101
|
Analysis of the microRNA Expression Profile of Bovine Monocyte-derived Macrophages Infected with Mycobacterium avium subsp. Paratuberculosis Reveals that miR-150 Suppresses Cell Apoptosis by Targeting PDCD4. Int J Mol Sci 2019; 20:ijms20112708. [PMID: 31159463 PMCID: PMC6600136 DOI: 10.3390/ijms20112708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
M. avium subsp. paratuberculosis (MAP) is the causative pathogen of Johne’s disease, a chronic granulomatous enteritis that principally affects ruminants and can survive, proliferate and disseminate in macrophages. MicroRNAs (miRNAs) are important regulators of gene expression and can impact the processes of cells. To investigate the role of miRNAs in monocyte-derived macrophages (MDMs) during MAP infection, we used high-throughput sequencing technology to analyze small RNA libraries of MAP-infected and control MDMs. The results showed that a total of 21 miRNAs were differentially expressed in MDMs after MAP infection, and 8864 target genes were predicted. A functional analysis showed that the target genes were mainly involved in the MAPK signaling pathway, Toll-like receptor signaling pathway, NF-kappa B signaling pathway and apoptosis. In addition, using a dual-luciferase reporter assay, flow cytometry, and a small interfering (si)RNA knockdown assay, the role of miR-150 in regulating macrophage apoptosis by targeting the programmed cell death protein-4 (PDCD4) was demonstrated. These results provide an experimental basis to reveal the regulatory mechanism of MAP infection and suggest the potential of miRNAs as biomarkers for the diagnosis of Johne’s disease in bovines.
Collapse
|
102
|
Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P. Antibiotic resistance in urban runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:64-76. [PMID: 30826682 DOI: 10.1016/j.scitotenv.2019.02.183] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 05/24/2023]
Abstract
Aquatic ecosystems subjected to anthropogenic pressures are places of rapid evolution of microbial communities and likely hotspots for selection and emergence of antibiotic resistant bacteria. In urban settings, water quality and the risk of infection are generally assessed in sewers and in effluents of wastewater treatment plants. Physical and chemical parameters as well as the presence of antibiotics, antibiotic-resistant bacteria and genes of resistance are driven by urban activities, with adverse effects on aquatic ecosystems. In this paper we review the environmental pressures exerted on bacterial communities in urban runoff waters and discuss the impact of these settings on antibiotic resistance. Considering the worrisome epidemiology of infectious diseases and estimated mortality due to antimicrobial resistance in the coming decades, there is an urgent need to identify all environmental reservoirs of resistant bacteria and resistance genes to complete our knowledge of the epidemiological cycle and of the dynamics of urban antibiotic resistance.
Collapse
Affiliation(s)
- Ayad Almakki
- HSM, Univ Montpellier, IRD, CNRS, Montpellier, France; Department of Clinical Laboratory Science, College of Pharmacy, University of Basrah, Iraq
| | - Estelle Jumas-Bilak
- HSM, Univ Montpellier, IRD, CNRS, Département d'Hygiène Hospitalière, CHU de Montpellier, Montpellier, France
| | - Hélène Marchandin
- HSM, Univ Montpellier, IRD, CNRS, Montpellier, France, Département de Microbiologie, CHU Nîmes, Nîmes, France
| | - Patricia Licznar-Fajardo
- HSM, Univ Montpellier, IRD, CNRS, Département d'Hygiène Hospitalière, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
103
|
Golpayegani A, Nodehi RN, Rezaei F, Alimohammadi M, Douraghi M. Real-time polymerase chain reaction assays for rapid detection and virulence evaluation of the environmental Pseudomonas aeruginosa isolates. Mol Biol Rep 2019; 46:4049-4061. [PMID: 31093874 DOI: 10.1007/s11033-019-04855-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
Abstract
Rapid and species-specific detection, and virulence evaluation of opportunistic pathogens such as Pseudomonas aeruginosa, are issues that increasingly has attracted the attention of public health authorities. A set of primers and hydrolysis probe was designed based on one of the P. aeruginosa housekeeping genes, gyrB, and its specificity and sensitivity was evaluated by TaqMan qPCR methods. The end point PCR and SYBR Green qPCR were used as control methods. Furthermore, multiplex RT-qPCRs were developed for gyrB as reference and four virulence genes, including lasB, lasR, rhlR and toxA. Totally, 40 environmental samples, two clinical isolates from CF patients, two standard strains of P. aeruginosa, and 15 non-target reference strains were used to test the sensitivity and specificity of qPCR assays. In silico and in vitro cross-species testing confirmed the high specificity and low cross-species amplification of the designed gyrB418F/gyrB490R/gyrB444P. The sensitivity of both TaqMan and SYBR Green qPCRs was 100% for all target P. aeruginosa, and the detected count of bacteria was below ten genomic equivalents. The lowest M value obtained from gene-stability measurement was 0.19 that confirmed the suitability of gyrB as the reference gene for RT-qPCR. The developed qPCRs have enough detection power for identification of P. aeruginosa in environmental samples including clean and recreational water, treated and untreated sewage and soil. The short amplicon length of our designed primers and probes, alongside with a low M value, make it as a proper methodology for RT-qPCR in virulence genes expression assessment.
Collapse
Affiliation(s)
- Abdolali Golpayegani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Vice-Chancellor for Health, Bam University of Medical Sciences, Bam, Iran.,Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health and Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health and Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran. .,Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box 14155-6446, Tehran, Iran.
| |
Collapse
|
104
|
A novel method: using an adenosine triphosphate (ATP) luminescence-based assay to rapidly assess the biological stability of drinking water. Appl Microbiol Biotechnol 2019; 103:4269-4277. [PMID: 30972459 DOI: 10.1007/s00253-019-09774-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
The rapid and credible evaluations of the microbial stability of a drinking water distribution system (DWDS) are of great significance for ensuring the safety of drinking water and predicting microbial pollution. Conventional biostability assessment methods mainly focus on bacterial regrowth or evaluation of the level of nutrients that support bacterial regrowth. However, such methods are time-consuming and have many limitations. An adenosine triphosphate (ATP) assay can rapidly measure all active microorganisms and is known to be a useful method to assess the microbial activity of drinking water. The measurement of ATP has been used for more than a decade in the field of drinking water research. This article reviews the application of an ATP luminescence-based method to assess the biostability of drinking water and discusses the feasibility of ATP measurement as a parameter for quickly evaluating this criterion. ATP measurement will help researchers and water managers better monitor the biological stability of drinking water from the source to the consumer's tap. This review covers the: (1) principle and application of the ATP measurement in drinking water quality assessment; (2) comparison of the merits and demerits of several methods for evaluating the biostability of drinking water; (3) discussions on using ATP measurement in evaluating biostability; and (4) improvements in the use of ATP measurement in evaluating biostability. At the end of this review, recommendations were given for better application of the ATP measurement as a parameter for monitoring the microbial quality of drinking water.
Collapse
|
105
|
Investigation of healthcare infection risks from water-related organisms: Summary of CDC consultations, 2014-2017. Infect Control Hosp Epidemiol 2019; 40:621-626. [PMID: 30942147 DOI: 10.1017/ice.2019.60] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Water exposures in healthcare settings and during healthcare delivery can place patients at risk for infection with water-related organisms and can potentially lead to outbreaks. We aimed to describe Centers for Disease Control and Prevention (CDC) consultations involving water-related organisms leading to healthcare-associated infections (HAIs). DESIGN Retrospective observational study. METHODS We reviewed internal CDC records from January 1, 2014, through December 31, 2017, using water-related terms and organisms, excluding Legionella, to identify consultations that involved potential or confirmed transmission of water-related organisms in healthcare. We determined plausible exposure pathways and routes of transmission when possible. RESULTS Of 620 consultations during the study period, we identified 134 consultations (21.6%), with 1,380 patients, that involved the investigation of potential water-related HAIs or infection control lapses with the potential for water-related HAIs. Nontuberculous mycobacteria were involved in the greatest number of investigations (n = 40, 29.9%). Most frequently, investigations involved medical products (n = 48, 35.8%), and most of these products were medical devices (n = 40, 83.3%). We identified a variety of plausible water-exposure pathways, including medication preparation near water splash zones and water contamination at the manufacturing sites of medications and medical devices. CONCLUSIONS Water-related investigations represent a substantial proportion of CDC HAI consultations and likely represent only a fraction of all water-related HAI investigations and outbreaks occurring in US healthcare facilities. Water-related HAI investigations should consider all potential pathways of water exposure. Finally, healthcare facilities should develop and implement water management programs to limit the growth and spread of water-related organisms.
Collapse
|
106
|
Wu J, Mao C, Deng Y, Guo Z, Liu G, Xu L, Bei L, Su Y, Feng J. Diversity and abundance of antibiotic resistance of bacteria during the seedling period in marine fish cage-culture areas of Hainan, China. MARINE POLLUTION BULLETIN 2019; 141:343-349. [PMID: 30955742 DOI: 10.1016/j.marpolbul.2019.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance has become an important focus of research in the aquaculture environment. However, few studies have evaluated antibiotic resistance during the seedling period in marine fish cage-culture areas. In this study, culture-dependent methods and quantitative polymerase chain reaction were used to identify and detect cultivable heterotrophic antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), respectively, during the seedling period in a marine fish cage-culture areas of Hainan, China. Bacterial resistance to amoxicillin, erythromycin, and gentamicin was generally high (average on 27.67%, 23.61% and 37.32%, respectively), whereas resistance to furazolidone and nitrofurantoin was generally low (average on 0.14% and 7.425%). Alteromonas (32.72%) and Vibrio (24.77%) were the dominant genus of ARB. Most ARB were opportunistic pathogens, belonging to the phylum Proteobacteria (96.02%). The abundance of sul family genes was higher than that of tet family genes. Overall, the abundance of ARGs and the resistance rates in HW was highest.
Collapse
Affiliation(s)
- Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Can Mao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Guangfeng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lei Bei
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
107
|
Identification of Factors Affecting Bacterial Abundance and Community Structures in a Full-Scale Chlorinated Drinking Water Distribution System. WATER 2019. [DOI: 10.3390/w11030627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disentangling factors influencing suspended bacterial community structure across distribution system and building plumbing provides insight into microbial control strategies from source to tap. Water quality parameters (residence time, chlorine, and total cells) and bacterial community structure were investigated across a full-scale chlorinated drinking water distribution system. Sampling was conducted in treated water, in different areas of the distribution system and in hospital building plumbing. Bacterial community was evaluated using 16S rRNA gene sequencing. Bacterial community structure clearly differed between treated, distributed, and premise plumbing water samples. While Proteobacteria (60%), Planctomycetes (20%), and Bacteroidetes (10%) were the most abundant phyla in treated water, Proteobacteria largely dominated distribution system sites (98%) and taps (91%). Distributed and tap water differed in their Proteobacteria profile: Alphaproteobacteria was dominant in distributed water (92% vs. 65% in tap waters), whereas Betaproteobacteria was most abundant in tap water (18% vs. 2% in the distribution system). Finally, clustering of bacterial community profiles was largely explained by differences in chlorine residual concentration, total bacterial count, and water residence time. Residual disinfectant and hydraulic residence time were determinant factors of the community structure in main pipes and building plumbing, rather than treated water bacterial communities.
Collapse
|
108
|
Liu L, Xing X, Hu C, Wang H, Lyu L. Effect of sequential UV/free chlorine disinfection on opportunistic pathogens and microbial community structure in simulated drinking water distribution systems. CHEMOSPHERE 2019; 219:971-980. [PMID: 30682762 DOI: 10.1016/j.chemosphere.2018.12.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Drinking water distribution systems (DWDS) may be a "Trojan Horse" for some waterborne diseases caused by opportunistic pathogens (OPs). In this study, two simulated DWDS inoculated with groundwater were treated with chlorine (Cl2) and ultraviolet/chlorine (UV/Cl2) respectively to compare their effects on the OPs distributed in four different phases (bulk water, biofilms, corrosion products, and loose deposits) of DWDS. 16S rRNA genes sequencing and qPCR were used to profile microbial community and quantify target genes of OPs, respectively. Results showed that UV/Cl2 was more effective than single Cl2 to control the regrowth of OPs in the water with the same residual chlorine concentration. However, the OPs inhabiting the biofilms, corrosion products, and loose deposits seemed to be tolerant to UV/Cl2 and Cl2, demonstrating that OPs residing in these phases were resistant to the disinfection processes. Some significant microbial correlations between OPs and Acanthamoeba were found by Spearman correlative analysis (p < 0.05), demonstrating that the ecological interactions may exist in the DWDS. 16S rRNA genes sequencing of water samples revealed a significant different microbial community structure between UV/Cl2 and Cl2. This study may give some implications for controlling the OPs in the DWDS disinfected with UV/Cl2.
Collapse
Affiliation(s)
- Lizhong Liu
- Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang City, Jiangxi 330013, China; School of Water Resource and Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, China
| | - Xueci Xing
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| | - Chun Hu
- Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Haibo Wang
- Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
109
|
Dong P, Cui Q, Fang T, Huang Y, Wang H. Occurrence of antibiotic resistance genes and bacterial pathogens in water and sediment in urban recreational water. J Environ Sci (China) 2019; 77:65-74. [PMID: 30573107 DOI: 10.1016/j.jes.2018.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 06/09/2023]
Abstract
The emergence and prevalence of antibiotic resistance genes (ARGs) and pathogens in the environment are serious global health concern. However, information about the occurrence of ARGs and pathogens in recreational water is still limited. Accordingly, we investigated the occurrence of six ARGs and human pathogens in three recreational lakes, and the correlations between ARGs and one mobile genetic element (intI1) were analyzed. The quantitative PCR results showed that the concentration of ARGs ranged from 4.58 × 100 to 5.0 × 105 copies/mL in water and from 5.78 × 103 to 5.89 × 108 copies/g dry weight (dw) in sediment. Sul1 exhibited the highest level among the five quantifiable ARGs. The concentrations of sul1, bla-TEM, and tetX exhibited significant positive correlations with intI1 (p < 0.05), indicating that intI1 may be involved in their proliferation. The detection frequencies of ARGs ranged from 75%-100%, indicating the prevalence of these risks in this region. The concentration of Escherichia coli, Aeromonas spp., Mycobacterium avium, Pseudomonas aeruginosa, and Salmonella enterica ranged from 103 to 105 copies/100 mL in water and 104-106 copies/g dw in sediment. In total, 25% of the samples harbored all pathogen genes, indicating the prevalence of these pathogens in recreational lakes. Furthermore, the next-generation sequencing results showed that 68 genera of pathogens were present, among which Aeromonas, Mycobacterium, and Pseudomonas were the dominant ones in this region, posing a considerable potential health risk to public health. Overall, the widespread distribution of ARGs and pathogens underscores the need to better monitor and mitigate their propagation in recreational lakes and the associated risks to human health.
Collapse
Affiliation(s)
- Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
110
|
Factors Influencing Legionella Contamination of Domestic Household Showers. Pathogens 2019; 8:pathogens8010027. [PMID: 30813532 PMCID: PMC6470800 DOI: 10.3390/pathogens8010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/27/2023] Open
Abstract
Legionnaires’ disease is a potentially fatal pneumonia like infection caused by inhalation or aspiration of water particles contaminated with pathogenic Legionella spp. Household showers have been identified as a potential source of sporadic, community-acquired Legionnaires’ disease. This study used qPCR to enumerate Legionella spp. and Legionella pneumophila in water samples collected from domestic showers across metropolitan Adelaide, South Australia. A survey was used to identify risk factors associated with contamination and to examine awareness of Legionella control in the home. The hot water temperature was also measured. A total of 74.6% (50/68) and 64.2% (43/68) showers were positive for Legionella spp. and L. pneumophila, respectively. Statistically significant associations were found between Legionella spp. concentration and maximum hot water temperature (p = 0.000), frequency of shower use (p = 0.000) and age of house (p = 0.037). Lower Legionella spp. concentrations were associated with higher hot water temperatures, showers used at least every week and houses less than 5 years old. However, examination of risk factors associated with L. pneumophila found that there were no statistically significant associations (p > 0.05) with L. pneumophila concentrations and temperature, type of hot water system, age of system, age of house or frequency of use. This study demonstrated that domestic showers were frequently colonized by Legionella spp. and L. pneumophila and should be considered a potential source of sporadic Legionnaires’ disease. Increasing hot water temperature and running showers every week to enable water sitting in pipes to be replenished by the municipal water supply were identified as strategies to reduce the risk of Legionella in showers. The lack of public awareness in this study identified the need for public health campaigns to inform vulnerable populations of the steps they can take to reduce the risk of Legionella contamination and exposure.
Collapse
|
111
|
K Thet M, Pelobello MLF, Das M, Alhaji MM, Chong VH, Khalil MAM, Chinniah T, Tan J. Outbreak of nonfermentative Gram-negative bacteria (Ralstonia pickettii and Stenotrophomonas maltophilia) in a hemodialysis center. Hemodial Int 2019; 23:E83-E89. [PMID: 30746829 DOI: 10.1111/hdi.12722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a case series of seven patients with nonfermentative Gram-negative bacteria infections in a single dialysis center; four patients with Ralstonia pickettii and three patients with Stenotrophomonas maltophilia. Two of the seven patients were admitted to hospital for intravenous antibiotic treatment, while the rest were treated with oral antibiotics at home. Both the admitted patients had temporary vascular catheter infections from the aforementioned pathogens. We conclude that the outbreak is due to colonization of treated reverse osmosis water, presumably through contamination via polluted filters and compounded by the usage of reprocessed dialysers in the dialysis center. This is especially relevant because contaminated treated water is directly introduced into the blood compartment of the dialysers during reprocessing. In addition, there seems to be a propensity for both organisms to cause prolonged febrile reactions in patients with temporary vascular catheters, likely through the early development of biofilm. Intensification of general sterilization procedures, servicing and replacement of old decrepit components of the water treatment system and temporary cessation of dialyser reuse practice seem to have halted the outbreak. Due to the virulent nature and difficult resistant profile of nonfermentative Gram-negative bacteria, we strongly recommend meticulous vigilance in the surveillance of culture isolates in routine microbiological specimens from dialysis centers, especially if there is a senescent water treatment system and a practice of reprocessing dialysers.
Collapse
Affiliation(s)
- May K Thet
- Department of Renal Medicine, RIPAS Hospital, Bandar Seri Begawan, Brunei Darussalam
| | | | - Milton Das
- Department of Renal Medicine, RIPAS Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Mohammed M Alhaji
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam
| | - Vui Heng Chong
- Department of Medicine, RIPAS Hospital, Bandar Seri Begawan, Brunei Darussalam
| | | | - Terence Chinniah
- Department of Microbiology, RIPAS Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Jackson Tan
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam
| |
Collapse
|
112
|
Caicedo C, Rosenwinkel KH, Exner M, Verstraete W, Suchenwirth R, Hartemann P, Nogueira R. Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse: Review. WATER RESEARCH 2019; 149:21-34. [PMID: 30445393 DOI: 10.1016/j.watres.2018.10.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 05/22/2023]
Abstract
Wastewater treatment plants (WWTPs) have been identified as confirmed but until today underestimated sources of Legionella, playing an important role in local and community cases and outbreaks of Legionnaires' disease. In general, aerobic biological systems provide an optimum environment for the growth of Legionella due to high organic nitrogen and oxygen concentrations, ideal temperatures and the presence of protozoa. However, few studies have investigated the occurrence of Legionella in WWTPs, and many questions in regards to the interacting factors that promote the proliferation and persistence of Legionella in these treatment systems are still unanswered. This critical review summarizes the current knowledge about Legionella in municipal and industrial WWTPs, the conditions that might support their growth, as well as control strategies that have been applied. Furthermore, an overview of current quantification methods, guidelines and health risks associated with Legionella in reclaimed wastewater is also discussed in depth. A better understanding of the conditions promoting the occurrence of Legionella in WWTPs will contribute to the development of improved wastewater treatment technologies and/or innovative mitigation approaches to minimize future Legionella outbreaks.
Collapse
Affiliation(s)
- C Caicedo
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany.
| | - K-H Rosenwinkel
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany
| | - M Exner
- University of Bonn, Institute for Hygiene and Public Health, Bonn, Germany
| | - W Verstraete
- Ghent University, CMET, Ghent, and Avecom, Wondelgem, Belgium
| | - R Suchenwirth
- Public Health Office of Lower Saxony, Hannover, Germany
| | - P Hartemann
- Faculty of Medicine, Department of Environment and Public Health, Nancy University-CHU Nancy, Vandoeuvre Les Nancy, France
| | - R Nogueira
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany.
| |
Collapse
|
113
|
Corre MH, Delafont V, Legrand A, Berjeaud JM, Verdon J. Exploiting the Richness of Environmental Waterborne Bacterial Species to Find Natural Legionella pneumophila Competitors. Front Microbiol 2019; 9:3360. [PMID: 30697209 PMCID: PMC6340971 DOI: 10.3389/fmicb.2018.03360] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/31/2018] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila is one of the most tracked waterborne pathogens and remains an important threat to human health. Despite the use of biocides, L. pneumophila is able to persist in engineered water systems with the help of multispecies biofilms and phagocytic protists. For few years now, high-throughput sequencing methods have enabled a better understanding of microbial communities in freshwater environments. Those unexplored and complex communities compete for nutrients using antagonistic molecules as war weapons. Up to now, few of these molecules were characterized in regards of L. pneumophila sensitivity. In this context, we established, from five freshwater environments, a vast collection of culturable bacteria and investigated their ability to inhibit the growth of L. pneumophila. All bacterial isolates were classified within 4 phyla, namely Proteobacteria (179/273), Bacteroidetes (48/273), Firmicutes (43/273), and Actinobacteria (3/273) according to 16S rRNA coding sequences. Aeromonas, Bacillus, Flavobacterium, and Pseudomonas were the most abundant genera (154/273). Among the 273 isolates, 178 (65.2%) were shown to be active against L. pneumophila including 137 isolates of the four previously cited main genera. Additionally, other less represented genera depicted anti-Legionella activity such as Acinetobacter, Kluyvera, Rahnella, or Sphingobacterium. Furthermore, various inhibition diameters were observed among active isolates, ranging from 0.4 to 9 cm. Such variability suggests the presence of numerous and diverse natural compounds in the microenvironment of L. pneumophila. These molecules include both diffusible secreted compounds and volatile organic compounds, the latter being mainly produced by Pseudomonas strains. Altogether, this work sheds light on unexplored freshwater bacterial communities that could be relevant for the biological control of L. pneumophila in manmade water systems.
Collapse
Affiliation(s)
- Marie-Hélène Corre
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Anasthasia Legrand
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Julien Verdon
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
114
|
Chronic Airway Colonization by Achromobacter xylosoxidans in Cystic Fibrosis Patients Is Not Sustained by Their Domestic Environment. Appl Environ Microbiol 2018; 84:AEM.01739-18. [PMID: 30217850 DOI: 10.1128/aem.01739-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Achromobacter spp. are nonfermentative Gram-negative bacilli considered emergent pathogens in cystic fibrosis (CF). Although some cross-transmission events between CF patients have been described, Achromobacter strains were mostly patient specific, suggesting sporadic acquisitions from nonhuman reservoirs. However, sources of these emergent CF pathogens remain unknown. A large collection of specimens (n = 273) was sampled in the homes of 3 CF patients chronically colonized by Achromobacter xylosoxidans with the aim of evaluating the potential role of domestic reservoirs in sustaining airway colonization of the patients. Samples were screened for the presence of Achromobacter by using genus-specific molecular detection. Species identification, multilocus genotypes, and antimicrobial susceptibility patterns observed for environmental isolates were compared with those of clinical strains. Patient homes hosted a high diversity of Achromobacter species (n = 7), including Achromobacter mucicolens and A. animicus, two species previously isolated from human samples only, and genotypes (n = 15), all showing an overall susceptibility to antimicrobial agents. Achromobacter strains were mostly isolated from indoor moist environments and siphons, which are potential reservoirs for several CF emerging pathogens. A. xylosoxidans, the worldwide prevalent species colonizing CF patients, was not the major Achromobacter species inhabiting domestic environments. A. xylosoxidans genotypes chronically colonizing the patients were not detected in their household environments. These results support the notions that the domestic environment could not be incriminated in sustained patient colonization and that after initial colonization, the environmental survival of A. xylosoxidans clones adapted to the CF airways is probably impaired.IMPORTANCE Achromobacter spp. are worldwide emerging opportunistic pathogens in CF patients, able to chronically colonize the respiratory tract. Apart from regular consultations at the hospital CF center, patients spend most of their time at home. Colonization from nonhuman sources has been suggested, but the presence of Achromobacter spp. in CF patients' homes has not been explored. The domestic environments of CF patients chronically colonized by Achromobacter, especially wet environments, host several opportunistic pathogens, including a large diversity of Achromobacter species and genotypes. However, Achromobacter genotypes colonizing the patients were not detected in their domestic environments, making it unlikely that a shuttle between environment and CF airways is involved in persisting colonization. This also suggests that once the bacteria have adapted to the respiratory tract, their survival in the domestic environment is presumably impaired. Nevertheless, measures for reducing domestic patient exposure should be targeted on evacuation drains, which are frequently contaminated by CF opportunistic pathogens.
Collapse
|
115
|
De Filippis P, Mozzetti C, Messina A, D'Alò GL. Prevalence of Legionella in retirement homes and group homes water distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:715-724. [PMID: 29957436 DOI: 10.1016/j.scitotenv.2018.06.216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/25/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Although historically the focus has been placed above all on hospital infections and travel-associated outbreaks, most of the cases of Legionella infection are sporadic and occur in community-dwellers. OBJECTIVES To evaluate the presence and load of Legionella in hot water systems of non-healthcare facilities that host closed communities. Furthermore, we tried to verify the association between Heterotrophic Plate Counts (HPCs) and presence of Legionella. METHODS We collected hot water and biofilm samples from the showerheads of retirement homes and group homes. Samples were tested by culture method for the presence of Legionella. Confirmation and identification were carried out through Latex test and PCR. We determined the HPCs at 22 and 37 °C by the pour plate method. Statistics performed through STATA. RESULTS We collected 140 hot water and biofilm samples, 95 from 26 retirement homes and 35 from 9 group homes. Legionella was found in 36.8% samples collected from retirement homes and only in 10.3% group homes' samples (p = 0.01). Legionella was identified more frequently in water than in biofilm (29.8% vs 16.9%); just in one case the pathogen was found in the biofilm only. L. pneumophila sg 1 was the pathogen more frequently isolated (65.8%), with an average load of 2720 CFU/L (SD = 8393 CFU/L). We have often noticed a high microbial contamination (67% of HPCs >200 CFU/mL) and identified a higher prevalence of Legionella for intermediate values of HPC 22 °C (p = 0.011). 32% of people hosted in retirement homes were exposed to Legionella. CONCLUSIONS Colonization of water-systems of retirement homes and group homes is anything but occasional, and in our survey it mainly affects the former, moreover often due to L. pneumophila sg 1. The search for the pathogen in the biofilm has proved to be of little use. The relationship between HPC and Legionella deserves further studies.
Collapse
Affiliation(s)
- Patrizia De Filippis
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Cinzia Mozzetti
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandra Messina
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Gian Loreto D'Alò
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
116
|
Willner MR, Vikesland PJ. Nanomaterial enabled sensors for environmental contaminants. J Nanobiotechnology 2018; 16:95. [PMID: 30466465 PMCID: PMC6249933 DOI: 10.1186/s12951-018-0419-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
The need and desire to understand the environment, especially the quality of one's local water and air, has continued to expand with the emergence of the digital age. The bottleneck in understanding the environment has switched from being able to store all of the data collected to collecting enough data on a broad range of contaminants of environmental concern. Nanomaterial enabled sensors represent a suite of technologies developed over the last 15 years for the highly specific and sensitive detection of environmental contaminants. With the promise of facile, low cost, field-deployable technology, the ability to quantitatively understand nature in a systematic way will soon be a reality. In this review, we first introduce nanosensor design before exploring the application of nanosensors for the detection of three classes of environmental contaminants: pesticides, heavy metals, and pathogens.
Collapse
Affiliation(s)
- Marjorie R. Willner
- Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science, Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, USA
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science, Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, USA
| |
Collapse
|
117
|
Poh TY, Ali NABM, Mac Aogáin M, Kathawala MH, Setyawati MI, Ng KW, Chotirmall SH. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part Fibre Toxicol 2018; 15:46. [PMID: 30458822 PMCID: PMC6245551 DOI: 10.1186/s12989-018-0282-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Our development and usage of engineered nanomaterials has grown exponentially despite concerns about their unfavourable cardiorespiratory consequence, one that parallels ambient ultrafine particle exposure from vehicle emissions. Most research in the field has so far focused on airway inflammation in response to nanoparticle inhalation, however, little is known about nanoparticle-microbiome interaction in the human airway and the environment. Emerging evidence illustrates that the airway, even in its healthy state, is not sterile. The resident human airway microbiome is further altered in chronic inflammatory respiratory disease however little is known about the impact of nanoparticle inhalation on this airway microbiome. The composition of the airway microbiome, which is involved in the development and progression of respiratory disease is dynamic, adding further complexity to understanding microbiota-host interaction in the lung, particularly in the context of nanoparticle exposure. This article reviews the size-dependent properties of nanomaterials, their body deposition after inhalation and factors that influence their fate. We evaluate what is currently known about nanoparticle-microbiome interactions in the human airway and summarise the known clinical, immunological and toxicological consequences of this relationship. While associations between inhaled ambient ultrafine particles and host immune-inflammatory response are known, the airway and environmental microbiomes likely act as intermediaries and facilitate individual susceptibility to inhaled nanoparticles and toxicants. Characterising the precise interaction between the environment and airway microbiomes, inhaled nanoparticles and the host immune system is therefore critical and will provide insight into mechanisms promoting nanoparticle induced airway damage.
Collapse
Affiliation(s)
- Tuang Yeow Poh
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Nur A'tikah Binte Mohamed Ali
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Micheál Mac Aogáin
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Mustafa Hussain Kathawala
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sanjay Haresh Chotirmall
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
118
|
Fang T, Wang H, Cui Q, Rogers M, Dong P. Diversity of potential antibiotic-resistant bacterial pathogens and the effect of suspended particles on the spread of antibiotic resistance in urban recreational water. WATER RESEARCH 2018; 145:541-551. [PMID: 30199799 DOI: 10.1016/j.watres.2018.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Evidence of the increasing incidence of antibiotic resistance in watersheds has attracted worldwide attention. Limited in formation is available on the occurrences of health-related antibiotic-resistant bacterial pathogens (ARBPs) in recreational waters. The effects of certain environmental factors (e.g., suspended particles) on the spread of resistance also has not been characterized to date. In this study, a combination of culture and molecular methods was employed to comprehensively investigate the patterns of microbial resistance to representative antibiotics in samples from three recreational lakes in Beijing. The antibiotic resistance index (ARI) based on the gradient concentration assay revealed that samples showed high resistance to penicillin-G, moderate resistance to ampicillin, vancomycin and erythromycin and low resistance to ceftriaxone, gentamycin, tetracycline and chloramphenicol. Antibiotic-resistant bacteria (ARB) were cultured and collected, and the diversity of potential ARBP species was further explored using next-generation sequencing (NGS). The results showed that most of the identified ARBPs were environmental opportunistic pathogens with emerging clinical concerns, e.g., the multidrug-resistant Acinetobacter junii. Furthermore, particle-attached (PA) fractions presented higher ARI values than free-floating (FL) fractions did, indicating that the PA fractions were more resistant to selected antibiotics. And the NGS results revealed that the PA fractions showed higher similarity in the screened ARB community compositions in comparison with the FL fractions, primarily due to a protective effect provided by the particles. Accordingly, ARBPs could persist for a longer time in protective particle matrices. However, quantification of antibiotic-resistant genes (ARGs) by qPCR showed no significant abundance differences between the two fractions. Overall, these findings suggest a potential health risk from the prevalence of ARBPs in recreational waters and provides a better understanding of the contribution of particles in the spread of antibiotic resistance in aquatic systems, with implications for the control of excessive suspended particles by water management.
Collapse
Affiliation(s)
- Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Matt Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 3, 117576, Singapore
| | - Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
119
|
Dai D, Rhoads WJ, Edwards MA, Pruden A. Shotgun Metagenomics Reveals Taxonomic and Functional Shifts in Hot Water Microbiome Due to Temperature Setting and Stagnation. Front Microbiol 2018; 9:2695. [PMID: 30542327 PMCID: PMC6277882 DOI: 10.3389/fmicb.2018.02695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Hot water premise plumbing has emerged as a critical nexus of energy, water, and public health. The composition of hot water microbiomes is of special interest given daily human exposure to resident flora, especially opportunistic pathogens (OPs), which rely on complex microbial ecological interactions for their proliferation. Here, we applied shotgun metagenomic sequencing to characterize taxonomic and functional shifts in microbiomes as a function of water heater temperature setting, stagnation in distal pipes, and associated shifts in water chemistry. A cross-section of samples from controlled, replicated, pilot-scale hot water plumbing rigs representing different temperature settings (39, 42, and 51°C), stagnation periods (8 h vs. 7 days), and time-points, were analyzed. Temperature setting exhibited an overarching impact on taxonomic and functional gene composition. Further, distinct taxa were selectively enriched by specific temperature settings (e.g., Legionella at 39°C vs. Deinococcus at 51°C), while relative abundances of genes encoding corresponding cellular functions were highly consistent with expectations based on the taxa driving these shifts. Stagnation in distal taps diminished taxonomic and functional differences induced by heating the cold influent water to hot water in recirculating line. In distal taps relative to recirculating hot water, reads annotated as being involved in metabolism and growth decreased, while annotations corresponding to stress response (e.g., virulence disease and defense, and specifically antibiotic resistance) increased. Reads corresponding to OPs were readily identified by metagenomic analysis, with L. pneumophila reads in particular correlating remarkably well with gene copy numbers measured by quantitative polymerase chain reaction. Positive correlations between L. pneumophila reads and those of known protozoan hosts were also identified. Elevated proportions of genes encoding metal resistance and hydrogen metabolism were noted, which was consistent with elevated corrosion-induced metal concentrations and hydrogen generation. This study provided new insights into real-world factors influencing taxonomic and functional compositions of hot water microbiomes. Here metagenomics is demonstrated as an effective tool for screening for potential presence, and even quantities, of pathogens, while also providing diagnostic capabilities for assessing functional responses of microbiomes to various operational conditions. These findings can aid in informing future monitoring and intentional control of hot water microbiomes.
Collapse
Affiliation(s)
| | | | | | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
120
|
Daley K, Truelstrup Hansen L, Jamieson RC, Hayward JL, Piorkowski GS, Krkosek W, Gagnon GA, Castleden H, MacNeil K, Poltarowicz J, Corriveau E, Jackson A, Lywood J, Huang Y. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32926-32937. [PMID: 28612312 DOI: 10.1007/s11356-017-9423-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of <2000) on trucked service, and in Iqaluit (population ~6700), which uses a combination of trucked and piped water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of <1 MPN/100 mL with a few exceptions, and selected pathogenic bacteria and parasites were below detection limits using quantitative polymerase chain reaction (qPCR) methods. Tap water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.
Collapse
Affiliation(s)
- Kiley Daley
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Lisbeth Truelstrup Hansen
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Rob C Jamieson
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jenny L Hayward
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Greg S Piorkowski
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Alberta Agriculture and Forestry, Edmonton, AB, Canada
| | - Wendy Krkosek
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Heather Castleden
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Queen's University, Kingston, ON, Canada
| | - Kristen MacNeil
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Joanna Poltarowicz
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Emmalina Corriveau
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Amy Jackson
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Justine Lywood
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Yannan Huang
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
121
|
Highlighting the Potency of Biosurfactants Produced by Pseudomonas Strains as Anti- Legionella Agents. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8194368. [PMID: 30426015 PMCID: PMC6217892 DOI: 10.1155/2018/8194368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a waterborne bacterium mainly found in man-made water systems in close association with free-living amoebae and multispecies biofilms. Pseudomonas strains, originating from various environments including freshwater systems or isolated from hospitalized patients, were tested for their antagonistic activity towards L. pneumophila. A high amount of tested strains was thus found to be active. This antibacterial activity was correlated to the presence of tensioactive agents in culture supernatants. As Pseudomonas strains were known to produce biosurfactants, these compounds were specifically extracted and purified from active strains and further characterized using reverse-phase HPLC and mass spectrometry methods. Finally, all biosurfactants tested (lipopeptides and rhamnolipids) were found active and this activity was shown to be higher towards Legionella strains compared to various other bacteria. Therefore, described biosurfactants are potent anti-Legionella agents that could be used in the water treatment industry although tests are needed to evaluate how effective they would be under field conditions.
Collapse
|
122
|
Preventing hospital-acquired Legionnaires' disease: A snapshot of clinical practices and water management approaches in US acute-care hospitals. Infect Control Hosp Epidemiol 2018; 39:1470-1472. [PMID: 30293535 DOI: 10.1017/ice.2018.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In 2017, we surveyed 101 SHEA Research Network hospitals regarding Legionnaires' disease (LD). Of 29 respondents, 94% have or are developing a water management plan with varying characteristics and personnel engaged. Most LD diagnostic testing is limited to urine antigen testing. Many opportunities to improve LD prevention and diagnosis exist.
Collapse
|
123
|
Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, Kersten S, Lundberg DS, Neumann M, Regalado J, Neher RA, Kemen E, Weigel D. Arabidopsis thaliana and Pseudomonas Pathogens Exhibit Stable Associations over Evolutionary Timescales. Cell Host Microbe 2018; 24:168-179.e4. [PMID: 30001519 PMCID: PMC6054916 DOI: 10.1016/j.chom.2018.06.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/16/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
Abstract
Crop disease outbreaks are often associated with clonal expansions of single pathogenic lineages. To determine whether similar boom-and-bust scenarios hold for wild pathosystems, we carried out a multi-year, multi-site survey of Pseudomonas in its natural host Arabidopsis thaliana. The most common Pseudomonas lineage corresponded to a ubiquitous pathogenic clade. Sequencing of 1,524 genomes revealed this lineage to have diversified approximately 300,000 years ago, containing dozens of genetically identifiable pathogenic sublineages. There is differentiation at the level of both gene content and disease phenotype, although the differentiation may not provide fitness advantages to specific sublineages. The coexistence of sublineages indicates that in contrast to crop systems, no single strain has been able to overtake the studied A. thaliana populations in the recent past. Our results suggest that selective pressures acting on a plant pathogen in wild hosts are likely to be much more complex than those in agricultural systems.
Collapse
Affiliation(s)
- Talia L Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Juliana Almario
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, IMITP, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Friedemann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Wei Ding
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Michael Giolai
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Darren Heavens
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Sonja Kersten
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Julian Regalado
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Richard A Neher
- University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Eric Kemen
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, IMITP, University of Tübingen, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
124
|
Seasonal Abundance of Fecal Indicators and Opportunistic Pathogens in Roof-Harvested Rainwater Tanks. OPEN HEALTH DATA 2018. [DOI: 10.5334/ohd.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
125
|
Risk factors for healthcare-associated infection caused by carbapenem-resistant Pseudomonas aeruginosa. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 51:359-366. [DOI: 10.1016/j.jmii.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023]
|
126
|
Peter A, Routledge E. Present-day monitoring underestimates the risk of exposure to pathogenic bacteria from cold water storage tanks. PLoS One 2018; 13:e0195635. [PMID: 29649274 PMCID: PMC5896965 DOI: 10.1371/journal.pone.0195635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/26/2018] [Indexed: 11/18/2022] Open
Abstract
Water-borne bacteria, found in cold water storage tanks, are causative agents for various human infections and diseases including Legionnaires’ disease. Consequently, regular microbiological monitoring of tank water is undertaken as part of the regulatory framework used to control pathogenic bacteria. A key assumption is that a small volume of water taken from under the ball valve (where there is easy access to the stored water) will be representative of the entire tank. To test the reliability of this measure, domestic water samples taken from different locations of selected tanks in London properties between November 2015 and July 2016 were analysed for TVCs, Pseudomonas and Legionella at an accredited laboratory, according to regulatory requirements. Out of ~6000 tanks surveyed, only 15 were selected based on the ability to take a water sample from the normal sampling hatch (located above the ball valve) and from the far end of the tank (usually requiring disassembly of the tank lid with risk of structural damage), and permission being granted by the site manager to undertake the additional investigation and sampling. Despite seasonal differences in water temperature, we found 100% compliance at the ball valve end. In contrast, 40% of the tanks exceeded the regulatory threshold for temperature at the far end of the tank in the summer months. Consequently, 20% of the tanks surveyed failed to trigger appropriate regulatory action based on microbiological analyses of the water sample taken under the ball valve compared to the far end sample using present-day standards. These data show that typical water samples collected for routine monitoring may often underestimate the microbiological status of the water entering the building, thereby increasing the risk of exposure to water bourne pathogens with potential public health implications. We propose that water storage tanks should be redesigned to allow access to the far end of tanks for routine monitoring purposes, and that water samples used to ascertain the regulatory compliance of stored water in tanks should be taken at the point at which water is abstracted for use in the building.
Collapse
Affiliation(s)
- Aji Peter
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, United Kingdom
- Aqua Technologies Europe Ltd, Hounslow, Middlesex, United Kingdom
- * E-mail:
| | - Edwin Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, United Kingdom
| |
Collapse
|
127
|
Drinking water microbiome assembly induced by water stagnation. ISME JOURNAL 2018; 12:1520-1531. [PMID: 29588495 PMCID: PMC5955952 DOI: 10.1038/s41396-018-0101-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
What happens to tap water when you are away from home? Day-to-day water stagnation in building plumbing can potentially result in water quality deterioration (e.g., lead release or pathogen proliferation), which is a major public health concern. However, little is known about the microbial ecosystem processes in plumbing systems, hindering the development of biological monitoring strategies. Here, we track tap water microbiome assembly in situ, showing that bacterial community composition changes rapidly from the city supply following ~6-day stagnation, along with an increase in cell count from 103 cells/mL to upwards of 7.8 × 105 cells/mL. Remarkably, bacterial community assembly was highly reproducible in this built environment system (median Spearman correlation between temporal replicates = 0.78). Using an island biogeography model, we show that neutral processes arising from the microbial communities in the city water supply (i.e., migration and demographic stochasticity) explained the island community composition in proximal pipes (Goodness-of-fit = 0.48), yet declined as water approached the faucet (Goodness-of-fit = 0.21). We developed a size-effect model to simulate this process, which indicated that pipe diameter drove these changes by mediating the kinetics of hypochlorite decay and cell detachment, affecting selection, migration, and demographic stochasticity. Our study challenges current water quality monitoring practice worldwide which ignore biological growth in plumbing, and suggests the island biogeography model as a useful framework to evaluate building water system quality.
Collapse
|
128
|
Stüken A, Haverkamp THA, Dirven HAAM, Gilfillan GD, Leithaug M, Lund V. Microbial Community Composition of Tap Water and Biofilms Treated with or without Copper-Silver Ionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3354-3364. [PMID: 29461810 DOI: 10.1021/acs.est.7b05963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Copper-silver ionization (CSI) is an in-house water disinfection method primarily installed to eradicate Legionella bacteria from drinking water distribution systems (DWDS). Its effect on the abundance of culturable Legionella and Legionella infections has been documented in several studies. However, the effect of CSI on other bacteria in DWDS is largely unknown. To investigate these effects, we characterized drinking water and biofilm communities in a hospital using CSI, in a neighboring building without CSI, and in treated drinking water at the local water treatment plant. We used 16S rDNA amplicon sequencing and Legionella culturing. The sequencing results revealed three distinct water groups: (1) cold-water samples (no CSI), (2) warm-water samples at the research institute (no CSI), and (3) warm-water samples at the hospital (after CSI; ANOSIM, p < 0.001). Differences between the biofilm communities exposed and not exposed to CSI were less clear (ANOSIM, p = 0.022). No Legionella were cultured, but limited numbers of Legionella sequences were recovered from all 25 water samples (0.2-1.4% relative abundance). The clustering pattern indicated local selection of Legionella types (Kruskal-Wallis, p < 0.001). Furthermore, one unclassified Betaproteobacteria OTU was highly enriched in CSI-treated warm water samples at the hospital (Kruskal-Wallis, p < 0.001).
Collapse
Affiliation(s)
- Anke Stüken
- Dept. Zoonotic, Food and Waterborne Infections , Norwegian Institute of Public Health , Oslo , Norway
| | - Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences , University of Oslo , Blindern, Oslo , Norway
| | - Hubert A A M Dirven
- Dept. Toxicology and Risk Assessment , Norwegian Institute of Public Health , Oslo , Norway
| | - Gregor D Gilfillan
- Dept. Medical Genetics , Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Magnus Leithaug
- Dept. Medical Genetics , Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Vidar Lund
- Dept. Zoonotic, Food and Waterborne Infections , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
129
|
Proctor CR, Reimann M, Vriens B, Hammes F. Biofilms in shower hoses. WATER RESEARCH 2018; 131:274-286. [PMID: 29304381 DOI: 10.1016/j.watres.2017.12.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 05/25/2023]
Abstract
Shower hoses offer an excellent bacterial growth environment in close proximity to a critical end-user exposure route within building drinking water plumbing. However, the health risks associated with and processes underlying the development of biofilms in shower hoses are poorly studied. In a global survey, biofilms from 78 shower hoses from 11 countries were characterized in terms of cell concentration (4.1 × 104-5.8 × 108 cells/cm2), metal accumulation (including iron, lead, and copper), and microbiome composition (including presence of potential opportunistic pathogens). In countries using disinfectant, biofilms had on average lower cell concentrations and diversity. Metal accumulation (up to 5 μg-Fe/cm2, 75 ng-Pb/cm2, and 460 ng-Cu/cm2) seemed to be partially responsible for discoloration in biofilms, and likely originated from other pipes upstream in the building. While some genera that may contain potential opportunistic pathogens (Legionella, detected in 21/78 shower hoses) were positively correlated with biofilm cell concentration, others (Mycobacterium, Pseudomonas) had surprisingly non-existent or negative correlations with biofilm cell concentrations. In a controlled study, 15 identical shower hoses were installed for the same time period in the same country, and both stagnant and flowing water samples were collected. Ecological theory of dispersal and selection helped to explain microbiome composition and diversity of different sample types. Shower hose age was related to metal accumulation but not biofilm cell concentration, while frequency of use appeared to influence biofilm cell concentration. This study shows that shower hose biofilms are clearly a critical element of building drinking water plumbing, and a potential target for building drinking water plumbing monitoring.
Collapse
Affiliation(s)
- Caitlin R Proctor
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Mauro Reimann
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Bas Vriens
- Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
130
|
Transcriptional Responses of Pseudomonas aeruginosa to Potable Water and Freshwater. Appl Environ Microbiol 2018; 84:AEM.02350-17. [PMID: 29305509 DOI: 10.1128/aem.02350-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/01/2018] [Indexed: 02/03/2023] Open
Abstract
Many Pseudomonas aeruginosa infections are derived from residential, recreational, or surface water sources; thus, these environments represent an important preinfection niche. To better understand P. aeruginosa biology in these environments, we quantified transcriptional changes by microarray after exposure to diluted LB, diluted R2B, potable tap water, and freshwater from a eutrophic pond. Quantitative reverse transcription-PCR (qRT-PCR) confirmed the conservation of these responses in other water sources, and competition experiments were used to test the importance of three implicated metabolic pathways. The global transcriptional responses in potable water and freshwater showed strong induction of genes involved in metabolism of the head groups and acyl tails of phospholipids, as well as nucleotide metabolism, with commensurate decreased transcript expression of genes encoding their synthetic pathways. These data suggest that phospholipids and nucleotides are part of the nutritional milieu of these two environments. A unique response in municipal-delivered potable water was to the metals in the piping system, particularly copper. To identify potential nutrient sources used by P. aeruginosa in these environments, we used competition assays between the wild-type and deletion mutant strains in three pathways induced under these conditions. For phospholipid head-group metabolism, ethanolamine utilization (eutB) was important for competition in potable water, while choline oxidation (betBA) was important for competition in freshwater. Nucleotide utilization, particularly pyrimidine metabolism (dht), showed a trend toward importance in freshwater but was not statistically significant. These findings provide new insights into the P. aeruginosa response to potable water and freshwater and led to the identification of potentially important nutrient sources in these environments.IMPORTANCE Much of our knowledge about Pseudomonas aeruginosa comes from the infection niche, and much less is known about its lifestyle in the environment. P. aeruginosa is an adaptable bacterium capable of growing in many environments but is particularly common in potable water systems and freshwater. We used the transcriptional responses of P. aeruginosa to these environments to identify important nutrient sources specific to either of these two environments. Additionally, these environments could provide experimental situations to understand gene function for the large number of transcripts with unknown functions induced under these conditions.
Collapse
|
131
|
Zahran S, McElmurry SP, Kilgore PE, Mushinski D, Press J, Love NG, Sadler RC, Swanson MS. Assessment of the Legionnaires' disease outbreak in Flint, Michigan. Proc Natl Acad Sci U S A 2018; 115:E1730-E1739. [PMID: 29432149 PMCID: PMC5828617 DOI: 10.1073/pnas.1718679115] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2014-2015 Legionnaires' disease (LD) outbreak in Genesee County, MI, and the outbreak resolution in 2016 coincided with changes in the source of drinking water to Flint's municipal water system. Following the switch in water supply from Detroit to Flint River water, the odds of a Flint resident presenting with LD increased 6.3-fold (95% CI: 2.5, 14.0). This risk subsided following boil water advisories, likely due to residents avoiding water, and returned to historically normal levels with the switch back in water supply. During the crisis, as the concentration of free chlorine in water delivered to Flint residents decreased, their risk of acquiring LD increased. When the average weekly chlorine level in a census tract was <0.5 mg/L or <0.2 mg/L, the odds of an LD case presenting from a Flint neighborhood increased by a factor of 2.9 (95% CI: 1.4, 6.3) or 3.9 (95% CI: 1.8, 8.7), respectively. During the switch, the risk of a Flint neighborhood having a case of LD increased by 80% per 1 mg/L decrease in free chlorine, as calculated from the extensive variation in chlorine observed. In communities adjacent to Flint, the probability of LD occurring increased with the flow of commuters into Flint. Together, the results support the hypothesis that a system-wide proliferation of legionellae was responsible for the LD outbreak in Genesee County, MI.
Collapse
Affiliation(s)
- Sammy Zahran
- Department of Economics, Colorado State University, Fort Collins, CO 80523
- Department of Epidemiology, Colorado School of Public Health, Fort Collins, CO 80523
| | - Shawn P McElmurry
- Department of Civil & Environmental Engineering, Wayne State University, Detroit, MI 48202
| | - Paul E Kilgore
- Department of Pharmacy Practice, Wayne State University, Detroit, MI 48201
| | - David Mushinski
- Department of Economics, Colorado State University, Fort Collins, CO 80523
| | - Jack Press
- Department of Civil & Environmental Engineering, Wayne State University, Detroit, MI 48202
| | - Nancy G Love
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Richard C Sadler
- Department of Family Medicine, Michigan State University, Flint, MI 48502
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
132
|
Prevalence of Infection-Competent Serogroup 6 Legionella pneumophila within Premise Plumbing in Southeast Michigan. mBio 2018; 9:mBio.00016-18. [PMID: 29437918 PMCID: PMC5801461 DOI: 10.1128/mbio.00016-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coinciding with major changes to its municipal water system, Flint, MI, endured Legionnaires’ disease outbreaks in 2014 and 2015. By sampling premise plumbing in Flint in the fall of 2016, we found that 12% of homes harbored legionellae, a frequency similar to that in residences in neighboring areas. To evaluate the genetic diversity of Legionella pneumophila in Southeast Michigan, we determined the sequence type (ST) and serogroup (SG) of the 18 residential isolates from Flint and Detroit, MI, and the 33 clinical isolates submitted by hospitals in three area counties in 2013 to 2016. Common to one environmental and four clinical samples were strains of L. pneumophila SG1 and ST1, the most prevalent ST worldwide. Among the Flint premise plumbing isolates, 14 of 16 strains were of ST367 and ST461, two closely related SG6 strain types isolated previously from patients and corresponding environmental samples. Each of the representative SG1 clinical strains and SG6 environmental isolates from Southeast Michigan infected and survived within macrophage cultures at least as well as a virulent laboratory strain, as judged by microscopy and by enumerating CFU. Likewise, 72 h after infection, the yield of viable-cell counts increased >100-fold for each of the representative SG1 clinical isolates, Flint premise plumbing SG6 ST367 and -461 isolates, and two Detroit residential isolates. We verified by immunostaining that SG1-specific antibody does not cross-react with the SG6 L. pneumophila environmental strains. Because the widely used urinary antigen diagnostic test does not readily detect non-SG1 L. pneumophila, Legionnaires’ disease caused by SG6 L. pneumophila is likely underreported worldwide. L. pneumophila is the leading cause of disease outbreaks associated with drinking water in the United States. Compared to what is known of the established risks of colonization within hospitals and hotels, relatively little is known about residential exposure to L. pneumophila. One year after two outbreaks of Legionnaires’ disease in Genesee County, MI, that coincided with damage to the Flint municipal water system, our multidisciplinary team launched an environmental surveillance and laboratory research campaign aimed at informing risk management strategies to provide safe public water supplies. The most prevalent L. pneumophila strains isolated from residential plumbing were closely related strains of SG6. In laboratory tests of virulence, the SG6 environmental isolates resembled SG1 clinical strains, yet they are not readily detected by the common diagnostic urinary antigen test, which is specific for SG1. Therefore, our study complements the existing epidemiological literature indicating that Legionnaires’ disease due to non-SG1 strains is underreported around the globe.
Collapse
|
133
|
Waso M, Dobrowsky PH, Hamilton KA, Puzon G, Miller H, Khan W, Ahmed W. Abundance of Naegleria fowleri in roof-harvested rainwater tank samples from two continents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5700-5710. [PMID: 29230646 DOI: 10.1007/s11356-017-0870-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/28/2017] [Indexed: 05/24/2023]
Abstract
Roof-harvested rainwater (RHRW) has been used as an alternative source of water in water scarce regions of many countries. The microbiological and chemical quality of RHRW has been questioned due to the presence of bacterial and protozoan pathogens. However, information on the occurrence of pathogenic amoeba in RHRW tank samples is needed due to their health risk potential and known associations with opportunistic pathogens. Therefore, this study aims to determine the quantitative occurrence of Naegleria fowleri in RHRW tank samples from Southeast Queensland (SEQ), Australia (AU), and the Kleinmond Housing Scheme located in Kleinmond, South Africa (SA). In all, 134 and 80 RHRW tank samples were collected from SEQ, and the Kleinmond Housing Scheme, Western Cape, SA, respectively. Quantitative PCR (qPCR) assays were used to measure the concentrations of N. fowleri, and culture-based methods were used to measure fecal indicator bacteria (FIB) Escherichia coli (E. coli) and Enterococcus spp. Of the 134 tank water samples tested from AU, 69 and 62.7% were positive for E. coli, and Enterococcus spp., respectively. For the SA tank water samples, FIB analysis was conducted for samples SA-T41 to SA-T80 (n = 40). Of the 40 samples analyzed from SA, 95 and 35% were positive for E. coli and Enterococcus spp., respectively. Of the 134 water samples tested in AU, 15 (11.2%) water samples were positive for N. fowleri, and the concentrations ranged from 1.7 × 102 to 3.6 × 104 gene copies per 100 mL of water. Of the 80 SA tank water samples screened for N. fowleri, 15 (18.8%) tank water samples were positive for N. fowleri and the concentrations ranged from 2.1 × 101 to 7.8 × 104 gene copies per 100 mL of tank water. The prevalence of N. fowleri in RHRW tank samples from AU and SA thus warrants further development of dose-response models for N. fowleri and a quantitative microbial risk assessment (QMRA) to inform and prioritize strategies for reducing associated public health risks.
Collapse
Affiliation(s)
- Monique Waso
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Penelope Heather Dobrowsky
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Kerry Ann Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, QLD, 4102, Australia
| | - Geoffrey Puzon
- CSIRO Land and Water, Private Bag No.5, Wembley, WA, 6913, Australia
| | - Haylea Miller
- CSIRO Land and Water, Private Bag No.5, Wembley, WA, 6913, Australia
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
134
|
Fang T, Cui Q, Huang Y, Dong P, Wang H, Liu WT, Ye Q. Distribution comparison and risk assessment of free-floating and particle-attached bacterial pathogens in urban recreational water: Implications for water quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:428-438. [PMID: 28918274 DOI: 10.1016/j.scitotenv.2017.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
The risk of pathogen exposure in recreational water is a concern worldwide. Moreover, suspended particles, as ideal shelters for pathogens, in these waters also need attention. However, the risk caused by the pathogen-particle attachment is largely unknown. Accordingly, water samples in three recreational lakes in Beijing were collected and separated into free-floating (FL, 0.22-5μm) and particle-attached (PA, >5μm) fractions. Next-generation sequencing (NGS) was employed to determine the diversity of genera containing pathogens, and quantitative PCR (qPCR) was used to assess the presence of genes from Escherichia coli (uidA), Salmonella enterica (invA), Aeromonas spp. (aerA), Mycobacterium avium (16S) and Pseudomonas aeruginosa (oaa). The NGS results showed stable pathogen genera composition distinctions between the PA and FL fractions. Some genera, such as Aeromonas and Mycobacterium, exhibited higher abundances in the PA fractions. qPCR revealed that most of the gene concentrations were higher within particles than were FL fractions. Some gene levels showed correlations with the particle concentrations and lake nutrient levels. Further quantitative microbial risk assessment (QMRA) of selected strains (S. enterica and M. avium) indicated a higher health risk during secondary contact activities in lakes with more nutrients and particles. We concluded that suspended particles (mainly composed of algae) in urban recreational water might influence the pathogen distribution and could serve as reservoirs for pathogen contamination, with important management implications.
Collapse
Affiliation(s)
- Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL 61801, United States
| | - Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
135
|
Laencina L, Dubois V, Le Moigne V, Viljoen A, Majlessi L, Pritchard J, Bernut A, Piel L, Roux AL, Gaillard JL, Lombard B, Loew D, Rubin EJ, Brosch R, Kremer L, Herrmann JL, Girard-Misguich F. Identification of genes required for Mycobacterium abscessus growth in vivo with a prominent role of the ESX-4 locus. Proc Natl Acad Sci U S A 2018; 115:E1002-E1011. [PMID: 29343644 PMCID: PMC5798338 DOI: 10.1073/pnas.1713195115] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium abscessus, a rapidly growing mycobacterium (RGM) and an opportunistic human pathogen, is responsible for a wide spectrum of clinical manifestations ranging from pulmonary to skin and soft tissue infections. This intracellular organism can resist the bactericidal defense mechanisms of amoebae and macrophages, an ability that has not been observed in other RGM. M. abscessus can up-regulate several virulence factors during transient infection of amoebae, thereby becoming more virulent in subsequent respiratory infections in mice. Here, we sought to identify the M. abscessus genes required for replication within amoebae. To this end, we constructed and screened a transposon (Tn) insertion library of an M. abscessus subspecies massiliense clinical isolate for attenuated clones. This approach identified five genes within the ESX-4 locus, which in M. abscessus encodes an ESX-4 type VII secretion system that exceptionally also includes the ESX conserved EccE component. To confirm the screening results and to get further insight into the contribution of ESX-4 to M. abscessus growth and survival in amoebae and macrophages, we generated a deletion mutant of eccB4 that encodes a core structural element of ESX-4. This mutant was less efficient at blocking phagosomal acidification than its parental strain. Importantly, and in contrast to the wild-type strain, it also failed to damage phagosomes and showed reduced signs of phagosome-to-cytosol contact, as demonstrated by a combination of cellular and immunological assays. This study attributes an unexpected and genuine biological role to the underexplored mycobacterial ESX-4 system and its substrates.
Collapse
Affiliation(s)
- Laura Laencina
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Violaine Dubois
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Vincent Le Moigne
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Laleh Majlessi
- Unité de Pathogénomique Mycobactérienne, Institut Pasteur, 75015 Paris, France
| | - Justin Pritchard
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Audrey Bernut
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Laura Piel
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Anne-Laure Roux
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, 92380 Garches, France
| | - Jean-Louis Gaillard
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, 92380 Garches, France
| | - Bérengère Lombard
- Laboratoire de spectrométrie de masse protéomique, Institut Curie, Paris Science and Letters Research University, 75248 Paris, France
| | - Damarys Loew
- Laboratoire de spectrométrie de masse protéomique, Institut Curie, Paris Science and Letters Research University, 75248 Paris, France
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Roland Brosch
- Unité de Pathogénomique Mycobactérienne, Institut Pasteur, 75015 Paris, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
- INSERM, Institut de Recherche en Infectiologie de Montpellier, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France;
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, 92380 Garches, France
| | | |
Collapse
|
136
|
Assessment of Water Quality in Roof-Harvested Rainwater Barrels in Greater Philadelphia. WATER 2018. [DOI: 10.3390/w10020092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
137
|
van der Kooij D, Veenendaal HR, van der Mark EJ, Dignum M. Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method. WATER RESEARCH 2017; 125:270-279. [PMID: 28865376 DOI: 10.1016/j.watres.2017.06.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Slow sand filtration is the final treatment step at four surface-water supplies in the Netherlands. The microbial growth potential (MGP) of the finished water was measured with the assimilable organic carbon (AOC) method using pure cultures and the biomass production potential (BPP) test. In the BPP test, water samples were incubated untreated at 25 °C and the active-biomass concentration was measured by adenosine tri-phosphate (ATP) analysis. Addition of a river-water inoculum improved the test performance and characteristic growth and maintenance profiles of the water were obtained. The maximum ATP concentration attained within seven days and the cumulative biomass production after 14 days of incubation (BPC14, d ng ATP L-1) showed highly significant and strong linear relationships with the AOC in the slow sand filtrates. The lowest AOC and BPC14 levels were observed in the supplies applying dune filtration without ozonation in post treatment, with AOC/TOC = 1.7 ± 0.3 μg acetate-C equivalents mg-1 C and BPC14/TOC = 16.3 ± 2.2 d ng ATP mg-1 C, corresponding with 1.2 ± 0.19 ng ATP mg-1 C. These characteristics may represent the lowest specific MGP of natural organic matter achievable by biofiltration at temperatures ≤20 °C. The AOC and BPC14 concentrations in the slow sand filtrate of the supply treating lake water by ozonation with granular-activated-carbon filtration and slow sand filtration as post treatment increased with decreasing temperature. The BPP test revealed that this slow sand filtrate sampled at 2 °C contained growth-promoting compounds that were not detected with the AOC test. These observations demonstrate the utility of the BPP test for assessing the MGP of drinking water and show the performance limits of biofiltration for MGP reduction.
Collapse
Affiliation(s)
- Dick van der Kooij
- KWR Watercycle Research Institute, PO Box 1072, 3430 BB Nieuwegein, The Netherlands.
| | - Harm R Veenendaal
- KWR Watercycle Research Institute, PO Box 1072, 3430 BB Nieuwegein, The Netherlands.
| | | | - Marco Dignum
- Waternet, PO Box 94370, 1090 GJ Amsterdam, The Netherlands.
| |
Collapse
|
138
|
Adam EA, Collier SA, Fullerton KE, Gargano JW, Beach MJ. Prevalence and direct costs of emergency department visits and hospitalizations for selected diseases that can be transmitted by water, United States. JOURNAL OF WATER AND HEALTH 2017; 15:673-683. [PMID: 29040071 DOI: 10.2166/wh.2017.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
National emergency department (ED) visit prevalence and costs for selected diseases that can be transmitted by water were estimated using large healthcare databases (acute otitis externa, campylobacteriosis, cryptosporidiosis, Escherichia coli infection, free-living ameba infection, giardiasis, hepatitis A virus (HAV) infection, Legionnaires' disease, nontuberculous mycobacterial (NTM) infection, Pseudomonas-related pneumonia or septicemia, salmonellosis, shigellosis, and vibriosis or cholera). An estimated 477,000 annual ED visits (95% CI: 459,000-494,000) were documented, with 21% (n = 101,000, 95% CI: 97,000-105,000) resulting in immediate hospital admission. The remaining 376,000 annual treat-and-release ED visits (95% CI: 361,000-390,000) resulted in $194 million in annual direct costs. Most treat-and-release ED visits (97%) and costs ($178 million/year) were associated with acute otitis externa. HAV ($5.5 million), NTM ($2.3 million), and salmonellosis ($2.2 million) were associated with next highest total costs. Cryptosporidiosis ($2,035), campylobacteriosis ($1,783), and NTM ($1,709) had the highest mean costs per treat-and-release ED visit. Overall, the annual hospitalization and treat-and-release ED visit costs associated with the selected diseases totaled $3.8 billion. As most of these diseases are not solely transmitted by water, an attribution process is needed as a next step to determine the proportion of these visits and costs attributable to waterborne transmission.
Collapse
Affiliation(s)
- E A Adam
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - S A Collier
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - K E Fullerton
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - J W Gargano
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - M J Beach
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| |
Collapse
|
139
|
Naumova EN, Liss A, Jagai JS, Behlau I, Griffiths JK. Hospitalizations due to selected infections caused by opportunistic premise plumbing pathogens (OPPP) and reported drug resistance in the United States older adult population in 1991-2006. J Public Health Policy 2017; 37:500-513. [PMID: 28202928 DOI: 10.1057/s41271-016-0038-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Flint Water Crisis-due to changes of water source and treatment procedures-has revealed many unsolved social, environmental, and public health problems for US drinking water, including opportunistic premise plumbing pathogens (OPPP). The true health impact of OPPP, especially in vulnerable populations such as the elderly, is largely unknown. We explored 108 claims in the largest US national uniformly collected data repository to determine rates and costs of OPPP-related hospitalizations. In 1991-2006, 617,291 cases of three selected OPPP infections resulted in the elderly alone of $0.6 billion USD per year of payments. Antibiotic resistance significantly increased OPPP illness costs that are likely to be underreported. More precise estimates for OPPP burdens could be obtained if better clinical, microbiological, administrative, and environmental monitoring data were cross-linked. An urgent dialog across governmental and disciplinary divides, and studies on preventing OPPP through drinking water exposure, are warranted.
Collapse
Affiliation(s)
- Elena N Naumova
- Tufts University Friedman School of Nutrition Science and Policy, 150 Harrison Avenue, Jagaris-250, Boston, MA, 02111, USA. .,Tufts University School of Engineering, Medford, USA. .,Tufts University School of Medicine, Boston, USA.
| | | | | | | | - Jeffrey K Griffiths
- Tufts University Friedman School of Nutrition Science and Policy, 150 Harrison Avenue, Jagaris-250, Boston, MA, 02111, USA.,Tufts University School of Engineering, Medford, USA.,Tufts University School of Medicine, Boston, USA
| |
Collapse
|
140
|
Legionella Survey in the Plumbing System of a Sparse Academic Campus: A Case Study at the University of Perugia. WATER 2017. [DOI: 10.3390/w9090662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
141
|
Hashemi Shahraki A, Trovato A, Droz S, Haidarieh P, Borroni E, Mirsaeidi M, Mannino R, Hashemzadeh M, Mariottini A, Cirillo DM, Tortoli E. Mycobacterium aquaticum sp. nov., a rapidly growing species isolated from haemodialysis water. Int J Syst Evol Microbiol 2017; 67:3279-3282. [PMID: 28829035 DOI: 10.1099/ijsem.0.002103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The characterization of five Iranian isolates, four from hospital haemodialysis water and one from the sputum of a patient, led to the detection of a novel mycobacterium species. The strains were characterized by mucoid colonies developing in 3-5 days at temperatures ranging from 25 to 37 °C. The biochemical test pattern was unremarkable while the HPLC profile of mycolic acids resembled that of Mycobacterium fortuitum. The sequences of three major housekeeping genes (16S rRNA, hsp65 and rpoB) were unique and differed from those of any other mycobacterium. Mycobacterium brisbanense, which is the species that shared the highest 16S rRNA gene sequence similarity (99.03 %), was distinct, as shown by the average nucleotide identity and by the genome to genome distance values (91.05 and 43.10 %, respectively). The strains are thus considered to represent a novel species of the genus Mycobacterium, for which the name Mycobacterium aquaticum sp. nov. is proposed. The type strain is RW6T (=DSM 104277T=CIP111198T).
Collapse
Affiliation(s)
| | - Alberto Trovato
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Sara Droz
- Institute for Infectious Diseases, University of Berne, Berne, Switzerland
| | - Parvin Haidarieh
- Department of Microbiology, School of Medicine, Alborz University, Karaj, Iran
| | - Emanuele Borroni
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University Miami, Miami, FL, USA
| | - Roberta Mannino
- Microbiology and Virology Laboratory, Careggi University Hospital, Firenze, Italy
| | - Mohamad Hashemzadeh
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
142
|
Hamilton KA, Ahmed W, Toze S, Haas CN. Human health risks for Legionella and Mycobacterium avium complex (MAC) from potable and non-potable uses of roof-harvested rainwater. WATER RESEARCH 2017; 119:288-303. [PMID: 28500949 DOI: 10.1016/j.watres.2017.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 05/25/2023]
Abstract
A quantitative microbial risk assessment (QMRA) of opportunistic pathogens Legionella pneumophila (LP) and Mycobacterium avium complex (MAC) was undertaken for various uses of roof-harvested rainwater (RHRW) reported in Queensland, Australia to identify appropriate usages and guide risk management practices. Risks from inhalation of aerosols due to showering, swimming in pools topped up with RHRW, use of a garden hose, car washing, and toilet flushing with RHRW were considered for LP while both ingestion (drinking, produce consumption, and accidental ingestion from various activities) and inhalation risks were considered for MAC. The drinking water route of exposure presented the greatest risks due to cervical lymphadenitis and disseminated infection health endpoints for children and immune-compromised populations, respectively. It is therefore not recommended that these populations consume untreated rainwater. LP risks were up to 6 orders of magnitude higher than MAC risks for the inhalation route of exposure for all scenarios. Both inhalation and ingestion QMRA simulations support that while drinking, showering, and garden hosing with RHRW may present the highest risks, car washing and clothes washing could constitute appropriate uses of RHRW for all populations, and toilet flushing and consumption of lettuce irrigation with RHRW would be appropriate for non- immune-compromised populations.
Collapse
Affiliation(s)
- Kerry A Hamilton
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Charles N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
143
|
Whiley H, Bentham R, Brown MH. Legionella Persistence in Manufactured Water Systems: Pasteurization Potentially Selecting for Thermal Tolerance. Front Microbiol 2017; 8:1330. [PMID: 28769899 PMCID: PMC5515819 DOI: 10.3389/fmicb.2017.01330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/30/2017] [Indexed: 01/13/2023] Open
Abstract
Legionella is an opportunistic waterborne pathogen of increasing public health significance. Pasteurization, otherwise known as super-heat and flush (increasing water temperature to above 70°C and flushing all outlets), has been identified as an important mechanism for the disinfection of Legionella in manufactured water systems. However, several studies have reported that this procedure was ineffective at remediating water distribution systems as Legionella was able to maintain long term persistent contamination. Up to 25% of L. pneumophila cells survived heat treatment of 70°C, but all of these were in a viable but non-culturable state. This demonstrates the limitations of the culture method of Legionella detection currently used to evaluate disinfection protocols. In addition, it has been demonstrated that pasteurization and nutrient starvation can select for thermal tolerant strains, where L. pneumophila was consistently identified as having greater thermal tolerance compared to other Legionella species. This review demonstrates that further research is needed to investigate the effectiveness of pasteurization as a disinfection method. In particular, it focuses on the potential for pasteurization to select for thermal tolerant L. pneumophila strains which, as the primary causative agent of Legionnaires disease, have greater public health significance compared to other Legionella species.
Collapse
Affiliation(s)
- Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford ParkSA, Australia
| | - Richard Bentham
- College of Science and Engineering, Flinders University, Bedford ParkSA, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford ParkSA, Australia
| |
Collapse
|
144
|
Dai D, Prussin AJ, Marr LC, Vikesland PJ, Edwards MA, Pruden A. Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7759-7774. [PMID: 28677960 DOI: 10.1021/acs.est.7b01097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The "exposome" is a term describing the summation of one's lifetime exposure to microbes and chemicals. Such exposures are now recognized as major drivers of human health and disease. Because humans spend ∼90% of their time indoors, the built environment exposome merits particular attention. Herein we utilize an engineering perspective to advance understanding of the factors that shape the built environment exposome and its influence on human wellness and disease, while simultaneously informing development of a framework for intentionally controlling the exposome to protect public health. Historically, engineers have been focused on controlling chemical and physical contaminants and on eradicating microbes; however, there is a growing awareness of the role of "beneficial" microbes. Here we consider the potential to selectively control the materials and chemistry of the built environment to positively influence the microbial and chemical components of the indoor exposome. Finally, we discuss research gaps that must be addressed to enable intentional engineering design, including the need to define a "healthy" built environment exposome and how to control it.
Collapse
Affiliation(s)
- Dongjuan Dai
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Aaron J Prussin
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Linsey C Marr
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Peter J Vikesland
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| |
Collapse
|
145
|
Rosen MB, Pokhrel LR, Weir MH. A discussion about public health, lead and Legionella pneumophila in drinking water supplies in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:843-852. [PMID: 28285860 PMCID: PMC6959527 DOI: 10.1016/j.scitotenv.2017.02.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/19/2017] [Accepted: 02/19/2017] [Indexed: 05/19/2023]
Abstract
Lead (Pb) in public drinking water supplies has garnered much attention since the outset of the Flint water crisis. Pb is a known hazard in multiple environmental matrices, exposure from which results in long-term deleterious health effects in humans. This discussion paper aims to provide a succinct account of environmental Pb exposures with a focus on water Pb levels (WLLs) in the United States. It is understood that there is a strong correlation between WLLs and blood Pb levels (BLLs), and the associated health effects. However, within the Flint water crisis, more than water chemistry and Pb exposure occurred. A cascade of regulatory and bureaucratic failures culminated in the Flint water crisis. This paper will discuss pertinent regulations and responses including their limitations after an overview of the public health effects from Pb exposure as well as discussion on our limitations on monitoring and mitigating Pb in tap water. As the Flint water crisis also included increased Legionnares' disease, caused by Legionella pneumophila, this paper will discuss factors influencing L. pneumophila growth. This will highlight the systemic nature of changes to water chemistry and public health impacts. As we critically analyze these important aspects of water research, we offer discussions to stimulate future water quality research from a new and systemic perspective to inform and guide public health decision-making.
Collapse
Affiliation(s)
- Michael B Rosen
- Division of Environmental Health, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, 1301 Cecil B. Moore Avenue, Ritter Annex, Philadelphia, PA 19122, USA
| | - Lok R Pokhrel
- Division of Environmental Health, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, 1301 Cecil B. Moore Avenue, Ritter Annex, Philadelphia, PA 19122, USA.
| | - Mark H Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 426 Cunz Hall, 1841 Neil Ave., Columbus, OH 43210, USA; Department of Civil Environmental and Geodetic Engineering, College of Engineering, The Ohio State University, USA
| |
Collapse
|
146
|
Gamage SD, Ambrose M, Kralovic SM, Roselle GA. Water Safety and Legionella in Health Care: Priorities, Policy, and Practice. Infect Dis Clin North Am 2017; 30:689-712. [PMID: 27515143 DOI: 10.1016/j.idc.2016.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Health care facility water distribution systems have been implicated in the transmission of pathogens such as Legionella and nontuberculous mycobacteria to building occupants. These pathogens are natural inhabitants of water at low numbers and can amplify in premise plumbing water, especially if conditions are conducive to their growth. Because patients and residents in health care facilities are often at heightened risk for opportunistic infections, a multidisciplinary proactive approach to water safety is important to balance the various water priorities in health care and prevent water-associated infections in building occupants.
Collapse
Affiliation(s)
- Shantini D Gamage
- National Infectious Diseases Service, Specialty Care Services, Patient Care Services, Veterans Health Administration, Department of Veterans Affairs (VA), 810 Vermont Avenue, NW, Washington, DC 20420, USA; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA.
| | - Meredith Ambrose
- National Infectious Diseases Service, Specialty Care Services, Patient Care Services, Veterans Health Administration, Department of Veterans Affairs (VA), 810 Vermont Avenue, NW, Washington, DC 20420, USA
| | - Stephen M Kralovic
- National Infectious Diseases Service, Specialty Care Services, Patient Care Services, Veterans Health Administration, Department of Veterans Affairs (VA), 810 Vermont Avenue, NW, Washington, DC 20420, USA; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Medical Service, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA
| | - Gary A Roselle
- National Infectious Diseases Service, Specialty Care Services, Patient Care Services, Veterans Health Administration, Department of Veterans Affairs (VA), 810 Vermont Avenue, NW, Washington, DC 20420, USA; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Medical Service, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA
| |
Collapse
|
147
|
Abstract
Despite the ubiqitous nature of Mycobacterium avium complex (MAC) organisms in the environment, relatively few of those who are infected develop disease. Thus, some degree of susceptibility due to either underlying lung disease or immunosuppression is required. The frequency of pulmonary MAC disease is increasing in many areas, and the exact reasons are unknown. Isolation of MAC from a respiratory specimen does not necessarily mean that treatment is required, as the decision to treatment requires the synthesis of clinical, radiographic, and microbiologic information as well as a weighing of the risks and benefits for the individual patient. Successful treatment requires a multipronged approach that includes antibiotics, aggressive pulmonary hygiene, and sometimes resection of the diseased lung. A combination of azithromycin, rifampin, and ethambutol administered three times weekly is recommend for nodular bronchiectatic disease, whereas the same regimen may be used for cavitary disease but administered daily and often with inclusion of a parenteral aminoglycoside. Disseminated MAC (DMAC) is almost exclusively seen in patients with late-stage AIDS and can be treated with a macrolide in combination with ethambutol, with or without rifabutin: the most important intervention in this setting is to gain HIV control with the use of potent antiretroviral therapy. Treatment outcomes for many patients with MAC disease remain suboptimal, so new drugs and treatment regimens are greatly needed. Given the high rate of reinfection after cure, one of the greatest needs is a better understanding of where infection occurs and how this can be prevented.
Collapse
|
148
|
Moremi N, Claus H, Vogel U, Mshana SE. Surveillance of surgical site infections by Pseudomonas aeruginosa and strain characterization in Tanzanian hospitals does not provide proof for a role of hospital water plumbing systems in transmission. Antimicrob Resist Infect Control 2017; 6:56. [PMID: 28593044 PMCID: PMC5461769 DOI: 10.1186/s13756-017-0216-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022] Open
Abstract
Background The role of hospital water systems in the development of Pseudomonas aeruginosa (P. aeruginosa) surgical site infections (SSIs) in low-income countries is barely studied. This study characterized P. aeruginosa isolates from patients and water in order to establish possible epidemiological links. Methods Between December 2014 and September 2015, rectal and wound swabs, and water samples were collected in the frame of active surveillance for SSIs in the two Tanzanian hospitals. Typing of P. aeruginosa was done by multi-locus sequence typing. Results Of 930 enrolled patients, 536 were followed up, of whom 78 (14.6%, 95% CI; 11.6–17.5) developed SSIs. P. aeruginosa was found in eight (14%) of 57 investigated wounds. Of the 43 water sampling points, 29 were positive for P. aeruginosa. However, epidemiological links to wound infections were not confirmed. The P. aeruginosa carriage rate on admission was 0.9% (8/930). Of the 363 patients re-screened upon discharge, four (1.1%) possibly acquired P. aeruginosa during hospitalization. Wound infections of the three of the eight P. aeruginosa SSIs were caused by a strain of the same sequence type (ST) as the one from intestinal carriage. Isolates from patients were more resistant to antibiotics than water isolates. Conclusions The P. aeruginosa SSI rate was low. There was no evidence for transmission from tap water. Not all P. aeruginosa SSI were proven to be endogenous, pointing to other routes of transmission.
Collapse
Affiliation(s)
- Nyambura Moremi
- Institute for Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Street 2 / Building E1, 97080 Wuerzburg, Germany.,Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Bugando, Mwanza, Tanzania
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Street 2 / Building E1, 97080 Wuerzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Street 2 / Building E1, 97080 Wuerzburg, Germany
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Bugando, Mwanza, Tanzania
| |
Collapse
|
149
|
Gargano JW, Adam EA, Collier SA, Fullerton KE, Feinman SJ, Beach MJ. Mortality from selected diseases that can be transmitted by water - United States, 2003-2009. JOURNAL OF WATER AND HEALTH 2017; 15:438-450. [PMID: 28598348 DOI: 10.2166/wh.2017.301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diseases spread by water are caused by fecal-oral, contact, inhalation, or other routes, resulting in illnesses affecting multiple body systems. We selected 13 pathogens or syndromes implicated in waterborne disease outbreaks or other well-documented waterborne transmission (acute otitis externa, Campylobacter, Cryptosporidium, Escherichia coli (E. coli), free-living ameba, Giardia, Hepatitis A virus, Legionella (Legionnaires' disease), nontuberculous mycobacteria (NTM), Pseudomonas-related pneumonia or septicemia, Salmonella, Shigella, and Vibrio). We documented annual numbers of deaths in the United States associated with these infections using a combination of death certificate data, nationally representative hospital discharge data, and disease-specific surveillance systems (2003-2009). We documented 6,939 annual total deaths associated with the 13 infections; of these, 493 (7%) were caused by seven pathogens transmitted by the fecal-oral route. A total of 6,301 deaths (91%) were associated with infections from Pseudomonas, NTM, and Legionella, environmental pathogens that grow in water system biofilms. Biofilm-associated pathogens can cause illness following inhalation of aerosols or contact with contaminated water. These findings suggest that most mortality from these 13 selected infections in the United States does not result from classical fecal-oral transmission but rather from other transmission routes.
Collapse
Affiliation(s)
- J W Gargano
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - E A Adam
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - S A Collier
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - K E Fullerton
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - S J Feinman
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail: ; Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - M J Beach
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| |
Collapse
|
150
|
Walker J, Moore G, Collins S, Parks S, Garvey MI, Lamagni T, Smith G, Dawkin L, Goldenberg S, Chand M. Microbiological problems and biofilms associated with Mycobacterium chimaera in heater-cooler units used for cardiopulmonary bypass. J Hosp Infect 2017; 96:209-220. [PMID: 28532976 DOI: 10.1016/j.jhin.2017.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/19/2017] [Indexed: 01/21/2023]
Abstract
The role of heater-cooler units (HCUs) in the transmission of Mycobacterium chimaera during open heart surgery has been recognized since 2013. Subsequent investigations uncovered a remarkable global outbreak reflecting the wide distribution of implicated devices. HCUs are an essential component of cardiopulmonary bypass operations and their withdrawal would severely affect capacity for life-saving cardiac surgery. However, studies have demonstrated that many HCUs are contaminated with a wide range of micro-organisms, including M. chimaera and complex biofilms. Whole genome sequencing of M. chimaera isolates recovered from one manufacturer's HCUs, worldwide, has demonstrated a high level of genetic similarity, for which the most plausible hypothesis is a point source contamination of the devices. Dissemination of bioaerosols through breaches in the HCU water tanks is the most likely route of transmission and airborne bacteria have been shown to have reached the surgical field even with the use of ultraclean theatre ventilation. Controlling the microbiological quality of the water circulating in HCUs and reducing biofilm formation has been a major challenge for many hospitals. However, enhanced decontamination strategies have been recommended by manufacturers, and, although they are not always effective in eradicating M. chimaera from HCUs, UK hospitals have not reported any new cases of M. chimaera infection since implementing these mitigation strategies. Water safety groups in hospitals should be aware that water in medical devices such as HCUs may act as a vector in the transmission of potentially fatal water-borne infections.
Collapse
Affiliation(s)
- J Walker
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Porton Down, Salisbury, UK.
| | - G Moore
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - S Collins
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - S Parks
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - M I Garvey
- Infection Prevention and Control Team, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK
| | - T Lamagni
- Healthcare-Associated Infection & Antimicrobial Resistance Department, National Infection Service, Public Health England, Colindale, London, UK
| | - G Smith
- Public Health England National Mycobacterial Reference Service, Birmingham Public Health Laboratory, Birmingham, UK
| | - L Dawkin
- Estates and Facilities, University Hospitals Coventry and Warwickshire NHS Trust, Walsall, UK
| | - S Goldenberg
- Centre for Clinical Infection and Diagnostics Research, King's College, London and Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - M Chand
- Reference Microbiology, National Infection Service, Public Health England, Colindale, London, UK; Guy's & St Thomas' NHS Foundation Trust, London, UK; National Institute for Health Research, Health Protection Research Unit in Respiratory Infections, Imperial College, London, UK
| |
Collapse
|