101
|
Wang L, Chen P, Xiao W. β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021; 13:nu13103420. [PMID: 34684426 PMCID: PMC8540704 DOI: 10.3390/nu13103420] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The ketone bodies, especially β-hydroxybutyrate (β-HB), derive from fatty acid oxidation and alternatively serve as a fuel source for peripheral tissues including the brain, heart, and skeletal muscle. β-HB is currently considered not solely an energy substrate for maintaining metabolic homeostasis but also acts as a signaling molecule of modulating lipolysis, oxidative stress, and neuroprotection. Besides, it serves as an epigenetic regulator in terms of histone methylation, acetylation, β-hydroxybutyrylation to delay various age-related diseases. In addition, studies support endogenous β-HB administration or exogenous supplementation as effective strategies to induce a metabolic state of nutritional ketosis. The purpose of this review article is to provide an overview of β-HB metabolism and its relationship and application in age-related diseases. Future studies are needed to reveal whether β-HB has the potential to serve as adjunctive nutritional therapy for aging.
Collapse
Affiliation(s)
| | - Peijie Chen
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| | - Weihua Xiao
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| |
Collapse
|
102
|
Wang L, Chen P, Xiao W. β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021; 13:3420. [PMID: 34684426 PMCID: PMC8540704 DOI: 10.3390/nu13103420&set/a 930838900+926910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The ketone bodies, especially β-hydroxybutyrate (β-HB), derive from fatty acid oxidation and alternatively serve as a fuel source for peripheral tissues including the brain, heart, and skeletal muscle. β-HB is currently considered not solely an energy substrate for maintaining metabolic homeostasis but also acts as a signaling molecule of modulating lipolysis, oxidative stress, and neuroprotection. Besides, it serves as an epigenetic regulator in terms of histone methylation, acetylation, β-hydroxybutyrylation to delay various age-related diseases. In addition, studies support endogenous β-HB administration or exogenous supplementation as effective strategies to induce a metabolic state of nutritional ketosis. The purpose of this review article is to provide an overview of β-HB metabolism and its relationship and application in age-related diseases. Future studies are needed to reveal whether β-HB has the potential to serve as adjunctive nutritional therapy for aging.
Collapse
Affiliation(s)
| | - Peijie Chen
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| | - Weihua Xiao
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| |
Collapse
|
103
|
β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021. [DOI: 10.3390/nu13103420
expr 933295879 + 814156476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The ketone bodies, especially β-hydroxybutyrate (β-HB), derive from fatty acid oxidation and alternatively serve as a fuel source for peripheral tissues including the brain, heart, and skeletal muscle. β-HB is currently considered not solely an energy substrate for maintaining metabolic homeostasis but also acts as a signaling molecule of modulating lipolysis, oxidative stress, and neuroprotection. Besides, it serves as an epigenetic regulator in terms of histone methylation, acetylation, β-hydroxybutyrylation to delay various age-related diseases. In addition, studies support endogenous β-HB administration or exogenous supplementation as effective strategies to induce a metabolic state of nutritional ketosis. The purpose of this review article is to provide an overview of β-HB metabolism and its relationship and application in age-related diseases. Future studies are needed to reveal whether β-HB has the potential to serve as adjunctive nutritional therapy for aging.
Collapse
|
104
|
Association of Adherence to a Mediterranean Diet with Excess Body Mass, Muscle Strength and Physical Performance in Overweight or Obese Adults with or without Type 2 Diabetes: Two Cross-Sectional Studies. Healthcare (Basel) 2021; 9:healthcare9101255. [PMID: 34682935 PMCID: PMC8535373 DOI: 10.3390/healthcare9101255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Overweight and obesity in older adults is associated with disability and is exacerbated by the presence of type 2 diabetes (T2DM). There is emerging evidence that adherence to a Mediterranean diet (MedDiet) reduces adiposity and attenuates physical disability. These cross-sectional studies explored the associations of adherence to a MedDiet with body mass index (BMI), adiposity, muscle strength, and physical performance in older adults without diabetes and in middle-aged or older adults with T2DM. MedDiet adherence was assessed using the Mediterranean Diet Adherence Screener. Fat mass and percent body fat were assessed by dual energy X-ray absorptiometry. Muscle strength was assessed using hand-grip strength, while physical performance was assessed using the Short Physical Performance Battery and gait speed. A total of n = 87 participants with T2DM (T2DM sample: 71.2 ± 8.2 years, BMI: 29.5 ± 5.9) and n = 65 participants without diabetes (non-T2DM sample: 68.7 ± 5.6 years, BMI: 33.7 ± 4.9) were included in these analyses. In the T2DM sample, when controlled for age, gender, and appendicular lean mass index, adherence to a MedDiet was inversely associated with BMI, fat mass, and percent body fat. However, this was no longer maintained in the fully adjusted models. Although, adherence to a MedDiet was positively associated with gait speed (β = 0.155; p = 0.050) independent of all covariates used. Adherence to a MedDiet may be a suitable dietary strategy for preserving lower body physical function in middle-aged and older adults with T2DM. However, these findings should be further investigated using well-designed randomised controlled trials and prospective cohort studies with a wider range of adherence scores to investigate temporal associations.
Collapse
|
105
|
Yudhani RD, Nugrahaningsih DAA, Sholikhah EN, Mustofa M. The Molecular Mechanisms of Hypoglycemic Properties and Safety Profiles of Swietenia Macrophylla Seeds Extract: A Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND: Insulin resistance (IR) is known as the root cause of type 2 diabetes; hence, it is a substantial therapeutic target. Nowadays, studies have shifted the focus to natural ingredients that have been utilized as a traditional diabetes treatment, including Swietenia macrophylla. Accumulating evidence supports the hypoglycemic activities of S. macrophylla seeds extract, although its molecular mechanisms have yet to be well-established.
AIM: This review focuses on the hypoglycemic molecular mechanisms of S. macrophylla seeds extract and its safety profiles.
METHODS: An extensive search of the latest literature was conducted from four main databases (PubMed, Scopus, Science Direct, and Google Scholar) using several keywords: “swietenia macrophylla, seeds, and diabetes;” “swietenia macrophylla, seeds, and oxidative stress;” “swietenia macrophylla, seeds, and inflammation;” “swietenia macrophylla, seeds, and GLUT4;” and “swietenia macrophylla, seeds, and toxicities.”
RESULTS: The hypoglycemic activities occur through modulating several pathways associated with IR and T2D pathogenesis. The seeds extract of S. macrophylla modulates oxidative stress by decreasing malondialdehyde (MDA), oxidized low-density lipoprotein, and thiobarbituric acid-reactive substances while increasing antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Another propose mechanism is the modulating of the inflammatory pathway by attenuating nuclear factor kappa β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2. Some studies have shown that the extract can also control phosphatidylinositol-3-kinase/ Akt (PI3K/Akt) pathway by inducing glucose transporter 4, while suppressing phosphoenolpyruvate carboxykinase. Moreover, in vitro cytotoxicity and in vivo toxicity studies supported the safety profile of S. macrophylla seeds extract with the LD50 higher than 2000 mg/kg.
CONCLUSION: The potential of S. macrophylla seeds as antidiabetic candidate is supported by many studies that have documented their non-toxic and hypoglycemic effects, which involve several molecular pathways.
Collapse
|
106
|
Opazo R, Angel B, Márquez C, Lera L, Cardoso Dos Santos GR, Monnerat G, Albala C. Sarcopenic metabolomic profile reflected a sarcopenic phenotype associated with amino acid and essential fatty acid changes. Metabolomics 2021; 17:83. [PMID: 34498155 DOI: 10.1007/s11306-021-01832-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Although sarcopenia greatly affects health and quality of life in older people, its pathophysiological causes are not fully elucidated. To face this challenge, omics technologies can be used. The metabolome gives a vision of the interaction between the genome and the environment through metabolic networks, thus contributing in clarifying the pathophysiology of the sarcopenic phenotype. OBJECTIVES The main goal of this study was to compare the plasma metabolome of sarcopenic and non-sarcopenic older people. METHODS Cross-sectional study of 20 sarcopenic and 21 non-sarcopenic older subjects with available frozen plasma samples. Non-targeted metabolomic study by ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) analysis with later bioinformatics data analysis. Once the significantly different metabolites were identified, the KEGG database was used on them to establish which were the metabolic pathways mainly involved. RESULTS From 657 features identified, 210 showed significant differences between the study groups, and 30 had a FoldChangeLog2 > 2. The most interesting metabolic pathways found with the KEGG database were the biosynthesis of amino acids, arginine and proline metabolism, the biosynthesis of alkaloids derived from ornithine, linoleic acid metabolism, and the biosynthesis of unsaturated fatty acids. CONCLUSIONS The study results allowed us to confirm that the concept of "sarcopenic phenotype" is also witnessed at the plasma metabolite levels. The non-targeted metabolomics study can open a wide view of the sarcopenic features changes at the plasma level, which would be linked to the sarcopenic physiopathological alterations.
Collapse
Affiliation(s)
- Rafael Opazo
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bárbara Angel
- Unidad de Nutrición Pública INTA, Universidad de Chile, Santiago, Chile
| | - Carlos Márquez
- Unidad de Nutrición Pública INTA, Universidad de Chile, Santiago, Chile
| | - Lydia Lera
- Unidad de Nutrición Pública INTA, Universidad de Chile, Santiago, Chile
- Latin Division, Keiser University, Fort Lauderdale, USA
| | - Gustavo R Cardoso Dos Santos
- Laboratório de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gustavo Monnerat
- Laboratório de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto Nacional de Cardiologia, Rio de Janeiro, Brazil
| | - Cecilia Albala
- Unidad de Nutrición Pública INTA, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
107
|
Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat Rev Endocrinol 2021; 17:534-548. [PMID: 34172940 DOI: 10.1038/s41574-021-00512-2] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
The past 50 years have seen a growing ageing population with an increasing prevalence of type 2 diabetes mellitus (T2DM); now, nearly half of all individuals with diabetes mellitus are older adults (aged ≥65 years). Older adults with T2DM present particularly difficult challenges. For example, the accentuated heterogeneity of these patients, the potential presence of multiple comorbidities, the increased susceptibility to hypoglycaemia, the increased dependence on care and the effect of frailty all add to the complexity of managing diabetes mellitus in this age group. In this Review, we offer an update on the key pathophysiological mechanisms associated with T2DM in older people. We then evaluate new evidence relating particularly to the effects of frailty and sarcopenia, the clinical difficulties of age-associated comorbidities, and the implications for existing guidelines and therapeutic options. Our conclusions will focus on the effect of T2DM on an ageing society.
Collapse
Affiliation(s)
- Srikanth Bellary
- School of Life and Health Sciences, Aston University, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Aston Research Centre for Healthy Ageing (ARCHA), Aston University, Birmingham, UK.
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
| | - James E Brown
- School of Life and Health Sciences, Aston University, Birmingham, UK
- Aston Research Centre for Healthy Ageing (ARCHA), Aston University, Birmingham, UK
| | - Clifford J Bailey
- School of Life and Health Sciences, Aston University, Birmingham, UK
- Aston Research Centre for Healthy Ageing (ARCHA), Aston University, Birmingham, UK
| |
Collapse
|
108
|
Kim JA, Sung Lee J, Song E, Roh E, Hee Yu J, Hoon Kim N, Jin Yoo H, Seo JA, Gon Kim S, Hee Kim N, Hyun Baik S, Mook Choi K. Association Between Visit-to-Visit Fasting Plasma Glucose Variability and Osteoporotic Fractures in Nondiabetic Subjects. J Clin Endocrinol Metab 2021; 106:e3449-e3460. [PMID: 34037762 DOI: 10.1210/clinem/dgab370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/21/2023]
Abstract
CONTEXT Although long-term glucose variability has been reported to be a risk factor associated with osteoporosis, there have been no previous studies between the relationship of glucose variability and fractures in people without diabetes. OBJECTIVE We assessed visit-to-visit variations in fasting plasma glucose (FPG) as a prognostic factor in predicting osteoporotic fractures in individuals without diabetes. METHODS Using a nationwide cohort database, we examined the impact of FPG on the development of osteoporotic fractures in men and women (aged ≥50 years). The primary outcomes were the number of total fractures and vertebral fractures. FPG variability was measured using standard deviation (FPG-SD), coefficient of variation (FPG-CV), and variability independent of the mean (FPG-VIM). RESULTS Of the 92 929 participants, 5262 (5.7%) developed osteoporotic fractures during the mean follow-up of 8.4 years. Individuals in the highest quartile of FPG-SD showed an 11% and 16% increase in risk of total and vertebral fractures, respectively, compared with those in the lowest quartile after adjustment for mean FPG and other risk factors. Analyses using FPG-CV and FPG-VIM demonstrated similar results. Subgroup analyses and sensitivity analyses to explore potential heterogeneity showed consistent results. CONCLUSION FPG variability may be a novel risk factor for osteoporotic fractures independent of risk factors in the general population without diabetes.
Collapse
Affiliation(s)
- Jung A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Sung Lee
- Clinical Research Center, Asan Medical Center, College of Medicine, Ulsan University, Seoul, Korea
| | - Eyun Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
109
|
Common Risk Factors in Relatives and Spouses of Patients with Type 2 Diabetes in Developing Prediabetes. Healthcare (Basel) 2021; 9:healthcare9081010. [PMID: 34442147 PMCID: PMC8394279 DOI: 10.3390/healthcare9081010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Prediabetes should be viewed as an increased risk for diabetes and cardiovascular disease. In this study, we investigated its prevalence among the relatives and spouses of patients with type 2 diabetes or risk factors for prediabetes, insulin resistance, and β-cell function. A total of 175 individuals were included and stratified into three groups: controls, and relatives and spouses of type 2 diabetic patients. We compared clinical characteristics consisting of a homeostatic model assessment for insulin resistance (HOMA-IR) and beta cell function (HOMA-β), a quantitative insulin sensitivity check index (QUICKI), and triglyceride glucose (TyG) index. After a multivariable linear regression analysis, the relative group was independently correlated with high fasting glucose, a high TyG index, and low β-cell function; the relatives and spouses were independently associated with a low QUICKI. The relatives and spouses equally had a higher prevalence of prediabetes. These study also indicated that the relatives had multiple factors predicting the development of diabetes mellitus, and that the spouses may share a number of common environmental factors associated with low insulin sensitivity.
Collapse
|
110
|
Massimino E, Izzo A, Riccardi G, Della Pepa G. The Impact of Glucose-Lowering Drugs on Sarcopenia in Type 2 Diabetes: Current Evidence and Underlying Mechanisms. Cells 2021; 10:1958. [PMID: 34440727 PMCID: PMC8393336 DOI: 10.3390/cells10081958] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
The age-related decrease in skeletal muscle mass together with the loss of muscle power and function is defined sarcopenia. Mounting evidence suggests that the prevalence of sarcopenia is higher in patients with type 2 diabetes mellitus (T2DM), and different mechanisms may be responsible for this association such as impaired insulin sensitivity, chronic hyperglycemia, advanced glycosylation end products, subclinical inflammation, microvascular and macrovascular complications. Glucose-lowering drugs prescribed for patients with T2DM might impact on these mechanisms leading to harmful or beneficial effect on skeletal muscle. Importantly, beyond their glucose-lowering effects, glucose-lowering drugs may affect per se the equilibrium between protein anabolism and catabolism through several mechanisms involved in skeletal muscle physiology, contributing to sarcopenia. The aim of this narrative review is to provide an update on the effects of glucose-lowering drugs on sarcopenia in individuals with T2DM, focusing on the parameters used to define sarcopenia: muscle strength (evaluated by handgrip strength), muscle quantity/quality (evaluated by appendicular lean mass or skeletal muscle mass and their indexes), and physical performance (evaluated by gait speed or short physical performance battery). Furthermore, we also describe the plausible mechanisms by which glucose-lowering drugs may impact on sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (E.M.); (A.I.); (G.R.)
| |
Collapse
|
111
|
Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models. Cells 2021; 10:cells10081906. [PMID: 34440675 PMCID: PMC8394846 DOI: 10.3390/cells10081906] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a complex process, induced by multifaceted interaction of genetic, epigenetic, and environmental factors. It is manifested by a decline in the physiological functions of organisms and associated to the development of age-related chronic diseases and cancer development. It is considered that ageing follows a strictly-regulated program, in which some signaling pathways critically contribute to the establishment and maintenance of the aged state. Chronic inflammation is a major mechanism that promotes the biological ageing process and comorbidity, with the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) as a crucial mediator of inflammatory responses. This, together with the finding that the activation or inhibition of NF-κB can induce or reverse respectively the main features of aged organisms, has brought it under consideration as a key transcription factor that acts as a driver of ageing. In this review, we focused on the data obtained entirely through the generation of knockout and transgenic mouse models of either protein involved in the NF-κB signaling pathway that have provided relevant information about the intricate processes or molecular mechanisms that control ageing. We have reviewed the relationship of NF-κB and premature ageing; the development of cancer associated with ageing and the implication of NF-κB activation in the development of age-related diseases, some of which greatly increase the risk of developing cancer.
Collapse
|
112
|
Addition of Olive Leaf Extract to a Mixture of Algae and Extra Virgin Olive Oils Decreases Fatty Acid Oxidation and Synergically Attenuates Age-Induced Hypertension, Sarcopenia and Insulin Resistance in Rats. Antioxidants (Basel) 2021; 10:antiox10071066. [PMID: 34356299 PMCID: PMC8301163 DOI: 10.3390/antiox10071066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
Olive-derived products, such as virgin olive oil (EVOO) and/or olive leaf extracts (OLE), exert anti-inflammatory, insulin-sensitizing and antihypertensive properties and may be useful for stabilizing omega 3 fatty acids (n-3 PUFA) due to their high content in antioxidant compounds. In this study, the addition of OLE 4:0.15 (w/w) to a mixture of algae oil (AO) rich in n-3 PUFA and EVOO (25:75, w/w) prevents peroxides formation after 12 months of storage at 30 °C. Furthermore, the treatment with the oil mixture (2.5 mL/Kg) and OLE (100 mg/Kg) to 24 month old Wistar rats for 21 days improved the lipid profile, increased the HOMA-IR and decreased the serum levels of miRNAs 21 and 146a. Treatment with this new nutraceutical also prevented age-induced insulin resistance in the liver, gastrocnemius and visceral adipose tissue by decreasing the mRNA levels of inflammatory and oxidative stress markers. Oil mixture + OLE also attenuated the age-induced alterations in vascular function and prevented muscle loss by decreasing the expression of sarcopenia-related markers. In conclusion, treatment with a new nutraceutical based on a mixture of EVOO, AO and OLE is a useful strategy for improving the stability of n-3 PUFA in the final product and to attenuate the cardiometabolic and muscular disorders associated with aging.
Collapse
|
113
|
Sweatt AJ, Reddy R, Rahaghi FN, Al-Naamani N. What's new in pulmonary hypertension clinical research: lessons from the best abstracts at the 2020 American Thoracic Society International Conference. Pulm Circ 2021; 11:20458940211040713. [PMID: 34471517 PMCID: PMC8404658 DOI: 10.1177/20458940211040713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In this conference paper, we review the 2020 American Thoracic Society International Conference session titled, "What's New in Pulmonary Hypertension Clinical Research: Lessons from the Best Abstracts". This virtual mini-symposium took place on 21 October 2020, in lieu of the annual in-person ATS International Conference which was cancelled due to the COVID-19 pandemic. Seven clinical research abstracts were selected for presentation in the session, which encompassed five major themes: (1) standardizing diagnosis and management of pulmonary hypertension, (2) improving risk assessment in pulmonary arterial hypertension, (3) evaluating biomarkers of disease activity, (4) understanding metabolic dysregulation across the spectrum of pulmonary hypertension, and (5) advancing knowledge in chronic thromboembolic pulmonary hypertension. Focusing on these five thematic contexts, we review the current state of knowledge, summarize presented research abstracts, appraise their significance and limitations, and then discuss relevant future directions in pulmonary hypertension clinical research.
Collapse
Affiliation(s)
- Andrew J. Sweatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Raju Reddy
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Farbod N. Rahaghi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nadine Al-Naamani
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - on behalf of the American Thoracic Society Pulmonary Circulation Assembly Early Career Working Group
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
114
|
Barbu E, Popescu MR, Popescu AC, Balanescu SM. Phenotyping the Prediabetic Population-A Closer Look at Intermediate Glucose Status and Cardiovascular Disease. Int J Mol Sci 2021; 22:6864. [PMID: 34202289 PMCID: PMC8268766 DOI: 10.3390/ijms22136864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Even though the new thresholds for defining prediabetes have been around for more than ten years, there is still controversy surrounding the precise characterization of this intermediate glucose metabolism status. The risk of developing diabetes and macro and microvascular disease linked to prediabetes is well known. Still, the prediabetic population is far from being homogenous, and phenotyping it into less heterogeneous groups might prove useful for long-term risk assessment, follow-up, and primary prevention. Unfortunately, the current definition of prediabetes is quite rigid and disregards the underlying pathophysiologic mechanisms and their potential metabolic progression towards overt disease. In addition, prediabetes is commonly associated with a cluster of risk factors that worsen the prognosis. These risk factors all revolve around a common denominator: inflammation. This review focuses on identifying the population that needs to be screened for prediabetes and the already declared prediabetic patients who are at a higher risk of cardiovascular disease and require closer monitoring.
Collapse
Affiliation(s)
| | - Mihaela-Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | - Andreea-Catarina Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | | |
Collapse
|
115
|
Prokopidis K, Dionyssiotis Y. Effects of sleep deprivation on sarcopenia and obesity: A narrative review of randomized controlled and crossover trials. J Frailty Sarcopenia Falls 2021; 6:50-56. [PMID: 34131601 PMCID: PMC8173530 DOI: 10.22540/jfsf-06-050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Shortened and fragmented sleeping patterns occupying modern industrialized societies may promote metabolic disturbances accompanied by increased risk of weight gain and skeletal muscle degradation. Short-term sleep restriction may alter energy homeostasis by modifying dopamine brain receptor signaling, leading to hyperpalatable food consumption and risk of increased adiposity. Concomitantly, the metabolic damage caused by lower testosterone and higher cortisol levels may stimulate systemic inflammation, insulin resistance, and suppress pathways involved in muscle protein synthesis. These changes may lead to dysregulated energy balance and skeletal muscle metabolism, increasing the risk of sarcopenic obesity, an additional public health burden. Future trials controlling for food intake and exploring further the influence of sleep deprivation on anabolic and catabolic signaling, and gut peptide interaction with energy balance are warranted.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Imperial College London, Department of Metabolism, Digestion and Reproduction, London, United Kingdom
| | - Yannis Dionyssiotis
- 1 Physical Medicine and Rehabilitation Department, National Rehabilitation Center EKA, Athens, Greece
| |
Collapse
|
116
|
Paquin J, Lagacé JC, Brochu M, Dionne IJ. Exercising for Insulin Sensitivity - Is There a Mechanistic Relationship With Quantitative Changes in Skeletal Muscle Mass? Front Physiol 2021; 12:656909. [PMID: 34054574 PMCID: PMC8149906 DOI: 10.3389/fphys.2021.656909] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle (SM) tissue has been repetitively shown to play a major role in whole-body glucose homeostasis and overall metabolic health. Hence, SM hypertrophy through resistance training (RT) has been suggested to be favorable to glucose homeostasis in different populations, from young healthy to type 2 diabetic (T2D) individuals. While RT has been shown to contribute to improved metabolic health, including insulin sensitivity surrogates, in multiple studies, a universal understanding of a mechanistic explanation is currently lacking. Furthermore, exercised-improved glucose homeostasis and quantitative changes of SM mass have been hypothesized to be concurrent but not necessarily causally associated. With a straightforward focus on exercise interventions, this narrative review aims to highlight the current level of evidence of the impact of SM hypertrophy on glucose homeostasis, as well various mechanisms that are likely to explain those effects. These mechanistic insights could provide a strengthened rationale for future research assessing alternative RT strategies to the current classical modalities, such as low-load, high repetition RT or high-volume circuit-style RT, in metabolically impaired populations.
Collapse
Affiliation(s)
- Jasmine Paquin
- Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Christophe Lagacé
- Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Brochu
- Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Isabelle J Dionne
- Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
117
|
Olive Leaf Extract Supplementation to Old Wistar Rats Attenuates Aging-Induced Sarcopenia and Increases Insulin Sensitivity in Adipose Tissue and Skeletal Muscle. Antioxidants (Basel) 2021; 10:antiox10050737. [PMID: 34067004 PMCID: PMC8151598 DOI: 10.3390/antiox10050737] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with increased visceral adiposity and a decrease in the amount of brown adipose tissue and muscle mass, known as sarcopenia, which results in the development of metabolic alterations such as insulin resistance. In this study, we aimed to analyze whether 3-week supplementation with a phenolic-rich olive leaf extract (OLE) to 24 months-old male Wistar rats orally (100 mg/kg) attenuated the aging-induced alterations in body composition and insulin resistance. OLE treatment increased brown adipose tissue and attenuated the aging-induced decrease in protein content and gastrocnemius weight. Treatment with OLE prevented the aging-induced increase in the expression of PPAR-γ in visceral and brown adipose tissues, while it significantly increased the expression of PPAR-α in the gastrocnemius of old rats and reduced various markers related to sarcopenia such as myostatin, HDAC-4, myogenin and MyoD. OLE supplementation increased insulin sensitivity in explants of gastrocnemius and epididymal visceral adipose tissue from aged rats through a greater activation of the PI3K/Akt pathway, probably through the attenuation of inflammation in both tissues. In conclusion, supplementation with OLE prevents the loss of muscle mass associated with aging and exerts anti-inflammatory and insulin-sensitizing effects on adipose tissue and skeletal muscle.
Collapse
|
118
|
Dzięgielewska-Gęsiak S, Wyszomirska K, Fatyga E, Wysocka E, Muc-Wierzgoń M. The role of oxidant-antioxidant markers and resistin in metabolic syndrome elderly individuals. Sci Prog 2021; 104:368504211006510. [PMID: 33913390 PMCID: PMC10364936 DOI: 10.1177/00368504211006510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In elderly, hormones and oxidant-antioxidant interplay are suggested to mediate biochemical balance between adipose tissue to other tissues. Thus the study attempts to explore metabolic traits, plasma resistin, and oxidant-antioxidant markers in metabolic syndrome (MetS) in comparison to non-metabolic syndrome (non-MetS) elderly individuals. A total of 541 healthy elderly Caucasians, with no acute and/or chronic disorders were invited. After taking into account inclusion/exclusion criteria's the MetS was defined as the presence of three out of five abnormal findings and allowed to divided groups into: non-metabolic syndrome, non-MetS (n = 25, median age 69.0 years), and newly diagnosed MetS (n = 29; median age 70.5 years) individuals. Glucose, plasma lipids, resistin (Res), thiobarbituric acid-reacting substances (TBARS), total antioxidant status (TAS), and Cu,Zn-superoxide dismutase (SOD-1) were measured. The MetS had higher resistin than non-MetS (p < 0.04). The linear correlation (all at p < 0.05) showed correlation for Res&triacylglycerols (R = 0.44), and for Res&diastolic blood pressure (R = -0.58) and for SOD-1&fasting glucose (R = -0.34) in MetS, while in the non-MetS group fasting glucose correlates with Res (R = 0.58) and with TAS (R = -0.43). The multiple regression analysis (alone and in combination) showed that independently from other factors resistin correlated positively with fasting glucose (β = 0.37; R = 0.58; R2 = 0.23; p < 0.01) in all investigated elderly participants. In the MetS resistin correlated negatively with diastolic blood pressure (β = -0.68; R = 0.80; R2 = 0.53; p = 0.0004) moreover in that group TAS correlated negatively with HDL-C (β = -0.71; R = 0.72; R2 = 0.37; p = 0.01). While age correlated negatively with systolic blood pressure (β = -0.60; R = 0.62; R2 = 0.14; p = 0.03) independently from other factors in the non-MetS group. Various metabolic factors contribute to maintain serum resistin and oxidant-antioxidant balance in the elderly people in the presence or absence of MetS. Resistin may serve as a predictor of MetS in the elderly, while strong antioxidant defense interactions in older individuals may indicate good health.
Collapse
Affiliation(s)
| | - Karolina Wyszomirska
- Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Fatyga
- Department of Internal Medicine, Medical University of Silesia in Katowice, Bytom, Poland
| | - Ewa Wysocka
- Chair and Department of Laboratory Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
119
|
Saadeddine D, Itani L, Rossi AP, Pellegrini M, El Ghoch M. Strength and Performance Tests for Screening Reduced Muscle Mass in Elderly Lebanese Males with Obesity in Community Dwellings. Diseases 2021; 9:diseases9010023. [PMID: 33804733 PMCID: PMC8006034 DOI: 10.3390/diseases9010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
The reduction in skeletal muscle mass (SMM) is a common phenomenon in older adults. It is associated with several diseases, a reduction in physical fitness, longer periods of hospitalization and high rates of mortality. We aimed to identify the reliability of simple tools for screening for reduced SMM among older adult males in Lebanon. The Tanita MC-780MA bioimpedance analyzer (BIA) was used to assess body composition in a population of 102 community-dwelling elderly males with overweight or obesity, in order to be then categorized as with or without reduced SMM. Participants also performed the handgrip strength test and the 4 m gait speed test. Of the total sample of 102 participants (mean age 67.4 ± 6.96 years; BMI 30.8 6 ± 4.04 kg/m2), 32 (31.4%) met the criteria for reduced SMM. Partial correlation analysis showed that handgrip strength (ρ = 0.308, p = 0.002) and 4 m gait speed (ρ = 0.284, p = 0.004) were both associated with low SMM. Receiver operating characteristic (ROC) curve analysis identified discriminating cut-off points of 1.1 m/s for the 4 m gait speed test and 32.0 kg for the handgrip strength test. Our study showed that participants displayed a substantial prevalence of reduced SMM. Reduced 4 m gait speed and handgrip strength were associated with low SMM. Clear cut-off points for strength and functional tests for screening for this condition in Lebanese older men were identified.
Collapse
Affiliation(s)
- Dana Saadeddine
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 11072809, Lebanon; (D.S.); (L.I.)
| | - Leila Itani
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 11072809, Lebanon; (D.S.); (L.I.)
| | - Andrea P. Rossi
- Healthy Aging Center, Department of Medicine, Division of Geriatric, University of Verona, 37126 Verona, Italy;
| | - Massimo Pellegrini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Clinical Nutrition Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 11072809, Lebanon; (D.S.); (L.I.)
- Correspondence: or
| |
Collapse
|
120
|
Abstract
Aging is characterized by a progressive loss of physiological function leading to increase in the vulnerability to death. This deterioration process occurs in all living organisms and is the primary risk factor for pathological conditions including obesity, type 2 diabetes mellitus, Alzheimer's disease and cardiovascular diseases. Most of the age-related diseases have been associated with impairment of action of an important hormone, namely insulin. It is well-known that this hormone is a critical mediator of metabolism, growth, proliferation and differentiation. Insulin action depends on two processes that determine its circulating levels, insulin secretion and clearance, and insulin sensitivity in its target tissues. Aging has deleterious effects on these three mechanisms, impairing insulin action, thereby increasing the risk for diseases and death. Thus, improving insulin action may be an important strategy to have a healthier and longer life.
Collapse
|
121
|
[Relationship between fibroblast growth factor-21, muscle mass, and function outcomes in overweight and obese older adults living in the community. An exploratory study]. Rev Esp Geriatr Gerontol 2021; 56:81-86. [PMID: 33422362 DOI: 10.1016/j.regg.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Age-related decreases in muscle mass and function are associated with the development of metabolic impairments, particularly in the context of obesity. Fibroblast growth factor21 (FGF-21) has been suggested as a common mediator of both processes. No known studies have examined the association between FGF-21 and muscle mass and function in overweight or obese older adults. With this in mind, this study aimed to investigate the association between plasma levels of FGF-21 and muscle mass and function outcomes in overweight or obese older adults. MATERIALS AND METHODS Exploratory study, which included 39 adults of 60-70years old with body mass indexes >25kg/m2. As study outcomes, measurements were made of appendicular muscle mass (AMM), grip strength, 5 times sit-to-stand test (5xSTT), as well as plasma levels of FGF-21, fasting glucose, and insulin. The homeostatic model assessment index (HOMA-IR) was also calculated to determine the presence of insulin resistance. RESULTS Significant relationships were found between plasma levels of FGF-21 vs 5xSTT (rho=0.49; P<.05). Moreover, FGF-21 levels were significantly higher in those with insulin resistance (P<.05), as well as with having lower levels of AMM (P<.05). CONCLUSION There is a relationship between the plasma levels of FGF-21 and muscle function outcomes in overweight or obese older adults. Future studies should investigate the potential causalities between these relationships.
Collapse
|
122
|
Priego T, Martín AI, González-Hedström D, Granado M, López-Calderón A. Role of hormones in sarcopenia. VITAMINS AND HORMONES 2021; 115:535-570. [PMID: 33706961 DOI: 10.1016/bs.vh.2020.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging involves numerous changes in body composition that include a decrease in skeletal muscle mass. The gradual reduction in muscle mass is associated with a simultaneous decrease in muscle strength, which leads to reduced mobility, fragility and loss of independence. This process called sarcopenia is secondary to several factors such as sedentary lifestyle, inadequate nutrition, chronic inflammatory state and neurological alterations. However, the endocrine changes associated with aging seem to be of special importance in the development of sarcopenia. On one hand, advancing age is associated with a decreased secretion of the main hormones that stimulate skeletal muscle mass and function (growth hormone, insulin-like growth factor 1 (IGFI), testosterone and estradiol). On the other hand, the alteration of the IGF-I signaling along with decreased insulin sensitivity also have an important impact on myogenesis. Other hormones that decline with aging such as the adrenal-derived dehydroepiandrosterone, thyroid hormones and vitamin D seem to also be involved in sarcopenia. Adipokines released by adipose tissue show important changes during aging and can affect muscle physiology and metabolism. In addition, catabolic hormones such as cortisol and angiotensin II can accelerate aged-induced muscle atrophy, as they are involved in muscle wasting and their levels increase with age. The role played by all of these hormones and the possible use of some of them as therapeutic tools for treating sarcopenia will be discussed.
Collapse
Affiliation(s)
- T Priego
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - A I Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - D González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Pharmactive Biotech Products S.L. Parque Científico de Madrid. Avenida del Doctor Severo Ochoa, 37 Local 4J, 28108 Alcobendas, Madrid, Spain
| | - M Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, Madrid, Spain
| | - A López-Calderón
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
123
|
Pyrroloquinoline Quinone Modifies Lipid Profile, but Not Insulin Sensitivity, of Palmitic Acid-Treated L6 Myotubes. Int J Mol Sci 2020; 21:ijms21218382. [PMID: 33171690 PMCID: PMC7664924 DOI: 10.3390/ijms21218382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is a novel stimulator of mitochondrial biogenesis and cellular energy metabolism. This is the first study investigating regulatory mechanisms and metabolic responses underlying PQQ’s action in palmitate-exposed L6 myotubes. Particularly, we assessed alterations in lipid content and composition, expression of metabolic enzymes, and changes in glucose transport. The experiments were conducted using muscle cells subjected to short (2 h) and prolonged (24 h) incubation with PQQ in a sequence of pre- and post-palmitic acid (PA) exposure. We demonstrated the opposite effects of 2 and 24 h treatments with PQQ on lipid content, i.e., a decline in the level of free fatty acids and triacylglycerols in response to short-time PQQ incubation as compared to increases in diacylglycerol and triacylglycerol levels observed after 24 h. We did not demonstrate a significant impact of PQQ on fatty acid transport. The analysis of metabolic enzyme expression showed that the vast majority of PQQ-dependent alterations cumulated in the PA/PQQ 24 h group, including elevated protein amount of peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α), sirtuin-1 (SIRT1), phosphorylated 5′AMP-activated protein kinase (pAMPK), carnitine palmitoyltransferase I (CPT1), citrate synthase (CS), fatty acid synthase (FAS), and serine palmitoyltransferase, long chain base subunit 1 (SPT1). In conclusion, the results mentioned above indicate PQQ-dependent activation of both fatty acid oxidation and lipid synthesis in order to adapt cells to palmitic acid-rich medium, although PQQ did not attenuate insulin resistance in muscle cells.
Collapse
|
124
|
Cisterna B, Sobolev AP, Costanzo M, Malatesta M, Zancanaro C. Combined Microscopic and Metabolomic Approach to Characterize the Skeletal Muscle Fiber of the Ts65Dn Mouse, A Model of Down Syndrome. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1014-1023. [PMID: 32867866 DOI: 10.1017/s143192762002437x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Down syndrome (DS) is a genetically based disease caused by triplication of chromosome 21. DS is characterized by severe muscle weakness associated with motor deficits; however, understanding the DS-associated skeletal muscle condition is limited. In this study, we used a combined methodological approach involving light and electron microscopy, as well as nuclear magnetic resonance spectroscopy metabolomics, to investigate morphology and composition of the quadriceps muscles in the Ts65Dn mouse, a model of DS, to identify structural and/or functional trisomy-associated alterations. Morphometric analysis demonstrated a larger size of myofibers in trisomic versus euploid mice; however, myofibrils were thinner and contained higher amounts of mitochondria and lipid droplets. In trisomic mice, magnetic resonance spectroscopy showed a tendency to an overall increase in muscle metabolites involved in protein synthesis. These data strongly suggest that in DS, a sarcoplasmic hypertrophy associated with myofibril loss characterizes quadriceps myofibers. In addition, large-sized mitochondria suggestive of impaired fission/fusion events, as well as metabolites modifications suggestive of decreased mitochondrial function, were found in the trisomic muscle. Albeit preliminary, the results provided by this novel approach consistently indicate structural and compositional alterations of the DS skeletal muscle, which are typical of early aging.
Collapse
Affiliation(s)
- Barbara Cisterna
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, VeronaI-37134, Italy
| | - Anatoly P Sobolev
- Magnetic Resonance Laboratory "Annalaura Segre", Institute for Biological Systems, National Research Council, via Salaria km 29.300, Monterotondo, RomeI-00015, Italy
| | - Manuela Costanzo
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, VeronaI-37134, Italy
| | - Manuela Malatesta
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, VeronaI-37134, Italy
| | - Carlo Zancanaro
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, VeronaI-37134, Italy
| |
Collapse
|
125
|
Yau JW, Thor SM, Ramadas A. Nutritional Strategies in Prediabetes: A Scoping Review of Recent Evidence. Nutrients 2020; 12:E2990. [PMID: 33003593 PMCID: PMC7650618 DOI: 10.3390/nu12102990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Nutritional therapy has been conventionally recommended for people with prediabetes as a method to delay or halt progression to type 2 diabetes. However, recommended nutritional strategies evolve over time. Hence, we performed a scoping review on recently reported nutritional interventions for individuals with prediabetes. Ovid MEDLINE, PubMed, Embase, Scopus, CINAHL and PsycINFO databases were searched to identify relevant research articles published within the past 10 years. Ninety-five articles involving a total of 11,211 participants were included in this review. Nutritional strategies were broadly classified into four groups: low calorie diet, low glycemic index diet, specific foods, and a combination of diet and exercise. The most frequently assessed outcomes were plasma glucose, serum insulin, serum lipid profile, body mass index and body weight. More than 50% of reported interventions resulted in significant improvements in these parameters. Nutritional interventions have demonstrated feasibility and practicality as an effective option for prediabetes management. However, the intervention variability demonstrates the challenges of a 'one-size-fits-all' approach. Investigations in genetically diverse populations and objective assessment of progression rate to diabetes are necessary to better comprehend the impact of these nutritional strategies in prediabetes.
Collapse
Affiliation(s)
| | | | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (J.W.Y.); (S.M.T.)
| |
Collapse
|
126
|
Kim S, Nam Y, Shin SJ, Park YH, Jeon SG, Kim JI, Kim MJ, Moon M. The Potential Roles of Ghrelin in Metabolic Syndrome and Secondary Symptoms of Alzheimer's Disease. Front Neurosci 2020; 14:583097. [PMID: 33071750 PMCID: PMC7543232 DOI: 10.3389/fnins.2020.583097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Although the major causative factors of Alzheimer's disease (AD) are the accumulation of amyloid β and hyperphosphorylated tau, AD can also be caused by metabolic dysfunction. The major clinical symptom of AD is cognitive dysfunction. However, AD is also accompanied by various secondary symptoms such as depression, sleep-wake disturbances, and abnormal eating behaviors. Interestingly, the orexigenic hormone ghrelin has been suggested to have beneficial effects on AD-related metabolic syndrome and secondary symptoms. Ghrelin improves lipid distribution and alters insulin sensitivity, effects that are hypothesized to delay the progression of AD. Furthermore, ghrelin can relieve depression by enhancing the secretion of hormones such as serotonin, noradrenaline, and orexin. Moreover, ghrelin can upregulate the expression of neurotrophic factors such as brain-derived neurotrophic factor and modulate the release of proinflammatory cytokines such as tumor necrosis factor α and interleukin 1β. Ghrelin alleviates sleep-wake disturbances by increasing the levels of melatonin, melanin-concentrating hormone. Ghrelin reduces the risk of abnormal eating behaviors by increasing neuropeptide Y and γ-aminobutyric acid. In addition, ghrelin increases food intake by inhibiting fatty acid biosynthesis. However, despite the numerous studies on the role of ghrelin in the AD-related pathology and metabolic disorders, there are only a few studies that investigate the effects of ghrelin on secondary symptoms associated with AD. In this mini review, our purpose is to provide the insights of future study by organizing the previous studies for the role of ghrelin in AD-related pathology and metabolic disorders.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea.,Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si, South Korea
| | - Min-Jeong Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| |
Collapse
|
127
|
Docosahexaenoic Acid, a Potential Treatment for Sarcopenia, Modulates the Ubiquitin-Proteasome and the Autophagy-Lysosome Systems. Nutrients 2020; 12:nu12092597. [PMID: 32859116 PMCID: PMC7551806 DOI: 10.3390/nu12092597] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
One of the characteristic features of aging is the progressive loss of muscle mass, a nosological syndrome called sarcopenia. It is also a pathologic risk factor for many clinically adverse outcomes in older adults. Therefore, delaying the loss of muscle mass, through either boosting muscle protein synthesis or slowing down muscle protein degradation using nutritional supplements could be a compelling strategy to address the needs of the world’s aging population. Here, we review the recently identified properties of docosahexaenoic acid (DHA). It was shown to delay muscle wasting by stimulating intermediate oxidative stress and inhibiting proteasomal degradation of muscle proteins. Both the ubiquitin–proteasome and the autophagy–lysosome systems are modulated by DHA. Collectively, growing evidence indicates that DHA is a potent pharmacological agent that could improve muscle homeostasis. Better understanding of cellular proteolytic systems associated with sarcopenia will allow us to identify novel therapeutic interventions, such as omega-3 polyunsaturated fatty acids, to treat this disease.
Collapse
|
128
|
The Potential Role of Fish-Derived Protein Hydrolysates on Metabolic Health, Skeletal Muscle Mass and Function in Ageing. Nutrients 2020; 12:nu12082434. [PMID: 32823615 PMCID: PMC7468851 DOI: 10.3390/nu12082434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Fish protein represents one of the most widely consumed dietary protein sources by humans. The processing of material from the fishing industry generates substantial unexploited waste products, many of which possess high biological value. Protein hydrolysates, such as fish protein hydrolysates (FPH), containing predominantly di- and tripeptides, are more readily absorbed than free amino acids and intact protein. Furthermore, in animal models, FPH have been shown to possess numerous beneficial properties for cardiovascular, neurological, intestinal, renal, and immune health. Ageing is associated with the loss of skeletal muscle mass and function, as well as increased oxidative stress, compromised vascularisation, neurological derangements, and immunosenescence. Thus, there appears to be a potential application for FPH in older persons as a high-quality protein source that may also confer additional health benefits. Despite this, there remains a dearth of information concerning the impact of FPH on health outcomes in humans. The limited evidence from human interventional trials suggests that FPH may hold promise for supporting optimal body composition and maintaining gut integrity. FPH also provide a high-quality source of dietary protein without negatively impacting on subjective appetite perceptions or regulatory hormones. Further studies are needed to assess the impact and utility of FPH on skeletal muscle health in older persons, ideally comparing FPH to ‘established’ protein sources or a non-bioactive, nitrogen-matched control. In particular, the effects of acute and chronic FPH consumption on post-exercise aminoacidaemia, skeletal muscle protein synthesis, and intramyocellular anabolic signalling in older adults are worthy of investigation. FPH may represent beneficial and sustainable alternative sources of high-quality protein to support skeletal muscle health and anabolism in ageing, without compromising appetite and subsequent energy intake.
Collapse
|
129
|
Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol 2020; 139:111022. [PMID: 32707318 DOI: 10.1016/j.exger.2020.111022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenic obesity (SO) is a condition characterized by the occurrence of both sarcopenia and obesity and imposes a heavy burden on the health of the elderly. Controversies and challenges regarding the definition, diagnosis and treatment of SO still remain because of its complex pathogenesis and limitations. Over the past few decades, numerous studies have revealed that myokines secreted from skeletal muscle play significant roles in the regulation of muscle mass and function as well as metabolic homeostasis. Abnormalities in myokines may trigger and promote the pathogenesis underlying age-related and metabolic diseases, including obesity, sarcopenia, type 2 diabetes (T2D), and SO. This review mainly focuses on the role of myokines as potential biomarkers for the early diagnosis and therapeutic targets in SO.
Collapse
Affiliation(s)
- Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
130
|
Angiotensin-(1-7) Improves Integrated Cardiometabolic Function in Aged Mice. Int J Mol Sci 2020; 21:ijms21145131. [PMID: 32698498 PMCID: PMC7403973 DOI: 10.3390/ijms21145131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 01/07/2023] Open
Abstract
Angiotensin (Ang)-(1-7) is a beneficial renin–angiotensin system (RAS) hormone that elicits protective cardiometabolic effects in young animal models of hypertension, obesity, and metabolic syndrome. The impact of Ang-(1-7) on cardiovascular and metabolic outcomes during aging, however, remains unexplored. This study tested the hypothesis that Ang-(1-7) attenuates age-related elevations in blood pressure and insulin resistance in mice. Young adult (two-month-old) and aged (16-month-old) male C57BL/6J mice received Ang-(1-7) (400 ng/kg/min) or saline for six-weeks via a subcutaneous osmotic mini-pump. Arterial blood pressure and metabolic function indices (body composition, insulin sensitivity, and glucose tolerance) were measured at the end of treatment. Adipose and cardiac tissue masses and cardiac RAS, sympathetic and inflammatory marker gene expression were also measured. We found that chronic Ang-(1-7) treatment decreased systolic and mean blood pressure, with a similar trend for diastolic blood pressure. Ang-(1-7) also improved insulin sensitivity in aged mice to levels in young mice, without effects on glucose tolerance or body composition. The blood pressure–lowering effects of Ang-(1-7) in aged mice were associated with reduced sympathetic outflow to the heart. These findings suggest Ang-(1-7) may provide a novel pharmacological target to improve age-related cardiometabolic risk.
Collapse
|
131
|
Jorgenson KW, Phillips SM, Hornberger TA. Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review. Cells 2020; 9:cells9071658. [PMID: 32660165 PMCID: PMC7408414 DOI: 10.3390/cells9071658] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The maintenance of skeletal muscle mass plays a critical role in health and quality of life. One of the most potent regulators of skeletal muscle mass is mechanical loading, and numerous studies have led to a reasonably clear understanding of the macroscopic and microscopic changes that occur when the mechanical environment is altered. For instance, an increase in mechanical loading induces a growth response that is mediated, at least in part, by an increase in the cross-sectional area of the myofibers (i.e., myofiber hypertrophy). However, very little is known about the ultrastructural adaptations that drive this response. Even the most basic questions, such as whether mechanical load-induced myofiber hypertrophy is mediated by an increase in the size of the pre-existing myofibrils and/or an increase in the number myofibrils, have not been resolved. In this review, we thoroughly summarize what is currently known about the macroscopic, microscopic and ultrastructural changes that drive mechanical load-induced growth and highlight the critical gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Kent W. Jorgenson
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Troy A. Hornberger
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
- Correspondence:
| |
Collapse
|
132
|
Abstract
PURPOSE OF REVIEW The major components of ERAS attenuate the inflammatory response and modulate metabolism in direction of sparing body protein and preserving function. However, these perioperative interventions might have limited effectiveness on postoperative outcomes if preoperative risk factors are not addressed and optimized. RECENT FINDINGS The preoperative metabolic perturbations characterized by insulin resistance and sarcopenia might predispose patients to a higher degree of postoperative catabolism. High-risk populations for such metabolic disturbances include elderly and frail patients, and patients with metabolic syndrome. Research on the effect of prehabilitation on perioperative metabolism is limited, but recent findings suggest that interventions designed to improve insulin sensitivity prior to surgery might represent a promising therapeutic target to minimize surgical complications. SUMMARY The present paper will discuss the metabolic implications of modulating preoperative risk factors with elements of multimodal prehabilitation, such as exercise training and nutrition.
Collapse
Affiliation(s)
| | - Chelsia Gillis
- Cumming School of Medicine, Department of Community Health Sciences, University of Calgary, AB, Canada
| | - Franco Carli
- Department of Anesthesia, McGill University, Montreal, QC
| |
Collapse
|
133
|
Li H, Slone J, Huang T. The role of mitochondrial-related nuclear genes in age-related common disease. Mitochondrion 2020; 53:38-47. [PMID: 32361035 DOI: 10.1016/j.mito.2020.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are critical organelles that provide energy as ATP to the cell. Besides 37 genes encoded by mitochondrial genome, it has been estimated that over 1500 nuclear genes are required for mitochondrial structure and function. Thus, mutations of many genes in the nuclear genome cause dysfunction of mitochondria that can lead to many severe conditions. Mitochondrial dysfunction often results in reduced ATP synthesis, higher levels of reactive oxygen species (ROS), imbalanced mitochondrial dynamics, and other detrimental effects. In addition to rare primary mitochondrial disorders, these mitochondrial-related genes are often associated with many common diseases. For example, in neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington disease, mitochondrialand energy metabolism abnormalities can greatly affect brain function. Cancer cells are also known to exhibit repressed mitochondrial ATP production in favor of glycolysis, which fuels the aggressive proliferation and metastasis of tumor tissues, leading many to speculate on a possible relationship between compromised mitochondrial function and cancer. The association between mitochondrial dysfunction and diabetes is also unsurprising, given the organelle's crucial role in cellular energy utilization. Here, we will discuss the multiple lines of evidence connecting mitochondrial dysfunction associated with mitochondria-related nuclear genes to many of the well-known disease genes that also underlie common disease.
Collapse
Affiliation(s)
- Huanzheng Li
- Human Aging Research Institute, Nanchang University, Nanchang 330031, China; Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
134
|
Habib SS, Alkahtani S, Alhussain M, Aljuhani O. Sarcopenia Coexisting with High Adiposity Exacerbates Insulin Resistance and Dyslipidemia in Saudi Adult Men. Diabetes Metab Syndr Obes 2020; 13:3089-3097. [PMID: 32922058 PMCID: PMC7457864 DOI: 10.2147/dmso.s260382] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The associations between sarcopenia, adiposity indices and metabolic dysregulation still remain controversial. We aimed to assess and compare insulin resistance and metabolic profile in sarcopenic and non-sarcopenic obese Saudi adult men. METHODS This cross sectional study was conducted at the College of Sports Sciences, King Saud University, Riyadh. We recruited 312 Saudi adult male individuals and 288 were finally selected for the study. Body composition analysis and hand grip strength (HGS) were estimated by bioimpedance analysis (BIA) and dynamometer in all subjects, respectively. Fasting blood samples were collected for glucose (FBG), basal insulin (BI) and lipid profile. The subjects were divided into three groups based on the body composition parameters, appendicular lean mass (ALM) and body fat percentage (BF%), into non-obese (NonOb) [Normal ALM+<25 BF%], obese without sarcopenia (ObNonS) [Normal ALM+>25 BF%] and obese with sarcopenia (ObS) [Low ALM+>25 BF%]. RESULTS Obese subjects had significantly higher BI, HOMA-IR and HOMA-β compared to non-obese. Moreover, comparison between two obese groups revealed that both BI and HOMA-IR levels were higher in ObS subjects compared to ObNonS individuals revealing that sarcopenia exacerbates the insulin resistance profile. There was a significant trend of higher resistance and lower sensitivity from non-obese to obesity with sarcopenia. Total cholesterol (TC) and triglycerides (TG) were significantly higher and high density lipoprotein cholesterol (HDL-C) was significantly lower in sarcopenic obese subjects compared to non-sarcopenic obese individuals. The worsening effects were more significant at cutoff point of 7.46 on insulin indices and lipid profile showing that sarcopenia associated with obesity exacerbates the dyslipidemia. CONCLUSION Our study shows that obesity associated with sarcopenia exhibits significantly greater insulin resistance and dyslipidemia than sarcopenia or obesity per se. Therefore, sarcopenic obesity might be an independent risk factor for metabolic disease progression.
Collapse
Affiliation(s)
- Syed Shahid Habib
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Correspondence: Syed Shahid Habib Department of Physiology, College of Medicine, King Saud University, PO Box 2925, King Saud University Medical City, Riyadh11461, Kingdom of Saudi ArabiaTel +966 1-4671616Fax +966 1-4672567 Email
| | - Shaea Alkahtani
- Department of Exercise Physiology, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Maha Alhussain
- Department of Nutrition and Food Sciences, College of Agricultural and Food Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Osama Aljuhani
- Department of Physical Education, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|