101
|
Ahmed R, El-Gareib A, Shaker H. Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sci 2018; 192:213-220. [DOI: 10.1016/j.lfs.2017.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
|
102
|
Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Front Physiol 2017; 8:1047. [PMID: 29311977 PMCID: PMC5742165 DOI: 10.3389/fphys.2017.01047] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.
Collapse
Affiliation(s)
- Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| | - Lene S Myrmel
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Even Fjære
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
103
|
Helsley RN, Zhou C. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx017. [PMID: 29119010 PMCID: PMC5672952 DOI: 10.1093/eep/dvx017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 05/25/2023]
Abstract
Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
104
|
Jackson E, Shoemaker R, Larian N, Cassis L. Adipose Tissue as a Site of Toxin Accumulation. Compr Physiol 2017; 7:1085-1135. [PMID: 28915320 DOI: 10.1002/cphy.c160038] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We examine the role of adipose tissue, typically considered an energy storage site, as a potential site of toxicant accumulation. Although the production of most persistent organic pollutants (POPs) was banned years ago, these toxicants persist in the environment due to their resistance to biodegradation and widespread distribution in various environmental forms (e.g., vapor, sediment, and water). As a result, human exposure to these toxicants is inevitable. Largely due to their lipophilicity, POPs bioaccumulate in adipose tissue, resulting in greater body burdens of these environmental toxicants with obesity. POPs of major concern include polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs), and polybrominated biphenyls and diphenyl ethers (PBBs/PBDEs), among other organic compounds. In this review, we (i) highlight the physical characteristics of toxicants that enable them to partition into and remain stored in adipose tissue, (ii) discuss the specific mechanisms of action by which these toxicants act to influence adipocyte function, and (iii) review associations between POP exposures and the development of obesity and diabetes. An area of controversy relates to the relative potential beneficial versus hazardous health effects of toxicant sequestration in adipose tissue. © 2017 American Physiological Society. Compr Physiol 7:1085-1135, 2017.
Collapse
Affiliation(s)
- Erin Jackson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Robin Shoemaker
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nika Larian
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
105
|
Paul NE, Denecke B, Kim BS, Dreser A, Bernhagen J, Pallua N. The effect of mechanical stress on the proliferation, adipogenic differentiation and gene expression of human adipose-derived stem cells. J Tissue Eng Regen Med 2017; 12:276-284. [DOI: 10.1002/term.2411] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/16/2016] [Accepted: 01/13/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Nora E. Paul
- Department of Plastic Surgery and Hand Surgery - Burn Center; Uniklinik RWTH Aachen; Aachen Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research; Uniklinik RWTH Aachen; Aachen Germany
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery - Burn Center; Uniklinik RWTH Aachen; Aachen Germany
| | - Alice Dreser
- Institute of Neuropathology; Uniklinik RWTH Aachen; Aachen Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians-University (LMU) of Munich; Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| | - Norbert Pallua
- Department of Plastic Surgery and Hand Surgery - Burn Center; Uniklinik RWTH Aachen; Aachen Germany
| |
Collapse
|
106
|
Wu L, Lu X, Fu X, Wu L, Liu H. Gold Nanoparticles dotted Reduction Graphene Oxide Nanocomposite Based Electrochemical Aptasensor for Selective, Rapid, Sensitive and Congener-Specific PCB77 Detection. Sci Rep 2017; 7:5191. [PMID: 28701748 PMCID: PMC5507977 DOI: 10.1038/s41598-017-05352-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/26/2017] [Indexed: 11/30/2022] Open
Abstract
Gold nanoparticles (AuNP) dotted reduction graphene oxide (RGO-AuNP) is used as a platform for an aptamer biosensor to selectively detect 3,3′4,4′-polychlorinated biphenyls (PCB77). By anchoring aptamers onto the binding sites of RGO-AuNP and making use of the synergy effect of RGO and AuNP, the RGO-AuNP based biosensor exhibits superior analytical performances to AuNP based biosensor in terms of sensitivity and repeatability. The sensitivity of RGO-AuNP based aptamers (RGO-AuNP-Ap) biosensor (226.8 μA cm−2) is nearly two times higher than that of Au based biosensors (AuNP-Ap/Au electrode, 147.2 μA cm−2). The RGO-AuNP-Ap/Au biosensor demonstrated a linear response for PCB77 concentrations between 1 pg L−1 and 10 μg L−1, with a low limit of detection (LOD) of 0.1 pg L−1. The superb LOD satisfies the exposure thresholds (uncontaminated water < 0.1 ng L−1) set out by International Agency for Research on Cancer (IARC) and the Environmental Protection Agency (EPA). The proposed biosensor can be a powerful tool for rapid, sensitive and selective detection of PCBs on site.
Collapse
Affiliation(s)
- Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Minisrty of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Xianbo Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xiaochen Fu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Minisrty of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Lingxia Wu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Huan Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Minisrty of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| |
Collapse
|
107
|
Hoffman JB, Hennig B. Protective influence of healthful nutrition on mechanisms of environmental pollutant toxicity and disease risks. Ann N Y Acad Sci 2017; 1398:99-107. [PMID: 28574588 DOI: 10.1111/nyas.13365] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Human exposures to environmental contaminants around the world contribute to the global burden of disease and thus require urgent attention. Exploring preventive measures against environmental exposure and disease risk is essential. While a sedentary lifestyle and/or poor dietary habits can exacerbate the deleterious effects resulting from exposure to toxic chemicals, much emerging evidence suggests that positive lifestyle changes (e.g., healthful nutrition) can modulate and/or reduce the toxicity of environmental pollutants. Our work has shown that diets high in anti-inflammatory bioactive food components (e.g., phytochemicals or polyphenols) are possible strategies for modulating and reducing the disease risks associated with exposure to toxic pollutants in the environment. Thus, consuming healthy diets rich in plant-derived bioactive nutrients may reduce the vulnerability to diseases linked to environmental toxic insults. This nutritional paradigm in environmental toxicology requires further study in order to improve our understanding of the relationships between nutrition and other lifestyle modifications and toxicant-induced diseases.
Collapse
Affiliation(s)
- Jessie B Hoffman
- Superfund Research Center, University of Kentucky, Lexington, Kentucky.,Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, Kentucky.,Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
108
|
Pestana D, Teixeira D, Meireles M, Marques C, Norberto S, Sá C, Fernandes VC, Correia-Sá L, Faria A, Guardão L, Guimarães JT, Cooper WN, Sandovici I, Domingues VF, Delerue-Matos C, Monteiro R, Constância M, Calhau C. Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p,p'-DDE. Sci Rep 2017; 7:2738. [PMID: 28572628 PMCID: PMC5453948 DOI: 10.1038/s41598-017-02885-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Endocrine-disrupting chemicals such as p,p’-dichlorodiphenyldichloroethylene (p,p’-DDE), are bioaccumulated in the adipose tissue (AT) and have been implicated in the obesity and diabetes epidemic. Thus, it is hypothesized that p,p’-DDE exposure could aggravate the harm of an obesogenic context. We explored the effects of 12 weeks exposure in male Wistar rats’ metabolism and AT biology, assessing a range of metabolic, biochemical and histological parameters. p,p’-DDE -treatment exacerbated several of the metabolic syndrome-accompanying features induced by high-fat diet (HF), such as dyslipidaemia, glucose intolerance and hypertension. A transcriptome analysis comparing mesenteric visceral AT (vAT) of HF and HF/DDE groups revealed a decrease in expression of nervous system and tissue development-related genes, with special relevance for the neuropeptide galanin that also revealed DNA methylation changes at its promoter region. Additionally, we observed an increase in transcription of dipeptidylpeptidase 4, as well as a plasmatic increase of the pro-inflammatory cytokine IL-1β. Our results suggest that p,p’-DDE impairs vAT normal function and effectively decreases the dynamic response to energy surplus. We conclude that p,p’-DDE does not merely accumulate in fat, but may contribute significantly to the development of metabolic dysfunction and inflammation. Our findings reinforce their recognition as metabolism disrupting chemicals, even in non-obesogenic contexts.
Collapse
Affiliation(s)
- Diogo Pestana
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal. .,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal. .,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Diana Teixeira
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuela Meireles
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Marques
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sónia Norberto
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla Sá
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Virgínia C Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Luísa Correia-Sá
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Ana Faria
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luísa Guardão
- Animal House Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João T Guimarães
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Clinical Pathology, Hospital S. João, Porto, Portugal
| | - Wendy N Cooper
- University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics & Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ionel Sandovici
- University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics & Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
| | - Valentina F Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Rosário Monteiro
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Miguel Constância
- University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics & Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
| | - Conceição Calhau
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
109
|
Qiu Y, Sui X, Cao S, Li X, Ning Y, Wang S, Yin L, Zhi X. Steroidogenic Acute Regulatory Protein (StAR) Overexpression Reduces Inflammation and Insulin Resistance in Obese Mice. J Cell Biochem 2017; 118:3932-3942. [DOI: 10.1002/jcb.26046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Yanyan Qiu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Xianxian Sui
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Shengxuan Cao
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Yanxia Ning
- Department of Internal Medicine School of Medicine, Virginia Commonwealth University Richmond Virginia
| | - Songmei Wang
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Lianhua Yin
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiuling Zhi
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| |
Collapse
|
110
|
Le Magueresse-Battistoni B, Labaronne E, Vidal H, Naville D. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem 2017; 8:108-119. [PMID: 28588754 PMCID: PMC5439162 DOI: 10.4331/wjbc.v8.i2.108] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandemic proportions. Interestingly, convincing data have shown that environmental pollutants, specifically those endowed with endocrine disrupting activities, could contribute to the etiology of these multifactorial metabolic disorders. Within this review, we will recapitulate characteristics of endocrine disruption. We will demonstrate that metabolic disorders could originate from endocrine disruption with a particular focus on convincing data from the literature. Eventually, we will present how handling an original mouse model of chronic exposition to a mixture of pollutants allowed demonstrating that a mixture of pollutants each at doses beyond their active dose could induce substantial deleterious effects on several metabolic end-points. This proof-of-concept study, as well as other studies on mixtures of pollutants, stresses the needs for revisiting the current threshold model used in risk assessment which does not take into account potential effects of mixtures containing pollutants at environmental doses, e.g., the real life exposure. Certainly, more studies are necessary to better determine the nature of the chemicals to which humans are exposed and at which level, and their health impact. As well, research studies on substitute products are essential to identify harmless molecules.
Collapse
|
111
|
Wu H, Yu W, Meng F, Mi J, Peng J, Liu J, Zhang X, Hai C, Wang X. Polychlorinated biphenyls-153 induces metabolic dysfunction through activation of ROS/NF-κB signaling via downregulation of HNF1b. Redox Biol 2017; 12:300-310. [PMID: 28285191 PMCID: PMC5345977 DOI: 10.1016/j.redox.2017.02.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022] Open
Abstract
Polychlorinated biphenyls (PCB) is a major type of persistent organic pollutants (POPs) that act as endocrine-disrupting chemicals. In the current study, we examined the mechanism underlying the effect of PCB-153 on glucose and lipid metabolism in vivo and in vitro. We found that PCB-153 induced per se and worsened high fat diet (HFD)-resulted increase of blood glucose level and glucose and insulin intolerance. In addition, PCB-153 induced per se and worsened HFD-resulted increase of triglyceride content and adipose mass. Moreover, PCB-153 concentration-dependently inhibited insulin-dependent glucose uptake and lipid accumulation in cultured hepatocytes and adipocytes. PCB-153 induced the expression and nuclear translocation of p65 NF-κB and the expression of its downstream inflammatory markers, and worsened HFD-resulted increase of those inflammatory markers. Inhibition of NF-κB significantly suppressed PCB-153-induced inflammation, lipid accumulation and decrease of glucose uptake. PCB-153 induced oxidative stress and decreased hepatocyte nuclear factor 1b (HNF1b) and glutathione peroxidase 1 (GPx1) expression in vivo and in vitro. Overexpression of HNF1b increased GPx1 expression, decreased ROS level, decreased Srebp1, ACC and FAS expression, and inhibited PCB-153-resulted oxidative stress, NF-κB-mediated inflammation, and final glucose/lipid metabolic disorder. Our results suggest that dysregulation of HNF1b/ROS/NF-κB plays an important role in PCB-153-induced glucose/lipid metabolic disorder.
Collapse
Affiliation(s)
- Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fansen Meng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Mi
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodi Zhang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
112
|
Abstract
PURPOSE OF REVIEW The purpose of this review was to summarise current evidence that some environmental chemicals may be able to interfere in the endocrine regulation of energy metabolism and adipose tissue structure. RECENT FINDINGS Recent findings demonstrate that such endocrine-disrupting chemicals, termed "obesogens", can promote adipogenesis and cause weight gain. This includes compounds to which the human population is exposed in daily life through their use in pesticides/herbicides, industrial and household products, plastics, detergents, flame retardants and as ingredients in personal care products. Animal models and epidemiological studies have shown that an especially sensitive time for exposure is in utero or the neonatal period. In summarising the actions of obesogens, it is noteworthy that as their structures are mainly lipophilic, their ability to increase fat deposition has the added consequence of increasing the capacity for their own retention. This has the potential for a vicious spiral not only of increasing obesity but also increasing the retention of other lipophilic pollutant chemicals with an even broader range of adverse actions. This might offer an explanation as to why obesity is an underlying risk factor for so many diseases including cancer.
Collapse
Affiliation(s)
- Philippa D Darbre
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK.
| |
Collapse
|
113
|
Mazen NF, Zidan RA. Histological study on the effect of aroclor 1254 on the epididymis of adult rats and the role of L-NAME administration. Ultrastruct Pathol 2017; 41:154-167. [DOI: 10.1080/01913123.2016.1278065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nehad F. Mazen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| | - Rania A. Zidan
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
114
|
Vassilopoulou L, Psycharakis C, Petrakis D, Tsiaoussis J, Tsatsakis AM. Obesity, Persistent Organic Pollutants and Related Health Problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:81-110. [PMID: 28585196 DOI: 10.1007/978-3-319-48382-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present review aims to delve into persistent organic pollutants (POPs) , as xenobiotics, in correlation to human health. POPs exhibit a group of common characteristics, including lipophilicity, persistence to decomposition and bioaccumulation in tissues. POPs have been thoroughly studied by former researchers, as they offer a particular interest in the elucidation of metabolic, endocrine and immune perturbation caused by their synergy with intracellular mechanisms. Herein particular focus is attributed to the relationship of POPs with obesity provocation. Obesity nowadays receives epidemic dimensions, as its prevalence elevates in an exponential degree. POPs-induced obesity rotates around interfering in metabolic and endocrinal procedures and interacting with peroxisome-proliferator and retinoic receptors. Moreover, polymorphisms in CYP gene families exert a negative result, as they incapacitate detoxification of POPs. Obesity could be deemed as a multidimensional condition, as various factors interact to lead to an obesogenic result. Therefore, concomitant disorders may occur, from mild to lethal, and get intensified due to POPs exposure. POPs exact function mechanisms remain rather enigmatic, thus further investigation should be prospectively performed, for a more lucid picture of this issue, and, consequently for the establishment of alternative solutions.
Collapse
Affiliation(s)
- Loukia Vassilopoulou
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409, Heraklion, Crete, Greece
| | - Christos Psycharakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409, Heraklion, Crete, Greece
| | - Demetrios Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409, Heraklion, Crete, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Voutes, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
115
|
|
116
|
Routti H, Lille-Langøy R, Berg MK, Fink T, Harju M, Kristiansen K, Rostkowski P, Rusten M, Sylte I, Øygarden L, Goksøyr A. Environmental Chemicals Modulate Polar Bear (Ursus maritimus) Peroxisome Proliferator-Activated Receptor Gamma (PPARG) and Adipogenesis in Vitro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10708-10720. [PMID: 27602593 DOI: 10.1021/acs.est.6b03020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We studied interactions between polar bear peroxisome proliferator-activated receptor gamma (pbPPARG) and selected compounds using a luciferase reporter assay and predictions through molecular docking. Furthermore, we studied adipogenesis by liver and adipose tissue extracts from a polar bear and three synthetic mixtures of contaminants in murine 3T3-L1 preadipocytes and polar bear adipose tissue-derived stem cells (pbASCs). PCB153 and p,p'-DDE antagonized pbPPARG, although their predicted receptor-ligand affinity was weak. PBDEs, tetrabromobisphenol A, and PCB170 had a weak agonistic effect on pbPPARG, while hexabromocyclododecane, bisphenol A, oxychlordane, and endosulfan were weak antagonists. pbPPARG-mediated luciferase activity was suppressed by synthetic contaminant mixtures reflecting levels measured in polar bear adipose tissue, as were transcript levels of PPARG and the PPARG target gene fatty acid binding protein 4 (FABP4) in pbASCs. Contaminant extracts from polar bear tissues enhanced triglyceride accumulation in murine 3T3-L1 cells and pbASCs, whereas triglyceride accumulation was not affected by the synthetic mixtures. Chemical characterization of extracts using nontarget methods revealed presence of exogenous compounds that have previously been reported to induce adipogenesis. These compounds included phthalates, tonalide, and nonylphenol. In conclusion, major legacy contaminants in polar bear adipose tissue exert antagonistic effects on PPARG, but adipogenesis by a mixture containing emerging compounds may be enhanced through PPARG or other pathways.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute , Fram Centre, 9296 Tromsø, Norway
| | | | - Mari K Berg
- Norwegian Polar Institute , Fram Centre, 9296 Tromsø, Norway
- Department of Biology, University of Bergen , 5020 Bergen, Norway
| | - Trine Fink
- Department of Health Science and Technology, Aalborg University , 9220 Aalborg, Denmark
| | - Mikael Harju
- Norwegian Institute for Air Research, Fram Centre , 9296 Tromsø, Norway
| | - Kurt Kristiansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway , 9037 Tromsø, Norway
| | | | - Marte Rusten
- Department of Biology, University of Bergen , 5020 Bergen, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway , 9037 Tromsø, Norway
| | - Lene Øygarden
- Norwegian Polar Institute , Fram Centre, 9296 Tromsø, Norway
- Department of Biology, University of Bergen , 5020 Bergen, Norway
| | - Anders Goksøyr
- Department of Biology, University of Bergen , 5020 Bergen, Norway
| |
Collapse
|
117
|
Kraus NA, Ehebauer F, Zapp B, Rudolphi B, Kraus BJ, Kraus D. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte 2016; 5:351-358. [PMID: 27994948 DOI: 10.1080/21623945.2016.1240137] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/30/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022] Open
Abstract
Adipocyte cell culture is an important tool for mechanistic studies of energy metabolism. Many factors affect the differentiation of adipocytes in culture. Oil red O staining can be used to assess the degree of differentiation. However, the validity of this method for quantitative analysis has not yet been established. Here we show that a protocol with arbitrarily chosen parameters does not measure in the linear range and is not suitable for quantitative analysis (R2 = 0.077, p = 0.382), and develop and validate an optimized protocol for quantitative oil red O staining of cultured adipocytes. 3T3-L1 preadipocytes and adipocytes are fixed with 4% formaldehyde and stained with 0.2% oil red O solution in 40% 2-propanol for 30 minutes. Dye is eluted with 2-propanol, and absorption of the eluate is measured photometrically at 510 nm. This optimized protocol achieves excellent correlation between defined amounts of differentiated adipocytes on constant-size culture plates and photometric absorption (R2 = 0.972, p = 6.585E-14). The performance of the method is independent of the culture plates used. Thus, the optimized oil red O staining protocol can be universally employed to quantitatively assess adipocyte differentiation.
Collapse
|
118
|
Jaacks LM, Boyd Barr D, Sundaram R, Grewal J, Zhang C, Buck Louis GM. Pre-Pregnancy Maternal Exposure to Persistent Organic Pollutants and Gestational Weight Gain: A Prospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E905. [PMID: 27626435 PMCID: PMC5036738 DOI: 10.3390/ijerph13090905] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Abstract
Persistent organic pollutants (POPs) have been implicated in the development of obesity in non-pregnant adults. However, few studies have explored the association of POPs with gestational weight gain (GWG), an important predictor of future risk of obesity in both the mother and offspring. We estimated the association of maternal pre-pregnancy levels of 63 POPs with GWG. Data are from women (18-40 years; n = 218) participating in a prospective cohort study. POPs were assessed using established protocols in pre-pregnancy, non-fasting blood samples. GWG was assessed using three techniques: (1) total GWG (difference between measured pre-pregnancy weight and final self-reported pre-delivery weight); (2) category based on pre-pregnancy body mass index (BMI)-specific Institute of Medicine (IOM) recommendations; and (3) area under the GWG curve (AUC). In an exploratory analysis, effects were estimated separately for women with BMI < 25 kg/m² versus BMI ≥ 25 kg/m². Multivariable polytomous logistic regression and linear regression were used to estimate the association between each chemical or congener and the three GWG outcomes. p,p'-dichlorodiphenyl trichloroethane (p,p'-DDT) was significantly inversely associated with AUC after adjustment for lipids and pre-pregnancy BMI: beta {95% confidence interval (CI)}, -378.03 (-724.02, -32.05). Perfluorooctane sulfonate (PFOS) was significantly positively associated with AUC after adjustment for lipids among women with a BMI < 25 kg/m² {beta (95% CI), 280.29 (13.71, 546.86)}, but not among women with a BMI ≥ 25 kg/m² {beta (95% CI), 56.99 (-328.36, 442.34)}. In summary, pre-pregnancy levels of select POPs, namely, p,p'-DDT and PFOS, were moderately associated with GWG. The association between POPs and weight gain during pregnancy may be more complex than previously thought, and adiposity prior to pregnancy may be an important effect modifier.
Collapse
Affiliation(s)
- Lindsay M Jaacks
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - Rajeshwari Sundaram
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD 20852, USA.
| | - Jagteshwar Grewal
- Office of the Director, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD 20852, USA.
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD 20852, USA.
| | - Germaine M Buck Louis
- Office of the Director, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD 20852, USA.
| |
Collapse
|
119
|
Jaeger C, Tischkau SA. Role of Aryl Hydrocarbon Receptor in Circadian Clock Disruption and Metabolic Dysfunction. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:133-141. [PMID: 27559298 PMCID: PMC4990151 DOI: 10.4137/ehi.s38343] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 06/01/2023]
Abstract
The prevalence of metabolic syndrome, a clustering of three or more risk factors that include abdominal obesity, increased blood pressure, and high levels of glucose, triglycerides, and high-density lipoproteins, has reached dangerous and costly levels worldwide. Increases in morbidity and mortality result from a combination of factors that promote altered glucose metabolism, insulin resistance, and metabolic dysfunction. Although diet and exercise are commonly touted as important determinants in the development of metabolic dysfunction, other environmental factors, including circadian clock disruption and activation of the aryl hydrocarbon receptor (AhR) by dietary or other environmental sources, must also be considered. AhR binds a range of ligands, which prompts protein-protein interactions with other Per-Arnt-Sim (PAS)-domain-containing proteins and subsequent transcriptional activity. This review focuses on the reciprocal crosstalk between the activated AhR and the molecular circadian clock. AhR exhibits a rhythmic expression and time-dependent sensitivity to activation by AhR agonists. Conversely, AhR activation influences the amplitude and phase of expression of circadian clock genes, hormones, and the behavioral responses of the clock system to changes in environmental illumination. Both the clock and AhR status and activation play significant and underappreciated roles in metabolic homeostasis. This review highlights the state of knowledge regarding how AhR may act together with the circadian clock to influence energy metabolism. Understanding the variety of AhR-dependent mechanisms, including its interactions with the circadian timing system that promote metabolic dysfunction, reveals new targets of interest for maintenance of healthy metabolism.
Collapse
|
120
|
Stecca L, Tait S, Corrado F, Esposito M, Mantovani A, La Rocca C. Development of an in vitro test battery model based on liver and colon cancer cell lines to discriminate PCB mixtures by transcription factors gene expression analysis. Toxicol In Vitro 2016; 34:204-211. [DOI: 10.1016/j.tiv.2016.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/14/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022]
|
121
|
Abstract
Chronic disease is driven by inflammation. This article will provide an overview on how the balance of macronutrients and omega-6 and omega-3 fatty acids in the diet can alter the expression of inflammatory genes. In particular, how the balance of the protein to glycemic load of a meal can alter the generation of insulin and glucagon and the how the balance of omega-6 and omega-3 fatty acids can effect eicosanoid formation. Clinical results on the reduction of inflammation following anti-inflammatory diets are discussed as well as the molecular targets of anti-inflammatory nutrition. To overcome silent inflammation requires an anti-inflammatory diet (with omega-3s and polyphenols, in particular those of Maqui). The most important aspect of such an anti-inflammatory diet is the stabilization of insulin and reduced intake of omega-6 fatty acids. The ultimate treatment lies in reestablishing hormonal and genetic balance to generate satiety instead of constant hunger. Anti-inflammatory nutrition, balanced 40:30:30 with caloric restriction, should be considered as a form of gene silencing technology, in particular the silencing of the genes involved in the generation of silent inflammation. To this anti-inflammatory diet foundation supplemental omega-3 fatty acids at the level of 2-3 g of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) per day should be added. Finally, a diet rich in colorful, nonstarchy vegetables would contribute adequate amounts of polyphenols to help not only to inhibit nuclear factor (NF)-κB (primary molecular target of inflammation) but also activate AMP kinase. Understanding the impact of an anti-inflammatory diet on silent inflammation can elevate the diet from simply a source of calories to being on the cutting edge of gene-silencing technology.
Collapse
Affiliation(s)
- Barry Sears
- a Inflammation Research Foundation , Marblehead , Massachusetts
| |
Collapse
|
122
|
Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans. Sci Rep 2016; 6:27882. [PMID: 27292372 PMCID: PMC4904407 DOI: 10.1038/srep27882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022] Open
Abstract
It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.
Collapse
|
123
|
Moderate Increase of Indoxyl Sulfate Promotes Monocyte Transition into Profibrotic Macrophages. PLoS One 2016; 11:e0149276. [PMID: 26925780 PMCID: PMC4771744 DOI: 10.1371/journal.pone.0149276] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The uremic toxin Indoxyl-3-sulphate (IS), a ligand of Aryl hydrocarbon Receptor (AhR), raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs) have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD) than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation. METHODS Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed. RESULTS IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2) and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1), via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression. CONCLUSION IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.
Collapse
|
124
|
Perkins JT, Petriello MC, Newsome BJ, Hennig B. Polychlorinated biphenyls and links to cardiovascular disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2160-72. [PMID: 25877901 PMCID: PMC4609220 DOI: 10.1007/s11356-015-4479-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/31/2015] [Indexed: 05/19/2023]
Abstract
The pathology of cardiovascular disease is multi-faceted, with links to many modifiable and non-modifiable risk factors. Epidemiological evidence now implicates exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), with an increased risk of developing diabetes, hypertension, and obesity; all of which are clinically relevant to the onset and progression of cardiovascular disease. PCBs exert their cardiovascular toxicity either directly or indirectly via multiple mechanisms, which are highly dependent on the type and concentration of PCBs present. However, many PCBs may modulate cellular signaling pathways leading to common detrimental outcomes including induction of chronic oxidative stress, inflammation, and endocrine disruption. With the abundance of potential toxic pollutants increasing globally, it is critical to identify sensible means of decreasing associated disease risks. Emerging evidence now implicates a protective role of lifestyle modifications such as increased exercise and/or nutritional modulation via anti-inflammatory foods, which may help to decrease the vascular toxicity of PCBs. This review will outline the current state of knowledge linking coplanar and non-coplanar PCBs to cardiovascular disease and describe the possible molecular mechanism of this association.
Collapse
Affiliation(s)
- Jordan T Perkins
- Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Animal and Food Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40536, USA
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Bradley J Newsome
- Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Animal and Food Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40536, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Animal and Food Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40536, USA.
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
125
|
Murphy MO, Petriello MC, Han SG, Sunkara M, Morris AJ, Esser K, Hennig B. Exercise protects against PCB-induced inflammation and associated cardiovascular risk factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2201-11. [PMID: 25586614 PMCID: PMC4503535 DOI: 10.1007/s11356-014-4062-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/30/2014] [Indexed: 04/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to the initiation of cardiovascular disease. Exercise has been shown to reduce the risk of cardiovascular disease; however, whether exercise can modulate PCB-induced vascular endothelial dysfunction and associated cardiovascular risk factors is unknown. We examined the effects of exercise on coplanar PCB-induced cardiovascular risk factors including oxidative stress, inflammation, impaired glucose tolerance, hypercholesteremia, and endothelium-dependent relaxation. Male ApoE(-/-) mice were divided into sedentary and exercise groups (voluntary wheel running) over a 12-week period. Half of each group was exposed to vehicle or PCB 77 at weeks 1, 2, 9, and 10. For ex vivo studies, male C57BL/6 mice exercised via voluntary wheel training for 5 weeks and then were administered with vehicle or PCB 77 24 h before vascular reactivity studies were performed. Exposure to coplanar PCB increased risk factors associated with cardiovascular disease, including oxidative stress and systemic inflammation, glucose intolerance, and hypercholesteremia. The 12-week exercise intervention significantly reduced these proatherogenic parameters. Exercise also upregulated antioxidant enzymes including phase II detoxification enzymes. Sedentary animals exposed to PCB 77 exhibited endothelial dysfunction as demonstrated by significant impairment of endothelium-dependent relaxation, which was prevented by exercise. Lifestyle modifications such as aerobic exercise could be utilized as a therapeutic approach for the prevention of adverse cardiovascular health effects induced by environmental pollutants such as PCBs.
Collapse
Affiliation(s)
- Margaret O Murphy
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
| | - Michael C Petriello
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Sung Gu Han
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Manjula Sunkara
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Andrew J Morris
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Karyn Esser
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Bernhard Hennig
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
126
|
Chang JW, Chen HL, Su HJ, Lee CC. Abdominal Obesity and Insulin Resistance in People Exposed to Moderate-to-High Levels of Dioxin. PLoS One 2016; 11:e0145818. [PMID: 26752053 PMCID: PMC4713838 DOI: 10.1371/journal.pone.0145818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/09/2015] [Indexed: 12/02/2022] Open
Abstract
Obesity, a risk factor for developing metabolic complications, is a major public health problem. Abdominal obesity is strongly accompanied by a cluster of metabolic abnormalities characterized by insulin resistance. The link between persistent organic pollutants (POPs) and insulin resistance has been investigated in animal and epidemiological studies. We aimed to examine whether insulin resistance is greater in people with abdominal obesity (AO) and concomitant exposure to serum dioxins (PCDD/Fs). We conducted a cross-sectional descriptive study of 2876 participants living near a PCDD/Fs contaminated area. Seventeen 2,3,7,8-substituted PCDD/Fs congeners were measured, and then the associations between the main predictor variable, serum TEQDF-1998, abdominal obesity (AO), dependent variables, and insulin resistance were examined. Twelve of the 17 congeners, widely distributed among PCDDs, and PCDFs, had trends for associations with abdominal adiposity. In men, the highest quintiles of 1,2,3,7,8-PeCDF; 1,2,3,7,8-PeCDD; 2,3,7,8-TCDD; 2,3,7,8-TCDF; and 2,3,4,7,8-PeCDF had the top five adjusted odds ratios (AORs) + 95% confidence intervals (CIs):[4.2; 2.7–6.4], [3.6; 2.3–5.7], [3.2; 2.1–5.0], [3.0; 2.0–4.5], and [2.9; 1.9–4.7], respectively. In women, the highest quintiles of 1,2,3,4,7,8,9-HpCDF; 1,2,3,6,7,8-HxCDF; and 1,2,3,4,6,7,8-HpCDF had the top three AORs + 95% CIs:[3.0; 1.9–4.7], [2.0; 1.3–3.1], and [1.9; 1.3–2.9], respectively. After confounding factors had been adjusted for, men, but not women, with higher serum TEQDF-1998 levels or abdominal obesity had a significantly (Ptrend < 0.001) greater risk for abnormal insulin resistance. The groups with the highest joint serum TEQDF-1998 and abdominal obesity levels were associated with elevated insulin resistance at 5.0 times the odds of the groups with the lowest joint levels (AOR 5.23; 95% CI: 3.53–7.77). We hypothesize that serum TEQDF-1998 and abdominal obesity affect the association with insulin resistance in general populations.
Collapse
Affiliation(s)
- Jung-Wei Chang
- Research Center for Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Ling Chen
- Department of Industrial Safety and Health, Hung Kuang University, Taichung, Taiwan
| | - Huey-Jen Su
- Research Center for Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chang Lee
- Research Center for Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
127
|
Bateman ME, Strong AL, McLachlan JA, Burow ME, Bunnell BA. The Effects of Endocrine Disruptors on Adipogenesis and Osteogenesis in Mesenchymal Stem Cells: A Review. Front Endocrinol (Lausanne) 2016; 7:171. [PMID: 28119665 PMCID: PMC5220052 DOI: 10.3389/fendo.2016.00171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are prevalent in the environment, and epidemiologic studies have suggested that human exposure is linked to chronic diseases, such as obesity and diabetes. In vitro experiments have further demonstrated that EDCs promote changes in mesenchymal stem cells (MSCs), leading to increases in adipogenic differentiation, decreases in osteogenic differentiation, activation of pro-inflammatory cytokines, increases in oxidative stress, and epigenetic changes. Studies have also shown alteration in trophic factor production, differentiation ability, and immunomodulatory capacity of MSCs, which have significant implications to the current studies exploring MSCs for tissue engineering and regenerative medicine applications and the treatment of inflammatory conditions. Thus, the consideration of the effects of EDCs on MSCs is vital when determining potential therapeutic uses of MSCs, as increased exposure to EDCs may cause MSCs to be less effective therapeutically. This review focuses on the adipogenic and osteogenic differentiation effects of EDCs as these are most relevant to the therapeutic uses of MSCs in tissue engineering, regenerative medicine, and inflammatory conditions. This review will highlight the effects of EDCs, including organophosphates, plasticizers, industrial surfactants, coolants, and lubricants, on MSC biology.
Collapse
Affiliation(s)
- Marjorie E. Bateman
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Amy L. Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - John A. McLachlan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- *Correspondence: Bruce A. Bunnell,
| |
Collapse
|
128
|
Mostafalou S. Persistent Organic Pollutants and Concern Over the Link with Insulin Resistance Related Metabolic Diseases. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 238:69-89. [PMID: 26670033 DOI: 10.1007/398_2015_5001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Persistent organic pollutants (POPs) are mostly halogenated compounds tending to persist in the environment, enter into the food chain, and accumulate in fat mass of mammals due to their high lipophilicity. They include some organochlorine pesticides, polychlorinated biphenyls, brominated flame retardants and polycyclic aromatic hydrocarbons. Some of these chemicals were widely used in the past so that their residues can be detected in the human body, though their usage has been banned for years. POPs have been shown to perturb the health of biological systems in different ways evidenced by carcinogenicity and disrupting effects on endocrine, immune, and reproductive systems. There are many epidemiologic and experimental studies on the association of exposure to POPs with insulin resistance and related metabolic disorders like obesity, diabetes, and metabolic syndrome. Inflammation as a known mechanism accompanying insulin resistance has also been shown to arise in insulin target tissues exposed to POPs. This review addresses the breast milk concentration of POPs in different regions of the world, synthesizes the current information on the association of POPs with insulin resistance related metabolic disorders, and discusses the inflammation as an involved mechanism. Considering high prevalence of insulin resistance related metabolic diseases and their relation with POPs, much need is felt regarding international and regional programs to not only limit their production and usage but eliminate these persistent pollutants from the environment.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, 5618953141, Ardabil, Iran.
| |
Collapse
|
129
|
Boucher MP, Lefebvre C, Chapados NA. The effects of PCB126 on intra-hepatic mechanisms associated with non alcoholic fatty liver disease. J Diabetes Metab Disord 2015; 14:88. [PMID: 26693162 PMCID: PMC4676123 DOI: 10.1186/s40200-015-0218-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/26/2015] [Indexed: 01/19/2023]
Abstract
Background Non alcoholic fatty liver disease (NAFLD) results from alteration in lipid synthesis and elimination mechanisms such as very-low density lipoprotein (VLDL) production and de novo lipogenesis. Persistent organic pollutants (POPs) are chemicals that were mostly used historically as pesticides, solvents, flame retardant, and other applications. Among POPs, polychlorinated biphenyls (PCB) have been recognized to be of environmental and potential toxicologic concerns. Specifically, PCB126 could act as endocrine disruptors and has recently been associated with hepatic fat accumulation. The purpose of the study was to investigate the effects of PCB126 on the molecular development of NAFLD using hepatocyte and rat models. Methods Hepatocytes were exposed to PCB 126 for 72 h and lipid accumulation in cells was quantified by Oil-Red-O. Rats were injected with a single dose of PCB126 or vehicle. Seven days later, liver triglycerides (TAG) content was measured along with protein quantification of hepatic microsomal triglyceride transfer protein (MTP), sterol regulatory element-binding protein 1c (SREBP1c) and diacylglycerol O-acyltransferase 2 (DGAT-2). Results Exposure to PCB126 resulted in significant increases of lipid accumulation in hepatocytes (38 %, P <0.05) and hepatic TAG concentrations (64 %, P <0.001) in rats compared to respective control groups. Rats with fatty livers depicted lower MTP (40 %, P <0.02), higher SREBP1c (27 %, P < 0.05) and DGAT-2 (120 %, P < 0.02) protein content levels compared to Placebo group in rats. Conclusions It seems that exposure to PCB126 has an important emerging role in the pathophysiology of NAFLD by 1) altering elimination mechanisms such as VLDL synthesis and secretion, through MTP; and 2) increasing hepatic TAG synthesis mechanisms through DGAT 2 and SREBP1c.
Collapse
Affiliation(s)
| | | | - Natalie Ann Chapados
- Institut de recherche de l`Hôpital Montfort, Hôpital Montfort, 713 Montreal Road, Ottawa, ON K1K 0T2 Canada ; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
130
|
Liu Y, Peterson KE. Maternal Exposure to Synthetic Chemicals and Obesity in the Offspring: Recent Findings. Curr Environ Health Rep 2015; 2:339-47. [PMID: 26403844 PMCID: PMC5482496 DOI: 10.1007/s40572-015-0068-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental studies suggest perinatal exposures to synthetic chemicals may be associated with early onset obesity, although this hypothesis has not been extensively examined in humans. This article summarizes the evidence relating maternal perinatal exposure to common persistent organic compounds (polychlorinated biphenyl, dichlorodiphenyldichloroethylene, dichlorodiphenyltrichloroethane, hexachlorobenzene, hexachlorocyclohexane), perfluoroalkyls, perfluorooctane sulfonate, polybrominated diphenyl ethers and tributyltin, and nonpersistent compounds (phthalates, bisphenol A) on child obesity during sensitive developmental periods. Twenty-two epidemiologic studies published from 2011 to 2015 offer inconsistent support for the obesogenic effects of most substances and are limited by relatively small sample sizes and indirect measures of adiposity. The clearest findings suggest an influence of maternal dichlorodiphenyldichloroethylene exposure on offspring overweight and obesity. Recommendations for future epidemiological research include longer follow-up of effects of pre- and postnatal exposures in large samples; utilization of direct measures of adiposity; and consideration of effect modification by sex, birth weight, dietary fat, and maternal weight status.
Collapse
Affiliation(s)
- Yun Liu
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, 1-1867, Ann Arbor, MI, 48109-2029, USA.
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, 1-1867, Ann Arbor, MI, 48109-2029, USA.
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA.
- Departments of Nutrition and of Health and Social Behavior, Harvard W.T. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
131
|
Shan Q, Huang F, Wang J, Du Y. Effects of co-exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin and polychlorinated biphenyls on nonalcoholic fatty liver disease in mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:1364-1374. [PMID: 24861470 DOI: 10.1002/tox.22006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are persistent organic pollutants which coexist in environment, and human are co-exposed to these chemicals. Our present study was aimed to investigate the possible enhanced nonalcoholic fatty liver disease (NAFLD) in ApoE(-/-) mice co-exposed to TCDD and PCBs and to reveal the potential mechanisms involved in. Male ApoE(-/-) mice were exposed to TCDD (15 μg/kg) and Aroclor1254 (55 mg/kg, a representative mixture of PCBs) alone or in combination by intraperitoneal injection four times over a 6-week period. Those mice co-exposed to PCBs and TCDD developed serious liver steatosis, necrosis, and inflammatory stimuli. Interestingly, all treatment induced hepatic cytochrome P450 1A1 (CYP1A1) expression, but the maximal level of CYP1A1 was not observed in the co-exposure group. Furthermore, microarray analysis by ingenuity pathway analysis software showed that the nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response pathway was significantly activated following co-exposure to TCDD and PCBs. Our data demonstrated that co-exposure to TCDD and PCBs markedly worsen NAFLD in ApoE(-/-) mice.
Collapse
Affiliation(s)
- Qiuli Shan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengchen Huang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
132
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
133
|
Myrmel LS, Fjære E, Midtbø LK, Bernhard A, Petersen RK, Sonne SB, Mortensen A, Hao Q, Brattelid T, Liaset B, Kristiansen K, Madsen L. Macronutrient composition determines accumulation of persistent organic pollutants from dietary exposure in adipose tissue of mice. J Nutr Biochem 2015; 27:307-16. [PMID: 26507541 DOI: 10.1016/j.jnutbio.2015.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/08/2015] [Accepted: 09/22/2015] [Indexed: 01/27/2023]
Abstract
Accumulation of persistent organic pollutants (POPs) has been linked to adipose tissue expansion. As different nutrients modulate adipose tissue development, we investigated the influence of dietary composition on POP accumulation, obesity development and related disorders. Lifespan was determined in mice fed fish-oil-based high fat diets during a long-term feeding trial and accumulation of POPs was measured after 3, 6 and 18months of feeding. Further, we performed dose-response experiments using four abundant POPs found in marine sources, PCB-153, PCB-138, PCB-118 and pp'-DDE as single congeners or as mixtures in combination with different diets: one low fat diet and two high fat diets with different protein:sucrose ratios. We measured accumulation of POPs in adipose tissue and liver and determined obesity development, glucose tolerance, insulin sensitivity and hepatic expression of genes involved in metabolism of xenobiotics. Compared with mice fed diets with a low protein:sucrose ratio, mice fed diets with a high protein:sucrose ratio had significantly lower total burden of POPs in adipose tissue, were protected from obesity development and exhibited enhanced hepatic expression of genes involved in metabolism and elimination of xenobiotics. Exposure to POPs, either as single compounds or mixtures, had no effect on obesity development, glucose tolerance or insulin sensitivity. In conclusion, this study demonstrates that the dietary composition of macronutrients profoundly modulates POP accumulation in adipose tissues adding an additional parameter to be included in future studies. Our results indicate that alterations in macronutrient composition might be an additional route for reducing total body burden of POPs.
Collapse
Affiliation(s)
- Lene Secher Myrmel
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Even Fjære
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Lisa Kolden Midtbø
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Annette Bernhard
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Rasmus Koefoed Petersen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Si Brask Sonne
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alicja Mortensen
- Division of Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, 2800 Copenhagen, Denmark
| | - Qin Hao
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Trond Brattelid
- National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Lise Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway.
| |
Collapse
|
134
|
Baker NA, Shoemaker R, English V, Larian N, Sunkara M, Morris AJ, Walker M, Yiannikouris F, Cassis LA. Effects of Adipocyte Aryl Hydrocarbon Receptor Deficiency on PCB-Induced Disruption of Glucose Homeostasis in Lean and Obese Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:944-50. [PMID: 25734695 PMCID: PMC4590748 DOI: 10.1289/ehp.1408594] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 03/02/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Coplanar polychlorinated biphenyls (PCBs) promote adipocyte inflammation and impair glucose homeostasis in lean mice. The diabetes-promoting effects of lipophilic PCBs have been observed only during weight loss in obese mice. The molecular mechanisms linking PCB exposures to impaired glucose metabolism are unclear. OBJECTIVES In this study we tested the hypothesis that coplanar PCBs act at adipocyte aryl hydrocarbon receptors (AhRs) to promote adipose inflammation and impair glucose homeostasis in lean mice and in obese mice during weight loss. METHODS AND RESULTS PCB-77 administration impaired glucose and insulin tolerance in LF (low fat diet)-fed control (AhR(fl/fl)) mice but not in adipocyte AhR-deficient mice (AhR(AdQ)). Unexpectedly, AhR(AdQ) mice exhibited increased fat mass when fed a standard LF or high fat (HF) diet. In mice fed a HF diet, both genotypes became obese, but AhR(AdQ) mice administered vehicle (VEH) exhibited increased body weight, adipose mass, adipose inflammation, and impaired glucose tolerance compared with AhR(fl/fl) controls. Impairment of glucose homeostasis in response to PCB-77 was not observed in obese mice of either genotype. However, upon weight loss, AhR(fl/fl) mice administered PCB-77 exhibited increased abundance of adipose tumor necrosis factor-α (TNF-α) mRNA and impaired glucose homeostasis compared with those administered VEH. In contrast, PCB-77 had no effect on TNF-α or glucose homeostasis in AhR(AdQ) mice exhibiting weight loss. CONCLUSIONS Our results demonstrate that adipocyte AhR mediates PCB-induced adipose inflammation and impairment of glucose homeostasis in mice. Moreover, deficiency of AhR in adipocytes augmented the development of obesity, indicating that endogenous ligand(s) for AhR regulate adipose homeostasis.
Collapse
Affiliation(s)
- Nicki A Baker
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Xue Y, Shui X, Su W, He Y, Lu X, Zhang Y, Yan G, Huang S, Lei W, Chen C. Baicalin inhibits inflammation and attenuates myocardial ischaemic injury by aryl hydrocarbon receptor. ACTA ACUST UNITED AC 2015; 67:1756-64. [PMID: 26407904 DOI: 10.1111/jphp.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Recent evidence indicates that suppressing inflammation by specific drug target and treatment measures contributes to attenuate ischaemic injury and the related heart diseases. This study aimed to investigate the potential effect of baicalin on myocardial ischaemic injury through inhibition of inflammation by inactivating the aryl hydrocarbon receptor (AhR). METHODS The mouse model with myocardial ischaemic injury was prepared by the left anterior descending coronary artery-amputation and then treated using baicalin. After observing the expression of AhR by immunohistochemical staining, the AhR and inflammatory mediators in circulation and myocardial tissues, including high-sensitive C-reactive protein (hsCRP), interleukin (IL)-1β and IL-6, were detected based on enzyme-linked immunosorbent assay, real-time polymerase chain reaction and Western blot methods. KEY FINDINGS The results showed that (1) substantial expression of AhR was observed in myocardial tissues; (2) ischaemic injury caused myocardial necrosis and remodelling, and stimulated hsCRP, IL-1β and IL-6 by activation of AhR; and (3) baicalin alleviated the myocardial injury and inflammatory response by inhibiting the expression of AhR. CONCLUSION Our findings extend the list of AhR ligands beyond exogenous toxins and endogenous molecules to cardiac immunological factors, and moreover it could be considered potential drug targets due to its pathological modulatory properties, while baicalin demonstrated promise as a novel vehicle for ischaemic heart disease.
Collapse
Affiliation(s)
- Yiqiang Xue
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Guangdong Medical College, Zhanjiang, China
| | - Weiqing Su
- Department of Cardiovascular Medicine, The People's Hospital of Lianjiang, Zhanjiang, China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang, China
| | - Xinlin Lu
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Yu Zhang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Guosen Yan
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China.,Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang, China
| | - Shian Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China.,Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang, China
| | - Can Chen
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China.,Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang, China
| |
Collapse
|
136
|
Regnier SM, El-Hashani E, Kamau W, Zhang X, Massad NL, Sargis RM. Tributyltin differentially promotes development of a phenotypically distinct adipocyte. Obesity (Silver Spring) 2015; 23:1864-71. [PMID: 26243053 PMCID: PMC4551608 DOI: 10.1002/oby.21174] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/07/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being proadipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. METHODS The costimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. RESULTS TBT enhanced expression of the adipocyte marker C/EBPα with coexposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of cotreatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. CONCLUSIONS TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis.
Collapse
Affiliation(s)
- Shane M. Regnier
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL
- Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Essam El-Hashani
- Kovler Diabetes Center, University of Chicago, Chicago, IL
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL
| | - Wakanene Kamau
- Kovler Diabetes Center, University of Chicago, Chicago, IL
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL
| | - Xiaojie Zhang
- Kovler Diabetes Center, University of Chicago, Chicago, IL
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL
| | - Nicole L. Massad
- Kovler Diabetes Center, University of Chicago, Chicago, IL
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL
| | - Robert M. Sargis
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL
- Pritzker School of Medicine, University of Chicago, Chicago, IL
- Kovler Diabetes Center, University of Chicago, Chicago, IL
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL
- Corresponding Author: Robert M. Sargis, MD, PhD, University of Chicago, Section of Endocrinology, Diabetes and Metabolism, 900 E. 57 ST, KCBD 8120, Chicago, IL 60637, Phone: 773-834-1915, Fax: 773-834-0851,
| |
Collapse
|
137
|
Zhang S, Wu T, Chen M, Guo Z, Yang Z, Zuo Z, Wang C. Chronic Exposure to Aroclor 1254 Disrupts Glucose Homeostasis in Male Mice via Inhibition of the Insulin Receptor Signal Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10084-92. [PMID: 26190026 DOI: 10.1021/acs.est.5b01597] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epidemiological studies demonstrate that polychlorinated biphenyls (PCBs) induce diabetes and insulin resistance. However, the development of diabetes caused by PCBs and its underlying mechanisms are still unclear. In the present study, male C57BL/6 mice were orally administered with Aroclor 1254 (0.5, 5, 50, and 500 μg/kg) once every 3 days for 60 days. The body weight and the fasting blood glucose levels were significantly elevated; the levels of serum insulin, resistin, tumor necrosis factor α (TNFα), and interleukin-6 (IL-6) increased, while glucagon levels decreased in the animals treated with Aroclor 1254. Pancreatic β-cell mass significantly increased, while α-cell mass was reduced. Aroclor 1254 inhibited the expression of the insulin receptor signaling cascade, including insulin receptor, insulin receptor substrate, phosphatidylinositol 3-kinase-Akt, and protein kinase B and glucose transporter 4, both in the skeletal muscle and the liver. The results suggested that chronic exposure to Aroclor 1254 disrupted glucose homeostasis and induced hyperinsulinemia. The significant elevation of serum resistin, TNFα and IL-6 indicated that obesity caused by Aroclor 1254 is associated with insulin resistance. The elevation of blood glucose levels could have been mainly as a result of insulin receptor signals pathway suppression in skeletal muscle and liver, and a decrease in pancreatic α-cells, accompanied by a reduction of serum glucagon levels, may play an important role in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Shiqi Zhang
- †State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361006, P.R. China
| | - Tian Wu
- †State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361006, P.R. China
| | - Meng Chen
- §Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen 361006, P.R. China
| | - Zhizhun Guo
- †State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361006, P.R. China
| | - Zhibin Yang
- †State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361006, P.R. China
| | - Zhenghong Zuo
- †State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361006, P.R. China
- §Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen 361006, P.R. China
| | - Chonggang Wang
- †State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361006, P.R. China
- ‡State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361006, P.R. China
| |
Collapse
|
138
|
Zhang L, Hatzakis E, Nichols RG, Hao R, Correll J, Smith PB, Chiaro CR, Perdew GH, Patterson AD. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8067-77. [PMID: 26023891 PMCID: PMC4890155 DOI: 10.1021/acs.est.5b01389] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.
Collapse
Affiliation(s)
- Limin Zhang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Emmanuel Hatzakis
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Robert G. Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ruixin Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jared Correll
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Philip B. Smith
- Metabolomics Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christopher R. Chiaro
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Gary H. Perdew
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Andrew D. Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
139
|
Zhang L, Nichols RG, Correll J, Murray IA, Tanaka N, Smith PB, Hubbard TD, Sebastian A, Albert I, Hatzakis E, Gonzalez FJ, Perdew GH, Patterson AD. Persistent Organic Pollutants Modify Gut Microbiota-Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:679-88. [PMID: 25768209 PMCID: PMC4492271 DOI: 10.1289/ehp.1409055] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/09/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Alteration of the gut microbiota through diet and environmental contaminants may disturb physiological homeostasis, leading to various diseases including obesity and type 2 diabetes. Because most exposure to environmentally persistent organic pollutants (POPs) occurs through the diet, the host gastrointestinal tract and commensal gut microbiota are likely to be exposed to POPs. OBJECTIVES We examined the effect of 2,3,7,8-tetrachlorodibenzofuran (TCDF), a persistent environmental contaminant, on gut microbiota and host metabolism, and we examined correlations between gut microbiota composition and signaling pathways. METHODS Six-week-old male wild-type and Ahr-/- mice on the C57BL/6J background were treated with 24 μg/kg TCDF in the diet for 5 days. We used 16S rRNA gene sequencing, 1H nuclear magnetic resonance (NMR) metabolomics, targeted ultra-performance liquid chromatography coupled with triplequadrupole mass spectrometry, and biochemical assays to determine the microbiota compositions and the physiological and metabolic effects of TCDF. RESULTS Dietary TCDF altered the gut microbiota by shifting the ratio of Firmicutes to Bacteroidetes. TCDF-treated mouse cecal contents were enriched with Butyrivibrio spp. but depleted in Oscillobacter spp. compared with vehicle-treated mice. These changes in the gut microbiota were associated with altered bile acid metabolism. Further, dietary TCDF inhibited the farnesoid X receptor (FXR) signaling pathway, triggered significant inflammation and host metabolic disorders as a result of activation of bacterial fermentation, and altered hepatic lipogenesis, gluconeogenesis, and glycogenolysis in an AHR-dependent manner. CONCLUSION These findings provide new insights into the biochemical consequences of TCDF exposure involving the alteration of the gut microbiota, modulation of nuclear receptor signaling, and disruption of host metabolism.
Collapse
Affiliation(s)
- Limin Zhang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Mesnier A, Champion S, Louis L, Sauzet C, May P, Portugal H, Benbrahim K, Abraldes J, Alessi MC, Amiot-Carlin MJ, Peiretti F, Piccerelle P, Nalbone G, Villard PH. The Transcriptional Effects of PCB118 and PCB153 on the Liver, Adipose Tissue, Muscle and Colon of Mice: Highlighting of Glut4 and Lipin1 as Main Target Genes for PCB Induced Metabolic Disorders. PLoS One 2015; 10:e0128847. [PMID: 26086818 PMCID: PMC4473719 DOI: 10.1371/journal.pone.0128847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/30/2015] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies have associated environmental exposure to polychlorinated biphenyls (PCBs) with an increased risk of type 2 diabetes; however, little is known about the underlying mechanisms involved in the metabolic side-effects of PCB. Our study evaluated the transcriptional effects of a subchronic exposure (gavage at Day 0 and Day 15 with 10 or 100 μmol/Kg bw) to PCB118 (dioxin-like PCB), PCB153 (non-dioxin-like PCB), or an equimolar mixture of PCB118 and PCB153 on various tissues (liver, visceral adipose tissue, muscle, and colon) in mice. Our results showed that a short-term exposure to PCB118 and/or PCB153 enhanced circulating triglyceride levels but did not affect glycemia. Among the studied tissues, we did not observe any modification of the expression of inflammation-related genes, such as cytokines or chemokines. The main transcriptional effects were observed in visceral adipose and liver tissues. We found a downregulation of lipin1 and glut4 expression in these two target organs. In adipose tissue, we also showed a downregulation of Agpat2, Slc25a1, and Fasn. All of these genes are involved in lipid metabolism and insulin resistance. In muscles, we observed an induction of CnR1 and Foxo3 expression, which may be partly involved in PCB metabolic effects. In summary, our results suggest that lipin1 and glut4, notably in adipose tissue, are the main targeted genes in PCB-induced metabolic disorders, however, further studies are required to fully elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Aurélia Mesnier
- IMBE (Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale), UMR CNRS 7263, IRD 237 Aix-Marseille Université Avignon Université, Campus Timone, Faculté de Pharmacie, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Serge Champion
- IMBE (Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale), UMR CNRS 7263, IRD 237 Aix-Marseille Université Avignon Université, Campus Timone, Faculté de Pharmacie, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Laurence Louis
- UMR S 910 Génétique Médicale et Génomique Fonctionnelle, Campus Timone, Faculté de Médecine, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Christophe Sauzet
- IMBE (Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale), UMR CNRS 7263, IRD 237 Aix-Marseille Université Avignon Université, Campus Timone, Faculté de Pharmacie, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Phealay May
- IMBE (Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale), UMR CNRS 7263, IRD 237 Aix-Marseille Université Avignon Université, Campus Timone, Faculté de Pharmacie, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Henri Portugal
- UMR INSERM 1062, INRA 1260, Nutrition, Obésité et Risque Thrombotique (NORT), Aix-Marseille Université Campus Timone, Faculté de Médecine, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Karim Benbrahim
- IMBE (Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale), UMR CNRS 7263, IRD 237 Aix-Marseille Université Avignon Université, Campus Timone, Faculté de Pharmacie, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Joelle Abraldes
- IMBE (Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale), UMR CNRS 7263, IRD 237 Aix-Marseille Université Avignon Université, Campus Timone, Faculté de Pharmacie, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Marie-Christine Alessi
- UMR INSERM 1062, INRA 1260, Nutrition, Obésité et Risque Thrombotique (NORT), Aix-Marseille Université Campus Timone, Faculté de Médecine, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Marie-Josephe Amiot-Carlin
- UMR INSERM 1062, INRA 1260, Nutrition, Obésité et Risque Thrombotique (NORT), Aix-Marseille Université Campus Timone, Faculté de Médecine, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Franck Peiretti
- UMR INSERM 1062, INRA 1260, Nutrition, Obésité et Risque Thrombotique (NORT), Aix-Marseille Université Campus Timone, Faculté de Médecine, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Philippe Piccerelle
- IMBE (Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale), UMR CNRS 7263, IRD 237 Aix-Marseille Université Avignon Université, Campus Timone, Faculté de Pharmacie, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Gilles Nalbone
- UMR INSERM 1062, INRA 1260, Nutrition, Obésité et Risque Thrombotique (NORT), Aix-Marseille Université Campus Timone, Faculté de Médecine, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| | - Pierre-Henri Villard
- IMBE (Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale), UMR CNRS 7263, IRD 237 Aix-Marseille Université Avignon Université, Campus Timone, Faculté de Pharmacie, 27 Boulevard Jean Moulin, F-13385, Marseille cedex 05, France
| |
Collapse
|
141
|
α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation. Nutrients 2015; 7:3166-83. [PMID: 25942489 PMCID: PMC4446745 DOI: 10.3390/nu7053166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (BNF), inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF), an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs). Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF) (1-5 μM) for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM) from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG) accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL), estrogen receptor (ER), as well as decreased expression of AhR, AhR nuclear translocator (ARNT), cytochrome P4501B1 (CYP1B1), and nuclear factor erythroid-2-related factor (NRF-2) proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF) secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and enhanced mature adipocyte-stimulated tube formation in ECs, suggesting that the AhR may suppress obesity-induced adverse effects, and α-NF abolished the protective effects of the AhR.
Collapse
|
142
|
Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int J Obes (Lond) 2015; 39:1300-1309. [PMID: 25907315 PMCID: PMC4526411 DOI: 10.1038/ijo.2015.63] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/29/2014] [Accepted: 02/08/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Epidemics of obesity and diabetes are escalating. High-calorie/high-fat food is a major cause for these global health issues, but molecular mechanisms underlying high-fat, diet-induced obesity are still not well understood. The aryl hydrocarbon receptor (AhR), a transcription factor that acts as a xenobiotic sensor, mediates environmental toxicant-induced obesity, insulin resistance and development of diabetes. AhR also influences lipid metabolism and diet-induced obesity. The effects of AhR deficiency on diet-induced obesity, hepatic steatosis and insulin resistance were examined. METHODS Male wild-type (WT), AhR null (AhR(-/-)) and AhR heterozygote (AhR(+/-)) mice were fed a normal chow diet (NCD, 10% kcal from fat) or a high-fat diet (HFD, 60% kcal from fat) for up to 14 weeks. Adiposity, adipose and liver morphology, insulin signaling, metabolic parameters and gene profiles were assessed. RESULTS AhR deficiency protected against HFD-induced obesity, hepatic steatosis, insulin resistance and inflammation. Moreover, AhR deficiency preserved insulin signaling in major metabolic tissues. These protective effects result from a higher energy expenditure in AhR-deficient mice compared with WT. Levels of transcript for both the thermogenic gene, uncoupling protein 1 (Ucp1), in brown adipose tissue and mitochondrial β-oxidation genes in muscle were significantly higher in AhR(-/-) and AhR(+/-) mice compared with WT. CONCLUSIONS This work documents a physiologically relevant function for AhR in regulation of body weight, hepatic fat deposition, insulin sensitivity and energy expenditure under HFD exposure, suggesting that AhR signaling may be developed as a potential therapeutic target for treatment of obesity and metabolic disorders.
Collapse
|
143
|
Yang O, Kim HL, Weon JI, Seo YR. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis. J Cancer Prev 2015; 20:12-24. [PMID: 25853100 PMCID: PMC4384711 DOI: 10.15430/jcp.2015.20.1.12] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/14/2015] [Indexed: 01/12/2023] Open
Abstract
Endocrine disruptors are known to cause harmful effects to human through various exposure routes. These chemicals mainly appear to interfere with the endocrine or hormone systems. As importantly, numerous studies have demonstrated that the accumulation of endocrine disruptors can induce fatal disorders including obesity and cancer. Using diverse biological tools, the potential molecular mechanisms related with these diseases by exposure of endocrine disruptors. Recently, pathway analysis, a bioinformatics tool, is being widely used to predict the potential mechanism or biological network of certain chemicals. In this review, we initially summarize the major molecular mechanisms involved in the induction of the above mentioned diseases by endocrine disruptors. Additionally, we provide the potential markers and signaling mechanisms discovered via pathway analysis under exposure to representative endocrine disruptors, bisphenol, diethylhexylphthalate, and nonylphenol. The review emphasizes the importance of pathway analysis using bioinformatics to finding the specific mechanisms of toxic chemicals, including endocrine disruptors.
Collapse
Affiliation(s)
- Oneyeol Yang
- Department of Life Science, College of Life Sciences and Biotechnology, Dongguk University Biomedi Campus, Goyang ; Institute of Environmental Medicine, Dongguk University Biomedi Campus, Seoul
| | - Hye Lim Kim
- Department of Life Science, College of Life Sciences and Biotechnology, Dongguk University Biomedi Campus, Goyang ; Institute of Environmental Medicine, Dongguk University Biomedi Campus, Seoul
| | - Jong-Il Weon
- Institute of Environmental Medicine, Dongguk University Biomedi Campus, Seoul ; Department of Safety Engineering, Dongguk University College of Natural Science, Gyeongju, Korea
| | - Young Rok Seo
- Department of Life Science, College of Life Sciences and Biotechnology, Dongguk University Biomedi Campus, Goyang ; Institute of Environmental Medicine, Dongguk University Biomedi Campus, Seoul
| |
Collapse
|
144
|
Reaves DK, Ginsburg E, Bang JJ, Fleming JM. Persistent organic pollutants and obesity: are they potential mechanisms for breast cancer promotion? Endocr Relat Cancer 2015; 22:R69-86. [PMID: 25624167 PMCID: PMC4352112 DOI: 10.1530/erc-14-0411] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary ingestion of persistent organic pollutants (POPs) is correlated with the development of obesity. Obesity alters metabolism, induces an inflammatory tissue microenvironment, and is also linked to diabetes and breast cancer risk/promotion of the disease. However, no direct evidence exists with regard to the correlation among all three of these factors (POPs, obesity, and breast cancer). Herein, we present results from current correlative studies indicating a causal link between POP exposure through diet and their bioaccumulation in adipose tissue that promotes the development of obesity and ultimately influences breast cancer development and/or progression. Furthermore, as endocrine disruptors, POPs could interfere with hormonally responsive tissue functions causing dysregulation of hormone signaling and cell function. This review highlights the critical need for advanced in vitro and in vivo model systems to elucidate the complex relationship among obesity, POPs, and breast cancer, and, more importantly, to delineate their multifaceted molecular, cellular, and biochemical mechanisms. Comprehensive in vitro and in vivo studies directly testing the observed correlations as well as detailing their molecular mechanisms are vital to cancer research and, ultimately, public health.
Collapse
Affiliation(s)
- Denise K Reaves
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Erika Ginsburg
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - John J Bang
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Jodie M Fleming
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| |
Collapse
|
145
|
Sui Y, Helsley RN, Park SH, Song X, Liu Z, Zhou C. Intestinal pregnane X receptor links xenobiotic exposure and hypercholesterolemia. Mol Endocrinol 2015; 29:765-76. [PMID: 25811240 DOI: 10.1210/me.2014-1355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent studies have associated endocrine-disrupting chemical (EDC) exposure with the increased risk of cardiovascular disease in humans, but the underlying mechanisms responsible for these associations remain elusive. Many EDCs have been implicated in activation of the nuclear receptor pregnane X receptor (PXR), which acts as a xenobiotic sensor to regulate xenobiotic metabolism in the liver and intestine. Here we report an important role of intestinal PXR in linking xenobiotic exposure and hyperlipidemia. We identified tributyl citrate (TBC), one of a large group of Food and Drug Administration-approved plasticizers for pharmaceutical or food applications, as a potent and selective PXR agonist. TBC efficiently activated PXR and induced PXR target gene expression in vitro and in vivo. Interestingly, TBC activated intestinal PXR but did not affect hepatic PXR activity. Exposure to TBC increased plasma total cholesterol and atherogenic low-density lipoprotein cholesterol levels in wild-type mice, but not in PXR-deficient mice. TBC-mediated PXR activation stimulated the expression of an essential cholesterol transporter, Niemann-Pick C1-like 1 (NPC1L1), in the intestine. Promoter analysis revealed a DR-4 type of PXR response element in the human NPC1L1 promoter, and TBC promoted PXR recruitment onto the NPC1L1 promoter. Consistently, TBC treatment significantly increased lipid uptake by human and murine intestinal cells and deficiency of PXR inhibited TBC-elicited lipid uptake. These findings provide critical mechanistic insight for understanding the impact of EDC-mediated PXR activation on lipid homeostasis and demonstrate a potential role of PXR in mediating the adverse effects of EDCs on cardiovascular disease risk in humans.
Collapse
Affiliation(s)
- Yipeng Sui
- Department of Pharmacology and Nutritional Sciences (Y.S., R.N.H., S.-H.P., X.S., Z.L., C.Z.) and Saha Cardiovascular Research Center (C.Z.), University of Kentucky, Lexington, Kentucky 40506
| | | | | | | | | | | |
Collapse
|
146
|
Foley B, Clewell R, Deisenroth C. Development of a Human Adipose-Derived Stem Cell Model for Characterization of Chemical Modulation of Adipogenesis. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2014.0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Briana Foley
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Rebecca Clewell
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Chad Deisenroth
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
147
|
Qian Y, Zhang S, Guo W, Ma J, Chen Y, Wang L, Zhao M, Liu S. Polychlorinated Biphenyls (PCBs) Inhibit Hepcidin Expression through an Estrogen-Like Effect Associated with Disordered Systemic Iron Homeostasis. Chem Res Toxicol 2015; 28:629-40. [DOI: 10.1021/tx500428r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yi Qian
- College
of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuping Zhang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute
for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenli Guo
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Ma
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yue Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meirong Zhao
- College
of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sijin Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
148
|
Lin Y, Min L, Huang Q, Chen Y, Fang C, Sun X, Dong S. The combined effects of DEHP and PCBs on phospholipase in the livers of mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:197-204. [PMID: 23804495 DOI: 10.1002/tox.21885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 06/02/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) are two widely distributed pollutants that are of great concern due to their adverse health effects. However, few studies have investigated the combined effects of DEHP and PCBs. In this study, adult mice were continuously exposed to mixtures of DEHP (15 mg/kg bodyweight/day) and Aroclor 1254 (7.5 mg/kg bodyweight/day) for 12 days to investigate the combined effects of these compounds. The results showed that the ratio of the liver weight to the body weight was higher in the treated group than that in the control group. The effects of combined exposure on three important receptors, the proliferator-activated receptor (PPAR), estrogen receptor (ER), and aryl hydrocarbon receptor (AHR), were investigated. The mRNA level of PPARγ was significantly up-regulated after exposure. The expression level of ERα was decreased in the male treated group. In contrast, the expression levels of AHR and related genes (cyp1a1 and cyp1b1) were not markedly affected. The expression level of phospholipase A (PLA) was significantly down-regulated at both the mRNA and protein levels in male mice after combined treatment. In all, our study demonstrated the combined effects of DEHP and PCBs on the expression levels of key receptors in mice. The combined exposure led to a decrease in phospholipase in male mice.
Collapse
Affiliation(s)
- Yi Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
149
|
Lim JE, Jee SH. Association between serum levels of adiponectin and polychlorinated biphenyls in Korean men and women. Endocrine 2015; 48:211-7. [PMID: 24664360 DOI: 10.1007/s12020-014-0231-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/26/2014] [Indexed: 12/25/2022]
Abstract
Persistent organic pollutants (POPs) are endocrine-disrupting chemicals associated with metabolic syndrome and type 2 diabetes. In humans, little is known about their potential role on obesity. Adiponectin augments the effects of insulin on glucose homeostasis. The expression of adiponectin is reduced in obesity, insulin resistance, and type 2 diabetes. The aim of this study is to reveal whether accumulation of the POPs, especially polychlorinated biphenyls (PCBs), is associated with serum levels of adiponectin in Koreans. This cross-sectional study includes 98 Koreans (49 men and 49 women). Serum levels of marker PCBs (PCB 28, 52, 101, 138, 153, and 180) were measured by Agilent 7890GC-micro-ECD (Gas chromatography-micro-electron capture detector). Total adiponectin levels were quantified by enzyme-linked immunosorbent assay. We defined high (≥Median) and low (<Median) body mass index (BMI) groups by using median value of BMI (24.6 kg/m2 for men; 23.0 kg/m2 for women). PCB28, PCB138, and PCB153 were significantly negatively associated with adiponectin levels (β-coefficients=-0.00741 for PCB28; -0.00438 for PCB138; -0.00406 for PCB153). When we divided subjects by sex, PCB28 and PCB153 were inversely associated with adiponectin in women. In the high BMI group (≥Median), PCB153 showed the significant negative associations with adiponectin levels (P<0.05). However, these associations were not seen in the low BMI group. In conclusion, we found negative associations between PCBs and adiponectin. This cross-sectional study could provide support for the hypothesis that POPs exposure might contribute to type 2 diabetes as well as obesity.
Collapse
Affiliation(s)
- Jung-eun Lim
- Institute for Health Promotion & Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | | |
Collapse
|
150
|
Huang S, Shui X, He Y, Xue Y, Li J, Li G, Lei W, Chen C. AhR expression and polymorphisms are associated with risk of coronary arterial disease in Chinese population. Sci Rep 2015; 5:8022. [PMID: 25620626 PMCID: PMC4306136 DOI: 10.1038/srep08022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/29/2014] [Indexed: 11/15/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) mediates the control of environmental toxicity, and modulates the development and pathogenesis of the cardiovascular system. However, little is known about the role of AhR in coronary arterial disease (CAD) susceptibility. We therefore conducted a case-control study in a Chinese population, and assessed the potential association between AhR variants and CAD susceptibility. Compared with the controls, circulating AhR expression was found to be significantly increased in patients with CAD and its subtypes including ST-segment and non-ST-segment elevation myocardial infarction, and stable and unstable angina pectoris. Receiver operating characteristic (ROC) analysis to evaluate the effect of AhR on CAD progression showed it to be a potent biomarker for CAD. Genotype frequencies of AhR rs2066853 differed significantly between CAD and control subjects, while smoking and hyperlipidemia markedly promoted CAD risk relative to the AhR polymorphism. Moreover, a significant difference in AhR variant distribution was observed between the four CAD subtypes with different severities. The expression level and functional polymorphisms of circulating AhR may affect the susceptibility and progression of CAD in Chinese populations. This provides a novel view of the etiology and epidemiology of CAD, and will contribute to the diagnosis and therapy of this severe disease.
Collapse
Affiliation(s)
- Shian Huang
- 1] Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang 524001, China [2] Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Guangdong Medical College, Zhanjiang 524001, China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang 524001, China
| | - Yiqiang Xue
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Jianwen Li
- Laboratory of Vascular Surgery, Guangdong Medical College, Zhanjiang 524001, China
| | - Guoming Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Wei Lei
- 1] Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang 524001, China [2] Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Can Chen
- 1] Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang 524001, China [2] Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| |
Collapse
|