune responses in COVID-19-mediated liver injury: focus on cytokines. Front Endocrinol (Lausanne) 2023; 14:1139692. [PMID: 37654571 PMCID: PMC10465349 DOI: 10.3389/fendo.2023.1139692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is potentially pathogenic and causes severe symptoms; in addition to respiratory syndromes, patients might experience other severe conditions such as digestive complications and liver complications injury. The abnormality in the liver is manifested by hepatobiliary dysfunction and enzymatic elevation, which is associated with morbidity and mortality. The direct cytopathic effect, immune dysfunction, cytokine storm, and adverse effects of therapeutic regimens have a crucial role in the severity of liver injury. According to aging and immune system alterations, cytokine patterns may also change in the elderly. Moreover, hyperproduction of cytokines in the inflammatory response to SARS-CoV-2 can lead to multi-organ dysfunction. The mortality rate in elderly patients, particularly those with other comorbidities, is also higher than in adults. Although the pathogenic effect of SARS-CoV-2 on the liver has been widely studied, the impact of age and immune-mediated responses at different ages remain unclear. This review discusses the association between immune system responses in coronavirus disease 2019 (COVID-19) patients of different ages and liver injury, focusing on cytokine alterations.
Collapse
Affiliation(s)
- Nazanin Aghamohamadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarezadeh Mehrabadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
145
|
Maltby V, Xavier A, Ewing E, Campagna MP, Sampangi S, Scott RJ, Butzkueven H, Jokubaitis V, Kular L, Bos S, Slee M, van der Mei IA, Taylor BV, Ponsonby AL, Jagodic M, Lea R, Lechner-Scott J. Evaluation of Cell-Specific Epigenetic Age Acceleration in People With Multiple Sclerosis. Neurology 2023; 101:e679-e689. [PMID: 37541839 PMCID: PMC10437016 DOI: 10.1212/wnl.0000000000207489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/20/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In multiple sclerosis (MS), accelerated aging of the immune system (immunosenescence) may be associated with disease onset or drive progression. DNA methylation (DNAm) is an epigenetic factor that varies among lymphocyte subtypes, and cell-specific DNAm is associated with MS. DNAm varies across the life span and can be used to accurately estimate biological age acceleration, which has been linked to a range of morbidities. The objective of this study was to test for cell-specific epigenetic age acceleration (EAA) in people with MS. METHODS This was a case-control study of EAA using existing DNAm data from several independent previously published studies. Data were included if .idat files from Illumina 450K or EPIC arrays were available for both a case with MS and an age-matched and sex-matched control, from the same study. Multifactor statistical modeling was performed to assess the primary outcome of EAA. We explored the relationship of EAA and MS, including interaction terms to identify immune cell-specific effects. Cell-sorted DNA methylation data from 3 independent datasets were used to validate findings. RESULTS We used whole blood DNA methylation data from 583 cases with MS and 643 non-MS controls to calculate EAA using the GrimAge algorithm. The MS group exhibited an increased EAA compared with controls (approximately 9 mths, 95% CI 3.6-14.4), p = 0.001). Statistical deconvolution showed that EAA is associated with MS in a B cell-dependent manner (β int = 1.7, 95% CI 0.3-2.8), p = 0.002), irrespective of B-cell proportions. Validation analysis using 3 independent datasets enriched for B cells showed an EAA increase of 5.1 years in cases with MS compared with that in controls (95% CI 2.8-7.4, p = 5.5 × 10-5). By comparison, there was no EAA difference in MS in a T cell-enriched dataset. We found that EAA was attributed to the DNAm surrogates for Beta-2-microglobulin (difference = 47,546, 95% CI 10,067-85,026; p = 7.2 × 10-5), and smoking pack-years (difference = 8.1, 95% CI 1.9-14.2, p = 0.002). DISCUSSION This study provides compelling evidence that B cells exhibit marked EAA in MS and supports the hypothesis that premature B-cell immune senescence plays a role in MS. Future MS studies should focus on age-related molecular mechanisms in B cells.
Collapse
Affiliation(s)
- Vicki Maltby
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Alexandre Xavier
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Ewoud Ewing
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Maria-Pia Campagna
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Sandeep Sampangi
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Rodney J Scott
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia.
| | - Helmut Butzkueven
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Vilija Jokubaitis
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Lara Kular
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Steffan Bos
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Mark Slee
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Ingrid A van der Mei
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Bruce V Taylor
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Anne-Louise Ponsonby
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Maja Jagodic
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Rodney Lea
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia
| | - Jeannette Lechner-Scott
- From the School of Medicine and Public Health (V.M., R.L., J.L.-S.), University of Newcastle, University Drive, Callaghan; Immune Health Program (V.M., A.X., J.L.-S.), Hunter Medical Research Institute; Department of Neurology (V.M., J.L.-S.), John Hunter Hospital, New Lambton Heights; School of Biomedical Sciences and Pharmacy (A.X.), University of Newcastle, University Drive, Callaghan, Australia; Department of Clinical Neuroscience (E.E., L.K., M.J.), Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Neuroscience (M.-P.C., S.S., H.B., V.J.), Central Clinical School, Monash University, Victoria; Division of Molecular Genetics (R.J.S.), Pathology North, John Hunter Hospital, New Lambton Heights; MSBase Foundation (H.B.), Melbourne, Australia; Institute of Clinical Medicine (S.B.), University of Oslo,; Department of Neurology (S.B.), Oslo University Hospital, Norway; Flinders University (M.S.), Adelaide; Menzies Institute for Medical Research (I.A.M., B.V.T.), University of Tasmania, Hobart; Florey Institute of Neuroscience and Mental Health (A.-L.P.), The University of Melbourne; Centre of Epidemiology and Biostatistics (A.-L.P.), School of Population and Global Health, University of Melbourne; Murdoch Children's Research Institute (A.-L.P.), Royal Children's Hospital, Melbourne; and Centre for Genomics and Personalized Health (R.L.), School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Australia.
| |
Collapse
|
146
|
Stensland ZC, Magera CA, Broncucia H, Gomez BD, Rios-Guzman NM, Wells KL, Nicholas CA, Rihanek M, Hunter MJ, Toole KP, Gottlieb PA, Smith MJ. Identification of an anergic BND cell-derived activated B cell population (BND2) in young-onset type 1 diabetes patients. J Exp Med 2023; 220:e20221604. [PMID: 37184563 PMCID: PMC10192302 DOI: 10.1084/jem.20221604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Recent evidence suggests a role for B cells in the pathogenesis of young-onset type 1 diabetes (T1D), wherein rapid progression occurs. However, little is known regarding the specificity, phenotype, and function of B cells in young-onset T1D. We performed a cross-sectional analysis comparing insulin-reactive to tetanus-reactive B cells in the blood of T1D and controls using mass cytometry. Unsupervised clustering revealed the existence of a highly activated B cell subset we term BND2 that falls within the previously defined anergic BND subset. We found a specific increase in the frequency of insulin-reactive BND2 cells in the blood of young-onset T1D donors, which was further enriched in the pancreatic lymph nodes of T1D donors. The frequency of insulin-binding BND2 cells correlated with anti-insulin autoantibody levels. We demonstrate BND2 cells are pre-plasma cells and can likely act as APCs to T cells. These findings identify an antigen-specific B cell subset that may play a role in the rapid progression of young-onset T1D.
Collapse
Affiliation(s)
- Zachary C. Stensland
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher A. Magera
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hali Broncucia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brittany D. Gomez
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nasha M. Rios-Guzman
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Catherine A. Nicholas
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marynette Rihanek
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maya J. Hunter
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kevin P. Toole
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter A. Gottlieb
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mia J. Smith
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
147
|
Ottens K, Schneider J, Satterthwaite AB. T-bet-expressing B cells contribute to the autoreactive plasma cell pool in Lyn -/- mice. Eur J Immunol 2023; 53:e2250300. [PMID: 37134326 PMCID: PMC10524956 DOI: 10.1002/eji.202250300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by pathogenic autoantibodies against nucleic acid-containing antigens. Understanding which B-cell subsets give rise to these autoantibodies may reveal therapeutic approaches for SLE that spare protective responses. Mice lacking the tyrosine kinase Lyn, which limits B and myeloid cell activation, develop lupus-like autoimmune diseases characterized by increased autoreactive plasma cells (PCs). We used a fate-mapping strategy to determine the contribution of T-bet+ B cells, a subset thought to be pathogenic in lupus, to the accumulation of PCs and autoantibodies in Lyn-/- mice. Approximately, 50% of splenic PCs in Lyn-/- mice originated from T-bet+ cells, a significant increase compared to WT mice. In vitro, splenic PCs derived from T-bet+ B cells secreted both IgM and IgG anti-dsDNA antibodies. To determine the role of these cells in autoantibody production in vivo, we prevented T-bet+ B cells from differentiating into PCs or class switching in Lyn-/- mice. This resulted in a partial reduction in splenic PCs and anti-dsDNA IgM and complete abrogation of anti-dsDNA IgG. Thus, T-bet+ B cells make an important contribution to the autoreactive PC pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390
| |
Collapse
|
148
|
Pinto TNC, da Silva CCBM, Pinto RMC, Duarte AJDS, Benard G, Fernandes JR. Human peripheral blood age-associated (CD11c+Tbet+) B cells: No association with age. Cytometry A 2023; 103:619-623. [PMID: 37353962 DOI: 10.1002/cyto.a.24773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Thalyta Nery Carvalho Pinto
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | | | | | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | - Gil Benard
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | - Juliana Ruiz Fernandes
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| |
Collapse
|
149
|
Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 2023; 82:999-1014. [PMID: 36792346 DOI: 10.1136/ard-2022-223741] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Research elucidating the pathogenesis of systemic lupus erythematosus (SLE) has defined two critical families of mediators, type I interferon (IFN-I) and autoantibodies targeting nucleic acids and nucleic acid-binding proteins, as fundamental contributors to the disease. On the fertile background of significant genetic risk, a triggering stimulus, perhaps microbial, induces IFN-I, autoantibody production or most likely both. When innate and adaptive immune system cells are engaged and collaborate in the autoimmune response, clinical SLE can develop. This review describes recent data from genetic analyses of patients with SLE, along with current studies of innate and adaptive immune function that contribute to sustained IFN-I pathway activation, immune activation and autoantibody production, generation of inflammatory mediators and tissue damage. The goal of these studies is to understand disease mechanisms, identify therapeutic targets and stimulate development of therapeutics that can achieve improved outcomes for patients.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
150
|
Gao KM, Nündel K, Chiang K, Yin X, Utz PJ, Fitzgerald K, Marshak-Rothstein A. Activation of Autoreactive Lymphocytes in the Lung by STING Gain-of-function Mutation Radioresistant Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551002. [PMID: 37546720 PMCID: PMC10402118 DOI: 10.1101/2023.07.28.551002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gain-of-function mutations in the dsDNA sensing adaptor STING lead to a severe autoinflammatory syndrome known as STING-associated vasculopathy with onset in Infancy (SAVI). SAVI patients develop interstitial lung disease (ILD) and commonly produce anti-nuclear antibodies (ANAs), indicative of concomitant autoimmunity. Mice heterozygous for the most common SAVI mutation, V154M (VM), also develop ILD, triggered by nonhematopoietic VM cells, but exhibit severe peripheral lymphopenia, low serum Ig titers and fail to produce autoantibodies. In contrast, we now show that lethally irradiated VM mice reconstituted with WT stem cells (WT→VM chimeras) develop ANAs and lung-reactive autoantibodies associated with accumulation of activated lymphocytes and formation of germinal centers in lung tissues. Moreover, when splenocytes from WT→VM chimeras were adoptively transferred into unmanipulated Rag1 -/- mice, donor T cells accumulated in the lung. Overall, these findings demonstrate that expression of the VM mutation in non-hematopoietic cells can promote the activation of immunocompetent autoreactive lymphocytes. Summary Chimeric mice expressing STING only in non-hematopoietic cells develop systemic and lung directed autoimmunity which recapitulates what is seen in pediatric patients with SAVI disease.
Collapse
|