101
|
Otálora-Otálora BA, Florez M, López-Kleine L, Canas Arboleda A, Grajales Urrego DM, Rojas A. Joint Transcriptomic Analysis of Lung Cancer and Other Lung Diseases. Front Genet 2019; 10:1260. [PMID: 31867044 PMCID: PMC6908522 DOI: 10.3389/fgene.2019.01260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/14/2019] [Indexed: 12/09/2022] Open
Abstract
Background: Epidemiological and clinical evidence points cancer comorbidity with pulmonary chronic disease. The acquisition of some hallmarks of cancer by cells affected with lung pathologies as a cell adaptive mechanism to a shear stress, suggests that could be associated with the establishment of tumoral processes. Objective: To propose a bioinformatic pipeline for the identification of all deregulated genes and the transcriptional regulators (TFs) that are coexpressed during lung cancer establishment, and therefore could be important for the acquisition of the hallmarks of cancer. Methods: Ten microarray datasets (six of lung cancer, four of lung diseases) comparing normal and diseases-related lung tissue were selected to identify hub differentiated expressed genes (DEGs) in common between lung pathologies and lung cancer, along with transcriptional regulators through the utilization of specialized libraries from R language. DAVID bioinformatics tool for gene enrichment analyses was used to identify genes with experimental evidence associated to tumoral processes and signaling pathways. Coexpression networks of DEGs and TFs in lung cancer establishment were created with Coexnet library, and a survival analysis of the main hub genes was made. Results: Two hundred ten DEGs were identified in common between lung cancer and other lung diseases related to the acquisition of tumoral characteristics, which are coexpressed in a lung cancer network with TFs, suggesting that could be related to the establishment of the tumoral pathology in lung. The comparison of the coexpression networks of lung cancer and other lung diseases allowed the identification of common connectivity patterns (CCPs) with DEGs and TFs correlated to important tumoral processes and signaling pathways, that haven´t been studied to experimentally validate their role in the early stages of lung cancer. Some of the TFs identified showed a correlation between its expression levels and the survival of lung cancer patients. Conclusion: Our findings indicate that lung diseases share genes with lung cancer which are coexpressed in lung cancer, and might be able to explain the epidemiological observations that point to direct and inverse comorbid associations between some chronic lung diseases and lung cancer and represent a complex transcriptomic scenario.
Collapse
Affiliation(s)
| | - Mauro Florez
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
102
|
Zimmer A, Teixeira RB, Bonetto JHP, Bahr AC, Türck P, de Castro AL, Campos-Carraro C, Visioli F, Fernandes-Piedras TR, Casali KR, Scassola CMC, Baldo G, Araujo AS, Singal P, Belló-Klein A. Role of inflammation, oxidative stress, and autonomic nervous system activation during the development of right and left cardiac remodeling in experimental pulmonary arterial hypertension. Mol Cell Biochem 2019; 464:93-109. [DOI: 10.1007/s11010-019-03652-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
|
103
|
Mortality and hospitalization outcomes of interstitial lung disease and pulmonary hypertension in the Singapore systemic sclerosis cohort. Semin Arthritis Rheum 2019; 50:473-479. [PMID: 31810742 DOI: 10.1016/j.semarthrit.2019.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 09/13/2019] [Accepted: 11/08/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVES We compared mortality and hospitalization rates in four groups of patients with systemic sclerosis (SSc) [isolated pulmonary arterial hypertension (PAH) or interstitial lung disease (ILD), concomitant ILD-pulmonary hypertension (PH), and no/mild pulmonary involvement]. METHODS In the Systemic Sclerosis Cohort Singapore (SCORE), ILD was diagnosed by HRCT and significant ILD was defined by forced vital capacity <70% predicted. Patients were classified as PAH if echocardiographic systolic pulmonary artery pressure (sPAP) ≥50 mmHg or right heart catheterization (RHC) mean PAP ≥25 mmHg. Multivariable regression analyses were performed to determine factors associated with mortality and hospital admissions per year. Cox proportional hazard model was used to analyze survival. RESULTS Of 490 SSc patients, 50 patients had PAH, 92 patients had ILD and 43 patients had ILD-PH. Of 93 patients with PAH or ILD-PH, 56 were based on echocardiography and 37 on RHC. Patients with ILD-PH (HR 3.77, 95% CI: 2.05-6.93) had the highest risk of death, followed by PAH (HR 3.03, 95% CI: 1.60-5.76) and ILD (HR 1.84, 95% CI: 1.04-3.28). After adjustment for confounders, PAH (HR 2.39, 95% CI: 1.13-5.07) remained independently associated with mortality, but not ILD-PH or ILD. Other factors associated with mortality were male gender, age at SSc diagnosis, malabsorption and digital ulcer/ gangrene. Increased hospitalization rate was associated with renal crisis, right heart failure and PAH medications, but not SSc groups. CONCLUSION PAH is an independent risk factor of mortality in SSc. Increased hospitalization rate was not associated with SSc groups. Other factors associated with increased mortality and hospital admissions were identified.
Collapse
|
104
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
105
|
Bergot E, De Leotoing L, Bendjenana H, Tournier C, Vainchtock A, Nachbaur G, Humbert M. Hospital burden of pulmonary arterial hypertension in France. PLoS One 2019; 14:e0221211. [PMID: 31536491 PMCID: PMC6752797 DOI: 10.1371/journal.pone.0221211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background & aims Pulmonary arterial hypertension is a severe disease associated with frequent hospitalisations. This retrospective analysis of the French medical information PMSI-MSO database aimed to describe incident cases of patients with pulmonary arterial hypertension hospitalised in France in 2013 and to document associated hospitalisation costs from the national health insurance perspective. Methods Cases of pulmonary arterial hypertension were identified using a diagnostic algorithm. All cases hospitalised in 2013 with no hospitalisation the previous two years were retained. All hospital stays during the year following the index hospitalisation were extracted, and classified as incident stays, monitoring stays or stays due to disease worsening. Costs were attributed from French national tariffs. Results 384 patients in France were hospitalised with incident pulmonary arterial hypertension in 2013. Over the following twelve months, patients made 1,271 stays related to pulmonary arterial hypertension (415 incident stays, 604 monitoring stays and 252 worsening stays). Mean age was 59.6 years and 241 (62.8%) patients were women. Liver disease and connective tissue diseases were documented in 62 patients (16.1%) each. Thirty-one patients (8.1%) died during hospitalisation and four (1.0%) received a lung/heart-lung transplantation. The total annual cost of these hospitalisations was € 3,640,382. € 2,985,936 was attributable to standard tariffs (82.0%), € 463,325 to additional ICU stays (12.7%) and € 191,118 to expensive drugs (5.2%). The mean cost/stay was € 2,864, ranging from € 1,282 for monitoring stays to € 7,285 for worsening stays. Conclusions Although pulmonary arterial hypertension is rare, it carries a high economic burden.
Collapse
Affiliation(s)
- Emmanuel Bergot
- Service de Pneumologie & Oncologie Thoracique, Centre Hospitalier Universitaire de Caen, Caen, France
- Unicaen, UFR santé, Caen, France
- * E-mail:
| | | | | | | | | | | | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Le Kremlin Bicêtre, France
| |
Collapse
|
106
|
Indications and potential pitfalls of anticoagulants in pulmonary hypertension: Would DOACs become a better option than VKAs? Blood Rev 2019; 37:100579. [DOI: 10.1016/j.blre.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 01/23/2023]
|
107
|
Ocular manifestations of pulmonary hypertension. Surv Ophthalmol 2019; 64:694-699. [DOI: 10.1016/j.survophthal.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
|
108
|
Placzek M, Friede T. A conditional error function approach for adaptive enrichment designs with continuous endpoints. Stat Med 2019; 38:3105-3122. [PMID: 31066093 DOI: 10.1002/sim.8154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022]
Abstract
Adaptive enrichment designs offer an efficient and flexible way to demonstrate the efficacy of a treatment in a clinically defined full population or in, eg, biomarker-defined subpopulations while controlling the family-wise Type I error rate in the strong sense. Frequently used testing strategies in designs with two or more stages include the combination test and the conditional error function approach. Here, we focus on the latter and present some extensions. In contrast to previous work, we allow for multiple subgroups rather than one subgroup only. For nested as well as nonoverlapping subgroups with normally distributed endpoints, we explore the effect of estimating the variances in the subpopulations. Instead of using a normal approximation, we derive new t-distribution-based methods for two different scenarios. First, in the case of equal variances across the subpopulations, we present exact results using a multivariate t-distribution. Second, in the case of potentially varying variances across subgroups, we provide some improved approximations compared to the normal approximation. The performance of the proposed conditional error function approaches is assessed and compared to the combination test in a simulation study. The proposed methods are motivated by an example in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Marius Placzek
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
109
|
Perros F, Sentenac P, Boulate D, Manaud G, Kotsimbos T, Lecerf F, Lamrani L, Fadel E, Mercier O, Londono-Vallejo A, Humbert M, Eddahibi S. Smooth Muscle Phenotype in Idiopathic Pulmonary Hypertension: Hyper-Proliferative but not Cancerous. Int J Mol Sci 2019; 20:ijms20143575. [PMID: 31336611 PMCID: PMC6679125 DOI: 10.3390/ijms20143575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a complex disease associated with vascular remodeling and a proliferative disorder in pulmonary artery smooth muscle cells (PASMCs) that has been variably described as having neoplastic features. To decode the phenotype of PASMCs in IPAH, PASMCs from explanted lungs of patients with IPAH (IPAH-PASMCs) and from controls (C-PASMCs) were cultured. The IPAH-PASMCs grew faster than the controls; however, both growth curves plateaued, suggesting contact inhibition in IPAH cells. No proliferation was seen without stimulation with exogenous growth factors, suggesting that IPAH cells are incapable of self-sufficient growth. IPAH-PASMCs were more resistant to apoptosis than C-PASMCs, consistent with the increase in the Bcl2/Bax ratio. As cell replication is governed by telomere length, these parameters were assessed jointly. Compared to C-PASMCs, IPAH-PASMCs had longer telomeres, but a limited replicative capacity. Additionally, it was noted that IPAH-PASMCs had a shift in energy production from mitochondrial oxidative phosphorylation to aerobic glycolysis. As DNA damage and genomic instability are strongly implicated in IPAH development a comparative genomic hybridization was performed on genomic DNA from PASMCs which showed multiple break-points unaffected by IPAH severity. Activation of DNA damage/repair factors (γH2AX, p53, and GADD45) in response to cisplatin was measured. All proteins showed lower phosphorylation in IPAH samples than in controls, suggesting that the cells were resistant to DNA damage. Despite the cancer-like processes that are associated with end-stage IPAH-PASMCs, we identified no evidence of self-sufficient proliferation in these cells—the defining feature of neoplasia.
Collapse
Affiliation(s)
- Frédéric Perros
- Université Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Unité Mixte de Recherche 999, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, 92350 Le Plessis Robinson, France
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Montréal, QC G1V 4G5, Canada
| | - Pierre Sentenac
- PhyMedExp, University of Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, 34295 Montpellier, France
- Department of Anæsthesiology and Critical Care Medicine, Arnaud de Villeneuve Teaching Hospital, Montpellier University School of Medicine, 34295 Montpellier, France
| | - David Boulate
- Department of Thoracic and Vascular Surgery, Marie Lannelongue Hospital, 92350 Le Plessis-Robinson, France
| | - Grégoire Manaud
- Université Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France
- Unité Mixte de Recherche 999, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, 92350 Le Plessis Robinson, France
| | - Tom Kotsimbos
- Alfred Health, Monash University, VIC 3004 Melbourne, Australia
| | - Florence Lecerf
- Université Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France
- Unité Mixte de Recherche 999, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, 92350 Le Plessis Robinson, France
- Research Department, Marie Lannelongue Hospital, 92350 Le Plessis-Robinson, France
| | - Lilia Lamrani
- Research Department, Marie Lannelongue Hospital, 92350 Le Plessis-Robinson, France
| | - Elie Fadel
- Research Department, Marie Lannelongue Hospital, 92350 Le Plessis-Robinson, France
| | - Olaf Mercier
- Research Department, Marie Lannelongue Hospital, 92350 Le Plessis-Robinson, France
| | - Arturo Londono-Vallejo
- Research Department, Marie Lannelongue Hospital, 92350 Le Plessis-Robinson, France
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3244, Telomere and cancer lab, 75005 Paris, France
| | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Unité Mixte de Recherche 999, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, 92350 Le Plessis Robinson, France
| | - Saadia Eddahibi
- PhyMedExp, University of Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, 34295 Montpellier, France.
- Research Department, Marie Lannelongue Hospital, 92350 Le Plessis-Robinson, France.
| |
Collapse
|
110
|
Albayrak M, Atila A. Development and Validation of Novel UPLC-MS/MS Method for the Analysis of Macitentan in Pharmaceutical Formulations. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412915666190314142531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Macitentan is an endothelin receptor antagonist drug used in the treatment of
pulmonary arterial hypertension.
Materials and Methods:
A new, sensitive, simple, accurate and rapid ultra-performance liquid chromatography
in combination with tandem triple quadruple mass spectrometry (UPLC-MS/MS) method has
been developed and validated for the determination of macitentan in pharmaceutical formulations. Macitentan
and bosentan which are used as internal standard (IS) were detected using atmospheric pressure
chemical ionization (APCI) in positive ion, multiple reaction monitoring (MRM) mode by monitoring
mass transitions (precursor to product) m/z 589.1→203.3 and 552.6→311.5, respectively. Chromatographic
separation was carried out on reverse phase C18 column (5 µm, 4.6 * 150 mm). Water containing
0.2 % acetic acid in acetonitrile (10:90, v/v) was used as the mobile phase in the isocratic elution.
The system was optimized with injection volume of 10 µL, column temperature of 35 °C and flow
rate of 1 mL min-1 Retention times were 1.97 min for macitentan and 1.72 min for IS.
Results and Discussion:
The calibration curve with a high correlation coefficient (0.9997) was linear
range 0.5-500 ng mL-1. The lower limit of quantitation (LLOQ) and average recovery values were determined
as 0.5 ng mL-1 and 99.7 %, respectively. The developed novel method has been successfully
applied for the determination of macitentan in pure form and pharmaceutical formulations.
Conclusion:
The present method is the first study developed and validated for the determination of
macitentan from the pharmaceutical preparations and pure form by UPLC-MS/MS method in the literature.
Collapse
Affiliation(s)
- Mevlut Albayrak
- Department of Medical Laboratory Techniques, Health Services Vocational Training School, Ataturk University, 25240, Erzurum, Turkey
| | - Alptug Atila
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
111
|
Weiss A, Neubauer MC, Yerabolu D, Kojonazarov B, Schlueter BC, Neubert L, Jonigk D, Baal N, Ruppert C, Dorfmuller P, Pullamsetti SS, Weissmann N, Ghofrani HA, Grimminger F, Seeger W, Schermuly RT. Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension. Nat Commun 2019; 10:2204. [PMID: 31101827 PMCID: PMC6525202 DOI: 10.1038/s41467-019-10135-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease with poor prognosis and limited therapeutic options. We screened for pathways that may be responsible for the abnormal phenotype of pulmonary arterial smooth muscle cells (PASMCs), a major contributor of PAH pathobiology, and identified cyclin-dependent kinases (CDKs) as overactivated kinases in specimens derived from patients with idiopathic PAH. This increased CDK activity is confirmed at the level of mRNA and protein expression in human and experimental PAH, respectively. Specific CDK inhibition by dinaciclib and palbociclib decreases PASMC proliferation via cell cycle arrest and interference with the downstream CDK-Rb (retinoblastoma protein)-E2F signaling pathway. In two experimental models of PAH (i.e., monocrotaline and Su5416/hypoxia treated rats) palbociclib reverses the elevated right ventricular systolic pressure, reduces right heart hypertrophy, restores the cardiac index, and reduces pulmonary vascular remodeling. These results demonstrate that inhibition of CDKs by palbociclib may be a therapeutic strategy in PAH. Cells of the pulmonary vasculature show a hyperproliferative phenotype in pulmonary arterial hypertension (PAH), thus contributing to the disease pathogenesis. Here the authors show that cyclin-dependent kinases are overactivated in PAH, and that their pharmacological inhibition attenuates the disease in two independent rodent models
Collapse
Affiliation(s)
- Astrid Weiss
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Moritz Christian Neubauer
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Dinesh Yerabolu
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Baktybek Kojonazarov
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Beate Christiane Schlueter
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Lavinia Neubert
- Member of the German Center for Lung Research (DZL), Giessen, Germany.,Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, Hannover, 30625, Germany
| | - Danny Jonigk
- Member of the German Center for Lung Research (DZL), Giessen, Germany.,Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, Hannover, 30625, Germany
| | - Nelli Baal
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Institute for Clinical Immunology and Transfusion Medicine, University Hospital Giessen and Marburg (UKGM), Aulweg 128, Giessen, 35392, Germany
| | - Clemens Ruppert
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Peter Dorfmuller
- Member of the German Center for Lung Research (DZL), Giessen, Germany.,Department of Pathology, University Hospital of Giessen and Marburg (UKGM), Langhansstrasse 10, Giessen, 35392, Germany
| | - Soni Savai Pullamsetti
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Max Planck Institute (MPI) for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, 61231, Germany
| | - Norbert Weissmann
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein-Ardeschir Ghofrani
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Department of Medicine, Imperial College London, London, UK
| | - Friedrich Grimminger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,University Hospital Giessen and Marburg (UKGM), Giessen, Germany
| | - Werner Seeger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Max Planck Institute (MPI) for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, 61231, Germany.,University Hospital Giessen and Marburg (UKGM), Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany. .,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany. .,Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
112
|
Albayrak M, Atıla A, Yılmazel Ucar E, Araz O, Kadıoglu Y. A novel, rapid and sensitive UPLC–MS/MS method for the determination of macitentan in patients with pulmonary arterial hypertension. Biomed Chromatogr 2019; 33:e4502. [DOI: 10.1002/bmc.4502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mevlut Albayrak
- Department of Medical Laboratory Techniques, Health Services Vocational Training SchoolAtaturk University Erzurum Turkey
| | - Alptug Atıla
- Department of Analytical Chemistry, Faculty of PharmacyAtaturk University Erzurum Turkey
| | - Elif Yılmazel Ucar
- Department of Pulmonary Diseases, Faculty of MedicineAtaturk University Erzurum Turkey
| | - Omer Araz
- Department of Pulmonary Diseases, Faculty of MedicineAtaturk University Erzurum Turkey
| | - Yucel Kadıoglu
- Department of Analytical Chemistry, Faculty of PharmacyAtaturk University Erzurum Turkey
| |
Collapse
|
113
|
Mueller C, Stollfuss B, Roitenberg A, Harder J, Richter MJ. Evaluation of Clinical Outcomes and Simultaneous Digital Tracking of Daily Physical Activity, Heart Rate, and Inhalation Behavior in Patients With Pulmonary Arterial Hypertension Treated With Inhaled Iloprost: Protocol for the Observational VENTASTEP Study. JMIR Res Protoc 2019; 8:e12144. [PMID: 30985279 PMCID: PMC6487342 DOI: 10.2196/12144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH)-a progressive, ultimately fatal disease-patients often experience dyspnea, which can limit their daily physical activities. Iloprost is an inhaled therapy for PAH that has shown efficacy in clinical trials. However, clinical trials in PAH have provided only limited data on daily physical activity. Digital monitoring of daily physical activity in PAH is therefore attracting growing interest. To fully understand a patient's response to treatment, monitoring of treatment adherence is also required. The Breelib nebulizer for administration of iloprost saves inhalation data, thus allowing digital monitoring of adherence. OBJECTIVE This study aims to perform parallel digital tracking of daily physical activity parameters, heart rate, and iloprost inhalation data in patients with PAH, before and after starting inhaled iloprost treatment. The primary objective is to investigate correlations between changes in digital measures of daily physical activity and traditional clinical measures. Secondary objectives are to assess iloprost inhalation behavior, the association between daily physical activity measures and time since last inhalation, changes in sleep quality and heart rate, the association of heart rate with daily physical activity measures and iloprost inhalation, and adverse events. METHODS VENTASTEP is a digital, prospective, observational, multicenter, single-arm cohort study of adults with PAH in Germany, starting inhaled iloprost treatment via the Breelib nebulizer, in addition to existing PAH therapy. The study comprises a baseline period without iloprost treatment (≤2 weeks) and an observation period with iloprost treatment (3 months±2 weeks). The Apple Watch Series 2 and iPhone 6s are used with a dedicated study app to continuously measure digital daily physical activity parameters and heart rate during the baseline and observation periods; the watch is also used with a 6-min walk distance (6MWD) app to measure digital 6MWD at baseline and the end-of-observation visit. Inhalation frequency, completeness, and duration are monitored digitally via the nebulizer and the BreeConnect app. Sleep quality is assessed using the Pittsburgh Sleep Quality Index at baseline and the end-of-observation visit. Changes in traditional outcome measures (6MWD, Borg dyspnea scale, EuroQol 5-dimensions questionnaire, functional class, and brain natriuretic peptide [BNP] or N-terminal proBNP) between baseline and the end-of-observation visit will be correlated with changes in digital daily physical activity parameters and digital 6MWD as the primary analysis. RESULTS The first participant was enrolled in February 2018 (estimated study completion by July 2019; planned sample size: 80 patients). CONCLUSIONS The VENTASTEP study will inform future research on the utility of digital parameters as outcome assessment tools for disease monitoring in PAH. The study will also provide insight into clinical outcomes, daily physical activity, and quality of life in patients adding inhaled iloprost, to existing PAH therapy. TRIAL REGISTRATION ClinicalTrials.gov NCT03293407; https://clinicaltrials.gov/ct2/show/NCT03293407 (Archived by WebCite at http://www.webcitation.org/6ywPGcn4I). INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/12144.
Collapse
Affiliation(s)
| | | | | | | | - Manuel J Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
114
|
Yamamura A, Nayeem MJ, Al Mamun A, Takahashi R, Hayashi H, Sato M. Platelet-derived growth factor up-regulates Ca 2+-sensing receptors in idiopathic pulmonary arterial hypertension. FASEB J 2019; 33:7363-7374. [PMID: 30865840 DOI: 10.1096/fj.201802620r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease associated with remodeling of the pulmonary artery. We previously reported that the Ca2+-sensing receptor (CaSR) is up-regulated in pulmonary arterial smooth muscle cells (PASMCs) from patients with idiopathic PAH (IPAH) and contributes to enhanced Ca2+ responses and excessive cell proliferation. However, the mechanisms underlying the up-regulation of CaSR have not yet been elucidated. We herein examined involvement of platelet-derived growth factor (PDGF) on CaSR expression, Ca2+ responses, and proliferation in PASMCs. The expression of PDGF receptors was higher in PASMCs from patients with IPAH than in PASMCs from normal subjects. In addition, PDGF-induced activation of PDGF receptors and their downstream molecules [ERK1/2, p38, protein kinase B, and signal transducer and activator of transcription (STAT) 1/3] were sustained longer in PASMCs from patients with IPAH. The PDGF-induced CaSR up-regulation was attenuated by small interfering RNA knockdown of PDGF receptors and STAT1/3, and by the treatment with imatinib. In monocrotaline-induced pulmonary hypertensive rats, the up-regulation of CaSR was reduced by imatinib. The combination of NPS2143 and imatinib additively inhibited the development of pulmonary hypertension. These results suggest that enhanced PDGF signaling is involved in CaSR up-regulation, leading to excessive PASMC proliferation and vascular remodeling in patients with IPAH. The linkage between CaSR and PDGF signals is a novel pathophysiological mechanism contributing to the development of PAH.-Yamamura, A., Nayeem, M. J., Al Mamun, A., Takahashi, R., Hayashi, H., Sato, M. Platelet-derived growth factor up-regulates Ca2+-sensing receptors in idiopathic pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | | | | | - Rie Takahashi
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Hisaki Hayashi
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
115
|
Zhou C, Chen Y, Kang W, Lv H, Fang Z, Yan F, Li L, Zhang W, Shi J. Mir-455-3p-1 represses FGF7 expression to inhibit pulmonary arterial hypertension through inhibiting the RAS/ERK signaling pathway. J Mol Cell Cardiol 2019; 130:23-35. [PMID: 30858037 DOI: 10.1016/j.yjmcc.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Accepted: 03/03/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To analyze the effects of miR-455-3p-1 and its possible mechanisms in pulmonary arterial hypertension (PAH). METHODS A microarray assay was used to examine the expressed genes between normal and PAH. The expressed genes in PAH was assessed by qRT-PCR. The targeted interaction between miRNAs and FGF7 was confirmed using a dual luciferase reporter assay. A CCK-8 assay and cell count were used to analyze the pulmonary artery smooth muscle cells (PASMCs) activity and proliferation level, respectively. Apoptotic PASMCs were detected by flow cytometry. In addition, the mRNA and protein expression levels of RAS/ERK signaling pathway were determined by qRT-PCR and a Western blot assay, respectively. A PAH rat model was used to identify the effects of miR-455-3p-1 in vivo. RESULTS FGF7 was upregulated in PAH. MiR-455-3p-1 was downregulated in PAH. MiR-455-3p-1 targeted FGF7. MiR-455-3p-1 decreased the expression of FGF7. Moreover, the effect of FGF7 on PASMCs was suppressed by miR-455-3p-1. MiR-455-3p-1 upregulation was associated with reduced mRNA and protein levels of core RAS/ERK signal genes, suggesting the inhibition of the RAS/ERK pathway. Furthermore, miR-455-3p-1 upregulation improved the RVSP, mPAP, ratio of RV/LV + S, CO and RV function of PAH rat model in vivo. CONCLUSION Our findings illustrate a role for miR-455-3p-1 in modulating FGF7-RAS/ERK signaling and suggest that an agomir of miR-455-3p-1 could inhibit the proliferation of PASMCs and mitigate PAH in vivo.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Wenying Kang
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Hong Lv
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Zhongrong Fang
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Fuxia Yan
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Lihuan Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China.
| | - Jia Shi
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
116
|
Docherty CK, Harvey KY, Mair KM, Griffin S, Denver N, MacLean MR. The Role of Sex in the Pathophysiology of Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1065:511-528. [PMID: 30051404 DOI: 10.1007/978-3-319-77932-4_31] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin.
Collapse
Affiliation(s)
- Craig K Docherty
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Katie Yates Harvey
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kirsty M Mair
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sinead Griffin
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nina Denver
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Margaret R MacLean
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
117
|
Tielemans B, Delcroix M, Belge C, Quarck R. TGFβ and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discov Today 2019; 24:703-716. [DOI: 10.1016/j.drudis.2018.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Accepted: 12/04/2018] [Indexed: 01/23/2023]
|
118
|
Kalani C, Garcia I, Ocegueda-Pacheco C, Varon J, Surani S. The Innovations in Pulmonary Hypertension Pathophysiology and Treatment: What are our Options! CURRENT RESPIRATORY MEDICINE REVIEWS 2019. [DOI: 10.2174/1573398x15666190117133311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Charlene Kalani
- Bay Area Medical Center, Corpus Christi, Texas, United States
| | - Ismael Garcia
- Dorrington Medical Associates, PA, Houston, Texas, United States
| | | | | | - Salim Surani
- Texas A&M University, College Station, Texas, United States
| |
Collapse
|
119
|
Normal values of the pulmonary artery acceleration time (PAAT) and the right ventricular ejection time (RVET) in children and adolescents and the impact of the PAAT/RVET-index in the assessment of pulmonary hypertension. Int J Cardiovasc Imaging 2019; 35:295-306. [PMID: 30689192 DOI: 10.1007/s10554-019-01540-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/17/2019] [Indexed: 02/04/2023]
Abstract
New echocardiographic modalities including pulmonary artery acceleration time (PAAT) and right ventricular ejection time (RVET) are evolving to facilitate an early non-invasive diagnosis for pulmonary hypertension (PH) in adults. In children, PAAT depends on age, body surface area (BSA) and heart rate (HR) and is used to predict PH. Normal values of RVET and their role to predict PH in children are still missing. PAAT/RVET-index correlates negatively with PH. We hypothesized that this index is a good predictor for PH in children and adolescents independent of age, BSA and HR and RVET is significantly reduced in PH. PAAT and RVET of 401 healthy children and 30 PH-patients were measured using pulsed-wave-Doppler. PH was diagnosed in PH-group invasively. PAAT/RVET-index for both groups was calculated. Sensitivity and specificity in prediction of PH of PAAT, PAAT z-score and PAAT/RVET-index were compared. We demonstrated normal values of RVET in children. In the healthy group, PAAT and RVET correlated significant positive to age (p < 0.001), and BSA (p < 0.001) and negative to HR (p < 0.001). PAAT/RVET-index correlated weakly to age, BSA and HR (p < 0.001). Mean pulmonary artery pressure (PAPM) ranged in the PH-group from 27 to 82 mmHg (mean 44 mmHg). In predicting PH, RVET is significantly reduced (p < 0.001). Comparing area under the curve (AUC), the difference between sensitivity and specificity of PAAT/RVET-index < 0.29 and calculated PAAT cut-off-point (87 ms) was significant (p < 0.001). Equally, AUC comparison between PAAT/RVET-index < 0.29 and PAAT z-score of - 1.33 was significant (p = 0.008). PAAT/RVET-index < 0.29 represents a good predictor of PH with a 100% sensitivity and a 95.8% specificity. PAAT/RVET-index is a simple tool and facilitates prediction of PH independent from z-scores.
Collapse
|
120
|
Al-Khafaji KHA, Al-Dujaili MN, Al-Dujaili AN. Estimation of Endostatin level in pulmonary arterial hypertension patients and its relation with some parameters. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.1515/cipms-2018-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Biomarkers are attractive non-invasive tools for estimating and monitoring pulmonary arterial hypertension (PAH) disease and for predicting survival in patients with PAH; therefore, many studies encouraged the investigation of new biomarkers to facilitate the diagnosis of PAH. Endostatin (ES) is an endogenous inhibitor of angiogenesis. It is produced by proteolytic cleavage of the collagen XVIII that is present in both normal and cancerous tissue. In vitro examination shows that ES can manage endothelial cells (EC) physiology in ways that could influence angiogenesis. For example, solvent ES hinders EC movement and prompts improvements of the cytoskeleton that incorporate the loss of Actin stretch strands and central grips. This effect embraces restrictions on the α5β1integrins, Tropomyosin, and putative heparan sulfate proteoglycans. Consequences for the human EC cytoskeleton include Es-induced down-regulation of Mitogen-actuated Protein Kinase (MAPK), Focal Adhesion Kinase (FAK), the Urokinase Plasminogen Activator (uPA) System, and the RhoA GTPase. Human ES has likewise been shown in a few investigations to repress EC multiplication. Moreover, ES-instigated cell cycle capture in the G1 stage is joined by Cyclin D1 down-regulation. Of note, ES blocks the proliferation and organization of endothelial cells into new blood vessels, and in animal studies, ES also inhibits angiogenesis and the growth of both primary tumors and secondary metastasis. ES was initially identified by its capacity to inhibit tumor angiogenesis in vitro and also in vivo. It can also be found in both healthy and patient’ serum, and has been detected in peripheral circulation. ES could be an attractive, non-invasive prognostic marker for some diseases, notably PAH. Therefore, the presented work is aimed at investigating the ES level in blood serum as a biomarker for detection, diagnosis and early treatment of PAH patients. In doing so, the association is ascertained between gender, age, body mass index (BMI), waist circumferences, smoking, types of PAH (primary and secondary) and this potential biomarker is assessed in PAH patients.
Collapse
|
121
|
Does Portopulmonary Hypertension Impede Liver Transplantation in Cirrhotic Patients? A French Multicentric Retrospective Study. Transplantation 2018; 102:616-622. [PMID: 29077657 DOI: 10.1097/tp.0000000000001981] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Portopulmonary hypertension is defined by the presence of pulmonary arterial hypertension associated with portal hypertension. Its presence is a major stake for cirrhotic patients requiring liver transplantation (LT), with increased postoperative mortality and unpredictable evolution after transplantation. The aim was to study outcomes after liver transplantation in patients with portopulmonary hypertension and to identify factors associated with normalization of pulmonary hypertension. METHODS Patients with portopulmonary hypertension who underwent LT between 2008 and 2016 in 8 French centers were retrospectively included. Pulmonary artery pressure was established by right heart catheterization before and after LT. Primary endpoint was the normalization of pulmonary artery pressure after LT. RESULTS Twenty-three patients who received liver transplant between 2008 and 2016 were included. Two (8.7%) patients died in the immediate posttransplant period from right heart failure. With appropriate vasoactive medical treatment and LT, pulmonary arterial pressure was normalized in 14 patients (60.8%), demonstrating recovery from portopulmonary hypertension. In univariate analysis, the use of vasoactive combination therapy was the only prognostic factor for pulmonary arterial hypertension normalization after LT. CONCLUSIONS Treatment of portopulmonary hypertension with a combination of vasoactive drugs allows LT with acceptable postoperative cardiovascular-related mortality and normalization of pulmonary hypertension in the majority of the patients.
Collapse
|
122
|
Qian Z, Li Y, Yang H, Chen J, Li X, Gou D. PDGFBB promotes proliferation and migration via regulating miR-1181/STAT3 axis in human pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2018; 315:L965-L976. [DOI: 10.1152/ajplung.00224.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Platelet-derived growth factor (PDGF) can induce hyperproliferation of pulmonary artery smooth muscle cells (PASMCs), which is a key causative factor to the occurrence and progression of pulmonary arterial hypertension (PAH). We previously identified that miR-1181 is significantly downregulated by PDGFBB in human PASMCs. In this work, we further explore the function of miR-1181 and underlying regulatory mechanisms in PDGF-induced PASMCs. First, the expression pattern of miR-1181 was characterized under PDGFBB treatment, and PDGF receptor/PKCβ signaling was found to repress miR-1181 expression. Then, gain- and loss-of-function experiments were respectively conducted and revealed the prominent role of miR-1181 in inhibiting PASMC proliferation and migration. Flow cytometry analysis suggested that miR-1181 regulated the PASMC proliferation through influencing the cell cycle transition from G0/G1 to S phase. Moreover, we exhibited that miR-1181 targeting STAT3 formed a regulatory axis to modulate PASMC proliferation. Finally, serum miR-1181 expression was also observed to be reduced in adult and newborn patients with PAH. Overall, this study provides novel findings that the miR-1181/STAT3 axis mediated PDGFBB-induced dysfunction in human PASMCs, implying a potential use of miR-1181 as a therapeutic and diagnostic candidate for the vascular remodeling diseases.
Collapse
Affiliation(s)
- Zhengjiang Qian
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjiao Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiyang Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jidong Chen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiang Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Deming Gou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
123
|
Zhang L, Ma C, Gu R, Zhang M, Wang X, Yang L, Liu Y, Zhou Y, He S, Zhu D. Paeonol regulates hypoxia-induced proliferation of pulmonary artery smooth muscle cells via EKR 1/2 signalling. Eur J Pharmacol 2018; 834:257-265. [DOI: 10.1016/j.ejphar.2018.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
|
124
|
Yalamanoglu A, Deuel JW, Hunt RC, Baek JH, Hassell K, Redinius K, Irwin DC, Schaer DJ, Buehler PW. Depletion of haptoglobin and hemopexin promote hemoglobin-mediated lipoprotein oxidation in sickle cell disease. Am J Physiol Lung Cell Mol Physiol 2018; 315:L765-L774. [PMID: 30047285 DOI: 10.1152/ajplung.00269.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intravascular sickling and lysis of red blood cells, a hallmark feature of sickle cell disease (SCD), releases hemoglobin (Hb) into the circulation. Increased cell-free Hb has been linked to vasculopathy and in vitro lipid oxidation. Scavenger plasma proteins haptoglobin (Hp) and hemopexin (Hpx) can attenuate cell-free Hb and total plasma heme lipid-oxidative capacity but are depleted in SCD. Here, we isolated lipids from BERK-SS mice, guinea pigs (GP) infused with heme-albumin, and patients with SCD undergoing regular exchange transfusion therapy and evaluated the level of lipid oxidation. Malondialdehyde formation, an end product of lipid peroxidation, was increased in BERK-SS mice, purified lipid fractions of the heme-albumin infused GP, and patients with SCD compared with controls. In humans, the extent of lipid oxidation was associated with the absence of Hp as well as decreased Hpx in plasma samples. Postmortem pulmonary tissue obtained from patients with SCD demonstrated oxidized LDL deposition in the pulmonary artery. The relationship between no Hp and low Hpx levels with greater LDL and HDL oxidation demonstrates the loss of protection against cell-free Hb and total plasma heme-mediated lipid oxidation and tissue injury in SCD. Strategies to protect against plasma lipid oxidation by cell-free Hb and total plasma heme (e.g., therapeutic Hp and Hpx replacement) may diminish the deleterious effects of cell-free Hb and total plasma heme toward the vascular system in SCD.
Collapse
Affiliation(s)
- Ayla Yalamanoglu
- Laboratory of Biochemistry and Vascular Biology, United States Food and Drug Administration, Silver Spring, Maryland
| | - Jeremy W Deuel
- Division of Internal Medicine, University Hospital of Zurich , Zurich , Switzerland
| | - Ryan C Hunt
- Division of Plasma Protein Therapeutics, United States Food and Drug Administration , Silver Spring, Maryland
| | - Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, United States Food and Drug Administration, Silver Spring, Maryland
| | - Kathryn Hassell
- Division of Hematology, University of Colorado , Aurora, Colorado
| | - Katie Redinius
- Cardiovascular and Pulmonary Research Laboratory, University of Colorado, Aurora, Colorado
| | - David C Irwin
- Cardiovascular and Pulmonary Research Laboratory, University of Colorado, Aurora, Colorado
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital of Zurich , Zurich , Switzerland
| | - Paul W Buehler
- Laboratory of Biochemistry and Vascular Biology, United States Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
125
|
Martinez C, Wallenhorst C, Teal S, Cohen AT, Peacock AJ. Incidence and risk factors of chronic thromboembolic pulmonary hypertension following venous thromboembolism, a population-based cohort study in England. Pulm Circ 2018; 8:2045894018791358. [PMID: 29985100 PMCID: PMC6066824 DOI: 10.1177/2045894018791358] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a complication of
unresolved organised pulmonary emboli/thrombi obstructing the major pulmonary
arteries. The aim of this study was to estimate the incidence and risk factors
of CTEPH in a cohort with first venous thromboembolism (VTE). This was a
population-based cohort study of patients with first VTE and no active cancer in
England between 2001 and 2012. CTEPH was assessed using a rigorous
case-ascertainment algorithm. Risk factors for CTEPH were studied using a nested
case-control approach by matching CTEPH cases to VTE patients without CTEPH.
Adjusted odds ratios (OR) of comorbidities were estimated from conditional
logistic regression. During 81,413 person-years of follow-up among 23,329
patients with first VTE (mean follow-up 3.5 years; maximum 11.0 years) 283
patients were diagnosed with CTEPH (incidence rate 3.5 per 1000 person-years);
cumulative incidence was 1.3% and 3.3% at 2 and 10 years after pulmonary
embolism, and 0.3% and 1.3% following deep vein thrombosis (DVT), respectively.
Risk factors for CTEPH included age over 70, OR 2.04 (95% CI 1.23 to 3.38),
female gender, 1.44 (1.06 to 1.94), pulmonary embolism at first VTE, 3.11 (2.23
to 4.35), subsequent pulmonary embolism and DVT, 3.17 (2.02 to 4.96) and 2.46
(1.34 to 4.51) respectively, chronic obstructive pulmonary disease 3.17 (2.13 to
4.73), heart failure 2.52 (1.76 to 3.63) and atrial fibrillation, 2.42 (1.71 to
3.42). CTEPH develops most commonly after pulmonary embolism and less frequently
after DVT. Awareness of risk factors may increase referrals to specialised
centres for confirmation of CTEPH and initiation of specific treatment.
Collapse
Affiliation(s)
- C Martinez
- 1 Institute for Epidemiology, Statistics and Informatics GmbH, Frankfurt, Germany
| | - C Wallenhorst
- 1 Institute for Epidemiology, Statistics and Informatics GmbH, Frankfurt, Germany
| | - S Teal
- 2 Real-World Evidence Strategy & Outcomes Data Generation, Bayer AG, Berlin, Germany
| | - A T Cohen
- 3 Department of Haematology, Guy's and St Thomas' Hospitals, King's College, London, UK
| | - A J Peacock
- 4 Scottish Pulmonary Vascular Unit, Regional Heart and Lung centre, Glasgow, UK
| |
Collapse
|
126
|
Fox CJ, Cornett EM, Hart BM, Kaye AJ, Patil SS, Turpin MC, Valdez A, Urman RD, Kaye AD. Pulmonary vasodilators: Latest evidence and outcomes in the perioperative setting. Best Pract Res Clin Anaesthesiol 2018; 32:237-250. [PMID: 30322463 DOI: 10.1016/j.bpa.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
Numerous conditions give rise to pulmonary arterial hypertension (PAH), with most of them being idiopathic. Signs and symptoms are generally difficult to recognize initially because they present as nonspecific and typically are mistaken for age-related physiological processes or alternate medical conditions. Many advances have been made toward PAH-specific therapies that have led to advanced clinical management of the disease. The present investigation describes new pulmonary vasodilator agents that are currently available or under development that could impact perioperative management. The 6-min walk test is the gold standard in assessing the efficacy of any pulmonary hypertension treatment, and the only drug to show any mortality benefit in pulmonary hypertension is epoprostenol. The present investigation also describes the latest evidence on using these medications in the perioperative period, including clinical trials and practice guidelines. Future direction for research and clinical management of pulmonary hypertension is described.
Collapse
Affiliation(s)
- Charles J Fox
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Brendon M Hart
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Aaron J Kaye
- Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Shilpadevi S Patil
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Michelle Carroll Turpin
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| | - Angelica Valdez
- Northwestern State University, 1800 Line Ave, Shreveport, LA, 71106, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Alan D Kaye
- Department of Anesthesiology, LSU Health Sciences Center, Room 656, 1542 Tulane Ave., New Orleans, LA, 70112, USA.
| |
Collapse
|
127
|
Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, Mladěnka A, Karlíčková J, Jahodář L, Vopršalová M, Varner KJ, Štěrba M. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev 2018; 38:1332-1403. [PMID: 29315692 PMCID: PMC6033155 DOI: 10.1002/med.21476] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in most developed countries of the world. Pharmaceuticals, illicit drugs, and toxins can significantly contribute to the overall cardiovascular burden and thus deserve attention. The present article is a systematic overview of drugs that may induce distinct cardiovascular toxicity. The compounds are classified into agents that have significant effects on the heart, blood vessels, or both. The mechanism(s) of toxic action are discussed and treatment modalities are briefly mentioned in relevant cases. Due to the large number of clinically relevant compounds discussed, this article could be of interest to a broad audience including pharmacologists and toxicologists, pharmacists, physicians, and medicinal chemists. Particular emphasis is given to clinically relevant topics including the cardiovascular toxicity of illicit sympathomimetic drugs (e.g., cocaine, amphetamines, cathinones), drugs that prolong the QT interval, antidysrhythmic drugs, digoxin and other cardioactive steroids, beta-blockers, calcium channel blockers, female hormones, nonsteroidal anti-inflammatory, and anticancer compounds encompassing anthracyclines and novel targeted therapy interfering with the HER2 or the vascular endothelial growth factor pathway.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Jiří Patočka
- Department of Radiology and Toxicology, Faculty of Health and Social StudiesUniversity of South BohemiaČeské BudějoviceCzech Republic
- Biomedical Research CentreUniversity HospitalHradec KraloveCzech Republic
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
| | - Fernando Remiao
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Aleš Mladěnka
- Oncogynaecologic Center, Department of Gynecology and ObstetricsUniversity HospitalOstravaCzech Republic
| | - Jana Karlíčková
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Luděk Jahodář
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Kurt J. Varner
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | | |
Collapse
|
128
|
Bedan M, Grimm D, Wehland M, Simonsen U, Infanger M, Krüger M. A Focus on Macitentan in the Treatment of Pulmonary Arterial Hypertension. Basic Clin Pharmacol Toxicol 2018; 123:103-113. [PMID: 29719121 DOI: 10.1111/bcpt.13033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023]
Abstract
The approval of macitentan has increased the number of pharmacological treatments of pulmonary arterial hypertension (PAH). Here, we review the effect on PAH of macitentan compared to other endothelin receptor antagonists. Drugs targeting the endothelin (ET) pathway include the selective ETA receptor antagonist ambrisentan, the ETA /ETB receptor antagonists, bosentan and macitentan, which were recently approved for PAH treatment. Macitentan exhibits higher antagonistic potency than bosentan and ambrisentan in pulmonary smooth muscle cells. Compared to ambrisentan and bosentan, macitentan has a longer duration of action, reflected by the longer half-life, as well as pharmacodynamics attributed to its active metabolite, ACT-132577. The efficacy of macitentan on PAH was investigated in the phase III SERAPHIN trial (NCT00660179). Macitentan significantly reduced morbidity and mortality. It improved the 6-min. walk distance (6MWD) among PAH patients. In the AMB-320/321-E (NCT00578786) study, ambrisentan improved exercise capacity. In the EARLY study (NCT00091715), bosentan showed improvements in 6MWD which were not statistically significant. Bosentan had an effect on PAH in patients with Eisenmenger syndrome (ES) in the BREATHE-5 study (NCT00367770), while macitentan did not improve 6MWD in these patients, but there are differences regarding study size and functional class, and that 30% of the patients treated with macitentan were already in treatment with a phosphodiesterase type 5 inhibitor. Macitentan revealed a lower risk of developing peripheral oedema and hepatotoxicity in the SERAPHIN study. In summary, macitentan has an efficiency comparable to bosentan and ambrisentan in the treatment of PAH. Patients treated with macitentan exhibited less adverse effects compared to bosentan and ambrisentan. In patients with PAH associated with ES, the trials with bosentan and macitentan do not seem comparable, and it needs to be clarified whether these drugs are effective when administered as part of a combination treatment in this condition.
Collapse
Affiliation(s)
- Martin Bedan
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus C, Denmark
| | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus C, Denmark.,Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ulf Simonsen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus C, Denmark
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
129
|
Abstract
Scleroderma is an uncommon autoimmune disease of unknown cause that may affect any organ system in the body. Patients with scleroderma are prone to developing pulmonary complications, including pulmonary arterial hypertension (PAH), that are the leading cause of death in this population. This article describes scleroderma-related PAH and its diagnosis and management.
Collapse
|
130
|
Zhang Z, Pan K, Chen L, Wang Y. The effect of nitric oxide inhalation on heart and pulmonary circulation in rabbits with acute massive pulmonary embolism. Exp Ther Med 2018; 16:270-276. [PMID: 29896249 PMCID: PMC5995066 DOI: 10.3892/etm.2018.6155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of nitric oxide inhalation (NOI) on cardiac troponin I (CTnI) levels and mean pulmonary arterial pressure (mPAP) in rabbits with acute massive pulmonary embolism (AMPE). Thirty rabbits were used as animal models for AMPE and received different treatments. A total of 4 h after successful modeling, the control group (CON, n=10) received conventional thrombolysis, whereas the treatment group (TRE, n=10) received conventional thrombolysis plus NOI. The experimental group (EXP, n=10) did not receive any treatments. Myocardial necrosis was pathologically confirmed in all 30 rabbits. In group EXP, the post-AMPE CTnI peak level was 0.42±0.12 µg/l, was achieved in 18.8±4.5 h and remained positive for 38.6±5.2 h (≥0.1 µg/l). These values were lower in group TRE when compared with those in groups CON and EXP (P<0.05). Group TRE exhibited significantly reduced mPAP at 24, 28, 32, and 34 h (P<0.05) when compared with group CON. AMPE-induced cardiac impairment was more severe in group EXP when compared with groups CON and TRE. The present findings indicated that the CTnI peak was significantly correlated with the corresponding mPAP. Furthermore, the results suggested NOI may reduce mPAP and CTnI peak levels, with protective effects against AMPE-induced myocardial damage in rabbits.
Collapse
Affiliation(s)
- Zeming Zhang
- Department of Respiratory Medicine, Affiliated Zhou Pu Hospital of Shanghai Health College, Shanghai 201318, P.R. China
| | - Kun Pan
- Department of Respiratory Medicine, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Lu Chen
- Department of Respiratory Medicine, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yancun Wang
- Department of Respiratory Medicine, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
131
|
Batton KA, Austin CO, Bruno KA, Burger CD, Shapiro BP, Fairweather D. Sex differences in pulmonary arterial hypertension: role of infection and autoimmunity in the pathogenesis of disease. Biol Sex Differ 2018; 9:15. [PMID: 29669571 PMCID: PMC5907450 DOI: 10.1186/s13293-018-0176-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/09/2018] [Indexed: 01/14/2023] Open
Abstract
Registry data worldwide indicate an overall female predominance for pulmonary arterial hypertension (PAH) of 2–4 over men. Genetic predisposition accounts for only 1–5% of PAH cases, while autoimmune diseases and infections are closely linked to PAH. Idiopathic PAH may include patients with undiagnosed autoimmune diseases based on the relatively high presence of autoantibodies in this group. The two largest PAH registries to date report a sex ratio for autoimmune connective tissue disease-associated PAH of 9:1 female to male, highlighting the need for future studies to analyze subgroup data according to sex. Autoimmune diseases that have been associated with PAH include female-dominant systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, and thyroiditis as well as male-dominant autoimmune diseases like myocarditis which has been linked to HIV-associated PAH. The sex-specific association of PAH to certain infections and autoimmune diseases suggests that sex hormones and inflammation may play an important role in driving the pathogenesis of disease. However, there is a paucity of data on sex differences in inflammation in PAH, and more research is needed to better understand the pathogenesis underlying PAH in men and women. This review uses data on sex differences in PAH and PAH-associated autoimmune diseases from registries to provide insight into the pathogenesis of disease.
Collapse
Affiliation(s)
- Kyle A Batton
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Charles D Burger
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Brian P Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
132
|
de Wijs-Meijler DPM, Danser AHJ, Reiss IKM, Duncker DJ, Merkus D. Sex differences in pulmonary vascular control: focus on the nitric oxide pathway. Physiol Rep 2018; 5:5/11/e13200. [PMID: 28596298 PMCID: PMC5471427 DOI: 10.14814/phy2.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 01/23/2023] Open
Abstract
Although the incidence of pulmonary hypertension is higher in females, the severity and prognosis of pulmonary vascular disease in both neonates and adults have been shown to be worse in male subjects. Studies of sex differences in pulmonary hypertension have mainly focused on the role of sex hormones. However, the contribution of sex differences in terms of vascular signaling pathways regulating pulmonary vascular function remains incompletely understood. Consequently, we investigated pulmonary vascular function of male and female swine in vivo, both at rest and during exercise, and in isolated small pulmonary arteries in vitro, with a particular focus on the NO‐cGMP‐PDE5 pathway. Pulmonary hemodynamics at rest and during exercise were virtually identical in male and female swine. Moreover, NO synthase inhibition resulted in a similar degree of pulmonary vasoconstriction in male and female swine. However, NO synthase inhibition blunted bradykinin‐induced vasodilation in pulmonary small arteries to a greater extent in male than in female swine. PDE5 inhibition resulted in a similar degree of vasodilation in male and female swine at rest, while during exercise there was a trend towards a larger effect in male swine. In small pulmonary arteries, PDE5 inhibition failed to augment bradykinin‐induced vasodilation in either sex. Finally, in the presence of NO synthase inhibition, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in female swine both in vivo and in vitro. In conclusion, the present study demonstrated significant sex differences in the regulation of pulmonary vascular tone, which may contribute to understanding sex differences in incidence, treatment response, and prognosis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Daphne P M de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands .,Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
133
|
Chinnappan M, Mohan A, Agarwal S, Dalvi P, Dhillon NK. Network of MicroRNAs Mediate Translational Repression of Bone Morphogenetic Protein Receptor-2: Involvement in HIV-Associated Pulmonary Vascular Remodeling. J Am Heart Assoc 2018; 7:e008472. [PMID: 29478969 PMCID: PMC5866341 DOI: 10.1161/jaha.117.008472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/26/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Earlier, we reported that the simultaneous exposure of pulmonary arterial smooth muscle cells to HIV proteins and cocaine results in the attenuation of antiproliferative bone morphogenetic protein receptor-2 (BMPR2) protein expression without any decrease in its mRNA levels. Therefore, in this study, we aimed to investigate the micro RNA-mediated posttranscriptional regulation of BMPR2 expression. METHODS AND RESULTS We identified a network of BMPR2 targeting micro RNAs including miR-216a to be upregulated in response to cocaine and Tat-mediated augmentation of oxidative stress and transforming growth factor-β signaling in human pulmonary arterial smooth muscle cells. By using a loss or gain of function studies, we observed that these upregulated micro RNAs are involved in the Tat- and cocaine-mediated smooth muscle hyperplasia via regulation of BMPR2 protein expression. These in vitro findings were further corroborated using rat pulmonary arterial smooth muscle cells isolated from HIV transgenic rats exposed to cocaine. More importantly, luciferase reporter and in vitro translation assays demonstrated that direct binding of novel miR-216a and miR-301a to 3'UTR of BMPR2 results in the translational repression of BMPR2 without any degradation of its mRNA. CONCLUSIONS We identified for the first time miR-216a as a negative modulator of BMPR2 translation and observed it to be involved in HIV protein(s) and cocaine-mediated enhanced proliferation of pulmonary smooth muscle cells.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Binding Sites
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cell Proliferation
- Cells, Cultured
- Cocaine/pharmacology
- Down-Regulation
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats, Transgenic
- Signal Transduction
- Vascular Remodeling/drug effects
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
134
|
Sun F, Lu Z, Zhang Y, Geng S, Xu M, Xu L, Huang Y, Zhuang P, Zhang Y. Stage‑dependent changes of β2‑adrenergic receptor signaling in right ventricular remodeling in monocrotaline‑induced pulmonary arterial hypertension. Int J Mol Med 2018; 41:2493-2504. [PMID: 29393391 PMCID: PMC5846663 DOI: 10.3892/ijmm.2018.3449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/10/2018] [Indexed: 11/29/2022] Open
Abstract
Right ventricular (RV) remodeling coupled with extensive apoptosis in response to unrestrained biomechanical stress may lead to RV failure (RVF), which is the immediate cause of death in the majority of patients with pulmonary arterial hypertension (PAH). Overexpression of β2-adrenergic receptor (β2-AR) signaling has been reported to induce myocardiotoxicity in patients with left heart failure. However, the role of β2-AR signaling in the pathophysiology of PAH development has remained elusive. To address this issue, the present study investigated the changes in cardiopulmonary function and structure, as well as the expression of regulators of fibrosis and apoptosis in RVF following monocrotaline (MCT; 60 mg/kg, i.p.)-induced PAH in rats. Cardiopulmonary function and structure, remodeling and apoptosis, as well as G protein-coupled receptor (GPCR) and β2-AR signaling, were documented over a period of 6 weeks. In the early stages, elevated pulmonary arterial pressure, pulmonary lesions, RV hypertrophy, evidence of left ventricular (LV) hyperfunction and accelerated heart rate were observed in animals with MCT-induced PAH. The levels of angiotensin II receptor type 1b (Agtr1b), Agtr2 and Agt were markedly upregulated and the expression of β2-AR phospho-Ser(355,356) steadily decreased in the right heart. As the disease progressed, LV dysfunction was observed, as evidenced by decreased LV systolic pressure and increased LV end-diastolic pressure, which was accompanied by a sustained increase in circulating brain natriuretic peptide levels. Of note, increased levels of cardiomyocyte apoptosis and concomitant RV remodeling, including hypertrophy, dilatation, inflammation and fibrosis, were observed, despite the enhanced RV contractility. Furthermore, alterations in GPCR signaling and activation in β2-AR-Gs-protein kinase A/Ca2+/calmodulin-dependent kinase II signaling were observed in the late stages of PAH. These results suggested that treatment with MCT results in adaptive and maladaptive RV remodeling and apoptosis during the progression of PAH, which is accompanied by distinct changes in the β2-AR signaling. Therefore, these results enable researchers to better understand of pathophysiology of MCT-induced PAH, as well as to determine the effects of novel therapies.
Collapse
Affiliation(s)
- Fengjiao Sun
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Zhiqiang Lu
- Department of Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yidan Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Shihan Geng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Mengxi Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Liman Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yingying Huang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Pengwei Zhuang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
135
|
Spencer L, Zafiropoulos B, Denniss W, Fowler D, Alison J, Celermajer D. Is there a learning effect when the 6-minute walk test is repeated in people with suspected pulmonary hypertension? Chron Respir Dis 2018; 15:339-346. [PMID: 29361830 PMCID: PMC6234568 DOI: 10.1177/1479972317752762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of the study was to determine if there was a difference in 6-minute walk distance (6MWD) when two 6-minute walk tests (6MWTs) were performed at the initial assessment prior to attendance at the pulmonary hypertension (PH) clinic and at the 6-month follow-up. Two 6MWTs were performed at both visits on a 32-m continuous track in the physiotherapy hospital outpatient setting using standard instructions and encouragement. Two hundred and fourteen participants completed two 6MWTs at the initial assessment and 71 participants at the 6-month follow-up (mean (standard deviation) age: 57 (16) years; body mass index: 27 (6) kg/m2). Using the better 6MWT, the mean distances walked were 429 (136) and 447 (130) m, respectively. There was a significant increase in 6MWD when a second 6MWT was performed at initial assessment (mean difference [95% confidence interval (CI)]: 19 m (14–24), p < 0.001) and at the follow-up (mean difference [95% CI]: 19 m (10–27), p < 0.001) but not in those who walked <300 m at the initial assessment (mean difference [95% CI]: 9 m (−5 to 22), p = 0.208). There were no adverse events during testing. Prior to attendance at the PH Clinic when people are asked to perform the 6MWT for the first time and at the 6-month follow-up, two walk tests should be performed in order to eliminate a learning effect and to ensure accuracy of measurement.
Collapse
Affiliation(s)
- Lissa Spencer
- 1 Department of Physiotherapy, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Bill Zafiropoulos
- 1 Department of Physiotherapy, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Wendy Denniss
- 1 Department of Physiotherapy, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Dot Fowler
- 2 Department of Rheumatology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Jennifer Alison
- 1 Department of Physiotherapy, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia.,3 Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Lidcombe, Sydney, NSW, Australia
| | - David Celermajer
- 4 Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| |
Collapse
|
136
|
Mechanisms underlying the impact of exercise training in pulmonary arterial hypertension. Respir Med 2018; 134:70-78. [DOI: 10.1016/j.rmed.2017.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/10/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022]
|
137
|
Ried M, Neu R, Lehle K, Großer C, Szöke T, Lang G, Hofmann HS, Hoenicka M. Superior vasodilation of human pulmonary vessels by vardenafil compared with tadalafil and sildenafil: additive effects of bosentan. Interact Cardiovasc Thorac Surg 2017; 25:254-259. [PMID: 28486684 DOI: 10.1093/icvts/ivx108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/06/2017] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES Pulmonary arterial hypertension is characterized by pulmonary vascular proliferation and remodelling, leading to a progressive increase in pulmonary arterial resistance. Vasodilator properties of 3 different phosphodiesterase (PDE)-5 inhibitors alone and in combination with an endothelin (ET) receptor antagonist were compared in an ex vivo model. METHODS Segments of human pulmonary arteries (PAs) and pulmonary veins (PVs) were harvested from lobectomy specimens. Contractile forces were determined in an organ bath. Vessels were constricted with norepinephrine (NE) to determine the effects of sildenafil, tadalafil and vardenafil and with ET-1 to assess the effects of bosentan. RESULTS All 3 PDE-5 inhibitors had no relevant effect on the basal tone of the vessels. Both sildenafil and vardenafil significantly (P < 0.0001) reduced the responses of the vessels to NE, whereas tadalafil was effective only in PA (P = 0.0009) but not in PV (P = 0.097). Sildenafil relaxed NE-preconstricted PV (P < 0.0001) but not PA (P = 0.143). Both tadalafil and vardenafil relaxed PA and PV significantly. Vardenafil appears to be the most potent of the PDE-5 inhibitors tested. Furthermore, we analysed the combination of bosentan and vardenafil in PA. Bosentan and vardenafil reduced ET-1 and NE induced vasoconstriction stronger than vardenafil alone (P ≤ 0.049). CONCLUSIONS Vardenafil caused the most consistent antihypertensive response in this ex vivo model. However, ET receptor antagonism appears to be an even more potent mechanism. A combination therapy using vardenafil and bosentan turned out to be an effective combination to lower vessel tension in PA.
Collapse
Affiliation(s)
- Michael Ried
- Department of Thoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Reiner Neu
- Department of Thoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christian Großer
- Department of Thoracic Surgery, Hospital Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Tamas Szöke
- Department of Thoracic Surgery, Hospital Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Gunter Lang
- Department of Cardiothoracic and Vascular Surgery, University of Ulm Medical Center, Ulm, Germany
| | - Hans-Stefan Hofmann
- Department of Thoracic Surgery, University Medical Center Regensburg, Regensburg, Germany.,Department of Thoracic Surgery, Hospital Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Markus Hoenicka
- Department of Cardiothoracic and Vascular Surgery, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
138
|
Yamazaki H, Kobayashi N, Taketsuna M, Tajima K, Suzuki N, Murakami M. Safety and effectiveness of tadalafil in pediatric patients with pulmonary arterial hypertension: a sub-group analysis based on Japan post-marketing surveillance. Curr Med Res Opin 2017; 33:2241-2249. [PMID: 28699846 DOI: 10.1080/03007995.2017.1354832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate the long-term safety and effectiveness of tadalafil in pediatric patients with pulmonary arterial hypertension (PAH) in real-world clinical practice. METHODS This is an observational surveillance of PAH patients receiving tadalafil in the contracted sites. A sub-group analysis was performed of 391 pediatric PAH patients (<18 years) who were included from 1,704 total patients in this surveillance. Safety was assessed from the frequency of adverse drug reactions (ADRs), discontinuations due to adverse events (AEs), and serious adverse drug reactions (SADRs). Effectiveness measurements included change in World Health Organization (WHO) functional classification of PAH, cardiac catheterization (pulmonary arterial pressure: PAP), and echocardiography (tricuspid regurgitation pressure gradient: TRPG). Survival rate was also measured. RESULTS The mean patient age was 5.7 ± 5.34 years. Associated PAH (APAH) and idiopathic PAH (IPAH) accounted for 76.0% and 17.6%, respectively, of the PAH patients. Patients were followed for up to 2 years. Among 391 patients analyzed for safety, the overall incidence rate of ADRs was 16.6%. The common ADRs (≥ 1%) were headache (2.8%), hepatic function abnormal, platelet count decreased (1.3% each), and epistaxis, (1.0%). Eleven patients (2.8%) reported 16 SADRs. Three patients died secondary to SADRs. For the effectiveness analysis, the incidence of WHO functional class improvement at 3 months, 1 year, and 2 years after the initiation of tadalafil and last observation in pediatric patients were 16.5%, 19.7%, and 16.3%, respectively. Both PAP and TRPG showed a statistically significant reduction at last observation. CONCLUSION This manuscript reveals the use of tadalafil in the real-world pediatric population with an acceptable safety profile in Japan.
Collapse
Affiliation(s)
- Hiroyoshi Yamazaki
- a Global Patient Safety Japan , Quality & Patient Safety, Eli Lilly Japan K.K. , Kobe , Japan
| | - Noriko Kobayashi
- b Post Marketing Study Management, Medicines Development Unit Japan , Eli Lilly Japan K. K. , Kobe , Japan
| | - Masanori Taketsuna
- c Statistical Sciences, Medicines Development Unit Japan , Eli Lilly Japan K.K. , Kobe , Japan
| | - Koyuki Tajima
- d Post Marketing Surveillance Clinical Research Department , Nippon Shinyaku CO., Ltd , Kobe , Japan
| | - Nahoko Suzuki
- e Biometrics, Medicines Development Unit Japan , Eli Lilly Japan K.K. , Tokyo , Japan
| | - Masahiro Murakami
- f Medical Science, Medicines Development Unit Japan , Eli Lilly Japan K.K. , Kobe , Japan
| |
Collapse
|
139
|
Pulmonary Hypertension and Thrombembolism—Long-Term Management and Chronic Oral Anticoagulation. PHYSICIAN ASSISTANT CLINICS 2017. [DOI: 10.1016/j.cpha.2017.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
140
|
Zhai Z, Zhou X, Zhang S, Xie W, Wan J, Kuang T, Yang Y, Huang H, Wang C. The impact and financial burden of pulmonary arterial hypertension on patients and caregivers: results from a national survey. Medicine (Baltimore) 2017; 96:e6783. [PMID: 28953608 PMCID: PMC5626251 DOI: 10.1097/md.0000000000006783] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic progressive devastating disease. Symptom burden might impair health-related quality of life of patients. Furthermore, treatment on this disease brings significant financial burden to patients' families. Both physiological and psychological symptoms have been reported, but limited evidence regarding the impact of PAH on patients and caregivers exists, especially the emotional issues and their association with patients' health quality. The main purpose of this study was to describe the impact of PAH on patients and their caregivers in a Chinese population.This large-scale national survey enrolled 174 participants to complete questionnaires using face-to-face semistructured interviews.PAH influenced all aspects of patients' lives including daily activities, work, emotions, and personal relationships. Both patients and caregivers reported a major impact on family finances and on their work. The majority of patients had feelings of isolation. A lack of public understanding about PAH contributes to social isolation. Most patients and caregivers would like to get information regarding PAH doctors and patient organization contacts to obtain support.This survey-based report provides information regarding the way and extent to which PAH impacts both patients and their caregivers and provides some means for comparison with non-Chinese populations. It is important for physicians and the community to offer more support and information for PAH patients and their families.
Collapse
Affiliation(s)
- Zhenguo Zhai
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University
- National Clinical Research Center of Respiratory Medicine
| | - Xia Zhou
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University
- Department of Respiratory Medicine, Capital Medical University
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University
- National Clinical Research Center of Respiratory Medicine
| | - Wanmu Xie
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University
| | - Jun Wan
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University
| | - Tuguang Kuang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University
- Department of Respiratory Medicine, Capital Medical University
| | - Yuanhua Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University
- Department of Respiratory Medicine, Capital Medical University
| | - Huan Huang
- ISEEKPH Hope Center, Beijing, P.R. China
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital
- National Clinical Research Center of Respiratory Medicine
| |
Collapse
|
141
|
Tomizawa R, Sugiyama H, Sato R, Ohnishi M, Koizumi N. Male-specific pulmonary hemorrhage and cytokine gene expression in golden hamster in early-phase Leptospira interrogans serovar Hebdomadis infection. Microb Pathog 2017; 111:33-40. [PMID: 28811249 DOI: 10.1016/j.micpath.2017.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/19/2023]
Abstract
Leptospirosis causes severe clinical signs more frequently in men than in women, but the mechanism underlying the gender differences in leptospirosis remains unclear. In this study, petechial hemorrhage was observed in male but not in female hamster lung tissues infected with Leptospira interrogans serovar Hebdomadis at 120 h pi, demonstrating that male hamsters were more susceptible to the development of a severe disease upon Leptospira infection. No leptospiral DNA was detected in the lung tissues at 120 h pi when pulmonary hemorrhage was observed, indicating that pulmonary hemorrhage is attributable to the immune reactions of the host rather than from the direct effect of leptospires. The upregulation of nitric oxide synthase genes in the hamsters without pulmonary hemorrhage, inos and enos in female hamsters at 96 h pi and enos in male animals without hemorrhage at 120 h pi, may suggest that nitric oxide has a suppressive effect on leptospirosis-associated pulmonary hemorrhage.
Collapse
Affiliation(s)
- Rina Tomizawa
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| | - Ryoichi Sato
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
142
|
Noel ZR, Kido K, Macaulay TE. Selexipag for the treatment of pulmonary arterial hypertension. Am J Health Syst Pharm 2017; 74:1135-1141. [DOI: 10.2146/ajhp160798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Zachary R. Noel
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD
| | - Kazuhiko Kido
- Department of Pharmacy Practice, South Dakota State University, Sioux Falls, SD, and Department of Pharmacy, Avera McKennan Hospital, Sioux Falls, SD
| | - Tracy E. Macaulay
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY, and UKHealthCare Jack and Linda Gill Heart Institute, Lexington, KY
| |
Collapse
|
143
|
Abstract
The pathogenesis of pulmonary arterial hypertension remains undefined. Changes in the expression and effects mediated by a number of vasoactive factors have been implicated to play a role in the onset and progression of the disease. The source of many of these mediators, such as nitric oxide (NO), prostacyclin and endothelin-1 (ET-1), is the pulmonary endothelium. This article focus in the role of nitric oxide in PAH, reviewing the evidence for its involvement in regulation of pulmonary a vascular tone under physiological conditions, the mechanisms by which it can contribute to the pathological changes seen in PAH and strategies for the use of NO as a therapy for treatment of the disease.
Collapse
Affiliation(s)
- Adrian H Chester
- National Heart & Lung Institute, Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Magdi H Yacoub
- National Heart & Lung Institute, Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Salvador Moncada
- School of Medical Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4QL, United Kingdom
| |
Collapse
|
144
|
Mohamed NA, Davies RP, Lickiss PD, Ahmetaj-Shala B, Reed DM, Gashaw HH, Saleem H, Freeman GR, George PM, Wort SJ, Morales-Cano D, Barreira B, Tetley TD, Chester AH, Yacoub MH, Kirkby NS, Moreno L, Mitchell JA. Chemical and biological assessment of metal organic frameworks (MOFs) in pulmonary cells and in an acute in vivo model: relevance to pulmonary arterial hypertension therapy. Pulm Circ 2017; 7:643-653. [PMID: 28447910 PMCID: PMC5841901 DOI: 10.1177/2045893217710224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and debilitating condition. Despite promoting vasodilation, current drugs have a therapeutic window within which they are limited by systemic side effects. Nanomedicine uses nanoparticles to improve drug delivery and/or reduce side effects. We hypothesize that this approach could be used to deliver PAH drugs avoiding the systemic circulation. Here we report the use of iron metal organic framework (MOF) MIL-89 and PEGylated MIL-89 (MIL-89 PEG) as suitable carriers for PAH drugs. We assessed their effects on viability and inflammatory responses in a wide range of lung cells including endothelial cells grown from blood of donors with/without PAH. Both MOFs conformed to the predicted structures with MIL-89 PEG being more stable at room temperature. At concentrations up to 10 or 30 µg/mL, toxicity was only seen in pulmonary artery smooth muscle cells where both MOFs reduced cell viability and CXCL8 release. In endothelial cells from both control donors and PAH patients, both preparations inhibited the release of CXCL8 and endothelin-1 and in macrophages inhibited inducible nitric oxide synthase activity. Finally, MIL-89 was well-tolerated and accumulated in the rat lungs when given in vivo. Thus, the prototypes MIL-89 and MIL-89 PEG with core capacity suitable to accommodate PAH drugs are relatively non-toxic and may have the added advantage of being anti-inflammatory and reducing the release of endothelin-1. These data are consistent with the idea that these materials may not only be useful as drug carriers in PAH but also offer some therapeutic benefit in their own right.
Collapse
Affiliation(s)
- Nura A Mohamed
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK.,2 Heart Science Centre at Harefield Hospital, Harefield, UK.,3 Qatar Foundation Research and Development Division, Doha, Qatar
| | - Robert P Davies
- 4 Department of Chemistry, South Kensington Campus, Imperial College, London, UK
| | - Paul D Lickiss
- 4 Department of Chemistry, South Kensington Campus, Imperial College, London, UK
| | - Blerina Ahmetaj-Shala
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Daniel M Reed
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Hime H Gashaw
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Hira Saleem
- 4 Department of Chemistry, South Kensington Campus, Imperial College, London, UK
| | - Gemma R Freeman
- 4 Department of Chemistry, South Kensington Campus, Imperial College, London, UK
| | - Peter M George
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Stephen J Wort
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Daniel Morales-Cano
- 5 Department of Pharmacology, Faculty of Medicine, Universidad Complutense de Madrid- Instituto de Investigacion Sanitaria Gregorio Marañón (IiSGM), Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Bianca Barreira
- 5 Department of Pharmacology, Faculty of Medicine, Universidad Complutense de Madrid- Instituto de Investigacion Sanitaria Gregorio Marañón (IiSGM), Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Teresa D Tetley
- 6 Lung Cell Biology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Magdi H Yacoub
- 2 Heart Science Centre at Harefield Hospital, Harefield, UK
| | - Nicholas S Kirkby
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Laura Moreno
- 5 Department of Pharmacology, Faculty of Medicine, Universidad Complutense de Madrid- Instituto de Investigacion Sanitaria Gregorio Marañón (IiSGM), Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Jane A Mitchell
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
145
|
Sankhe S, Manousakidi S, Antigny F, Arthur Ataam J, Bentebbal S, Ruchon Y, Lecerf F, Sabourin J, Price L, Fadel E, Dorfmüller P, Eddahibi S, Humbert M, Perros F, Capuano V. T-type Ca 2+ channels elicit pro-proliferative and anti-apoptotic responses through impaired PP2A/Akt1 signaling in PASMCs from patients with pulmonary arterial hypertension. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1631-1641. [PMID: 28655554 DOI: 10.1016/j.bbamcr.2017.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Idiopathic pulmonary arterial hypertension (iPAH) is characterized by obstructive hyperproliferation and apoptosis resistance of distal pulmonary artery smooth muscle cells (PASMCs). T-type Ca2+ channel blockers have been shown to reduce experimental pulmonary hypertension, although the impact of T-type channel inhibition remains unexplored in PASMCs from iPAH patients. Here we show that T-type channels Cav3.1 and Cav3.2 are present in the lung and PASMCs from iPAH patients and control subjects. The blockade of T-type channels by the specific blocker, TTA-A2, prevents cell cycle progression and PASMCs growth. In iPAH cells, T-type channel signaling fails to activate phosphatase PP2A, leading to an increase in ERK1/2, P38 activation. Moreover, T-type channel signaling is redirected towards the activation of the kinase Akt1, leading to increased expression of the anti-apoptotic protein survivin, and a decrease in the pro-apoptotic mediator FoxO3A. Finally, in iPAH cells, Akt1 is no longer able to regulate caspase 9 activation, whereas T-type channel overexpression reverses PP2A defect in iPAH cells but reinforces the deleterious effects of Akt1 activation. Altogether, these data highlight T-type channel signaling as a strong trigger of the pathological phenotype of PASMCs from iPAH patients (hyper-proliferation/cells survival and apoptosis resistance), suggesting that both T-type channels and PP2A may be promising therapeutic targets for pulmonary hypertension.
Collapse
Affiliation(s)
- Safietou Sankhe
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Sevasti Manousakidi
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Fabrice Antigny
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jennifer Arthur Ataam
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Sana Bentebbal
- PhyMedExp, Univ. Montpellier, Inserm U1046, cNRS UMR9214.34295 MINSERM U1046, Montpellier, France
| | - Yann Ruchon
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Florence Lecerf
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jessica Sabourin
- INSERM UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Laura Price
- National Pulmonary Hypertension Service, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Elie Fadel
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Peter Dorfmüller
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Saadia Eddahibi
- PhyMedExp, Univ. Montpellier, Inserm U1046, cNRS UMR9214.34295 MINSERM U1046, Montpellier, France
| | - Marc Humbert
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France; AP-HP, Service de pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Frédéric Perros
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Véronique Capuano
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
146
|
Pousada G, Lupo V, Cástro-Sánchez S, Álvarez-Satta M, Sánchez-Monteagudo A, Baloira A, Espinós C, Valverde D. Molecular and functional characterization of the BMPR2 gene in Pulmonary Arterial Hypertension. Sci Rep 2017; 7:1923. [PMID: 28507310 PMCID: PMC5432510 DOI: 10.1038/s41598-017-02074-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive disease that causes the obstruction of precapillary pulmonary arteries and a sustained increase in pulmonary vascular resistance. The aim was to analyze functionally the variants found in the BMPR2 gene and to establish a genotype-phenotype correlation. mRNA expression studies were performed using pSPL3 vector, studies of subcellular localization were performed using pEGFP-N1 vector and luciferase assays were performed using pGL3-Basic vector. We have identified 30 variants in the BMPR2 gene in 27 of 55 patients. In 16 patients we detected pathogenic mutations. Minigene assays revealed that 6 variants (synonymous, missense) result in splicing defect. By immunofluorescence assay, we observed that 4 mutations affect the protein localization. Finally, 4 mutations located in the 5'UTR region showed a decreased transcriptional activity in luciferase assays. Genotype-phenotype correlation, revealed that patients with pathogenic mutations have a more severe phenotype (sPaP p = 0.042, 6MWT p = 0.041), a lower age at diagnosis (p = 0.040) and seemed to have worse response to phosphodiesterase-5-inhibitors (p = 0.010). Our study confirms that in vitro expression analysis is a suitable approach in order to investigate the phenotypic consequences of the nucleotide variants, especially in cases where the involved genes have a pattern of expression in tissues of difficult access.
Collapse
Affiliation(s)
- Guillermo Pousada
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Sheila Cástro-Sánchez
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - María Álvarez-Satta
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Ana Sánchez-Monteagudo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Adolfo Baloira
- Neumology Service, Complexo Hospitalario Universitario de Pontevedra, 36071, Pontevedra, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Diana Valverde
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain. .,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
147
|
Gessler T, Ghofrani HA, Held M, Klose H, Leuchte H, Olschewski H, Rosenkranz S, Fels L, Li N, Ren D, Kaiser A, Schultze-Mosgau MH, Müllinger B, Rohde B, Seeger W. The safety and pharmacokinetics of rapid iloprost aerosol delivery via the BREELIB nebulizer in pulmonary arterial hypertension. Pulm Circ 2017; 7:505-513. [PMID: 28597762 PMCID: PMC5467944 DOI: 10.1177/2045893217706691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The BREELIB nebulizer was developed for iloprost to reduce inhalation times for patients with pulmonary arterial hypertension (PAH). This multicenter, randomized, unblinded, four-part study compared inhalation time, pharmacokinetics, and acute tolerability of iloprost 5 µg at mouthpiece delivered via BREELIB versus the standard I-Neb nebulizer in 27 patients with PAH. The primary safety outcome was the proportion of patients with a maximum increase in heart rate (HR) ≥ 25% and/or a maximum decrease in systolic blood pressure ≥ 20% within 30 min after inhalation. Other safety outcomes included systolic, diastolic, and mean blood pressure, HR, oxygen saturation, and adverse events (AEs). Median inhalation times were considerably shorter with BREELIB versus I-Neb (2.6 versus 10.9 min; n = 24). Maximum iloprost plasma concentration and systemic exposure (area under the plasma concentration–time curve) were 77% and 42% higher, respectively, with BREELIB versus I-Neb. Five patients experienced a maximum systolic blood pressure decrease ≥ 20%, four with BREELIB (one mildly and transiently symptomatic), and one with I-Neb; none required medical intervention. AEs reported during the study were consistent with the known safety profile of iloprost. The BREELIB nebulizer offers reduced inhalation time, good tolerability, and may improve iloprost aerosol therapy convenience and thus compliance for patients with PAH.
Collapse
Affiliation(s)
- Tobias Gessler
- 1 Department of Internal Medicine II, University of Giessen and Marburg Lung Center and Member of the German Center of Lung Research, Giessen, Germany
| | - Hossein-Ardeschir Ghofrani
- 1 Department of Internal Medicine II, University of Giessen and Marburg Lung Center and Member of the German Center of Lung Research, Giessen, Germany.,2 Department of Medicine, Imperial College London, London, UK
| | - Matthias Held
- 3 Respiratory Medicine and Cardiology Section, Department of Internal Medicine, Center for Pulmonary Hypertension and Pulmonary Vascular Disease, Mission Medical Hospital, Würzburg, Germany
| | - Hans Klose
- 4 Department of Pneumology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Hanno Leuchte
- 5 Department of Internal Medicine II, Neuwittelsbach Academic Hospital, Ludwig Maximilians University, Munich, Germany
| | - Horst Olschewski
- 6 Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Stephan Rosenkranz
- 7 Department III of Internal Medicine and Cologne Cardiovascular Research Center, Cologne University Heart Centre, Cologne, Germany
| | | | - Na Li
- 9 Bayer HealthCare Company Ltd, Beijing, China
| | - Dawn Ren
- 9 Bayer HealthCare Company Ltd, Beijing, China
| | | | | | | | | | - Werner Seeger
- 1 Department of Internal Medicine II, University of Giessen and Marburg Lung Center and Member of the German Center of Lung Research, Giessen, Germany
| |
Collapse
|
148
|
Chelladurai P, Seeger W, Pullamsetti SS. Epigenetic mechanisms in pulmonary arterial hypertension: the need for global perspectives. Eur Respir Rev 2017; 25:135-40. [PMID: 27246590 PMCID: PMC9487251 DOI: 10.1183/16000617.0036-2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and progressive disease, characterised by high pulmonary artery pressure that usually culminates in right heart failure. Recent findings of alterations in the DNA methylation state of superoxide dismutase 2 and granulysin gene loci; histone H1 levels; aberrant expression levels of histone deacetylases and bromodomain-containing protein 4; and dysregulated microRNA networks together suggest the involvement of epigenetics in PAH pathogenesis. Thus, PAH pathogenesis evidently involves the interplay of a predisposed genetic background, epigenetic state and injurious events. Profiling the genome-wide alterations in the epigenetic mechanisms, such as DNA methylation or histone modification pattern in PAH vascular cells, may explain the great variability in susceptibility and disease severity that is frequently associated with pronounced remodelling and worse clinical outcome. Moreover, the influence of genetic predisposition and the acquisition of epigenetic alterations in response to environmental cues in PAH progression and establishment has largely been unexplored on a genome-wide scale. In order to gain insights into the molecular mechanisms leading to the development of PAH and to design novel therapeutic strategies, high-throughput approaches have to be adopted to facilitate systematic identification of the disease-specific networks using next-generation sequencing technologies, the application of these technologies in PAH has been relatively trivial to date. An epigenetic component is hypothesised in PAH: an overview of the current literature and future perspectiveshttp://ow.ly/7miS3002BYw
Collapse
Affiliation(s)
- Prakash Chelladurai
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Werner Seeger
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany University of Giessen Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany University of Giessen Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
149
|
Chen IC, Tan MS, Wu BN, Chai CY, Yeh JL, Chou SH, Chen IJ, Dai ZK. Statins ameliorate pulmonary hypertension secondary to left ventricular dysfunction through the Rho-kinase pathway and NADPH oxidase. Pediatr Pulmonol 2017; 52:443-457. [PMID: 28029743 DOI: 10.1002/ppul.23610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 07/31/2016] [Accepted: 09/18/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disorder, for which no therapy is curative. It has been reported that pulmonary vascular remodeling, associated with increasing mean pulmonary arterial pressure and upregulated expression of endothelial nitric oxide synthase (eNOS), endothelin-1 (ET-1), RhoA/RhoH-kinase results in the development of PH. Oxidative stress and the RhoA/Rho-kinase pathway are also thought to be involved in the pathophysiology of PH. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (HMG-CoA reductase inhibitors) with pleiotropic effects and are potential agents for the treatment of PH. In this study, we investigated the beneficial effects of simvastatin on the development of PH secondary to left ventricular dysfunction. METHODS A PH secondary to left ventricular dysfunction model was established in 6-week-old aortic-banded rats. The pulmonary expression of Rho kinase, ET-1, eNOS, p-eNOS, nitrite/nitrate (NOx), cGMP, p47Phox , and p67Phox were investigated in the early-treatment group, to which was administered simvastatin (30 mg/kg/day) from days 1 to 42 or the late-treatment group, to which was administered simvastatin (30 mg/kg/day) from days 29 to 42. RESULTS Simvastatin attenuated the mean pulmonary artery pressure, pulmonary arteriolar remodeling, plasma brain natriuretic peptide, ET-1, reactive oxygen species, and the NADPH oxidase 2 regulatory subunits, p47Phox and p67Phox , and upregulated pulmonary p-eNOS, NOx, and cGMP in both the early- and late-treated groups. CONCLUSIONS Inhibiting HMG-CoA reductase may have therapeutic potential for preventing and attenuating the development of PH in left ventricular dysfunction through the Rho-kinase pathway and NADPH oxidase. A translational study in humans is needed to substantiate these findings. Pediatr Pulmonol. 2017;52:443-457. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Sun-Ming District, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mian-Shin Tan
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shah-Hwa Chou
- Department of Thoracic Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Sun-Ming District, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
150
|
Coste F, Guibert C, Magat J, Abell E, Vaillant F, Dubois M, Courtois A, Diolez P, Quesson B, Marthan R, Savineau JP, Muller B, Freund-Michel V. Chronic hypoxia aggravates monocrotaline-induced pulmonary arterial hypertension: a rodent relevant model to the human severe form of the disease. Respir Res 2017; 18:47. [PMID: 28288643 PMCID: PMC5348907 DOI: 10.1186/s12931-017-0533-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension that combines multiple alterations of pulmonary arteries, including, in particular, thrombotic and plexiform lesions. Multiple-pathological-insult animal models, developed to more closely mimic this human severe PAH form, often require complex and/or long experimental procedures while not displaying the entire panel of characteristic lesions observed in the human disease. In this study, we further characterized a rat model of severe PAH generated by combining a single injection of monocrotaline with 4 weeks exposure to chronic hypoxia. This model displays increased pulmonary arterial pressure, right heart altered function and remodeling, pulmonary arterial inflammation, hyperresponsiveness and remodeling. In particular, severe pulmonary arteriopathy was observed, with thrombotic, neointimal and plexiform-like lesions similar to those observed in human severe PAH. This model, based on the combination of two conventional procedures, may therefore be valuable to further understand the pathophysiology of severe PAH and identify new potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Florence Coste
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France. .,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France. .,CHU de Bordeaux, F-33000, Bordeaux, France.
| | - Christelle Guibert
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Julie Magat
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Emma Abell
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Fanny Vaillant
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Mathilde Dubois
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Arnaud Courtois
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Philippe Diolez
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Bruno Quesson
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Roger Marthan
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,CHU de Bordeaux, F-33000, Bordeaux, France
| | - Jean-Pierre Savineau
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Bernard Muller
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Véronique Freund-Michel
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| |
Collapse
|