101
|
Bazzi H, Fantauzzo KA, Richardson GD, Jahoda CAB, Christiano AM. The Wnt inhibitor, Dickkopf 4, is induced by canonical Wnt signaling during ectodermal appendage morphogenesis. Dev Biol 2007; 305:498-507. [PMID: 17397822 DOI: 10.1016/j.ydbio.2007.02.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 02/21/2007] [Accepted: 02/26/2007] [Indexed: 01/11/2023]
Abstract
Ectodermal appendage morphogenesis requires continuous epithelial-mesenchymal cross-talk during development. Canonical Wnt signaling has been shown to be pivotal during this process and its inhibition leads to the absence of any morphological or molecular signs of appendage formation, including hair follicles (HFs). In the mouse, primary HFs arise in utero starting just before E14.5, when the first morphological signs of a placode are discernible. In this study, our goal was to identify novel factors expressed during primary HF morphogenesis. We performed transcriptional profiling of the developing epidermis at 12 h intervals between E12.5 and E15.5. One of the significantly differentially expressed genes was the Wnt inhibitor Dickkopf 4, Dkk4. We show that Dkk4 mRNA increases sharply in the dorso-lateral epidermis around E14 and then decreases until E15.5. Using whole mount in situ hybridization, we show that Dkk4 mRNA is localized to the pre-placodes at sites of presumptive epithelial-mesenchymal interactions during appendage morphogenesis, including the dental lamina, mammary gland, eccrine gland, and primary and secondary HFs. In silico analysis, reporter gene assays as well as in vitro transfections of LEF1 and beta-catenin show that Dkk4 is a potential downstream target of canonical Wnt signaling. In addition, we demonstrate a direct physical interaction between LEF1/beta-catenin complex and the Dkk4 promoter using ChIP. We propose that Dkk4 acts in a negative feedback loop to attenuate canonical Wnt signaling, and may facilitate a switch to the non-canonical Wnt planar cell polarity (PCP) pathway that is involved in cell movements during morphogenesis.
Collapse
Affiliation(s)
- Hisham Bazzi
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
102
|
Drew CF, Lin CM, Jiang TX, Blunt G, Mou C, Chuong CM, Headon DJ. The Edar subfamily in feather placode formation. Dev Biol 2007; 305:232-45. [PMID: 17362907 PMCID: PMC2696204 DOI: 10.1016/j.ydbio.2007.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/17/2007] [Accepted: 02/09/2007] [Indexed: 12/24/2022]
Abstract
A subgroup of the TNF receptor family, composed of Edar, Troy and Xedar, are implicated in the development of ectodermal appendages, such as hair follicles, teeth and sweat glands. We have isolated chicken orthologues of these three receptors and analysed their roles in early feather development. Conservation of protein sequences between mammalian and avian proteins is variable, with avian Edar showing the greatest degree of sequence identity. cXedar differs from its mammalian orthologue in that it contains an intracellular death domain. All three receptors are expressed during early feather morphogenesis and dominant negative forms of each receptor impair the epithelial contribution to feather bud morphogenesis, while the dermal contribution appears unaffected. Hyperactivation of each receptor leads to more widespread assumption of placode fate, though in different regions of the skin. Receptor signaling converges on NF-kappaB, and inhibiting this transcription factor alters feather bud number and size in a stage-specific manner. Our findings illustrate the roles of these three receptors during avian skin morphogenesis and also suggest that activators of feather placode fate undergo mutual regulation to reach a decision on skin appendage location and size.
Collapse
Affiliation(s)
- Caroline F. Drew
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Chih Min Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ting Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Geoff Blunt
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Chunyan Mou
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cheng Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Denis J. Headon
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Corresponding author. E-mail address: , Phone: +44 161 2751534
| |
Collapse
|
103
|
Abstract
Cell culture studies have established NF-kappaB's critical role in cancer cell survival and proliferation and led to the clinical use of NF-kappaB inhibitors. However, a paper in this issue of Cancer Cell reveals an anticancer function for NF-kappaB in a mouse model where NF-kappaB activity is lost specifically in hepatocytes. These studies suggest careful examination of NF-kappaB inhibitors as a therapeutic modality for cancer.
Collapse
Affiliation(s)
- Alexander Hoffmann
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
104
|
Schmidt D, Textor B, Pein OT, Licht AH, Andrecht S, Sator-Schmitt M, Fusenig NE, Angel P, Schorpp-Kistner M. Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. EMBO J 2007; 26:710-9. [PMID: 17255940 PMCID: PMC1794395 DOI: 10.1038/sj.emboj.7601539] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 12/08/2006] [Indexed: 12/29/2022] Open
Abstract
Regulation of vascular endothelial growth factor (VEGF) expression is a complex process involving a plethora of transcriptional regulators. The AP-1 transcription factor is considered as facilitator of hypoxia-induced VEGF expression through interaction with hypoxia-inducible factor (HIF) which plays a major role in mediating the cellular hypoxia response. As yet, both the decisive AP-1 subunit leading to VEGF induction and the molecular mechanism by which this subunit is activated have not been deciphered. Here, we demonstrate that the AP-1 subunit junB is a target gene of hypoxia-induced signaling via NF-kappaB. Loss of JunB in various cell types results in severely impaired hypoxia-induced VEGF expression, although HIF is present and becomes stabilized. Thus, we identify JunB as a critical independent regulator of VEGF transcription and provide a mechanistic explanation for the inherent vascular phenotypes seen in JunB-deficient embryos, ex vivo allantois explants and in vitro differentiated embryoid bodies. In support of these findings, tumor angiogenesis was impaired in junB(-/-) teratocarcinomas because of severely impaired paracrine-acting VEGF and the subsequent inability to efficiently recruit host-derived vessels.
Collapse
Affiliation(s)
- Dirk Schmidt
- Division of Signal Transduction and Growth Control, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Björn Textor
- Division of Signal Transduction and Growth Control, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Oliver T Pein
- Division of Signal Transduction and Growth Control, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Alexander H Licht
- Division of Signal Transduction and Growth Control, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Sven Andrecht
- Division of Signal Transduction and Growth Control, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Norbert E Fusenig
- Division of Carcinogenesis and Differentiation, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, DKFZ (German Cancer Research Center), Heidelberg, Germany
- Division of Signal Transduction and Growth Control, DKFZ (German Cancer Research Center), A100, Im Neuenheimer Feld 280, Heidelberg 69120, Germany. Tel.: +49 6221 42 4575; Fax: +49 6221 42 4554; E-mail:
| |
Collapse
|
105
|
Mikkola ML. Genetic basis of skin appendage development. Semin Cell Dev Biol 2007; 18:225-36. [PMID: 17317239 DOI: 10.1016/j.semcdb.2007.01.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/18/2007] [Accepted: 01/22/2007] [Indexed: 12/23/2022]
Abstract
Morphogenesis of hair follicles, teeth, and mammary glands depends on inductive epithelial-mesenchymal interactions mediated by a conserved set of signalling molecules. The early development of different skin appendages is remarkably similar. Initiation of organogenesis is marked by the appearance of a local epithelial thickening, a placode, which subsequently invaginates to produce a bud. These early developmental stages require many of the same genes and signalling circuits and consequently alterations in them often cause similar phenotypes in several skin appendages. After the bud stage, these organs adopt diverse patterns of epithelial growth, reflected in the usage of more divergent genes in each.
Collapse
Affiliation(s)
- Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, P.O. Box 56 (Viikinkaari 9), University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
106
|
Alvira CM, Abate A, Yang G, Dennery PA, Rabinovitch M. Nuclear factor-kappaB activation in neonatal mouse lung protects against lipopolysaccharide-induced inflammation. Am J Respir Crit Care Med 2007; 175:805-15. [PMID: 17255561 PMCID: PMC1899293 DOI: 10.1164/rccm.200608-1162oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Injurious agents often cause less severe injury in neonates as compared with adults. OBJECTIVE We hypothesized that maturational differences in lung inflammation induced by lipopolysaccharide (LPS) may be related to the nature of the nuclear factor (NF)-kappaB complex activated, and the profile of target genes expressed. METHODS Neonatal and adult mice were injected with intraperitoneal LPS. Lung inflammation was assessed by histology, and apoptosis was determined by TUNEL (terminal deoxynucleotidyl transferase UTP nick-end labeling). The expression of candidate inflammatory and apoptotic mediators was evaluated by quantitative real-time polymerase chain reaction and Western immunoblot. RESULTS Neonates demonstrated reduced inflammation and apoptosis, 24 hours after LPS exposure, as compared with adults. This difference was associated with persistent activation of NF-kappaB p65p50 heterodimers in the neonates in contrast to early, transient activation of p65p50 followed by sustained activation of p50p50 in the adults. Adults had increased expression of a panel of inflammatory and proapoptotic genes, and repression of antiapoptotic targets, whereas no significant changes in these mediators were observed in the neonates. Inhibition of NF-kappaB activity in the neonates decreased apoptosis, but heightened inflammation, with increased expression of the same inflammatory genes elevated in the adults. In contrast, inhibition of NF-kappaB in the adults resulted in partial suppression of the inflammatory response. CONCLUSIONS NF-kappaB activation in the neonatal lung is antiinflammatory, protecting against LPS-mediated lung inflammation by repressing similar inflammatory genes induced in the adult.
Collapse
Affiliation(s)
- Cristina M Alvira
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5162, USA
| | | | | | | | | |
Collapse
|
107
|
Schlake T. Determination of hair structure and shape. Semin Cell Dev Biol 2007; 18:267-73. [PMID: 17324597 DOI: 10.1016/j.semcdb.2007.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 01/11/2007] [Accepted: 01/15/2007] [Indexed: 01/21/2023]
Abstract
The hair follicle attracted significant attention as a model for the investigation of diverse biological problems. Whereas its morphology and the structure of the hair shaft are known in detail, the molecular biology of this miniorgan is significantly less characterised. Many efforts focussed on the development of the hair follicle and its stem cell reservoir; by contrast, the follicular product, the hair, which is interesting not only in terms of cosmetics was neglected. This review highlights our current knowledge of the control of hair structure and shape with emphasis on mouse hair follicle biology and discusses continuing problems.
Collapse
Affiliation(s)
- Thomas Schlake
- Max-Planck Institute of Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
108
|
Massoumi R, Paus R. Cylindromatosis and theCYLD gene: new lessons on the molecular principles of epithelial growth control. Bioessays 2007; 29:1203-14. [DOI: 10.1002/bies.20677] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
109
|
Abstract
Alopecia, that is, lack of hair in any quantity, is a frequent complaint of pet owners. Although mostly acquired, rare congenital forms of alopecia exist that are associated with abnormalities in hair follicle morphogenesis. Congenital alopecias can result in changes in quality or quantity of hair follicles and the hair fibres produced by them. They vary in terms of clinical presentation and mode of inheritance. Histopathology is usually needed in order to differentiate between a reduced number of otherwise normal hair follicles and qualitative hair follicle abnormalities. Although our understanding of the molecular mechanisms that drive hair follicle morphogenesis in mice and humans has significantly increased during the last decade, still very little is known about congenital alopecias in domestic animals. Because of their rarity and the general lack of knowledge about their pathophysiology, classification of congenital alopecias in domestic animals is still unsatisfactory. This article reviews hair follicle morphogenesis and its most important molecular mechanisms, and it discusses the various forms of congenital alopecia occurring in domestic animals that have been described in the literature, differentiating between hair follicle aplasia, hair follicle dysplasia (i.e. defects associated with hair follicle development and defects associated with hair shaft formation), and neuroectodermal dysplasias, the latter involving the hair follicle pigmentary system.
Collapse
|
110
|
Mataix J, Bañuls J, Botella R, Laredo C, Lucas A. Síndrome de Brooke-Spiegler: una entidad heterogénea. ACTAS DERMO-SIFILIOGRAFICAS 2006; 97:669-72. [PMID: 17173833 DOI: 10.1016/s0001-7310(06)73492-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Brooke-Spiegler syndrome is a rare, autosomally dominant disease with a predisposition to develop different adnexal tumors. Clinically it is characterized by the presence of multiple cylindromas, trichoepitheliomas, and occasionally, spiradenomas. Although Brooke-Spiegler syndrome, familial cylindromatosis and multiple familial trichoepithelioma were initially described as separate entities, the recently identified identical mutations in the gene of cylindromatosis suggest that they represent fenotypic variations of the same entity. In this article we present the case of a woman and her daughter, both affected by this rare genodermatosis.
Collapse
Affiliation(s)
- J Mataix
- Servicio de Dermatología, Hospital General Universitario de Alicante, Spain.
| | | | | | | | | |
Collapse
|
111
|
Young AL, Kellermayer R, Szigeti R, Tészás A, Azmi S, Celebi JT. CYLD mutations underlie Brooke-Spiegler, familial cylindromatosis, and multiple familial trichoepithelioma syndromes. Clin Genet 2006; 70:246-9. [PMID: 16922728 DOI: 10.1111/j.1399-0004.2006.00667.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brooke-Spiegler syndrome (BSS), familial cylindromatosis (FC), and multiple familial trichoepithelioma (MFT), originally described as distinct inherited disorders, are characterized by a variety of skin appendage neoplasms. Mutations in the CYLD gene are found in individuals with these syndromes. We describe a single family with affected members exhibiting either the FC or the MFT phenotypes associated with a mutation in the CYLD gene. These findings support the notion that BSS, FC, and MFT represent phenotypic variation of a single defect. Of interest, one of the affected individuals described in this report exhibits a severe phenotype illustrating the morbidity of the disorder.
Collapse
Affiliation(s)
- A L Young
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
112
|
Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 2006; 25:6781-99. [PMID: 17072328 DOI: 10.1038/sj.onc.1209944] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nuclear factor-kappaB (NF-kappaB) signalling pathway serves a crucial role in regulating the transcriptional responses of physiological processes that include cell division, cell survival, differentiation, immunity and inflammation. Here we outline studies using mouse models in which the core components of the NF-kappaB pathway, namely the IkappaB kinase subunits (IKKalpha, IKKbeta and NEMO), the IkappaB proteins (IkappaBalpha, IkappaBbeta, IkappaBvarepsilon and Bcl-3) and the five NF-kappaB transcription factors (NF-kappaB1, NF-kappaB2, c-Rel, RelA and RelB), have been genetically manipulated using transgenic and knockout technology.
Collapse
Affiliation(s)
- S Gerondakis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
113
|
Mikkola ML, Millar SE. The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia 2006; 11:187-203. [PMID: 17111222 DOI: 10.1007/s10911-006-9029-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Like other skin appendages, the embryonic mammary gland develops via extensive epithelial-mesenchymal interactions. Early stages in embryonic mammary development strikingly resemble analogous steps in the development of hair follicles and teeth. In each case the first morphological sign of development is a localized thickening in the surface epithelium that subsequently invaginates to form a mammary, hair follicle or tooth bud. Similar sets of intersecting signaling pathways are involved in patterning the mammary, hair follicle and dental epithelium, directing placode formation, and controlling bud invagination. Despite these similarities, subsequent events in the formation of these appendages are diverse. The mammary bud extends to form a sprout that begins to branch upon contact with the mammary fat pad. Hair follicles also extend into the underlying mesenchyme, but instead of branching, hair follicle epithelium folds around a condensation of dermal cells. In contrast, teeth undergo a more complex folding morphogenesis. Here, we review what is known of the molecular and cellular mechanisms controlling early steps in the development of these organs, attempt to unravel both common themes and unique aspects that can begin to explain the diversity of appendage formation, and discuss human genetic diseases that affect appendage morphogenesis.
Collapse
Affiliation(s)
- Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, Viikinkaari 9, Helsinki, 00014, Finland
| | | |
Collapse
|
114
|
Pasparakis M, Luedde T, Schmidt-Supprian M. Dissection of the NF-kappaB signalling cascade in transgenic and knockout mice. Cell Death Differ 2006; 13:861-72. [PMID: 16470223 DOI: 10.1038/sj.cdd.4401870] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Studies in transgenic and knockout mice have made a major contribution to our current understanding of the physiological functions of the NF-kappaB signalling cascade. The generation and analysis of mice with targeted modifications of individual components of the NF-kappaB pathway tremendously advanced our knowledge of the roles of the NF-kappaB proteins themselves, and also of the many activators and negative regulators of NF-kappaB. These studies have highlighted the complexity of the NF-kappaB system, by revealing the multiple interactions, redundancies, but also diverse functions, performed by the different molecules participating in the regulation of NF-kappaB signalling. Furthermore, inhibition or enforced activation of NF-kappaB in transgenic mice has uncovered the critical roles that NF-kappaB plays in the pathogenesis of various diseases such as liver failure, diabetes and cancer.
Collapse
Affiliation(s)
- M Pasparakis
- European Molecular Biology Laboratory, Mouse Biology Unit, Via Ramarini 32, Monterotondo-Scalo, Rome 00016, Italy.
| | | | | |
Collapse
|
115
|
Abstract
Mammalian hair follicles cycle between stages of rapid growth (anagen) and metabolic quiescence (telogen) throughout life. Transition from anagen to telogen involves an intermediate stage, catagen, consisting of a swift, apoptosis-driven involution of the lower half of the follicle. How catagen is coordinated, and spares the progenitor cells needed for anagen re-entry, is poorly understood. Keratin 17 (K17)-null mice develop alopecia in the first week post-birth, correlating with hair shaft fragility and untimely apoptosis in the hair bulb. Here we show that this abnormal apoptosis reflects premature entry into catagen. Of the proapoptotic challenges tested, K17-null skin keratinocytes in primary culture are selectively more sensitive to TNFalpha. K17 interacts with TNF receptor 1 (TNFR1)-associated death domain protein (TRADD), a death adaptor essential for TNFR1-dependent signal relay, suggesting a functional link between this keratin and TNFalpha signaling. The activity of NF-kappaB, a downstream target of TNFalpha, is increased in K17-null skin. We also find that TNFalpha is required for a timely anagen-catagen transition in mouse pelage follicles, and that its ablation partially rescues the hair cycling defect of K17-null mice. These findings identify K17 and TNFalpha as two novel and interdependent regulators of hair cycling.
Collapse
Affiliation(s)
- Xuemei Tong
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
116
|
Cui CY, Hashimoto T, Grivennikov SI, Piao Y, Nedospasov SA, Schlessinger D. Ectodysplasin regulates the lymphotoxin-beta pathway for hair differentiation. Proc Natl Acad Sci U S A 2006; 103:9142-7. [PMID: 16738056 PMCID: PMC1482580 DOI: 10.1073/pnas.0509678103] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in the EDA gene cause anhidrotic/hypohidrotic ectodermal dysplasia, a disorder characterized by defective formation of hair, sweat glands, and teeth in humans and in a mouse model, "Tabby" (Ta). The gene encodes ectodysplasin, a TNF ligand family member that activates the NF-kappaB-signaling pathway, but downstream targets and the mechanism of skin appendage formation have been only partially analyzed. Comparative transcription profiling of embryonic skin during hair follicle development in WT and Ta mice identified critical anhidrotic/hypohidrotic ectodermal dysplasia (EDA) effectors in four pathways, three already implicated in follicle formation. They included Shh and its effectors, as well as antagonists for the Wnt (Dkk4) and BMP (Sostdc1) pathways. The fourth pathway was unexpected, a variant NF-kappaB-signaling cascade based on lymphotoxin-beta (LTbeta)/RelB. Previously known to participate only in lymphoid organogenesis, LTbeta was enriched in developing hair follicles of WT but not in Ta mice. Furthermore, in mice lacking LTbeta, all three types of mouse hair were still formed, but all were structurally abnormal. Guard hairs became wavy and irregular, zigzag/auchen hairs lost their kinks, and in a phenocopy of features of Ta animals, the awl hairs doubled in number and were characteristically distorted and pinched. LTbeta-null mice that received WT bone marrow transplants maintained mutant hair phenotypes, consistent with autonomous LTbeta action in skin independent of its expression in lymphoid cells. Thus, as an EDA target, LTbeta regulates the form of hair in developing hair follicles; and when EDA is defective, failure of LTbeta activation can account for part of the Ta phenotype.
Collapse
Affiliation(s)
- Chang-Yi Cui
- *Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Tsuyoshi Hashimoto
- *Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Sergei I. Grivennikov
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, and Basic Research Program, SAIC–Frederick, Inc., Frederick, MD 21702; and
| | - Yulan Piao
- *Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Sergei A. Nedospasov
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, and Basic Research Program, SAIC–Frederick, Inc., Frederick, MD 21702; and
- Laboratory of Molecular Immunology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - David Schlessinger
- *Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
117
|
Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441:179-85. [PMID: 16582901 DOI: 10.1038/nature04702] [Citation(s) in RCA: 1784] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 03/07/2006] [Indexed: 12/15/2022]
Abstract
Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels, promoting the immune response to pathogens by activating the transcription factor NFAT. We have previously shown that cells from patients with one form of hereditary severe combined immune deficiency (SCID) syndrome are defective in store-operated Ca2+ entry and CRAC channel function. Here we identify the genetic defect in these patients, using a combination of two unbiased genome-wide approaches: a modified linkage analysis with single-nucleotide polymorphism arrays, and a Drosophila RNA interference screen designed to identify regulators of store-operated Ca2+ entry and NFAT nuclear import. Both approaches converged on a novel protein that we call Orai1, which contains four putative transmembrane segments. The SCID patients are homozygous for a single missense mutation in ORAI1, and expression of wild-type Orai1 in SCID T cells restores store-operated Ca2+ influx and the CRAC current (I(CRAC)). We propose that Orai1 is an essential component or regulator of the CRAC channel complex.
Collapse
Affiliation(s)
- Stefan Feske
- The CBR Institute for Biomedical Research, and the Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Ectodysplasin receptor Edar and its ligand Eda A1, as well as their related receptor Xedar and ligand Eda A2, are recently discovered members of the tumor necrosis factor superfamily that signal predominantly through the nuclear factor-kappaB and c-jun N-terminal kinases pathways. Mutations in genes that encode proteins involved in Edar signaling pathway cause hypohidrotic ectodermal displasias in humans and mice and characterized by severe defects in development of ectodermal appendages including hairs, teeth, and exocrine glands. Here, we summarize the current knowledge of molecular mechanisms underlying the involvement of Edar signaling pathway in controlling hair follicle (HF) development and cycling. Genetic and experimental studies suggest that Edar signaling is involved in the control of cell fate decision in embryonic epidermis, as well as in the regulation of cell differentiation programs in the HF. Loss or gain of Edar signaling affects the initiation of several HF types (guard and zig-zag HF), hair shaft formation, as well as sebaceous gland morphology. We also review data on the cross-talk between Edar and Wnt, transforming growth factor-beta/bone morphogenic protein/activin, and Shh signaling pathways in the control of HF development and cycling.
Collapse
|
119
|
Luo JL, Kamata H, Karin M. The Anti-Death Machinery in IKK/NF-κB Signaling. J Clin Immunol 2005; 25:541-50. [PMID: 16380818 DOI: 10.1007/s10875-005-8217-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 08/26/2005] [Indexed: 12/17/2022]
Abstract
The most extensively studied function of NF-kappaB is its ability to promote cell survival through induction of target genes, whose products inhibit various aspects of the apoptotic machinery in both normal and malignant cells. Recent studies, however, indicate that NF-kappaB activation can also suppress programmed necrosis through induction of genes encoding anti-oxidant proteins. Since tumor cells often use NF-kappaB pathway as a shield to escape the killing of conventional anti-cancer therapies, intervention of IKK/NF-kappaB signaling would be a promising option to improve the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Jun-Li Luo
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
120
|
Yang CL, Kurczab T, Down G, Kealey T, Langlands K. Gene expression profiling of the ageing rat vibrissa follicle. Br J Dermatol 2005; 153:22-8. [PMID: 16029322 DOI: 10.1111/j.1365-2133.2005.06550.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The application of gene expression profiling to the study of chronological ageing has the potential to illuminate the molecular mechanisms underlying a complex and active process. For example, ageing of the skin and its constituent organs has myriad phenotypic consequences, and a better understanding of the means by which these changes arise has important corollaries for intervention strategies. OBJECTIVES We used a transcriptional profiling approach to investigate changes in gene expression associated with ageing of the large vibrissa follicle of the Wistar rat. METHODS Follicle mRNA isolated from male Wistar rats at 1 and 18 months of age was hybridized to Clontech Atlas 1.2 Rat cDNA macroarrays. Confirmation of array results was provided by the use of Northern blotting and immunohistochemistry. RESULTS Seven transcripts displayed at least a 1.6-fold increase in expression with age, of which APOD (2.5-fold), GSTM2 (2.0-fold) and NPY (1.8-fold) showed the greatest increases. Decreased expression was found in 19 transcripts, most notably in ALOX12 (13.3-fold) and GAP43 (12.6-fold) expression. CONCLUSIONS Follicular ageing is characterized by transcriptional changes associated with diverse aspects of keratinocyte metabolism, proliferation and development.
Collapse
Affiliation(s)
- C-L Yang
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hill's Road, Cambridge CB2 2QR, UK
| | | | | | | | | |
Collapse
|
121
|
Cui CY, Smith JA, Schlessinger D, Chan CC. X-linked anhidrotic ectodermal dysplasia disruption yields a mouse model for ocular surface disease and resultant blindness. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:89-95. [PMID: 15972955 PMCID: PMC1603450 DOI: 10.1016/s0002-9440(10)62956-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
X-linked anhidrotic/hypohidrotic ectodermal dysplasia (EDA) is caused by mutations in the (EDA) gene, which is required for the morphogenesis of ectoderm-derived tissues. Although EDA function in skin appendage development has been studied in Eda mutant "Tabby" mice, we have recently identified characteristic abnormalities in the ocular surface, an ectoderm-derived tissue. Histology of eyes of Tabby males revealed that 1) as previously reported, mice lacked meibomian glands; 2) >80% developed corneal lesions such as neovascularization, keratitis, ulceration, and keratinization identifiable from 9 weeks of age; and 3) > 80% showed ocular surface inflammation (blepharitis and conjunctivitis) when housed in a standard environment. Strikingly, both corneal defects and inflammation were prevented in Tabby mice bearing a transgene for the Eda-A1 isoform, but meibomian glands were restored little if at all. These findings suggest that intact ocular surface health is EDA dependent and that Tabby corneal abnormalities are not solely dependent on meibomian gland lipid secretion. Alternatively, susceptibility to inflammation and other phenotypes could result from failure of the usual EDA receptor to activate nuclear factor-kappaB transcription factors. This can be further tested in Tabby and Tabby-EDA transgenic mice, which provide unique models of severe ocular surface disease.
Collapse
Affiliation(s)
- Chang-Yi Cui
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
122
|
Krappmann D, Scheidereit C. A pervasive role of ubiquitin conjugation in activation and termination of IkappaB kinase pathways. EMBO Rep 2005; 6:321-6. [PMID: 15809659 PMCID: PMC1299290 DOI: 10.1038/sj.embor.7400380] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 02/17/2005] [Indexed: 01/17/2023] Open
Abstract
The nuclear factor (NF)-kappaB pathway is a paradigm for gene expression control by ubiquitin-mediated protein degradation. In stimulated cells, phosphorylation by the IkappaB kinase (IKK) complex primes NF-kappaB-inhibiting IkappaB molecules for lysine (Lys)-48-linked polyubiquitination and subsequent destruction by the 26S proteasome. However, recent studies indicate that the ubiquitin (Ub) system controls NF-kappaB pathways at many levels. Ub ligases are activated by different upstream signalling pathways, and they function as central regulators of IKK and c-Jun amino-terminal kinase activation. The assembly of Lys 63 polyUb chains provides docking surfaces for the recruitment of IKK-activating complexes, a reaction that is counteracted by deubiquitinating enzymes. Furthermore, Ub conjugation targets upstream signalling mediators as well as nuclear NF-kappaB for post-inductive degradation to limit the duration of signalling.
Collapse
Affiliation(s)
- Daniel Krappmann
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13122 Berlin, Germany
| | - Claus Scheidereit
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13122 Berlin, Germany
- Tel: +49 30 9406 3816; Fax: +49 30 9406 3866;
| |
Collapse
|
123
|
Cascallana JL, Bravo A, Donet E, Leis H, Lara MF, Paramio JM, Jorcano JL, Pérez P. Ectoderm-targeted overexpression of the glucocorticoid receptor induces hypohidrotic ectodermal dysplasia. Endocrinology 2005; 146:2629-38. [PMID: 15746257 DOI: 10.1210/en.2004-1246] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypohidrotic ectodermal dysplasia is a human syndrome defined by maldevelopment of one or more ectodermal-derived tissues, including the epidermis and cutaneous appendices, teeth, and exocrine glands. The molecular bases of this pathology converge in a dysfunction of the transcription factor nuclear factor of the kappa-enhancer in B cells (NF-kappaB), which is essential to epithelial homeostasis and development. A number of mouse models bearing disruptions in NF-kappaB signaling have been reported to manifest defects in ectodermal derivatives. In ectoderm-targeted transgenic mice overexpressing the glucocorticoid receptor (GR) [keratin 5 (K5)-GR mice], the NF-kappaB activity is greatly decreased due to functional antagonism between GR and NF-kappaB. Here, we report that K5-GR mice exhibit multiple epithelial defects in hair follicle, tooth, and palate development. Additionally, these mice lack Meibomian glands and display underdeveloped sweat and preputial glands. These phenotypic features appear to be mediated specifically by ligand-activated GR because the synthetic analog dexamethasone induced similar defects in epithelial morphogenesis, including odontogenesis, in wild-type mice. We have focused on tooth development in K5-GR mice and found that an inhibitor of steroid synthesis partially reversed the abnormal phenotype. Immunostaining revealed reduced expression of the inhibitor of kappaB kinase subunits, IKKalpha and IKKgamma, and diminished p65 protein levels in K5-GR embryonic tooth, resulting in a significantly reduced kappaB-binding activity. Remarkably, altered NF-kappaB activity elicited by GR overexpression correlated with a dramatic decrease in the protein levels of DeltaNp63 in tooth epithelia without affecting Akt, BMP4, or Foxo3a. Given that many of the 170 clinically distinct ectodermal dysplasia syndromes still remain without cognate genes, deciphering the molecular mechanisms of this mouse model with epithelial NF-kappaB and p63 dysfunction may provide important clues to understanding the basis of other ectodermal dysplasia syndromes.
Collapse
Affiliation(s)
- Jose Luis Cascallana
- Department of Animal Pathology, Veterinary Faculty, University of Santiago de Compostela, E-27002 Lugo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Freund C, Schmidt-Ullrich R, Baurand A, Dunger S, Schneider W, Loser P, El-Jamali A, Dietz R, Scheidereit C, Bergmann MW. Requirement of Nuclear Factor-κB in Angiotensin II– and Isoproterenol-Induced Cardiac Hypertrophy In Vivo. Circulation 2005; 111:2319-25. [PMID: 15870116 DOI: 10.1161/01.cir.0000164237.58200.5a] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
In vitro experiments have proposed a role of nuclear factor-κB (NF-κB), a transcription factor, in cardiomyocyte hypertrophy and protection against apoptosis. Currently, the net effect on cardiac remodeling in vivo under common stress stimuli is unclear.
Methods and Results—
We have generated mice with cardiomyocyte-restricted expression of the NF-κB super-repressor IκBαΔN (ΔN
MHC
) using the Cre/lox technique. ΔN
MHC
mice displayed an attenuated hypertrophic response compared with control mice on infusion of angiotensin II (Ang II) or isoproterenol by micro-osmotic pumps, as determined by echocardiography (left ventricular wall dimensions: control plus Ang II, ×1.5±0.1 versus sham; ΔN
MHC
plus Ang II, ×1.1±0.1 versus sham;
P
<0.05; n≥9), heart weight, and histological analysis. Real-time reverse-transcriptase polymerase chain reaction showed significantly reduced expression of hypertrophy markers β-myosin heavy chain and atrial natriuretic peptide in Ang II–treated ΔN
MHC
mice (
P
<0.05 versus control plus Ang II; n=4). Neither cardiomyocyte apoptosis nor left ventricular dilatation was observed. In cultured adult rat cardiomyocytes, NF-κB DNA binding activity was increased by both Ang II– and interleukin-6–related cytokines. The latter are known to be released by cardiac fibroblasts on Ang II stimulation and thus could locally increase the NF-κB response of cardiomyocytes. Finally, results from in vitro and in vivo experiments suggest a role for NF-κB in the regulation of prohypertrophic interleukin-6 receptor gp130 on mRNA levels.
Conclusions—
These results indicate that targeted inhibition of NF-κB in cardiomyocytes in vivo is sufficient to impair Ang II– and isoproterenol-induced hypertrophy without increasing the susceptibility to apoptosis.
Collapse
Affiliation(s)
- Christian Freund
- Franz-Volhard Clinic, Department of Cardiology, HELIOS Klinikum-Berlin, Charité Campus Berlin-Buch, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Kumamoto H, Ooya K. Expression of tumor necrosis factor alpha, TNF-related apoptosis-inducing ligand, and their associated molecules in ameloblastomas. J Oral Pathol Med 2005; 34:287-94. [PMID: 15817072 DOI: 10.1111/j.1600-0714.2005.00311.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND To clarify the roles of the apoptosis signaling pathway mediated by death receptors in oncogenesis and cytodifferentiation of odontogenic tumors, expression of tumor necrosis factor alpha (TNFalpha), TNF-related apoptosis-inducing ligand (TRAIL), and their associated molecules was analyzed in ameloblastomas as well as in tooth germs. METHODS Tissue specimens of 10 tooth germs, 40 benign ameloblastomas, and five malignant ameloblastomas were examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry to determine the expression of TNFalpha, TNF receptor I (TNFRI), TRAIL, TRAIL receptor 1 (TRAIL-R1), TRAIL-R2, caspase-8, and nuclear factor-kappaB (NF-kappaB). RESULTS Expression of TNFalpha, TNFRI, TRAIL, TRAIL-R1, TRAIL-R2, and NF-kappaB mRNA was detected in most samples of normal and neoplastic odontogenic tissues. Expression of caspase-8 mRNA was identified in six of 33 ameloblastomas, but not in 10 tooth germs or one malignant ameloblastoma. Immunohistochemical reactivity for TNFalpha, TRAIL, their receptors, and NF-kappaB was detected in both normal and neoplastic odontogenic tissues. Epithelial expression of TNFalpha was focal in about 50% of tooth germs and ameloblastomas, and TNFalpha expression in neoplastic cells was significantly higher in follicular ameloblastomas than in plexiform ameloblastomas. TRAIL reactivity was evident in epithelial cells neighboring the basement membrane. Receptors for TNFalpha and TRAIL were diffusely expressed in both normal and neoplastic odontogenic epithelium. Expression of caspase-8 was found in some neoplastic cells in three of 37 ameloblastomas, but not in 10 tooth germs or five malignant ameloblastomas. Nuclear NF-kappaB expression was much lower than cytoplasmic expression in both normal and neoplastic odontogenic epithelium. CONCLUSION Expression of TNFalpha, TRAIL, and their receptors in tooth germs and ameloblastomas suggests that these death factors might be involved in cytodifferentiation of odontogenic epithelium and tissue structuring of ameloblastomas. Expression of caspase-8 and NF-kappaB suggests that signaling of TNFalpha and TRAIL minimally affects the biological properties of odontogenic epithelial components.
Collapse
Affiliation(s)
- Hiroyuki Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| | | |
Collapse
|
126
|
Mehrhof FB, Schmidt-Ullrich R, Dietz R, Scheidereit C. Regulation of vascular smooth muscle cell proliferation: role of NF-kappaB revisited. Circ Res 2005; 96:958-64. [PMID: 15831813 DOI: 10.1161/01.res.0000166924.31219.49] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The transcription factor NF-kappaB regulates cell cycle progression and proliferation in a number of cell types. An important unresolved issue is the potential role of NF-kappaB in the proliferation of vascular smooth muscle cells (VSMCs) as a basis for the development of vascular disease. To investigate the contribution of NF-kappaB to mitogen-induced proliferation of VSMCs, a knock-in mouse model expressing the NF-kappaB superrepressor IkappaBalphaDeltaN (c(IkappaBalphaDeltaN)) was used. Comparing wild-type and IkappaBalphaDeltaN-expressing VSMCs, we found that proliferation rates did not differ after mitogenic stimulation by platelet-derived growth-factor-BB (PDGF-BB) or serum. In line with this, NF-kappaB activation was not observed in VSMCs derived from transgenic mice expressing an NF-kappaB-dependent lacZ reporter (c((Igk)3conalacZ)). We further show, that classical mitogenic signaling pathways (namely mitogen-activated protein kinase [MAPK] and the phosphatidyl-inositol-3-OH-kinase [PI3K] pathways) control VSMC proliferation, but independently of NF-kappaB activation. In contrast to VSMCs, mouse embryonic fibroblasts (MEFs) derived from IkappaBalphaDeltaN-expressing mice showed significantly impaired proliferation rates after mitogenic stimulation. This was reflected by strongly impaired cyclin D1 expression in serum-stimulated MEFs derived from (c(IkappaBalphaDeltaN)) mice. These results implicate that essential pathogenetic functions of NF-kappaB in the development of atherosclerosis involve apoptotic and inflammatory signaling of VSMCs rather than proliferation. They further provide genetic evidence for a cell-type restricted requirement of NF-kappaB in the control of cellular proliferation.
Collapse
Affiliation(s)
- Felix B Mehrhof
- Medizinische Klinik mit Schwerpunkt Kardiologie, Universitätsklinikum Charité, Campus Virchow Klinikum, Berlin, Germany
| | | | | | | |
Collapse
|
127
|
Abstract
Hair follicle (HF) development is the result of neuroectodermal-mesodermal interactions, and can be divided into morphologically distinguishable stages (induction, organogenesis and cytodifferentiation). The spacing, polarity and differentiation patterns of HFs are driven by interacting, self-assembling gradients of inhibitors and activators, which are established jointly by the skin epithelium and mesenchyme. For HF development to occur, the dominant-negative influence of inhibitors of the HF differentiation pathway must be locally counteracted by specific antagonists and/or overriden by stimulators of hair placode formation. Once a mesenchymal condensate of inductive fibroblasts has formed, it takes over control of most subsequent steps of HF organogenesis and of epithelial stem cell differentiation into distinct lineages. In this review we introduce the morphological characteristics, major underlying principles and molecular key players that control HF development. The focus is on recent insights into the molecular interactions leading to hair follicle induction, and we close with synthesizing a corresponding working hypothesis.
Collapse
Affiliation(s)
- Ruth Schmidt-Ullrich
- Department of Cell Growth and Differentiation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
128
|
Abstract
Mammalian tooth development has served as an excellent model system to investigate the intricate, interactive mechanisms of patterning, morphogenesis and cytodifferentiation during organogenesis. Teeth develop from interactions between epithelium and neural crest-derived (ecto)mesenchyme that are largely mediated by ligand-receptor signalling. It is well-established that signalling molecules of the Bmp, Fgf, Wnt and Hedgehog families, are involved at multiple stages of tooth development. Recently, however, a specific role for molecules belonging to the TNF-family of ligands in tooth morphogenesis has been identified, suggesting that this pathway, acting to activate NF-kappaB, has played an important role in the development and evolution of tooth number and shape.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, Dental Institute, King's College, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | |
Collapse
|
129
|
Herron BJ, Rao C, Liu S, Laprade L, Richardson JA, Olivieri E, Semsarian C, Millar SE, Stubbs L, Beier DR. A mutation in NFkB interacting protein 1 results in cardiomyopathy and abnormal skin development in wa3 mice. Hum Mol Genet 2005; 14:667-77. [PMID: 15661756 DOI: 10.1093/hmg/ddi063] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have identified waved 3 (wa3), a novel recessive mutation that causes abnormalities of the heart and skin. The cardiac defect results in a severe and rapidly progressive dilated cardiomyopathy. We identified the gene mutated in these mice, which we call NFkB interacting protein1 (Nkip1), using positional cloning. Nkip1 is expressed in skin, heart and vascular endothelium and shares homology with a small family of proteins that play a role in the regulation of transcription factors. A C-terminal fragment of this protein was previously identified as the RelA associated inhibitor (RAI). We show that the full-length protein is larger than previously described, and we confirm that it interacts with NFkB in vivo. Expression analysis of genes known to be regulated by NFkB revealed that Intercellular adhesion molecule 1 (Icam1) expression is consistently elevated in mutant mice. This result suggests that wa3 mutant mice represent a potentially important model for the analysis of the role of inflammatory processes in heart disease.
Collapse
Affiliation(s)
- Bruce J Herron
- Genetics Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Haefner B. The transcription factor NF-kappaB as drug target. PROGRESS IN MEDICINAL CHEMISTRY 2005; 43:137-88. [PMID: 15850825 DOI: 10.1016/s0079-6468(05)43005-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Burkhard Haefner
- Department of Inflammation, Johnson & Johnson Pharmaceutical Research and Development, A Division of Janssen Pharmaceutica, Beerse, Belgium
| |
Collapse
|
131
|
Shiina T, Konno A, Oonuma T, Kitamura H, Imaoka K, Takeda N, Todokoro K, Morimatsu M. Targeted disruption of MAIL, a nuclear IkappaB protein, leads to severe atopic dermatitis-like disease. J Biol Chem 2004; 279:55493-8. [PMID: 15491998 DOI: 10.1074/jbc.m409770200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MAIL (molecule-possessing ankyrin repeats induced by lipopolysaccharide) is a nuclear IkappaB protein that is also termed interleukin-1-inducible nuclear ankyrin repeat protein or inhibitor of nuclear factor kappaB (IkappaB) zeta. In this study, we generated Mail-/- mice to investigate the roles of MAIL in whole organisms. Mail-/- mice grew normally until 4-8 weeks after birth, when they began to develop lesions in the skin of the periocular region, face, and neck. MAIL mRNA and protein were constitutively expressed in the skin of wild type controls, especially in the keratinocytes. Serum IgE was higher in Mail-/- mice than in normal. Histopathological analysis indicated that the Mail-/- skin lesions appeared to be atopic dermatitis (AD) eczema with inflammatory cell infiltration. In addition, markedly elevated expression of some chemokines such as thymus and activation-regulated chemokine was detected in the Mail-/- skin lesions, similar to that observed in the skin of patients with AD. In Mail-/- mice, MAIL-deficient keratinocytes might be activated to produce chemokines and induce intraepidermal filtration of inflammatory cells, resulting in the onset of the AD-like disease. These findings suggest that MAIL is an essential molecule for homeostatic regulation of skin immunity. The Mail-/- mouse is a valuable new animal model for research on AD.
Collapse
Affiliation(s)
- Takahiko Shiina
- Department of Veterinary Physiology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka 020-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Salhi A, Bornholdt D, Oeffner F, Malik S, Heid E, Happle R, Grzeschik KH. Multiple familial trichoepithelioma caused by mutations in the cylindromatosis tumor suppressor gene. Cancer Res 2004; 64:5113-7. [PMID: 15289313 DOI: 10.1158/0008-5472.can-04-0307] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recessive oncogene cylindromatosis (CYLD) mapping on 16q12-q13 is generally implicated in familial cylindromatosis, whereas a gene region for multiple familial trichoepithelioma has been assigned to 9p21. Markers from both chromosome intervals were subjected to linkage analysis in a large family with multiple hereditary trichoepithelioma (TE) from Algeria. Linkage to 9p21 was excluded, whereas CYLD remained as a candidate. Mutation analysis identified a single bp germ-line deletion expected to result in truncation or absence of the encoded protein, which segregated with the multiple TE phenotype. In individual tumors, loss of heterozygosity at 16q or a somatic point mutation in the CYLD gene was detected. Hence, mutations of the tumor suppressor gene CYLD at 16q12-q13 may give rise to familial TE indistinguishable from the phenotype assigned to 9p21.
Collapse
Affiliation(s)
- Aicha Salhi
- Department of Dermatology, University of Algiers, Algiers, Algeria
| | | | | | | | | | | | | |
Collapse
|
133
|
Carragher D, Johal R, Button A, White A, Eliopoulos A, Jenkinson E, Anderson G, Caamaño J. A stroma-derived defect in NF-kappaB2-/- mice causes impaired lymph node development and lymphocyte recruitment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 173:2271-9. [PMID: 15294939 DOI: 10.4049/jimmunol.173.4.2271] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The NF-kappaB family of transcription factors is vital to all aspects of immune function and regulation in both the hemopoietic and stromal compartments of immune environments. Recent studies of mouse models deficient for specific members of the NF-kappaB family have revealed critical roles for these proteins in the process of secondary lymphoid tissue organogenesis. In this study, we investigate the role of NF-kappaB family member NF-kappaB2 in lymph node development and lymphocyte recruitment. Inguinal lymph nodes in nfkappab2(-/-) mice are reduced in size and cellularity, most notably in the B cell compartment. Using in vitro and in vivo lymph node grafting assays, we show that the defect resides in the stromal compartment. Further examination of the nfkappab2(-/-) inguinal lymph nodes revealed that expression of peripheral node addressin components CD34 and glycosylation-dependent cell adhesion molecule-1 along with the high endothelial venule-restricted sulfotransferase HEC-GlcNAc6ST was markedly reduced. Furthermore, expression of the lymphocyte homing chemokines CCL19, CCL21, and CXCL13 was down-regulated. These data highlight the role of NF-kappaB2 in inguinal lymph node organogenesis and recruitment of lymphocytes to these organs due to its role in up-regulation of essential cell adhesion molecules and chemokines, while suggesting a potential role for NF-kappaB2 in organization of lymph node endothelium.
Collapse
Affiliation(s)
- Damian Carragher
- Department of Anatomy, Medical Research Council Centre for Immune Regulation, The Medical School, University of Birmingham, Edgbaston, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Gugasyan R, Voss A, Varigos G, Thomas T, Grumont RJ, Kaur P, Grigoriadis G, Gerondakis S. The transcription factors c-rel and RelA control epidermal development and homeostasis in embryonic and adult skin via distinct mechanisms. Mol Cell Biol 2004; 24:5733-45. [PMID: 15199130 PMCID: PMC480872 DOI: 10.1128/mcb.24.13.5733-5745.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Determining the roles of Rel/NF-kappaB transcription factors in mouse skin development with loss-of-function mutants has been limited by redundancy among these proteins and by embryonic lethality associated with the absence of RelA. Using mice lacking RelA and c-rel, which survive throughout embryogenesis on a tumor necrosis factor alpha (TNF-alpha)-deficient background (rela(-/-) c-rel(-/-) tnfalpha(-/-)), we show that c-rel and RelA are required for normal epidermal development. Although mutant fetuses fail to form tylotrich hair and have a thinner epidermis, mutant keratinocyte progenitors undergo terminal differentiation to form an outer cornified layer. Mutant basal keratinocytes are abnormally small, exhibit a delay in G(1) progression, and fail to form keratinocyte colonies in culture. In contrast to the reduced proliferation of mutant keratinocytes during embryogenesis, skin grafting experiments revealed that the mutant epidermis develops a TNF-alpha-dependent hyperproliferative condition. Collectively, our findings indicate that RelA and c-rel control the development of the epidermis and associated appendages during embryogenesis and regulate epidermal homeostasis in a postnatal environment through the suppression of innate immune-mediated inflammation.
Collapse
Affiliation(s)
- Raffi Gugasyan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
135
|
DeMeritt IB, Milford LE, Yurochko AD. Activation of the NF-kappaB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J Virol 2004; 78:4498-507. [PMID: 15078930 PMCID: PMC387686 DOI: 10.1128/jvi.78.9.4498-4507.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that human cytomegalovirus (HCMV) infection induced the activation of the cellular transcription factor NF-kappaB. Here, we investigate the mechanism for the HCMV-induced NF-kappaB activation and the role that the induced NF-kappaB plays in transactivation of the major immediate-early promoter (MIEP) and production of immediate-early (IE) proteins. Using a dominant-negative inhibitor of NF-kappaB, the IkappaB-superrepressor, we demonstrated that active NF-kappaB is critical for transactivation of the HCMV MIEP. Investigation of the mechanisms of NF-kappaB activation following HCMV infection showed a rapid and sustained decrease in the inhibitors of NF-kappaB, IkappaBalpha and IkappaBbeta. Because the IkappaB kinases (IKKs) regulate the degradation of the IkappaBs, virus-mediated changes in the IKKs were examined next. Using dominant-negative forms of the IKKs, we showed significant decreases in transactivation of the MIEP in the presence of these mutants. In addition, protein levels of members of the IKK complex and IKK kinase activity were upregulated throughout the time course of infection. Lastly, the role NF-kappaB plays in HCMV IE mRNA and protein production during infection was examined. Using aspirin and MG-132, we demonstrated that production of IE protein and mRNA was significantly decreased and delayed in infected cells treated with these drugs. Together, the results of these studies suggest that virus-mediated NF-kappaB activation, through the dysregulation of the IKK complex, plays a primary role in the initiation of the HCMV gene cascade in fibroblasts and may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ian B DeMeritt
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | |
Collapse
|
136
|
Tucker AS, Headon DJ, Courtney JM, Overbeek P, Sharpe PT. The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Dev Biol 2004; 268:185-94. [PMID: 15031115 DOI: 10.1016/j.ydbio.2003.12.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 11/21/2003] [Accepted: 12/15/2003] [Indexed: 01/02/2023]
Abstract
Mutations in members of the ectodysplasin (TNF-related) signalling pathway, EDA, EDAR, and EDARADD in mice and humans produce an ectodermal dysplasia phenotype that includes missing teeth and smaller teeth with reduced cusps. Using the keratin 14 promoter to target expression of an activated form of Edar in transgenic mice, we show that expression of this transgene is able to rescue the tooth phenotype in Tabby (Eda) and Sleek (Edar) mutant mice. High levels of expression of the transgene in wild-type mice result in molar teeth with extra cusps, and in some cases supernumerary teeth, the opposite of the mutant phenotype. The level of activation of Edar thus determines cusp number and tooth number during tooth development.
Collapse
Affiliation(s)
- A S Tucker
- Craniofacial Development, Dental Institute, Guy's Hospital, King's College London, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
137
|
Sil AK, Maeda S, Sano Y, Roop DR, Karin M. IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature 2004; 428:660-4. [PMID: 15071597 DOI: 10.1038/nature02421] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 02/12/2004] [Indexed: 11/08/2022]
Abstract
IkappaB kinase-alpha (IKK-alpha) exhibits protein-kinase-dependent and -independent functions. Its kinase activity is required for lymphoid organogenesis and mammary gland development, whereas a kinase-independent activity is required for epidermal keratinocyte differentiation. In addition to failed epidermal differentiation, IKK-alpha-deficient mice exhibit abnormal skeletal and craniofacial morphogenesis. As similar defects are not exhibited by mice that experience systemic inhibition of NF-kappaB, we postulated that the morphogenetic defects in IKK-alpha-deficient mice are not caused by reduced NF-kappaB activity but instead are due to failed epidermal differentiation that disrupts proper epidermal-mesodermal interactions. We tested this hypothesis by introducing an epidermal-specific Ikka (also known as Chuk) transgene into IKK-alpha-deficient mice. Mice lacking IKK-alpha in all cell types including bone and cartilage, but not in basal epidermal keratinocytes, exhibit normal epidermal differentiation and skeletal morphology. Thus, epidermal differentiation is required for proper morphogenesis of mesodermally derived skeletal elements. One way by which IKK-alpha controls skeletal and craniofacial morphogenesis is by repressing expression of fibroblast growth factor (FGF) family members, such as FGF8, whose expression is specifically elevated in the limb bud ectoderm of IKK-alpha-deficient mice.
Collapse
Affiliation(s)
- Alok K Sil
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0636, USA
| | | | | | | | | |
Collapse
|
138
|
Ohazama A, Hu Y, Schmidt-Ullrich R, Cao Y, Scheidereit C, Karin M, Sharpe PT. A dual role for Ikk alpha in tooth development. Dev Cell 2004; 6:219-27. [PMID: 14960276 DOI: 10.1016/s1534-5807(04)00024-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 11/26/2003] [Accepted: 12/01/2003] [Indexed: 12/20/2022]
Abstract
IKK alpha is a component of the I kappa B kinase (IKK) complex that plays a key role in the activation of NF-kappa B. In Ikk alpha mutant mice and mice expressing a transdominant negative mutant of I kappa B alpha (cI kappa B alpha Delta N), molars have abnormal cusps, indicating that Ikk alpha is involved in cusp formation through the NF-kappa B pathway. However, Ikk alpha mutant incisors also have an earlier phenotype where epithelium evaginates outward into the developing oral cavity rather than invaginating into the underlying mesenchyme. A similar evagination of epithelium was also observed in whisker development, suggesting that Ikk alpha contributes to the direction of epithelial growth during the early stages of development in many ectodermal appendages. Since cI kappa B alpha Delta N mice have normal incisor epithelial invagination, Ikk alpha's role appears to be NF-kappa B independent. Changes in Notch1, Notch2, Wnt7b, and Shh expression found in incisor epithelium of Ikk alpha mutants suggest that this NF-kappa B-independent function is mediated by Notch/Wnt/Shh signaling pathways.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, GKT Dental Institute, King's College, Guy's Hospital, London Bridge, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
139
|
Regamey A, Hohl D, Liu JW, Roger T, Kogerman P, Toftgard R, Huber M. The tumor suppressor CYLD interacts with TRIP and regulates negatively nuclear factor kappaB activation by tumor necrosis factor. ACTA ACUST UNITED AC 2004; 198:1959-64. [PMID: 14676304 PMCID: PMC2194148 DOI: 10.1084/jem.20031187] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cylindromas are benign adnexal skin tumors caused by germline mutations in the CYLD gene. In most cases the second wild-type allele is lost in tumor tissue, suggesting that CYLD functions as tumor suppressor. CYLD is a protein of 956 amino acids harboring a functional deubiquitinating domain at the COOH-terminal end. To shed more light on the function of CYLD, we have performed a yeast two hybrid screen using an HaCaT cDNA library that identified the RING finger protein TRIP (TRAF-interacting protein) as interactor with full-length CYLD. Mapping of the interacting domains revealed that the central domain of CYLD binds to the COOH-terminal end of TRIP. Far Western analysis and coimmunoprecipitations in mammalian cells confirmed that full-length CYLD binds to the COOH-terminal domain of TRIP. Because TRIP is an inhibitor of nuclear factor (NF)-kappaB activation by tumor necrosis factor (TNF), the effect of CYLD on NF-kappaB activation was investigated in HeLa cells. The results established that CYLD down-regulates NF-kappaB activation by TNF-alpha. The inhibition by CYLD depends on the presence of the central domain interacting with TRIP and its deubiquitinating activity. These findings indicate that cylindromas arise through constitutive NF-kappaB activation leading to hyperproliferation and tumor growth.
Collapse
|
140
|
Westergaard M, Henningsen J, Johansen C, Rasmussen S, Svendsen ML, Jensen UB, Schrøder HD, Staels B, Iversen L, Bolund L, Kragballe K, Kristiansen K. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin. J Invest Dermatol 2004; 121:1104-17. [PMID: 14708613 DOI: 10.1046/j.1523-1747.2003.12536.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abnormal epidermal proliferation and differentiation characterize the inflammatory skin disease psoriasis. Here we demonstrate that expression of PPARdelta mRNA and protein is markedly upregulated in psoriatic lesions and that lipoxygenase products accumulating in psoriatic lesions are potent activators of PPARdelta. The expression levels of NF-kappaB p50 and p65 were not significantly altered in lesional compared with nonlesional psoriatic skin. In the basal layer of normal epidermis both p50 and p65 were sequestered in the cytoplasm, whereas p50, but not p65, localized to nuclei in the suprabasal layers, and this distribution was maintained in lesional psoriatic skin. In normal human keratinocytes PPAR agonists neither impaired IL-1beta-induced translocation of p65 nor IL-1beta-induced NF-kappaB DNA binding. We show that PPARdelta physically interacts with the N-terminal Rel homology domain of p65. Irrespective of the presence of agonists none of the PPAR subtypes decreased p65-mediated transactivation in keratinocytes. In contrast p65, but not p50, was a potent repressor of PPAR-mediated transactivation. The p65-dependent repression of PPARdelta- but not PPARalpha- or PPARgamma-mediated transactivation was partially relieved by forced expression of the coactivators p300 or CBP. We suggest that deficient NF-kappaB activation in chronic psoriatic plaques permitting unabated PPARdelta-mediated transactivation contributes to the pathologic phenotype of psoriasis.
Collapse
Affiliation(s)
- Majken Westergaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Kucharczak J, Simmons MJ, Fan Y, Gélinas C. To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 2004; 22:8961-82. [PMID: 14663476 DOI: 10.1038/sj.onc.1207230] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During their lifetime, cells encounter many life or death situations that challenge their very own existence. Their survival depends on the interplay within a complex yet precisely orchestrated network of proteins. The Rel/NF-kappaB signaling pathway and the transcription factors that it activates have emerged as critical regulators of the apoptotic response. These proteins are best known for the key roles that they play in normal immune and inflammatory responses, but they are also implicated in the control of cell proliferation, differentiation, apoptosis and oncogenesis. In recent years, there has been remarkable progress in understanding the pathways that activate the Rel/NF-kappaB factors and their role in the cell's decision to either fight or surrender to apoptotic challenge. Whereas NF-kappaB is most commonly involved in suppressing apoptosis by transactivating the expression of antiapoptotic genes, it can promote programmed cell death in response to certain death-inducing signals and in certain cell types. This review surveys our current understanding of the role of NF-kappaB in the apoptotic response and focuses on many developments since this topic was last reviewed in Oncogene 4 years ago. These recent findings shed new light on the activity of NF-kappaB as a critical regulator of apoptosis in the immune, hepatic, epidermal and nervous systems, on the mechanisms through which it operates and on its role in tissue development, homoeostasis and cancer.
Collapse
Affiliation(s)
- Jérôme Kucharczak
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
142
|
Ruiz S, Segrelles C, Santos M, Lara MF, Paramio JM. Functional link between retinoblastoma family of proteins and the Wnt signaling pathway in mouse epidermis. Dev Dyn 2004; 230:410-8. [PMID: 15188427 DOI: 10.1002/dvdy.20065] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The retinoblastoma family of proteins (pRb, p107, and p130) modulates cell cycle progression and differentiation of several tissues. We have demonstrated recently that p107 and p130 regulate keratinocyte terminal differentiation and hair follicle morphogenesis and development in vivo. This last aspect appears to be mediated by defective signaling from the mesenchyme and is associated with altered bone morphogenetic protein-4 (BMP4) -dependent signaling. However, many alterations were also found in the epithelial compartment. Given the importance of betacatenin in hair biology and in BMP signaling, we studied its expression in p107/p130-deficient skin. Although normal expression of betacatenin was found in p107/p130-deficient hair follicles, we found increased nuclear accumulation of betacatenin in the basal keratinocytes of the p107/p130-deficient mice skin. Biochemical analysis revealed that such an increase in betacatenin was due to the disruption of Axin/GSK3beta/betacatenin complexes promoted by the increased expression of Frat, the mouse homologue of GSK3betabinding protein (GBP), in epidermis, precluding the degradation of betacatenin. Collectively, these data represent the first evidence that retinoblastoma family and Wnt signaling pathways might be interconnected by functional links in skin.
Collapse
Affiliation(s)
- Sergio Ruiz
- Program on Cell and Molecular Biology and Gene Therapy, CIEMAT, Madrid, Spain
| | | | | | | | | |
Collapse
|
143
|
Brummelkamp TR, Nijman SMB, Dirac AMG, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424:797-801. [PMID: 12917690 DOI: 10.1038/nature01811] [Citation(s) in RCA: 748] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 05/08/2003] [Indexed: 12/14/2022]
Abstract
Protein modification by the conjugation of ubiquitin moieties--ubiquitination--plays a major part in many biological processes, including cell cycle and apoptosis. The enzymes that mediate ubiquitin-conjugation have been well-studied, but much less is known about the ubiquitin-specific proteases that mediate de-ubiquitination of cellular substrates. To study this gene family, we designed a collection of RNA interference vectors to suppress 50 human de-ubiquitinating enzymes, and used these vectors to identify de-ubiquitinating enzymes in cancer-relevant pathways. We report here that inhibition of one of these enzymes, the familial cylindromatosis tumour suppressor gene (CYLD), having no known function, enhances activation of the transcription factor NF-kappaB. We show that CYLD binds to the NEMO (also known as IKKgamma) component of the IkappaB kinase (IKK) complex, and appears to regulate its activity through de-ubiquitination of TRAF2, as TRAF2 ubiquitination can be modulated by CYLD. Inhibition of CYLD increases resistance to apoptosis, suggesting a mechanism through which loss of CYLD contributes to oncogenesis. We show that this effect can be relieved by aspirin derivatives that inhibit NF-kappaB activity, which suggests a therapeutic intervention strategy to restore growth control in patients suffering from familial cylindromatosis.
Collapse
Affiliation(s)
- Thijn R Brummelkamp
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
144
|
Abstract
Ectodysplasin (Eda), a signaling molecule belonging to the tumor necrosis factor family, is required for normal development of several ectodermally derived organs in humans and mice. Two closely related isoforms of ectodysplasin, Eda-A1 and Eda-A2, have been described which bind to and activate two different receptors, Edar and X-linked Eda-A2 receptor (Xedar), respectively. Mutations in Eda, Edar or other molecules of this signaling pathway cause ectodermal dysplasias characterized by defective development of teeth, hairs, and several exocrine glands such as sweat glands presumably due to impaired NF-kappaB response. Studies with mice either lacking the functional proteins of Edar pathway or overexpressing the ligand or receptor suggest that Eda-A1-Edar signaling has multiple roles in ectodermal organ development regulating their initiation, morphogenesis, and differentiation.
Collapse
Affiliation(s)
- Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, Helsinki 00014, Finland.
| | | |
Collapse
|
145
|
Hardisty RE, Erven A, Logan K, Morse S, Guionaud S, Sancho–Oliver S, Jackie Hunter A, Brown SDM, Steel KP. The deaf mouse mutant Jeff (Jf) is a single gene model of otitis media. J Assoc Res Otolaryngol 2003; 4:130-8. [PMID: 12943368 PMCID: PMC3202714 DOI: 10.1007/s10162-002-3015-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Otitis media is the most common cause of hearing impairment in children and is primarily characterized by inflammation of the middle ear mucosa. Yet nothing is known of the underlying genetic pathways predisposing to otitis media in the human population. Increasingly, large-scale mouse mutagenesis programs have undertaken systematic and genome-wide efforts to recover large numbers of novel mutations affecting a diverse array of phenotypic areas involved with genetic disease including deafness. As part of the UK mutagenesis program, we have identified a novel deaf mouse mutant, Jeff (Jf). Jeff maps to the distal region of mouse chromosome 17 and presents with fluid and pus in the middle ear cavity. Jeff mutants are 21% smaller than wild-type littermates, have a mild craniofacial abnormality, and have elevated hearing thresholds. Middle ear epithelia of Jeff mice show evidence of a chronic proliferative otitis media. The Jeff mutant should prove valuable in elucidating the underlying genetic pathways predisposing to otitis media.
Collapse
Affiliation(s)
- Rachel E. Hardisty
- MRC Mammalian Genetics Unit and UK Mouse Genome Centre, Harwell, OX11 0RD, UK
| | - Alexandra Erven
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK
| | - Karen Logan
- MRC Mammalian Genetics Unit and UK Mouse Genome Centre, Harwell, OX11 0RD, UK
| | - Susan Morse
- MRC Mammalian Genetics Unit and UK Mouse Genome Centre, Harwell, OX11 0RD, UK
| | - Sylvia Guionaud
- Frimorpho Ltd., Chemin du Musee 12, C.P. 191, 1705 Fribourg, Switzerland
| | - Sara Sancho–Oliver
- Frimorpho Ltd., Chemin du Musee 12, C.P. 191, 1705 Fribourg, Switzerland
| | - A. Jackie Hunter
- GlaxoSmithKline, New Frontiers Science Park, Harlow, CM19 5AW, UK
| | - Steve D. M. Brown
- MRC Mammalian Genetics Unit and UK Mouse Genome Centre, Harwell, OX11 0RD, UK
| | - Karen P. Steel
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
146
|
Gaide O, Schneider P. Permanent correction of an inherited ectodermal dysplasia with recombinant EDA. Nat Med 2003; 9:614-8. [PMID: 12692542 DOI: 10.1038/nm861] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Accepted: 03/14/2003] [Indexed: 01/26/2023]
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a genetic disorder characterized by absence or deficient function of hair, teeth and sweat glands. Affected children may experience life-threatening high fever resulting from reduced ability to sweat. Mice with the Tabby phenotype share many symptoms with human XLHED patients because both phenotypes are caused by mutations of the syntenic ectodysplasin A gene (Eda) on the X chromosome. Two main splice variants of Eda, encoding EDA1 and EDA2, engage the tumor necrosis factor (TNF) family receptors EDAR and XEDAR, respectively. The EDA1 protein, acting through EDAR, is essential for proper formation of skin appendages; the functions of EDA2 and XEDAR are not known. EDA1 must be proteolytically processed to a soluble form to be active. Here, we show that treatment of pregnant Tabby mice with a recombinant form of EDA1, engineered to cross the placental barrier, permanently rescues the Tabby phenotype in the offspring. Notably, sweat glands can also be induced by EDA1 after birth. This is the first example of a developmental genetic defect that can be permanently corrected by short-term treatment with a recombinant protein.
Collapse
Affiliation(s)
- Olivier Gaide
- Institute of Biochemistry, BIL Biomedical Research Center, University of Lausanne, CH-1066 Epalinges, Switzerland
| | | |
Collapse
|
147
|
Santos M, Perez P, Segrelles C, Ruiz S, Jorcano JL, Paramio JM. Impaired NF-kappa B activation and increased production of tumor necrosis factor alpha in transgenic mice expressing keratin K10 in the basal layer of the epidermis. J Biol Chem 2003; 278:13422-30. [PMID: 12566451 DOI: 10.1074/jbc.m208170200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Both the diversity and the precisely regulated tissue- and differentiation-specific expression patterns of keratins suggest that these proteins have specific functions in epithelia besides their well known maintenance of cell integrity. In the search for these specific functions, our previous results have demonstrated that the expression of K10, a keratin expressed in postmitotic suprabasal cells of the epidermis, prevents cell proliferation through the inhibition of Akt kinase activity. Given the roles of Akt in NF-kappa B signaling and the importance of these processes in the epidermis, a study was made into the possible alterations of the NF-kappa B pathway in transgenic mice expressing K10 in the proliferative basal layer. It was found that the inhibition of Akt, mediated by K10 expression, leads to impaired NF-kappa B activity. This appears to occur through the decreased expression of IKK beta and IKK gamma. Remarkably, increased production of tumor necrosis factor alpha and concomitant JNK activation was observed in the epidermis of these transgenic mice. These results confirm that keratin K10 functions in vivo include the control of many aspects of epithelial physiology, which affect the cells not only in a cell autonomous manner but also influence tissue homeostasis.
Collapse
Affiliation(s)
- Mirentxu Santos
- Department of Cell and Molecular Biology, CIEMAT, Ave. Complutense 22, Madrid E-28040, Spain
| | | | | | | | | | | |
Collapse
|
148
|
Jaskoll T, Zhou YM, Trump G, Melnick M. Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:322-31. [PMID: 12629675 DOI: 10.1002/ar.a.10045] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hypohidrotic (anhidrotic) ectodermal dysplasia (HED), the most common of the approximately 150 described ectodermal dysplasias, is a disorder characterized by abnormal hair, teeth, sweat glands, and salivary glands. Mutations in the EDA (ectodysplasin-A) and EDAR (ectodysplasin-A receptor) genes are responsible for X-linked and autosomal HED, respectively. Abnormal phenotypes similar to HED are seen in Tabby (Eda(Ta)) and downless (Edar(dl)) mutant mice. Although recent studies have focused on the role of Eda/Edar signaling during hair and tooth development, very little is known about its role during embryonic submandibular salivary gland (SMG) development. To this end, we analyzed the SMG phenotypes in Tabby (Ta) and downless (dl) mutant mice and determined that Ta SMGs are hypoplastic, whereas dl SMGs are severely dysplastic. The absence of SMG ducts and acini in dl SMGs suggests that Eda/Edar signaling is essential for lumina formation and glandular histodifferentiation. Our localization of Eda and Edar proteins at sites of lumen and acini formation supports this conclusion. Moreover, the presence of SMGs in both Ta and dl mutant mice, as well as the absence of immunodetectable Eda and Edar protein in Initial Bud and Early Pseudoglandular stage SMGs, indicate that Eda/Edar-mediated signaling is important for branching morphogenesis and histodifferentiation, but not for initial gland formation. To initially delineate the morphoregulatory role of Eda/Edar-mediated signaling during embryonic SMG development, we cultured embryonic day 14 SMGs with enhanced or abrogated Eda/Edar signaling. Eda supplementation induced a significant increase in SMG branching, and enhanced activation of NF-kappaB. Abrogating Eda/Edar signaling by adding the soluble form of Edar to bind endogenous ligand in embryonic SMGs results in a significant dose-dependent decrease in branching morphogenesis. Taken together, our results suggest that the Eda/Edar/NF-kappaB pathway exerts its effect on SMG epithelial cell proliferation, lumina formation, and histodifferentiation.
Collapse
Affiliation(s)
- Tina Jaskoll
- Laboratory for Developmental Genetics, University of Southern California-Los Angeles, Los Angeles, California 90089-0641, USA.
| | | | | | | |
Collapse
|
149
|
Sinha SK, Zachariah S, Quiñones HI, Shindo M, Chaudhary PM. Role of TRAF3 and -6 in the activation of the NF-kappa B and JNK pathways by X-linked ectodermal dysplasia receptor. J Biol Chem 2002; 277:44953-61. [PMID: 12270937 DOI: 10.1074/jbc.m207923200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
X-linked ectodermal dysplasia receptor (XEDAR) is a recently isolated member of the tumor necrosis factor receptor family that has been shown to be highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2). By using a subclone of 293F cells with stable expression of XEDAR, we report that XEDAR activates the NF-kappaB and JNK pathways in an EDA-A2-dependent fashion. Treatment with EDA-A2 leads to the recruitment of TRAF3 and -6 to the aggregated XEDAR complex, suggesting a central role of these adaptors in the proximal aspect of XEDAR signaling. Whereas TRAF3 and -6, IKK1/IKKalpha, IKK2/IKKbeta, and NEMO/IKKgamma are involved in XEDAR-induced NF-kappaB activation, XEDAR-induced JNK activation seems to be mediated via a pathway dependent on TRAF3, TRAF6, and ASK1. Deletion and point mutagenesis studies delineate two distinct regions in the cytoplasmic domain of XEDAR, which are involved in binding to TRAF3 and -6, respectively, and play a major role in the activation of the NF-kappaB and JNK pathways. Taken together, our results establish a major role of TRAF3 and -6 in XEDAR signaling and in the process of ectodermal differentiation.
Collapse
Affiliation(s)
- Suwan K Sinha
- Hamon Center for Therapeutic Oncology Research and Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8593, USA
| | | | | | | | | |
Collapse
|
150
|
Nishioka E, Tanaka T, Yoshida H, Matsumura K, Nishikawa S, Naito A, Inoue JI, Funasaka Y, Ichihashi M, Miyasaka M, Nishikawa SI. Mucosal addressin cell adhesion molecule 1 plays an unexpected role in the development of mouse guard hair. J Invest Dermatol 2002; 119:632-8. [PMID: 12230506 DOI: 10.1046/j.1523-1747.2002.01851.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first wave of coat hair development is initiated around embryonic day 14 in the mouse. Whereas ectodysplasin and ectodermal dysplasia receptor, tumor necrosis factor and tumor necrosis factor receptor family molecules, respectively, were identified to be signals triggering this process, not much was known regarding their downstream molecular targets. In this report, we show that mucosal addressin cell adhesion molecule 1 and intercellular adhesion molecule 1 are induced in the keratinocytes of the hair placode as a direct consequence of ectodermal dysplasia receptor signal, and tumor-necrosis-factor-receptor-associated factor 6 is involved in this mucosal addressin cell adhesion molecule 1 expression. Experiments using an in vitro culture of skin fragments demonstrated that ectodermal-dysplasia-receptor-induced mucosal addressin cell adhesion molecule 1 expression occurs at the initial phase of follicle development before involvement of Sonic hedgehog signal. Follicle development in this culture was also suppressed to some extent, though not completely, by addition of soluble mucosal addressin cell adhesion molecule 1/IgG-Fc chimeric protein, whereas monoclonal antibody that can inhibit mucosal addressin cell adhesion molecule 1 interaction with integrin alpha4beta7 had no effect on this process. These results demonstrated for the first time that the structural proteins, mucosal addressin cell adhesion molecule 1 and intercellular adhesion molecule 1, are induced by ectodermal dysplasia receptor signal and suggested the potential involvement of mucosal addressin cell adhesion molecule 1 in the morphogenesis of follicular keratinocytes.
Collapse
Affiliation(s)
- Eri Nishioka
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|