101
|
Kashojiya S, Okajima K, Shimada T, Tokutomi S. Essential role of the A'α/Aβ gap in the N-terminal upstream of LOV2 for the blue light signaling from LOV2 to kinase in Arabidopsis photototropin1, a plant blue light receptor. PLoS One 2015; 10:e0124284. [PMID: 25886203 PMCID: PMC4401697 DOI: 10.1371/journal.pone.0124284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Phototropin (phot) is a blue light (BL) receptor in plants and is involved in phototropism, chloroplast movement, stomata opening, etc. A phot molecule has two photo-receptive domains named LOV (Light-Oxygen-Voltage) 1 and 2 in its N-terminal region and a serine/threonine kinase (STK) in its C-terminal region. STK activity is regulated mainly by LOV2, which has a cyclic photoreaction, including the transient formation of a flavin mononucleotide (FMN)-cysteinyl adduct (S390). One of the key events for the propagation of the BL signal from LOV2 to STK is conformational changes in a Jα-helix residing downstream of the LOV2 C-terminus. In contrast, we focused on the role of the A’α-helix, which is located upstream of the LOV2 N-terminus and interacts with the Jα-helix. Using LOV2-STK polypeptides from Arabidopsis thaliana phot1, we found that truncation of the A’α-helix and amino acid substitutions at Glu474 and Lys475 in the gap between the A’α and the Aβ strand of LOV2 (A’α/Aβ gap) to Ala impaired the BL-induced activation of the STK, although they did not affect S390 formation. Trypsin digested the LOV2-STK at Lys603 and Lys475 in a light-dependent manner indicating BL-induced structural changes in both the Jα-helix and the gap. The digestion at Lys603 is faster than at Lys475. These BL-induced structural changes were observed with the Glu474Ala and the Lys475Ala substitutes, indicating that the BL signal reached the Jα-helix as well as the A’α/Aβ gap but could not activate STK. The amino acid residues, Glu474 and Lys475, in the gap are conserved among the phots of higher plants and may act as a joint to connect the structural changes in the Jα-helix with the activation of STK.
Collapse
Affiliation(s)
- Sachiko Kashojiya
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Koji Okajima
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
- * E-mail:
| | - Takashi Shimada
- Life Science Research Center, SHIMADZU Corporation, Tokyo, Japan
| | - Satoru Tokutomi
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
102
|
Žádníková P, Smet D, Zhu Q, Straeten DVD, Benková E. Strategies of seedlings to overcome their sessile nature: auxin in mobility control. FRONTIERS IN PLANT SCIENCE 2015; 6:218. [PMID: 25926839 PMCID: PMC4396199 DOI: 10.3389/fpls.2015.00218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/19/2015] [Indexed: 05/21/2023]
Abstract
Plants are sessile organisms that are permanently restricted to their site of germination. To compensate for their lack of mobility, plants evolved unique mechanisms enabling them to rapidly react to ever changing environmental conditions and flexibly adapt their postembryonic developmental program. A prominent demonstration of this developmental plasticity is their ability to bend organs in order to reach the position most optimal for growth and utilization of light, nutrients, and other resources. Shortly after germination, dicotyledonous seedlings form a bended structure, the so-called apical hook, to protect the delicate shoot meristem and cotyledons from damage when penetrating through the soil. Upon perception of a light stimulus, the apical hook rapidly opens and the photomorphogenic developmental program is activated. After germination, plant organs are able to align their growth with the light source and adopt the most favorable orientation through bending, in a process named phototropism. On the other hand, when roots and shoots are diverted from their upright orientation, they immediately detect a change in the gravity vector and bend to maintain a vertical growth direction. Noteworthy, despite the diversity of external stimuli perceived by different plant organs, all plant tropic movements share a common mechanistic basis: differential cell growth. In our review, we will discuss the molecular principles underlying various tropic responses with the focus on mechanisms mediating the perception of external signals, transduction cascades and downstream responses that regulate differential cell growth and consequently, organ bending. In particular, we highlight common and specific features of regulatory pathways in control of the bending of organs and a role for the plant hormone auxin as a key regulatory component.
Collapse
Affiliation(s)
- Petra Žádníková
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, GhentBelgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, GhentBelgium
| | - Dajo Smet
- Department of Physiology, Laboratory of Functional Plant Biology, Ghent University, GhentBelgium
| | - Qiang Zhu
- Institute of Science and Technology Austria, KlosterneuburgAustria
| | | | - Eva Benková
- Institute of Science and Technology Austria, KlosterneuburgAustria
| |
Collapse
|
103
|
Abstract
ATP-driven transport across biological membranes is a key process to translocate solutes from the interior of the cell to the extracellular environment. In humans, ATP-binding cassette transporters are involved in absorption, distribution, metabolism, excretion, and toxicity, and also play a major role in anticancer drug resistance. Analogous transporters are also known to be involved in phytohormone translocation. These include, e.g., the transport of auxin by ABCB1/19 in Arabidopsis thaliana, the transport of abscisic acid by AtABCG25, and the transport of strigolactone by the Petunia hybrida ABC transporter PDR1. Within this article, we outline the current knowledge about plant ABC transporters with respect to their structure and function, and provide, for the first time, a protein homology model of the strigolactone transporter PDR1 from P. hybrida.
Collapse
Affiliation(s)
- Eva Hellsberg
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria
| | - Floriane Montanari
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria
| |
Collapse
|
104
|
Christie JM, Blackwood L, Petersen J, Sullivan S. Plant flavoprotein photoreceptors. PLANT & CELL PHYSIOLOGY 2015; 56:401-13. [PMID: 25516569 PMCID: PMC4357641 DOI: 10.1093/pcp/pcu196] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
Plants depend on the surrounding light environment to direct their growth. Blue light (300-500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lisa Blackwood
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jan Petersen
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stuart Sullivan
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
105
|
Rakusová H, Fendrych M, Friml J. Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:116-23. [PMID: 25553419 DOI: 10.1016/j.pbi.2014.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 05/09/2023]
Abstract
Subcellular trafficking and cell polarity are basic cellular processes crucial for plant development including tropisms - directional growth responses to environmental stimuli such as light or gravity. Tropisms involve auxin gradient across the stimulated organ that underlies the differential cell elongation and bending. The perception of light or gravity is followed by changes in the polar, cellular distribution of the PIN auxin transporters. Such re-specification of polar trafficking pathways is a part of the mechanism, by which plants adjust their phenotype to environmental changes. Recent genetic and biochemical studies provided the important insights into mechanisms of PIN polarization during tropisms. In this review, we summarize the present state of knowledge on dynamic PIN repolarization and its specific regulations during hypocotyl tropisms.
Collapse
Affiliation(s)
- Hana Rakusová
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent University, BE-9052 Ghent, Belgium
| | - Matyáš Fendrych
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
106
|
Galvão VC, Fankhauser C. Sensing the light environment in plants: photoreceptors and early signaling steps. Curr Opin Neurobiol 2015; 34:46-53. [PMID: 25638281 DOI: 10.1016/j.conb.2015.01.013] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 01/22/2023]
Abstract
Plants must constantly adapt to a changing light environment in order to optimize energy conversion through the process of photosynthesis and to limit photodamage. In addition, plants use light cues for timing of key developmental transitions such as initiation of reproduction (transition to flowering). Plants are equipped with a battery of photoreceptors enabling them to sense a very broad light spectrum spanning from UV-B to far-red wavelength (280-750nm). In this review we briefly describe the different families of plant photosensory receptors and the mechanisms by which they transduce environmental information to influence numerous aspects of plant growth and development throughout their life cycle.
Collapse
Affiliation(s)
- Vinicius Costa Galvão
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
107
|
Moni A, Lee AY, Briggs WR, Han IS. The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:34-40. [PMID: 24803136 DOI: 10.1111/plb.12187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/05/2014] [Indexed: 05/23/2023]
Abstract
We investigated the relationship between the blue light receptor phototropin 1 (phot1) and lateral root growth in Arabidopsis thaliana seedlings. Fluorescence and confocal microscopy images, as well as PHOT1 mRNA expression studies provide evidence that it is highly expressed in the elongation zone of lateral roots where auxin is accumulating. However, treatment with the auxin transport inhibitor N-1-naphthylphthalamic acid significantly reduced PHOT1 expression in this zone. In addition, PHOT1 expression was higher in darkness than in light. The total number of lateral roots was higher in the phot1 mutant than in wild-type Arabidopsis. Cells in the elongation zone of lateral roots of the phot1 mutant were longer than those of wild-type lateral roots. These findings suggest that PHOT1 plays a role(s) in elongation of lateral roots through the control of an auxin-related signalling pathway.
Collapse
Affiliation(s)
- A Moni
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | | | | | | |
Collapse
|
108
|
Mo M, Yokawa K, Wan Y, Baluška F. How and why do root apices sense light under the soil surface? FRONTIERS IN PLANT SCIENCE 2015; 6:775. [PMID: 26442084 PMCID: PMC4585147 DOI: 10.3389/fpls.2015.00775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
Light can penetrate several centimeters below the soil surface. Growth, development and behavior of plant roots are markedly affected by light despite their underground lifestyle. Early studies provided contrasting information on the spatial and temporal distribution of light-sensing cells in the apical region of root apex and discussed the physiological roles of plant hormones in root responses to light. Recent biological and microscopic advances have improved our understanding of the processes involved in the sensing and transduction of light signals, resulting in subsequent physiological and behavioral responses in growing root apices. Here, we review current knowledge of cellular distributions of photoreceptors and their signal transduction pathways in diverse root tissues and root apex zones. We are discussing also the roles of auxin transporters in roots exposed to light, as well as interactions of light signal perceptions with sensing of other environmental factors relevant to plant roots.
Collapse
Affiliation(s)
- Mei Mo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ken Yokawa
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Yinglang Wan, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No. 35, 100083 Beijing, China, ; František Baluška, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany,
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
- *Correspondence: Yinglang Wan, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No. 35, 100083 Beijing, China, ; František Baluška, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany,
| |
Collapse
|
109
|
Willige BC, Chory J. A current perspective on the role of AGCVIII kinases in PIN-mediated apical hook development. FRONTIERS IN PLANT SCIENCE 2015; 6:767. [PMID: 26500658 PMCID: PMC4593951 DOI: 10.3389/fpls.2015.00767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/07/2015] [Indexed: 05/22/2023]
Abstract
Despite their sessile lifestyle, seed plants are able to utilize differential growth rates to move their organs in response to their environment. Asymmetrical growth is the cause for the formation and maintenance of the apical hook-a structure of dicotyledonous plants shaped by the bended hypocotyl that eases the penetration through the covering soil. As predicted by the Cholodny-Went theory, the cause for differential growth is the unequal distribution of the phytohormone auxin. The PIN-FORMED proteins transport auxin from cell-to-cell and control the distribution of auxin in the plant. Their localization and activity are regulated by two subfamilies of AGCVIII protein kinases: the D6 PROTEIN KINASEs as well as PINOID and its two closely related WAG kinases. This mini-review focuses on the regulatory mechanism of these AGCVIII kinases as well as their role in apical hook development of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Björn C. Willige
- Salk Institute for Biological Studies, La Jolla, CA, USA
- *Correspondence: Björn C. Willige, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA,
| | - Joanne Chory
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, USA
| |
Collapse
|
110
|
Barbosa IC, Schwechheimer C. Dynamic control of auxin transport-dependent growth by AGCVIII protein kinases. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:108-115. [PMID: 25305415 DOI: 10.1016/j.pbi.2014.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 05/10/2023]
Abstract
Recent years have seen important advances in understanding the Arabidopsis thaliana AGCVIII protein kinases D6 PROTEIN KINASE, PINOID/WAGs, and the phototropins. It has become apparent that these kinases control the distribution of the phytohormone auxin within the plant through phosphorylation of PIN-FORMED efflux carriers or of ABC transporters. Strikingly, D6PK and PID share the same phosphosites in PIN-FORMED proteins but have differential phosphosite preferences, which appear to control the activity and polar distribution of PIN-FORMED transporters. All three AGCVIII kinases are membrane-associated proteins that are dynamically transported to and from the plasma membrane. The implications of this dynamic transport for the activity and cell biological behavior of their phosphorylation substrates are just now starting to be understood.
Collapse
Affiliation(s)
- Inês Cr Barbosa
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 4, 85354 Freising Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 4, 85354 Freising Germany.
| |
Collapse
|
111
|
Haga K, Hayashi KI, Sakai T. PINOID AGC kinases are necessary for phytochrome-mediated enhancement of hypocotyl phototropism in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1535-45. [PMID: 25281709 PMCID: PMC4226372 DOI: 10.1104/pp.114.244434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/02/2014] [Indexed: 05/18/2023]
Abstract
Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family.
Collapse
Affiliation(s)
- Ken Haga
- Department of Human Science and Common Education, Nippon Institute of Technology, Saitama 345-8501, Japan (K.H.);Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan (K.-i.H.); andGraduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan (T.S.)
| | - Ken-ichiro Hayashi
- Department of Human Science and Common Education, Nippon Institute of Technology, Saitama 345-8501, Japan (K.H.);Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan (K.-i.H.); andGraduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan (T.S.)
| | - Tatsuya Sakai
- Department of Human Science and Common Education, Nippon Institute of Technology, Saitama 345-8501, Japan (K.H.);Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan (K.-i.H.); andGraduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan (T.S.)
| |
Collapse
|
112
|
Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ. Light and gravity signals synergize in modulating plant development. FRONTIERS IN PLANT SCIENCE 2014; 5:563. [PMID: 25389428 PMCID: PMC4211383 DOI: 10.3389/fpls.2014.00563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/30/2014] [Indexed: 05/20/2023]
Abstract
Tropisms are growth-mediated plant movements that help plants to respond to changes in environmental stimuli. The availability of water and light, as well as the presence of a constant gravity vector, are all environmental stimuli that plants sense and respond to via directed growth movements (tropisms). The plant response to gravity (gravitropism) and the response to unidirectional light (phototropism) have long been shown to be interconnected growth phenomena. Here, we discuss the similarities in these two processes, as well as the known molecular mechanisms behind the tropistic responses. We also highlight research done in a microgravity environment in order to decouple two tropisms through experiments carried out in the absence of a significant unilateral gravity vector. In addition, alteration of gravity, especially the microgravity environment, and light irradiation produce important effects on meristematic cells, the undifferentiated, highly proliferating, totipotent cells which sustain plant development. Microgravity produces the disruption of meristematic competence, i.e., the decoupling of cell proliferation and cell growth, affecting the regulation of the cell cycle and ribosome biogenesis. Light irradiation, especially red light, mediated by phytochromes, has an activating effect on these processes. Phytohormones, particularly auxin, also are key mediators in these alterations. Upcoming experiments on the International Space Station will clarify some of the mechanisms and molecular players of the plant responses to these environmental signals involved in tropisms and the cell cycle.
Collapse
Affiliation(s)
| | - John Z. Kiss
- Department of Biology, University of Mississippi, UniversityMS, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), MadridSpain
| | | |
Collapse
|
113
|
Lamport DTA, Varnai P, Seal CE. Back to the future with the AGP-Ca2+ flux capacitor. ANNALS OF BOTANY 2014; 114:1069-85. [PMID: 25139429 PMCID: PMC4195563 DOI: 10.1093/aob/mcu161] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/17/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are ubiquitous in green plants. AGPs comprise a widely varied group of hydroxyproline (Hyp)-rich cell surface glycoproteins (HRGPs). However, the more narrowly defined classical AGPs massively predominate and cover the plasma membrane. Extensive glycosylation by pendant polysaccharides O-linked to numerous Hyp residues like beads of a necklace creates a unique ionic compartment essential to a wide range of physiological processes including germination, cell extension and fertilization. The vital clue to a precise molecular function remained elusive until the recent isolation of small Hyp-arabinogalactan polysaccharide subunits; their structural elucidation by nuclear magentic resonance imaging, molecular simulations and direct experiment identified a 15-residue consensus subunit as a β-1,3-linked galactose trisaccharide with two short branched sidechains each with a single glucuronic acid residue that binds Ca(2+) when paired with its adjacent sidechain. SCOPE AGPs bind Ca(2+) (Kd ∼ 6 μm) at the plasma membrane (PM) at pH ∼5·5 but release it when auxin-dependent PM H(+)-ATPase generates a low periplasmic pH that dissociates AGP-Ca(2+) carboxylates (pka ∼3); the consequential large increase in free Ca(2+) drives entry into the cytosol via Ca(2+) channels that may be voltage gated. AGPs are thus arguably the primary source of cytosolic oscillatory Ca(2+) waves. This differs markedly from animals, in which cytosolic Ca(2+) originates mostly from internal stores such as the sarcoplasmic reticulum. In contrast, we propose that external dynamic Ca(2+) storage by a periplasmic AGP capacitor co-ordinates plant growth, typically involving exocytosis of AGPs and recycled Ca(2+), hence an AGP-Ca(2+) oscillator. CONCLUSIONS The novel concept of dynamic Ca(2+) recycling by an AGP-Ca(2+) oscillator solves the long-standing problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca(2+) signalling and auxin. This accounts for the involvement of AGPs in plant morphogenesis, including tropic and nastic movements.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Peter Varnai
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Charlotte E Seal
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| |
Collapse
|
114
|
Hohm T, Demarsy E, Quan C, Allenbach Petrolati L, Preuten T, Vernoux T, Bergmann S, Fankhauser C. Plasma membrane H⁺ -ATPase regulation is required for auxin gradient formation preceding phototropic growth. Mol Syst Biol 2014; 10:751. [PMID: 25261457 PMCID: PMC4299663 DOI: 10.15252/msb.20145247] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phototropism is a growth response allowing plants to align their photosynthetic organs toward
incoming light and thereby to optimize photosynthetic activity. Formation of a lateral gradient of
the phytohormone auxin is a key step to trigger asymmetric growth of the shoot leading to
phototropic reorientation. To identify important regulators of auxin gradient formation, we
developed an auxin flux model that enabled us to test in silico the impact of
different morphological and biophysical parameters on gradient formation, including the contribution
of the extracellular space (cell wall) or apoplast. Our model indicates that cell size, cell
distributions, and apoplast thickness are all important factors affecting gradient formation. Among
all tested variables, regulation of apoplastic pH was the most important to enable the formation of
a lateral auxin gradient. To test this prediction, we interfered with the activity of plasma
membrane H+-ATPases that are required to control apoplastic pH. Our results show
that H+-ATPases are indeed important for the establishment of a lateral auxin
gradient and phototropism. Moreover, we show that during phototropism, H+-ATPase
activity is regulated by the phototropin photoreceptors, providing a mechanism by which light
influences apoplastic pH.
Collapse
Affiliation(s)
- Tim Hohm
- Department of Medical Genetics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Emilie Demarsy
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Clément Quan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tobias Preuten
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, CNRS INRA ENS Lyon UCBL Université de Lyon, Lyon, France
| | - Sven Bergmann
- Department of Medical Genetics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
115
|
Vandenbussche F, Van Der Straeten D. Differential accumulation of ELONGATED HYPOCOTYL5 correlates with hypocotyl bending to ultraviolet-B light. PLANT PHYSIOLOGY 2014; 166:40-3. [PMID: 25096978 PMCID: PMC4149724 DOI: 10.1104/pp.114.244582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During UV-B-specific induction of bending to the light in Arabidopsis etiolated seedlings, the transcription factor HY5 accumulates on the illuminated side and orchestrates the response.
Collapse
Affiliation(s)
- Filip Vandenbussche
- Department of Physiology, Laboratory of Functional Plant Biology, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Department of Physiology, Laboratory of Functional Plant Biology, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
116
|
Sato A, Sasaki S, Matsuzaki J, Yamamoto KT. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2. JOURNAL OF PLANT RESEARCH 2014; 127:627-39. [PMID: 24938853 DOI: 10.1007/s10265-014-0643-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/09/2014] [Indexed: 05/20/2023]
Abstract
Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.
Collapse
Affiliation(s)
- Atsuko Sato
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | | | | | | |
Collapse
|
117
|
Balzan S, Johal GS, Carraro N. The role of auxin transporters in monocots development. FRONTIERS IN PLANT SCIENCE 2014; 5:393. [PMID: 25177324 PMCID: PMC4133927 DOI: 10.3389/fpls.2014.00393] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/23/2014] [Indexed: 05/04/2023]
Abstract
Auxin is a key regulator of plant growth and development, orchestrating cell division, elongation and differentiation, embryonic development, root and stem tropisms, apical dominance, and transition to flowering. Auxin levels are higher in undifferentiated cell populations and decrease following organ initiation and tissue differentiation. This differential auxin distribution is achieved by polar auxin transport (PAT) mediated by auxin transport proteins. There are four major families of auxin transporters in plants: PIN-FORMED (PIN), ATP-binding cassette family B (ABCB), AUXIN1/LIKE-AUX1s, and PIN-LIKES. These families include proteins located at the plasma membrane or at the endoplasmic reticulum (ER), which participate in auxin influx, efflux or both, from the apoplast into the cell or from the cytosol into the ER compartment. Auxin transporters have been largely studied in the dicotyledon model species Arabidopsis, but there is increasing evidence of their role in auxin regulated development in monocotyledon species. In monocots, families of auxin transporters are enlarged and often include duplicated genes and proteins with high sequence similarity. Some of these proteins underwent sub- and neo-functionalization with substantial modification to their structure and expression in organs such as adventitious roots, panicles, tassels, and ears. Most of the present information on monocot auxin transporters function derives from studies conducted in rice, maize, sorghum, and Brachypodium, using pharmacological applications (PAT inhibitors) or down-/up-regulation (over-expression and RNA interference) of candidate genes. Gene expression studies and comparison of predicted protein structures have also increased our knowledge of the role of PAT in monocots. However, knockout mutants and functional characterization of single genes are still scarce and the future availability of such resources will prove crucial to elucidate the role of auxin transporters in monocots development.
Collapse
Affiliation(s)
- Sara Balzan
- Department of Agronomy, Animals, Food, Natural Resources and Environment, Agripolis, University of PadovaPadova, Italy
| | - Gurmukh S. Johal
- Department of Botany and Plant Pathology, Purdue UniversityWest Lafayette, IN, USA
| | - Nicola Carraro
- Department of Agronomy, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
118
|
Hindle MM, Martin SF, Noordally ZB, van Ooijen G, Barrios-Llerena ME, Simpson TI, Le Bihan T, Millar AJ. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species. BMC Genomics 2014; 15:640. [PMID: 25085202 PMCID: PMC4143559 DOI: 10.1186/1471-2164-15-640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. RESULTS Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. CONCLUSIONS We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, UK.
| |
Collapse
|
119
|
Suzuki H, Okamoto A, Kojima A, Nishimura T, Takano M, Kagawa T, Kadota A, Kanegae T, Koshiba T. Blue-light regulation of ZmPHOT1 and ZmPHOT2 gene expression and the possible involvement of Zmphot1 in phototropism in maize coleoptiles. PLANTA 2014; 240:251-61. [PMID: 24817587 DOI: 10.1007/s00425-014-2082-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/16/2014] [Indexed: 05/11/2023]
Abstract
ZmPHOT1 and ZmPHOT2 are expressed differentially in maize coleoptiles and leaves, with Zmphot1 possibly involved in first-positive phototropic curvature of red-light-adapted maize coleoptiles exposed to pulsed low-fluence blue light. Unilateral blue-light perception by phototropin(s) is the first event of phototropism, with the subsequent signal causing lateral transport of auxin at the coleoptile tip region of monocots. In this study, we analyzed the behavior of two maize phototropin genes: ZmPHOT1 and ZmPHOT2, the latter identified from the maize genome database and newly characterized. Quantitative real-time PCR analysis demonstrated that ZmPHOT1 was abundantly expressed in etiolated coleoptiles, while lower expressions of both ZmPHOT1 and ZmPHOT2 were observed in young leaves. Interestingly, these genes were not specifically expressed in the coleoptile tip region, a key position for photoperception in phototropism. Exposure to pulsed low-fluence blue light (LBL) (0.33 µmol m(-2) s(-1) × 8 s) and continuous high-fluence blue light (HBL) (10 µmol m(-2) s(-1)) rapidly decreased ZmPHOT1 gene expression in coleoptiles, with levels of ZmPHOT2 not significantly altered in that tissue. In young leaves, no drastic expression changes were induced in either ZmPHOT1 or ZmPHOT2 by LBL or HBL irradiation. The Zmphot1 protein was investigated by Western blot analysis with anti-Osphot1 antibodies. Zmphot1 was detected in microsomal fractions, with higher levels in coleoptiles than in leaves. HBL caused rapid phosphorylation of the protein, whereas no phot1 phosphorylation was induced by LBL. The involvement of Zmphot1 in LBL-induced phototropic curvature of maize coleoptiles is discussed.
Collapse
Affiliation(s)
- Hiromi Suzuki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci U S A 2014; 111:11557-62. [PMID: 25049419 DOI: 10.1073/pnas.1408960111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones.
Collapse
|
121
|
Retzer K, Butt H, Korbei B, Luschnig C. The far side of auxin signaling: fundamental cellular activities and their contribution to a defined growth response in plants. PROTOPLASMA 2014; 251:731-46. [PMID: 24221297 PMCID: PMC4059964 DOI: 10.1007/s00709-013-0572-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 05/04/2023]
Abstract
Recent years have provided us with spectacular insights into the biology of the plant hormone auxin, leaving the impression of a highly versatile molecule involved in virtually every aspect of plant development. A combination of genetics, biochemistry, and cell biology has established auxin signaling pathways, leading to the identification of two distinct modes of auxin perception and downstream regulatory cascades. Major targets of these signaling modules are components of the polar auxin transport machinery, mediating directional distribution of the phytohormone throughout the plant body, and decisively affecting plant development. Alterations in auxin transport, metabolism, or signaling that occur as a result of intrinsic as well as environmental stimuli, control adjustments in morphogenetic programs, giving rise to defined growth responses attributed to the activity of the phytohormone. Some of the results obtained from the analysis of auxin, however, do not fit coherently into a picture of highly specific signaling events, but rather suggest mutual interactions between auxin and fundamental cellular pathways, like the control of intracellular protein sorting or translation. Crosstalk between auxin and these basic determinants of cellular activity and how they might shape auxin effects in the control of morphogenesis are the subject of this review.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Haroon Butt
- Department of Biological Sciences, Forman Christian College, Ferozepur Road, Lahore, 54600 Pakistan
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|
122
|
Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, Jiang DA. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:106-17. [PMID: 24798203 DOI: 10.1111/tpj.12544] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/15/2014] [Accepted: 04/24/2014] [Indexed: 05/04/2023]
Abstract
Members of the ATP Binding Cassette B/Multidrug-Resistance/P-glyco-protein (ABCB/MDR/PGP) subfamily were shown to function primarily in Oryza sativa (rice) auxin transport; however, none of the rice ABCB transporters have been functionally characterized. Here, we describe that a knock-down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivity to 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). OsABCB14 displays enhanced specific auxin influx activity in yeast and protoplasts prepared from rice knock-down alleles. OsABCB14 is localized at the plasma membrane, pointing to an important directionality under physiological conditions. osabcb14 mutants were surprisingly found to be insensitive to iron deficiency treatment (-Fe). Their Fe concentration is higher and upregulation of Fe deficiency-responsive genes is lower in osabcb14 mutants than in wild-type rice (Nipponbare, NIP). Taken together, our results strongly support the role of OsABCB14 as an auxin influx transporter involved in Fe homeostasis. The functional characterization of OsABCB14 provides insights in monocot auxin transport and its relationship to Fe nutrition.
Collapse
Affiliation(s)
- Yanxia Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Ivanova A, Law SR, Narsai R, Duncan O, Lee JH, Zhang B, Van Aken O, Radomiljac JD, van der Merwe M, Yi K, Whelan J. A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:1233-1254. [PMID: 24820025 PMCID: PMC4081334 DOI: 10.1104/pp.114.237495] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/04/2014] [Indexed: 05/18/2023]
Abstract
The perception and integration of stress stimuli with that of mitochondrion function are important during periods of perturbed cellular homeostasis. In a continuous effort to delineate these mitochondrial/stress-interacting networks, forward genetic screens using the mitochondrial stress response marker alternative oxidase 1a (AOX1a) provide a useful molecular tool to identify and characterize regulators of mitochondrial stress signaling (referred to as regulators of alternative oxidase 1a [RAOs] components). In this study, we reveal that mutations in genes coding for proteins associated with auxin transport and distribution resulted in a greater induction of AOX1a in terms of magnitude and longevity. Three independent mutants for polarized auxin transport, rao3/big, rao4/pin-formed1, and rao5/multidrug-resistance1/abcb19, as well as the Myb transcription factor rao6/asymmetric leaves1 (that displays altered auxin patterns) were identified and resulted in an acute sensitivity toward mitochondrial dysfunction. Induction of the AOX1a reporter system could be inhibited by the application of auxin analogs or reciprocally potentiated by blocking auxin transport. Promoter activation studies with AOX1a::GUS and DR5::GUS lines further confirmed a clear antagonistic relationship between the spatial distribution of mitochondrial stress and auxin response kinetics, respectively. Genome-wide transcriptome analyses revealed that mitochondrial stress stimuli, such as antimycin A, caused a transient suppression of auxin signaling and conversely, that auxin treatment repressed a part of the response to antimycin A treatment, including AOX1a induction. We conclude that mitochondrial stress signaling and auxin signaling are reciprocally regulated, balancing growth and stress response(s).
Collapse
Affiliation(s)
- Aneta Ivanova
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Simon R Law
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Jae-Hoon Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Botao Zhang
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Olivier Van Aken
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Jordan D Radomiljac
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Margaretha van der Merwe
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - KeKe Yi
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| |
Collapse
|
124
|
Vandenbussche F, Tilbrook K, Fierro AC, Marchal K, Poelman D, Van Der Straeten D, Ulm R. Photoreceptor-mediated bending towards UV-B in Arabidopsis. MOLECULAR PLANT 2014; 7:1041-1052. [PMID: 24711292 DOI: 10.1093/mp/ssu039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light.
Collapse
Affiliation(s)
- Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Kimberley Tilbrook
- Department of Botany and Plant Biology, Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Ana Carolina Fierro
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, B-3001, Heverlee, Belgium
| | - Kathleen Marchal
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, B-3001, Heverlee, Belgium; Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium; Department of Information Technology, IMinds, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Dirk Poelman
- Lumilab, Department of Solid State Sciences, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Roman Ulm
- Department of Botany and Plant Biology, Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
125
|
de Lucas M, Prat S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. THE NEW PHYTOLOGIST 2014; 202:1126-1141. [PMID: 24571056 DOI: 10.1111/nph.12725] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/08/2014] [Indexed: 05/19/2023]
Abstract
Light and temperature, in coordination with the endogenous clock and the hormones gibberellin (GA) and brassinosteroids (BRs), modulate plant growth and development by affecting the expression of multiple cell wall- and auxin-related genes. PHYTOCHROME INTERACTING FACTORS (PIFs) play a central role in the activation of these genes, the activity of these factors being regulated by the circadian clock and phytochrome-mediated protein destabilization. GA signaling is also integrated at the level of PIFs; the DELLA repressors are found to bind these factors and impair their DNA-binding ability. The recent finding that PIFs are co-activated by BES1 and BZR1 highlights a further role of these regulators in BR signal integration, and reveals that PIFs act in a concerted manner with the BR-related BES1/BZR1 factors to activate auxin synthesis and transport at the gene expression level, and synergistically activate several genes with a role in cell expansion. Auxins feed back into this growth regulatory module by inducing GA biosynthesis and BES1/BZR1 gene expression, in addition to directly regulating several of these growth pathway gene targets. An exciting challenge in the future will be to understand how this growth program is dynamically regulated in time and space to orchestrate differential organ expansion and to provide plants with adaptation flexibility.
Collapse
Affiliation(s)
- Miguel de Lucas
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| | - Salomé Prat
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| |
Collapse
|
126
|
Peer WA, Jenness MK, Murphy AS. Measure for measure: determining, inferring and guessing auxin gradients at the root tip. PHYSIOLOGIA PLANTARUM 2014; 151:97-111. [PMID: 24617531 DOI: 10.1111/ppl.12182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 05/03/2023]
Abstract
The plant hormone auxin is transported from sites of synthesis to sites of action. Auxin responses are mediated by fast (non-transcriptional) and slow (transcriptional; ubiquitinylation) responses, which affect physiological changes at cellular and organismal scales. As such, auxin transport vectors regulate programmed and plastic growth responses to optimize growth and development. Here we address some common problems in extrapolating 'universal' understanding of auxin transport streams from analyses of loss-of-function mutants and auxin transport inhibitors. We also discuss the analytical methods and tools used to directly quantify, measure and infer auxin gradients within the plant [DR5:GUS/GFP (beta-glucuronidase/green fluorescent protein), DII-VENUS; surface electrodes, direct quantification]. We discuss the assumptions and limitations of each of these analyses, present comparative summaries of auxin transport methods and assay conditions (diffusion, non-specific transport and relevant assay conditions), and consider what is actually being transported and measured [labeled-indole-3-acetic acid (IAA), IAA metabolites].
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, 20742, USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | | | | |
Collapse
|
127
|
Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Dev Cell 2014; 28:132-46. [PMID: 24480642 DOI: 10.1016/j.devcel.2013.12.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/16/2013] [Accepted: 12/10/2013] [Indexed: 01/10/2023]
Abstract
In plants, auxin functions as a master controller of development, pattern formation, morphogenesis, and tropic responses. A sophisticated transport system has evolved to allow the establishment of precise spatiotemporal auxin gradients that regulate specific developmental programs. A critical unresolved question relates to how these gradients can be maintained in the presence of open plasmodesmata that allow for symplasmic exchange of essential nutrients and signaling macromolecules. Here we addressed this conundrum using genetic, physiological, and cell biological approaches and identified the operation of an auxin-GSL8 feedback circuit that regulates the level of plasmodesmal-localized callose in order to locally downregulate symplasmic permeability during hypocotyl tropic response. This system likely involves a plasmodesmal switch that would prevent the dissipation of a forming gradient by auxin diffusion through the symplasm. This regulatory system may represent a mechanism by which auxin could also regulate symplasmic delivery of a wide range of signaling agents.
Collapse
|
128
|
Yamamoto K, Suzuki T, Aihara Y, Haga K, Sakai T, Nagatani A. The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling. PLANT & CELL PHYSIOLOGY 2014; 55:497-506. [PMID: 24334375 DOI: 10.1093/pcp/pct184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phototropism is caused by differential cell elongation between the irradiated and shaded sides of plant organs, such as the stem. It is widely accepted that an uneven auxin distribution between the two sides crucially participates in this response. Plant-specific blue-light photoreceptors, phototropins (phot1 and phot2), mediate this response. In grass coleoptiles, the sites of light perception and phototropic bending are spatially separated. However, these sites are less clearly distinguished in dicots. Furthermore, the exact placement of the action of each phototropic signaling factor remains unknown. Here, we investigated the spatial aspects of phototropism using spotlight irradiation with etiolated Arabidopsis seedlings. The results demonstrated that the topmost part of about 1.1 mm of the hypocotyl constituted the light-responsive region in which both light perception and actual bending occurred. In addition, cotyledons and the shoot apex were dispensable for the response. Hence, the response was more region autonomous in dicots than in monocots. We next examined the elongation rates, the levels of phot1 and the auxin-reporter gene expression along the hypocotyl during the phototropic response. The light-responsive region was more active than the non-responsive region with respect to all of those parameters.
Collapse
Affiliation(s)
- Kazuhiko Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
129
|
Kami C, Allenbach L, Zourelidou M, Ljung K, Schütz F, Isono E, Watahiki MK, Yamamoto KT, Schwechheimer C, Fankhauser C. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:393-403. [PMID: 24286493 DOI: 10.1111/tpj.12395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/24/2013] [Accepted: 11/20/2013] [Indexed: 05/05/2023]
Abstract
Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Zhang KX, Xu HH, Gong W, Jin Y, Shi YY, Yuan TT, Li J, Lu YT. Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis. PLoS One 2014; 9:e85720. [PMID: 24465665 PMCID: PMC3897508 DOI: 10.1371/journal.pone.0085720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/02/2013] [Indexed: 12/18/2022] Open
Abstract
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.
Collapse
Affiliation(s)
- Kun-Xiao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Heng-Hao Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Jin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ya-Ya Shi
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Juan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
131
|
Okajima K, Aihara Y, Takayama Y, Nakajima M, Kashojiya S, Hikima T, Oroguchi T, Kobayashi A, Sekiguchi Y, Yamamoto M, Suzuki T, Nagatani A, Nakasako M, Tokutomi S. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin. J Biol Chem 2014; 289:413-22. [PMID: 24285544 PMCID: PMC3879564 DOI: 10.1074/jbc.m113.515403] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/25/2013] [Indexed: 01/27/2023] Open
Abstract
Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.
Collapse
Affiliation(s)
- Koji Okajima
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Yusuke Aihara
- the Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Yuki Takayama
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Mihoko Nakajima
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Sachiko Kashojiya
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Takaaki Hikima
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Tomotaka Oroguchi
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Amane Kobayashi
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Yuki Sekiguchi
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Masaki Yamamoto
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Tomomi Suzuki
- the Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Akira Nagatani
- the Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Masayoshi Nakasako
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Satoru Tokutomi
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
132
|
Li R, Li J, Li S, Qin G, Novák O, Pěnčík A, Ljung K, Aoyama T, Liu J, Murphy A, Gu H, Tsuge T, Qu LJ. ADP1 affects plant architecture by regulating local auxin biosynthesis. PLoS Genet 2014; 10:e1003954. [PMID: 24391508 PMCID: PMC3879159 DOI: 10.1371/journal.pgen.1003954] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/26/2013] [Indexed: 01/30/2023] Open
Abstract
Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. Plant architecture is one of the key factors that affect plant survival and productivity. It is well established that the plant hormone auxin plays an essential role in organ initiation and pattern formation, thus affecting plant architecture. We found that a putative MATE (multidrug and toxic compound extrusion) transporter, ADP1, which was expressed in the meristematic regions, through regulating the level of auxin biosynthesis, controls lateral organ outgrowth so as to maintain normal architecture in Arabidopsis. The more ADP1 was expressed, the less levels of local auxin were detected in the meristematic regions of the plant, resulting in increased growth rate and a greater number of axillary branches and flowers. The reduction of auxin levels is probably due to decreased level of auxin biosynthesis in the local meristematic regions. Down-regulated expression of ADP1 and its three closely related genes caused plants to grow slower and to produce less lateral organs. Our results indicated that ADP1-mediated regulation of the local auxin levels in meristematic regions is an essential determinant for plant architecture by restraining the outgrowth of lateral organs.
Collapse
Affiliation(s)
- Ruixi Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Jieru Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Shibai Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Ondřej Novák
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 21, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
| | - Jingjing Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Angus Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
- * E-mail: (TT); (LJQ)
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
- * E-mail: (TT); (LJQ)
| |
Collapse
|
133
|
Abstract
After over a century of progress, phototropism research still presents some fascinating challenges.
Collapse
|
134
|
Wang Y, M Folta K. Phototropin 1 and dim-blue light modulate the red light de-etiolation response. PLANT SIGNALING & BEHAVIOR 2014; 9:e976158. [PMID: 25482790 PMCID: PMC4623486 DOI: 10.4161/15592324.2014.976158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 06/04/2023]
Abstract
Light signals regulate seedling morphological changes during de-etiolation through the coordinated actions of multiple light-sensing pathways. Previously we have shown that red-light-induced hypocotyl growth inhibition can be reversed by addition of dim blue light through the action of phototropin 1 (phot1). Here we further examine the fluence-rate relationships of this blue light effect in short-term (hours) and long-term (days) hypocotyl growth assays. The red stem-growth inhibition and blue promotion is a low-fluence rate response, and blue light delays or attenuates both the red light and far-red light responses. These de-etiolation responses include blue light reversal of red or far-red induced apical hook opening. This response also requires phot1. Cryptochromes (cry1 and cry2) are activated by higher blue light fluence-rates and override phot1's influence on hypocotyl growth promotion. Exogenous application of auxin transport inhibitor naphthylphthalamic acid abolished the blue light stem growth promotion in both hypocotyl growth and hook opening. Results from the genetic tests of this blue light effect in auxin transporter mutants, as well as phytochrome kinase substrate mutants indicated that aux1 may play a role in blue light reversal of red light response. Together, the phot1-mediated adjustment of phytochrome-regulated photomorphogenic events is most robust in dim blue light conditions and is likely modulated by auxin transport through its transporters.
Collapse
Affiliation(s)
- Yihai Wang
- Horticultural Sciences Department; University of Florida, Gainesville, FL USA
- The Graduate Program in Plant Molecular and Cellular Biology; University of Florida, Gainesville, FL USA
| | - Kevin M Folta
- Horticultural Sciences Department; University of Florida, Gainesville, FL USA
- The Graduate Program in Plant Molecular and Cellular Biology; University of Florida, Gainesville, FL USA
| |
Collapse
|
135
|
Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR. Phototropism: growing towards an understanding of plant movement. THE PLANT CELL 2014; 26:38-55. [PMID: 24481074 PMCID: PMC3963583 DOI: 10.1105/tpc.113.119727] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 05/19/2023]
Abstract
Phototropism, or the differential cell elongation exhibited by a plant organ in response to directional blue light, provides the plant with a means to optimize photosynthetic light capture in the aerial portion and water and nutrient acquisition in the roots. Tremendous advances have been made in our understanding of the molecular, biochemical, and cellular bases of phototropism in recent years. Six photoreceptors and their associated signaling pathways have been linked to phototropic responses under various conditions. Primary detection of directional light occurs at the plasma membrane, whereas secondary modulatory photoreception occurs in the cytoplasm and nucleus. Intracellular responses to light cues are processed to regulate cell-to-cell movement of auxin to allow establishment of a trans-organ gradient of the hormone. Photosignaling also impinges on the transcriptional regulation response established as a result of changes in local auxin concentrations. Three additional phytohormone signaling pathways have also been shown to influence phototropic responsiveness, and these pathways are influenced by the photoreceptor signaling as well. Here, we will discuss this complex dance of intra- and intercellular responses that are regulated by these many systems to give rise to a rapid and robust adaptation response observed as organ bending.
Collapse
Affiliation(s)
- Emmanuel Liscum
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Address correspondence to
| | - Scott K. Askinosie
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Daniel L. Leuchtman
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Johanna Morrow
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Kyle T. Willenburg
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Diana Roberts Coats
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
136
|
Bailly A, Wang B, Zwiewka M, Pollmann S, Schenck D, Lüthen H, Schulz A, Friml J, Geisler M. Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:108-118. [PMID: 24313847 DOI: 10.1111/tpj.12369] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/11/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
Plant growth is achieved predominantly by cellular elongation, which is thought to be controlled on several levels by apoplastic auxin. Auxin export into the apoplast is achieved by plasma membrane efflux catalysts of the PIN-FORMED (PIN) and ATP-binding cassette protein subfamily B/phosphor-glycoprotein (ABCB/PGP) classes; the latter were shown to depend on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Here by using a transgenic approach in combination with phenotypical, biochemical and cell biological analyses we demonstrate the importance of a putative C-terminal in-plane membrane anchor of TWD1 in the regulation of ABCB-mediated auxin transport. In contrast with dwarfed twd1 loss-of-function alleles, TWD1 gain-of-function lines that lack a putative in-plane membrane anchor (HA-TWD1-Ct ) show hypermorphic plant architecture, characterized by enhanced stem length and leaf surface but reduced shoot branching. Greater hypocotyl length is the result of enhanced cell elongation that correlates with reduced polar auxin transport capacity for HA-TWD1-Ct . As a consequence, HA-TWD1-Ct displays higher hypocotyl auxin accumulation, which is shown to result in elevated auxin-induced cell elongation rates. Our data highlight the importance of C-terminal membrane anchoring for TWD1 action, which is required for specific regulation of ABCB-mediated auxin transport. These data support a model in which TWD1 controls lateral ABCB1-mediated export into the apoplast, which is required for auxin-mediated cell elongation.
Collapse
Affiliation(s)
- Aurélien Bailly
- Department of Biology - Plant Biology, University of Fribourg, Fribourg, Switzerland; Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
It Takes More Than Two to Tango: Regulation of Plant ABC Transporters. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-319-06511-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
138
|
Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat Commun 2013; 4:2094. [PMID: 23811955 DOI: 10.1038/ncomms3094] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/31/2013] [Indexed: 11/09/2022] Open
Abstract
Opening of stomata in the plant facilitates photosynthetic CO2 fixation and transpiration. Blue-light perception by phototropins (phot1, phot2) activates the plasma membrane H(+)-ATPase, causing stomata to open. Here we describe a regulator that connects these components, a Ser/Thr protein kinase, BLUS1 (BLUE LIGHT SIGNALING1), which mediates a primary step for phototropin signalling in guard cells. blus1 mutants identified by infrared thermography result in a loss of blue light-dependent stomatal opening. BLUS1 encodes a protein kinase that is directly phosphorylated by phot1 in vitro and in vivo at Ser-348 within its C-terminus. Both phosphorylation of Ser-348 and BLUS1 kinase activity are essential for activation of the H(+)-ATPase. blus1 mutants show lower stomatal conductance and CO2 assimilation than wild-type plants under decreased ambient CO2. Together, our analyses demonstrate that BLUS1 functions as a phototropin substrate and primary regulator of stomatal control to enhance photosynthetic CO2 assimilation under natural light conditions.
Collapse
|
139
|
Lindeboom JJ, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, Emons AMC, Mulder BM, Kirik V, Ehrhardt DW. A Mechanism for Reorientation of Cortical Microtubule Arrays Driven by Microtubule Severing. Science 2013; 342:1245533. [DOI: 10.1126/science.1245533] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
140
|
Vanneste S, Friml J. Calcium: The Missing Link in Auxin Action. PLANTS (BASEL, SWITZERLAND) 2013; 2:650-75. [PMID: 27137397 PMCID: PMC4844386 DOI: 10.3390/plants2040650] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 01/18/2023]
Abstract
Due to their sessile lifestyles, plants need to deal with the limitations and stresses imposed by the changing environment. Plants cope with these by a remarkable developmental flexibility, which is embedded in their strategy to survive. Plants can adjust their size, shape and number of organs, bend according to gravity and light, and regenerate tissues that were damaged, utilizing a coordinating, intercellular signal, the plant hormone, auxin. Another versatile signal is the cation, Ca(2+), which is a crucial second messenger for many rapid cellular processes during responses to a wide range of endogenous and environmental signals, such as hormones, light, drought stress and others. Auxin is a good candidate for one of these Ca(2+)-activating signals. However, the role of auxin-induced Ca(2+) signaling is poorly understood. Here, we will provide an overview of possible developmental and physiological roles, as well as mechanisms underlying the interconnection of Ca(2+) and auxin signaling.
Collapse
Affiliation(s)
- Steffen Vanneste
- Plant Systems Biology, VIB, and Plant Biotechnology and Bio-informatics, Ghent University, Ghent 9052, Belgium.
| | - Jiří Friml
- Plant Systems Biology, VIB, and Plant Biotechnology and Bio-informatics, Ghent University, Ghent 9052, Belgium
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg 3400, Austria
| |
Collapse
|
141
|
Peer WA. From perception to attenuation: auxin signalling and responses. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:561-8. [PMID: 24004572 DOI: 10.1016/j.pbi.2013.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 05/10/2023]
Abstract
The plant hormone auxin is essential for growth, development, and responses to environmental factors. Recently, Auxin Binding Protein 1 was shown to mediate non-transcriptional auxin signalling at the cell periphery. This has provoked reexamination of the paradigm that all auxin perception is intracellular and is mediated by the TIR1/AFB-Aux/IAA co-receptors for which auxin functions as a concentration-dependent molecular glue. Further, another F-box protein, SKP2a, was shown to bind auxin in the same way as TIR1/AFB, which provides a link to the role of auxin in the cell cycle. New work on auxin signalling and homeostasis include D6 PROTEIN KINASE activation of PINFORMED (PIN) auxin carriers, ROP-GTPase mediation of PIN localization, endoplasmic reticulum localization PIN and PIN-LIKES auxin carriers, and auxin biosynthesis and metabolism.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Environmental Science and Technology, University of Maryland, 5138 Plant Science Building, College Park, MD 20742, USA; Department of Plant Science and Landscape Architecture, University of Maryland, 5138 Plant Science Building, College Park, MD 20742, USA.
| |
Collapse
|
142
|
Zhang KX, Xu HH, Yuan TT, Zhang L, Lu YT. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:308-21. [PMID: 23888933 DOI: 10.1111/tpj.12298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/04/2013] [Accepted: 07/12/2013] [Indexed: 05/04/2023]
Abstract
Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response.
Collapse
Affiliation(s)
- Kun-Xiao Zhang
- Key Lab of MOE for Plant Development, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
143
|
Defining the Site of Light Perception and Initiation of Phototropism in Arabidopsis. Curr Biol 2013; 23:1934-8. [DOI: 10.1016/j.cub.2013.07.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/26/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022]
|
144
|
Korbei B, Luschnig C. Plasma membrane protein ubiquitylation and degradation as determinants of positional growth in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:809-23. [PMID: 23981390 DOI: 10.1111/jipb.12059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/16/2013] [Indexed: 05/08/2023]
Abstract
Being sessile organisms, plants evolved an unparalleled plasticity in their post-embryonic development, allowing them to adapt and fine-tune their vital parameters to an ever-changing environment. Crosstalk between plants and their environment requires tight regulation of information exchange at the plasma membrane (PM). Plasma membrane proteins mediate such communication, by sensing variations in nutrient availability, external cues as well as by controlled solute transport across the membrane border. Localization and steady-state levels are essential for PM protein function and ongoing research identified cis- and trans-acting determinants, involved in control of plant PM protein localization and turnover. In this overview, we summarize recent progress in our understanding of plant PM protein sorting and degradation via ubiquitylation, a post-translational and reversible modification of proteins. We highlight characterized components of the machinery involved in sorting of ubiquitylated PM proteins and discuss consequences of protein ubiquitylation on fate of selected PM proteins. Specifically, we focus on the role of ubiquitylation and PM protein degradation in the regulation of polar auxin transport (PAT). We combine this regulatory circuit with further aspects of PM protein sorting control, to address the interplay of events that might control PAT and polarized growth in higher plants.
Collapse
Affiliation(s)
- Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | | |
Collapse
|
145
|
Sukumar P, Maloney GS, Muday GK. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1392-405. [PMID: 23677937 PMCID: PMC3707546 DOI: 10.1104/pp.113.217174] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/03/2013] [Indexed: 05/18/2023]
Abstract
Adventitious roots emerge from aerial plant tissues, and the induction of these roots is essential for clonal propagation of agriculturally important plant species. This process has received extensive study in horticultural species but much less focus in genetically tractable model species. We have explored the role of auxin transport in this process in Arabidopsis (Arabidopsis thaliana) seedlings in which adventitious root initiation was induced by excising roots from low-light-grown hypocotyls. Inhibition of auxin transport from the shoot apex abolishes adventitious root formation under these conditions. Root excision was accompanied by a rapid increase in radioactive indole-3-acetic acid (IAA) transport and its accumulation in the hypocotyl above the point of excision where adventitious roots emerge. Local increases in auxin-responsive gene expression were also observed above the site of excision using three auxin-responsive reporters. These changes in auxin accumulation preceded cell division events, monitored by a cyclin B1 reporter (pCYCB1;1:GUS), and adventitious root initiation. We examined excision-induced adventitious root formation in auxin influx and efflux mutants, including auxin insensitive1, pin-formed1 (pin1), pin2, pin3, and pin7, with the most profound reductions observed in ATP-binding cassette B19 (ABCB19). An ABCB19 overexpression line forms more adventitious roots than the wild type in intact seedlings. Examination of transcriptional and translational fusions between ABCB19 and green fluorescent protein indicates that excision locally induced the accumulation of ABCB19 transcript and protein that is temporally and spatially linked to local IAA accumulation leading to adventitious root formation. These experiments are consistent with localized synthesis of ABCB19 protein after hypocotyl excision leads to enhanced IAA transport and local IAA accumulation driving adventitious root formation.
Collapse
|
146
|
Goyal A, Szarzynska B, Fankhauser C. Phototropism: at the crossroads of light-signaling pathways. TRENDS IN PLANT SCIENCE 2013; 18:393-401. [PMID: 23562459 DOI: 10.1016/j.tplants.2013.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/28/2013] [Accepted: 03/08/2013] [Indexed: 05/11/2023]
Abstract
Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins.
Collapse
Affiliation(s)
- Anupama Goyal
- Centre for Integrative Genomics, University of Lausanne, Genopode Building, CH 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
147
|
Zhao X, Wang YL, Qiao XR, Wang J, Wang LD, Xu CS, Zhang X. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. PLANT PHYSIOLOGY 2013; 162:1539-51. [PMID: 23674105 PMCID: PMC3700674 DOI: 10.1104/pp.113.216556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/10/2013] [Indexed: 05/07/2023]
Abstract
Phototropins (phot1 and phot2), the blue light receptors in plants, regulate hypocotyl phototropism in a fluence-dependent manner. Especially under high fluence rates of blue light (HBL), the redundant function mediated by both phot1 and phot2 drastically restricts the understanding of the roles of phot2. Here, systematic analysis of phototropin-related mutants and overexpression transgenic lines revealed that HBL specifically induced a transient increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in Arabidopsis (Arabidopsis thaliana) hypocotyls and that the increase in [Ca(2+)]cyt was primarily attributed to phot2. Pharmacological and genetic experiments illustrated that HBL-induced Ca(2+) increases were modulated differently by phot1 and phot2. Phot2 mediated the HBL-induced increase in [Ca(2+)]cyt mainly by an inner store-dependent Ca(2+)-release pathway, not by activating plasma membrane Ca(2+) channels. Further analysis showed that the increase in [Ca(2+)]cyt was possibly responsible for HBL-induced hypocotyl phototropism. An inhibitor of auxin efflux carrier exhibited significant inhibitions of both phototropism and increases in [Ca(2+)]cyt, which indicates that polar auxin transport is possibly involved in HBL-induced responses. Moreover, PHYTOCHROME KINASE SUBSTRATE1 (PKS1), the phototropin-related signaling element identified, interacted physically with phototropins, auxin efflux carrier PIN-FORMED1 and calcium-binding protein CALMODULIN4, in vitro and in vivo, respectively, and HBL-induced phototropism was impaired in pks multiple mutants, indicating the role of the PKS family in HBL-induced phototropism. Together, these results provide new insights into the functions of phototropins and highlight a potential integration point through which Ca(2+) signaling-related HBL modulates hypocotyl phototropic responses.
Collapse
Affiliation(s)
| | | | | | - Jin Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| | - Lin-Dan Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| | - Chang-Shui Xu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| | - Xiao Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| |
Collapse
|
148
|
Sun J, Qi L, Li Y, Zhai Q, Li C. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. THE PLANT CELL 2013; 25:2102-14. [PMID: 23757399 PMCID: PMC3723615 DOI: 10.1105/tpc.113.112417] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/13/2013] [Accepted: 05/27/2013] [Indexed: 05/19/2023]
Abstract
Both blue light (BL) and auxin are essential for phototropism in Arabidopsis thaliana. However, the mechanisms by which light is molecularly linked to auxin during phototropism remain elusive. Here, we report that phytochrome interacting factoR4 (PIF4) and PIF5 act downstream of the BL sensor phototropin1 (PHOT1) to negatively modulate phototropism in Arabidopsis. We also reveal that PIF4 and PIF5 negatively regulate auxin signaling. Furthermore, we demonstrate that PIF4 directly activates the expression of the auxin/indole-3-acetic acid (IAA) genes IAA19 and IAA29 by binding to the G-box (CACGTG) motifs in their promoters. Our genetic assays demonstrate that IAA19 and IAA29, which physically interact with auxin response factor7 (ARF7), are sufficient for PIF4 to negatively regulate auxin signaling and phototropism. This study identifies a key step of phototropic signaling in Arabidopsis by showing that PIF4 and PIF5 link light and auxin.
Collapse
|
149
|
Peer WA, Cheng Y, Murphy AS. Evidence of oxidative attenuation of auxin signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2629-39. [PMID: 23709674 DOI: 10.1093/jxb/ert152] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Indole-3-acetic acid (IAA) is the principle auxin in Arabidopsis and is synthesized primarily in meristems and nodes. Auxin is transported to distal parts of the plant in response to developmental programming or environmental stimuli to activate cell-specific responses. As with any signalling event, the signal must be attenuated to allow the system to reset. Local auxin accumulations are thus reduced by conjugation or catabolism when downstream responses have reached their optima. In most cell types, localized auxin accumulation increases both reactive oxygen species (ROS) and an irreversible catabolic product 2-oxindole-3-acid acid (oxIAA). oxIAA is inactive and does not induce expression of the auxin-responsive reporters DR5 or 2XD0. Here it is shown that oxIAA is not transported from cell to cell, although it appears to be a substrate for the ATP-binding cassette subfamily G (ABCG) transporters that are positioned primarily on the outer lateral surface of the root epidermis. However, oxIAA and oxIAA-Glc levels are higher in ABCB mutants that accumulate auxin due to defective cellular export. Auxin-induced ROS production appears to be at least partially mediated by the NAD(P)H oxidase RbohD. oxIAA levels are higher in mutants that lack ROS-scavenging flavonoids (tt4) and are lower in mutants that accumulate excess flavonols (tt3). These data suggest a model where IAA signalling is attenuated by IAA catabolism to oxIAA. Flavonoids appear to buffer ROS accumulations that occur with localized increases in IAA. This buffering of IAA oxidation would explain some growth responses observed in flavonoid-deficient mutants that cannot be explained by their established role in partially inhibiting auxin transport.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
150
|
Willige BC, Ahlers S, Zourelidou M, Barbosa IC, Demarsy E, Trevisan M, Davis PA, Roelfsema MRG, Hangarter R, Fankhauser C, Schwechheimer C. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. THE PLANT CELL 2013; 25:1674-88. [PMID: 23709629 PMCID: PMC3694699 DOI: 10.1105/tpc.113.111484] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/21/2013] [Accepted: 05/07/2013] [Indexed: 05/20/2023]
Abstract
Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending.
Collapse
Affiliation(s)
- Björn C. Willige
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Siv Ahlers
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Melina Zourelidou
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Inês C.R. Barbosa
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Emilie Demarsy
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martine Trevisan
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Philip A. Davis
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - M. Rob G. Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Würzburg University, 97082 Wuerzburg, Germany
| | - Roger Hangarter
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Christian Fankhauser
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Claus Schwechheimer
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising-Weihenstephan, Germany
- Address correspondence to
| |
Collapse
|