101
|
Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li CB, Li C. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato. THE PLANT CELL 2017; 29:1883-1906. [PMID: 28733419 PMCID: PMC5590496 DOI: 10.1105/tpc.16.00953] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato (Solanum lycopersicum) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea, MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes.
Collapse
Affiliation(s)
- Minmin Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - David T W Tzeng
- Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Silin Zhong
- Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chuanyou Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
102
|
Houmani H, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Mechanical wounding promotes local and long distance response in the halophyte Cakile maritima through the involvement of the ROS and RNS metabolism. Nitric Oxide 2017; 74:93-101. [PMID: 28655650 DOI: 10.1016/j.niox.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/27/2022]
Abstract
Mechanical wounding in plants, which are capable of generating defense responses possibly associated with nitro-oxidative stress, can be caused by (a)biotic factors such as rain, wind, herbivores and insects. Sea rocket (Cakile maritima L.), a halophyte plant belonging to the mustard family Brassicaceae, is commonly found on sandy coasts throughout Europe. Using 7-day-old Cakile maritima L. seedlings, mechanical wounding was induced in hypocotyls by pinching with a striped-tip forceps; after 3 h, several biochemical parameters were analyzed in both the damaged and unwounded organs (green cotyledons and roots). We thus determined NO production, H2O2 content, lipid oxidation as well as protein nitration patterns; we also identified several antioxidant enzymes including catalase, superoxide dismutase (SOD) isozymes, peroxidases, ascorbate-glutathione cycle enzymes and NADP-dehydrogenases. All these parameters were differentially modulated in the damaged (hypocotyls) and unwounded organs, which clearly indicated an induction of CuZnSOD V in the three organs, an increase in protein nitration in green cotyledons and an induction of NADP-isocitrate dehydrogenase activity in roots. On the whole, our results indicate that the wounding of hypocotyls, which showed an active ROS metabolism and oxidative stress, causes long-distance signals that also trigger responses in unwounded tissues with a more active RNS metabolism. These data therefore confirm the existence of local and long-distance responses which counteract negative effects and provide appropriate responses, enabling the wounded seedlings to survive.
Collapse
Affiliation(s)
- Hayet Houmani
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
103
|
Melon13-lipoxygenase CmLOX18 may be involved in C6 volatiles biosynthesis in fruit. Sci Rep 2017; 7:2816. [PMID: 28588227 PMCID: PMC5460189 DOI: 10.1038/s41598-017-02559-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
To better understand the function role of the melon CmLOX18 gene in the biosynthesis of C6 volatiles during fruit ripening, we biochemically characterized CmLOX18 and identified its subcellular localization in transgenic tomato plants. Heterologous expression in yeast cells showed that the molecular weight of the CmLOX18 protein was identical to that predicted, and that this enzyme possesseed lipoxygenase activity. Linoleic acid was demonstrated to be the preferred substrate for the purified recombinant CmLOX18 protein, which exhibited optimal catalytic activity at pH 4.5 and 30 °C. Chromatogram analysis of the reaction product indicated that the CmLOX18 protein exhibited positional specificity, as evidenced by its release of only a C-13 oxidized product. Subcellular localization analysis by transient expression in Arabidopsis protoplasts showed that CmLOX18 was localized to non-chloroplast organelles. When the CmLOX18 gene was transgenically expressed in tomato via Agrobacterium tumefaciens-mediated transformation, it was shown to enhance expression levels of the tomato hydroperoxide lyase gene LeHPL, whereas the expression levels of six TomLox genes were little changed. Furthermore, transgenic tomato fruits exhibited increases in the content of the C6 volatiles, namely hexanal, (Z)-3-hexanal, and (Z)-3-hexen-1-ol, indicating that CmLOX18 probably plays an important role in the synthesis of C6 compounds in fruits.
Collapse
|
104
|
A putative 12-oxophytodienoate reductase gene CsOPR3 from Camellia sinensis, is involved in wound and herbivore infestation responses. Gene 2017; 615:18-24. [PMID: 28322995 DOI: 10.1016/j.gene.2017.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022]
Abstract
12-Oxophytodienoate reductase (OPR) is a key enzyme in the biosynthesis of jasmonic acid (JA), which plays an important role in plant defense responses. Although multiple isoforms of OPRs have been identified in various annual herbaceous plants, genes encoding these enzymes in perennial woody plants have yet to be fully investigated. In the tea plant, Camellia sinensis (L.), no OPR genes have been isolated, and their possible roles in tea plant development and defense mechanism remain unknown. In this study, a putative OPR gene, designated as CsOPR3, was isolated from tea plants for the first time through the rapid amplification of cDNA ends. The open reading frame of CsOPR3 is 1197bp in length, and encodes a protein of 398 amino acids. Real-time qPCR analysis revealed that CsOPR3 was expressed in different organs. In particular, CsOPR3 was highly expressed in flowers, leaves and stems but was weakly expressed in roots and seeds. CsOPR3 expression could be rapidly induced by mechanical wounding, and increased JA levels were correlated with the wound-induced CsOPR3 expression. The infestation of the tea geometrid (TG) Ectropis obliqua Prout, regurgitant derived from TG and exogenous JA application could enhance the CsOPR3 expression. Our study is the first to report that CsOPR3 plays an important role in JA biosynthesis and tea plant defense against herbivorous insects.
Collapse
|
105
|
Exploring the Functions of 9-Lipoxygenase (DkLOX3) in Ultrastructural Changes and Hormonal Stress Response during Persimmon Fruit Storage. Int J Mol Sci 2017; 18:ijms18030589. [PMID: 28294971 PMCID: PMC5372605 DOI: 10.3390/ijms18030589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/28/2022] Open
Abstract
Lipoxygenase (LOX) initiates the hydroperoxidation of polyunsaturated fatty acids and is involved in multiple physiological processes. In this study, investigation of various microscopic techniques showed that the fruit peel cellular microstructure of the two persimmon cultivars differed after 12 days of storage, resulting in fruit weight loss and an increased number and depth of microcracks. Analysis of subcellular localization revealed that greater amounts of DkLOX3-immunolabelled gold particles accumulated in “Fupingjianshi” than in “Ganmaokui” during storage. In addition, the expression of DkLOX3 was positively up-regulated by abscisic acid (ABA), concomitant with the promotion of ethylene synthesis and loss of firmness, and was suppressed by salicylic acid (SA), concomitant with the maintenance of fruit firmness, inhibition of ethylene production and weight loss. In particular, the expression of DkLOX3 differed from the ethylene trajectory after methyl jasmonate (MeJA) treatment. Furthermore, we isolated a 1105 bp 5′ flanking region of DkLOX3 and the activity of promoter deletion derivatives was induced through various hormonal treatments. Promoter sequence cis-regulatory elements were analysed, and two conserved hormone-responsive elements were found to be essential for responsiveness to hormonal stress. Overall, these results will provide us with new clues for exploring the functions of DkLOX3 in fruit ripening and hormonal stress response.
Collapse
|
106
|
Yang DY, Li M, Ma NN, Yang XH, Meng QW. Tomato SlGGP-LIKE gene participates in plant responses to chilling stress and pathogenic infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:218-226. [PMID: 28092850 DOI: 10.1016/j.plaphy.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Plants are always exposed to abiotic and biotic stresses which can adversely affect their growth and development. As an important antioxidant, AsA plays a vital role in plant defence against damage caused by stresses. In this study, we cloned a tomato GDP-L-galactose phosphorylase-like (SlGGP-LIKE) gene and investigated its role in resistance to abiotic and biotic stresses by using antisense transgenic (AS) tomato lines. The AsA content in AS plants was lower than that in WT plants. Under chilling stress, the growth of AS plants was inhibited significantly, and they yielded higher levels of ROS, REC and MDA but demonstrated weaker APX activity than that shown by WT plants. Additionally, the declined values of Pn, Fv/Fm, oxidisable P700, and D1 protein content of PSII in AS lines were significant. Furthermore, the effect on xanthophyll cycle of AS plants was more severe than that on WT plants, and the ratio of zeaxanthin (Z)/(V + A + Z) and (Z + 0.5 A)/(V + A + Z) in AS lines was lower than that in WT plants. In spite of chilling stress, under Pseudomonas syringae pv.tomato (Pst) DC3000 strain infection, AS plants showed lesser bacterial cell growth and dead cells than those shown by WT plants. This finding indicated that AS plants demonstrated stronger resistance against pathogenic infection. Results suggest that SlGGP-LIKE gene played an important role in plant defence against chilling stress and pathogenic infection.
Collapse
Affiliation(s)
- Dong-Yue Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China
| | - Meng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China
| | - Na-Na Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China
| | - Xing-Hong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China.
| | - Qing-Wei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China.
| |
Collapse
|
107
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
108
|
Cui H, Wei J, Su J, Li C, Ge F. Elevated O 3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:243-250. [PMID: 27968993 DOI: 10.1016/j.plantsci.2016.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The elevated atmospheric O3 level may change the interactions of plants and insects, which potentially affects direct and indirect plant defences. However, the underlying mechanism of the impact of elevated O3 on indirect plant defence, namely the efficacy of natural enemies, is unclear. Here we tested a hypothesis that linked the effects of elevated O3 and whitefly herbivory on tomato volatile releases mediated by the jasmonic acid (JA) pathway with the preferences of parasitoid Encarsia formosa for two different tomato genotypes (wild-type (Wt) and JA-deficient genotype (spr2)). The O3 and whitefly herbivory significantly increased the production of volatile organic compounds (VOCs), including monoterpenes and green leaf volatiles (GLVs). The Wt plants released higher volatile levels, particularly monoterpenes, than did the spr2 plants. In Y-tube tests, limonene and Z-3-hexanol played key roles in the attraction of E. formosa. Moreover, regardless of plant genotype, the two plant genotypes were preferred by adult E. formosa under the O3 and O3+ herbivory treatments. Our results suggest that under elevated O3, the activation of the JA pathway significantly up-regulates the emission rates of volatiles, through which the efficacy of natural enemy might be promoted.
Collapse
Affiliation(s)
- Hongying Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianwei Su
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
109
|
Rahimi S, Kim YJ, Sukweenadhi J, Zhang D, Yang DC. PgLOX6 encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in Panax ginseng. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6007-6019. [PMID: 27811076 PMCID: PMC5100016 DOI: 10.1093/jxb/erw358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ginsenosides, the valuable pharmaceutical compounds in Panax ginseng, are triterpene saponins that occur mainly in ginseng plants. It was shown that in vitro treatment with the phytohormone jasmonic acid (JA) is able to increase ginsenoside production in ginseng plants. To understand the molecular link between JA biosynthesis and ginsenoside biosynthesis, we identified a JA biosynthetic 13-lipoxygenase gene (PgLOX6) in P. ginseng that promotes ginsenoside production. The expression of PgLOX6 was high in vascular bundles, which corresponds with expression of ginsenoside biosynthetic genes. Consistent with the role of PgLOX6 in synthesizing JA and promoting ginsenoside synthesis, transgenic plants overexpressing PgLOX6 in Arabidopsis had increased amounts of JA and methyl jasmonate (MJ), increased expression of triterpene biosynthetic genes such as squalene synthase (AtSS1) and squalene epoxidase (AtSE1), and increased squalene content. Moreover, transgenic ginseng roots overexpressing PgLOX6 had around 1.4-fold increased ginsenoside content and upregulation of ginsenoside biosynthesis-related genes including PgSS1, PgSE1, and dammarenediol synthase (PgDDS), which is similar to that of treatment with MJ. However, MJ treatment of transgenic ginseng significantly enhanced JA and MJ, associated with a 2.8-fold increase of ginsenoside content compared with the non-treated, non-transgenic control plant, which was 1.4 times higher than the MJ treatment effect on non-transgenic plants. These results demonstrate that PgLOX6 is responsible for the biosynthesis of JA and promotion of the production of triterpenoid saponin through up-regulating the expression of ginsenoside biosynthetic genes. This work provides insight into the role of JA in biosynthesizing secondary metabolites and provides a molecular tool for increasing ginsenoside production.
Collapse
Affiliation(s)
- Shadi Rahimi
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Crop Science, Chungbuk National University, Cheongju 361-763, Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Johan Sukweenadhi
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
| |
Collapse
|
110
|
Carrillo-Perdomo E, Jiménez-Arias D, Aller Á, Borges AA. Menadione Sodium Bisulphite (MSB) enhances the resistance response of tomato, leading to repel mollusc pests. PEST MANAGEMENT SCIENCE 2016; 72:950-960. [PMID: 26155989 DOI: 10.1002/ps.4074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/04/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Snails and slugs are terrestrial gastropods representing an important biotic stress that adversely affects crop yields. These pests are typically controlled with molluscicides, which produce pollution and toxicity and further induce the evolution of resistance mechanisms, making pest management even more challenging. In our work, we have assessed the efficacy of two different plant defence activators, menadione sodium bisulphite (MSB) and 1,2,3-benzothiadiazole-7-thiocarboxylic acid S-methyl ester (BTH), as inducers of resistance mechanisms of the model plant for defence, Solanum lycopersicum, against the generalist mollusc Theba grasseti (Helicidae). The study was designed to test the feeding behaviour and choice of snails, and also to analyse the expression profile of different genes specifically involved in defence against herbivores and wounds. RESULTS Our data suggest that, through the downregulation of the terpene volatile genes and the production of proteinase inhibitors, treated MSB plants may be less apparent to herbivores that use herbivore-induced plant volatiles for host location. By contrast, BTH was not effective in the treatment of the pest, probably owing to an antagonistic effect derived from the induction of both salicylic-acid-dependent and jasmonic-acid-dependent pathways. CONCLUSIONS This information is crucial to determine the genetic basis of the choice of terrestrial gastropod herbivores in tomato, providing valuable insight into how the plant defence activators could control herbivore pests in plants. Our work not only reports for the first time the interaction between tomato and a mollusc pest but also presents the action of two plant defence inductors that seems to produce opposed responses by inducing resistance mechanisms through different defence pathways.
Collapse
Affiliation(s)
- Estefanía Carrillo-Perdomo
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
- Universidad Nacional de Chimborazo (UNACH), Faculty of Engineering, Agroindustrial Engineering, Riobamba, Chimborazo, Ecuador
| | - David Jiménez-Arias
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
| | - Ángel Aller
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
- Universidad Nacional de Chimborazo (UNACH), Faculty of Engineering, Agroindustrial Engineering, Riobamba, Chimborazo, Ecuador
| | - Andrés A Borges
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
111
|
Chauvin A, Lenglet A, Wolfender JL, Farmer EE. Paired Hierarchical Organization of 13-Lipoxygenases in Arabidopsis. PLANTS 2016; 5:plants5020016. [PMID: 27135236 PMCID: PMC4931396 DOI: 10.3390/plants5020016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/11/2016] [Accepted: 03/18/2016] [Indexed: 12/16/2022]
Abstract
Embryophyte genomes typically encode multiple 13-lipoxygenases (13-LOXs) that initiate the synthesis of wound-inducible mediators called jasmonates. Little is known about how the activities of these different LOX genes are coordinated. We found that the four 13-LOX genes in Arabidopsis thaliana have different basal expression patterns. LOX2 expression was strong in soft aerial tissues, but was excluded both within and proximal to maturing veins. LOX3 was expressed most strongly in circumfasicular parenchyma. LOX4 was expressed in phloem-associated cells, in contrast to LOX6, which is expressed in xylem contact cells. To investigate how the activities of these genes are coordinated after wounding, we carried out gene expression analyses in 13-lox mutants. This revealed a two-tiered, paired hierarchy in which LOX6, and to a lesser extent LOX2, control most of the early-phase of jasmonate response gene expression. Jasmonates precursors produced by these two LOXs in wounded leaves are converted to active jasmonates that regulate LOX3 and LOX4 gene expression. Together with LOX2 and LOX6, and working downstream of them, LOX3 and LOX4 contribute to jasmonate synthesis that leads to the expression of the defense gene VEGETATIVE STORAGE PROTEIN2 (VSP2). LOX3 and LOX4 were also found to contribute to defense against the generalist herbivore Spodoptera littoralis. Our results reveal that 13-LOX genes are organised in a regulatory network, and the data herein raise the possibility that other genomes may encode LOXs that act as pairs.
Collapse
Affiliation(s)
- Adeline Chauvin
- School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Aurore Lenglet
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
112
|
Song L, Wang G, Malhotra A, Deutscher MP, Liang W. Reversible acetylation on Lys501 regulates the activity of RNase II. Nucleic Acids Res 2016; 44:1979-88. [PMID: 26847092 PMCID: PMC4797298 DOI: 10.1093/nar/gkw053] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
RNase II, a 3' to 5' processive exoribonuclease, is the major hydrolytic enzyme in Escherichia coli accounting for ∼90% of the total activity. Despite its importance, little is actually known about regulation of this enzyme. We show here that one residue, Lys501, is acetylated in RNase II. This modification, reversibly controlled by the acetyltransferase Pka, and the deacetylase CobB, affects binding of the substrate and thus decreases the catalytic activity of RNase II. As a consequence, the steady-state level of target RNAs of RNase II may be altered in the cells. We also find that under conditions of slowed growth, the acetylation level of RNase II is elevated and the activity of RNase II decreases, emphasizing the importance of this regulatory process. These findings indicate that acetylation can regulate the activity of a bacterial ribonuclease.
Collapse
Affiliation(s)
- Limin Song
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Murray P Deutscher
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
113
|
Hou Y, Meng K, Han Y, Ban Q, Wang B, Suo J, Lv J, Rao J. The Persimmon 9-lipoxygenase Gene DkLOX3 Plays Positive Roles in Both Promoting Senescence and Enhancing Tolerance to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1073. [PMID: 26697033 PMCID: PMC4674570 DOI: 10.3389/fpls.2015.01073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 05/21/2023]
Abstract
The lipoxygenase (LOX) pathway is a key regulator for lipid peroxidation, which is crucial for plant senescence and defense pathways. In this study, the transcriptional expression patterns of three persimmon (Diospyros kaki L. 'Fupingjianshi') 9-lipoxygenase genes (DkLOX1, DkLOX3, and DkLOX4) were investigated. DkLOX1 was specifically expressed in fruit, particularly in young fruit, and showed little response to the postharvest environments. DkLOX4 was expressed in all tissues and slightly stimulated by mechanical damage and low temperature. DkLOX3 was expressed mainly in mature fruit, and the expression was extremely high throughout the storage period, apparently up-regulated by mechanical damage and high carbon dioxide treatments. Further functional analysis showed that overexpression of DkLOX3 in tomato (Solanum lycopersicum cv. Micro-Tom) accelerated fruit ripening and softening. This was accompanied by higher malondialdehyde (MDA) content and lycopene accumulation, advanced ethylene release peak and elevated expression of ethylene synthesis genes, including ACS2, ACO1, and ACO3. In addition, DkLOX3 overexpression promoted dark induced transgenic Arabidopsis leaf senescence with more chlorophyll loss, increased electrolyte leakage and MDA content. Furthermore, the functions of DkLOX3 in response to abiotic stresses, including osmotic stress, high salinity and drought were investigated. Arabidopsis DkLOX3 overexpression (DkLOX3-OX) transgenic lines were found to be more tolerant to osmotic stress with higher germination rate and root growth than wild-type. Moreover, DkLOX3-OX Arabidopsis plants also exhibited enhanced resistance to high salinity and drought, with similar decreased O2 (-) and H2O2 accumulation and upregulation of stress-responsive genes expression, including RD22, RD29A, RD29B, and NCED3, except for FRY1, which plays a negative role in stress response. Overall, these results suggested that DkLOX3 plays positive roles both in promoting ripening and senescence through lipid peroxidation and accelerated ethylene production and in stress response via regulating reactive oxygen species accumulation and stress responsive genes expression.
Collapse
Affiliation(s)
- Yali Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Kun Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Ye Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Qiuyan Ban
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Biao Wang
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Jiangtao Suo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jingyi Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jingping Rao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
114
|
Ling Z, Zhou W, Baldwin IT, Xu S. Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:228-43. [PMID: 26306554 DOI: 10.1111/tpj.12997] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 05/06/2023]
Abstract
Changes in gene expression and alternative splicing (AS) are involved in many responses to abiotic and biotic stresses in eukaryotic organisms. In response to attack and oviposition by insect herbivores, plants elicit rapid changes in gene expression which are essential for the activation of plant defenses; however, the herbivory-induced changes in AS remain unstudied. Using mRNA sequencing, we performed a genome-wide analysis on tobacco hornworm (Manduca sexta) feeding-induced AS in both leaves and roots of Nicotiana attenuata. Feeding by M. sexta for 5 h reduced total AS events by 7.3% in leaves but increased them in roots by 8.0% and significantly changed AS patterns in leaves and roots of existing AS genes. Feeding by M. sexta also resulted in increased (in roots) and decreased (in leaves) transcript levels of the serine/arginine-rich (SR) proteins that are involved in the AS machinery of plants and induced changes in SR gene expression that were jasmonic acid (JA)-independent in leaves but JA-dependent in roots. Changes in AS and gene expression elicited by M. sexta feeding were regulated independently in both tissues. This study provides genome-wide evidence that insect herbivory induces changes not only in the levels of gene expression but also in their splicing, which might contribute to defense against and/or tolerance of herbivory.
Collapse
Affiliation(s)
- Zhihao Ling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
115
|
Ren Y, Di Jiao, Gong G, Zhang H, Guo S, Zhang J, Xu Y. Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp. niveum (FON) race 1 and race 2 in watermelon ( Citrullus lanatus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:183. [PMID: 26347205 PMCID: PMC4552779 DOI: 10.1007/s11032-015-0375-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/20/2015] [Indexed: 05/21/2023]
Abstract
Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. niveum (FON) is the major soilborne disease of watermelon (Citrullus lanatus L.). The development and deployment of resistant cultivars is generally considered to be an effective approach to control FW. In this study, an F8 population consisting of 103 recombinant inbred lines derived from a cross between the cultivar 97103 and a wild accession PI 296341-FR was used for FON race 1 and race 2 fungal inoculations. One major QTL on chromosome 1 for FON race 1 resistance was detected with a logarithm of odds of 13.2 and explained phenotypic variation R2 = 48.1 %; two QTLs of FON race 2 resistance on chromosomes 9 and 10 were discovered based on the high-density integrated genetic map we constructed. The nearest molecular marker should be useful for marker-assisted selection of FON race 1 and race 2 resistance. One receptor kinase, one glucan endo-1,3-β-glucosidase precursors and three acidic chitinase located in the FON-1 QTL genomic region. In Qfon2.1 QTL region, one lipoxygenase gene, five receptor-like kinases and four glutathione S-transferase genes are discovered. One arginine biosynthesis bifunctional protein, two receptor kinase proteins and one lipid-transfer protein located in Qfon2.2 QTL region. Based on SNP analysis by using 20 re-sequenced accessions of watermelon and 231-plant F2 population generated from Black Diamond × Calhoun Grey, we developed a SNP marker Chr1SNP_502124 for FON-1 detection.
Collapse
Affiliation(s)
- Yi Ren
- />National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, People’s Republic of China
- />Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, People’s Republic of China
- />Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, People’s Republic of China
- />Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Di Jiao
- />National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, People’s Republic of China
- />Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, People’s Republic of China
- />Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, People’s Republic of China
- />Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Guoyi Gong
- />National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, People’s Republic of China
- />Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, People’s Republic of China
- />Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, People’s Republic of China
| | - Haiying Zhang
- />National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, People’s Republic of China
- />Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, People’s Republic of China
- />Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, People’s Republic of China
| | - Shaogui Guo
- />National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, People’s Republic of China
- />Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, People’s Republic of China
- />Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, People’s Republic of China
| | - Jie Zhang
- />National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, People’s Republic of China
- />Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, People’s Republic of China
- />Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, People’s Republic of China
| | - Yong Xu
- />National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, People’s Republic of China
- />Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, People’s Republic of China
- />Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, People’s Republic of China
| |
Collapse
|
116
|
Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice. PLoS One 2015; 10:e0127831. [PMID: 26035591 PMCID: PMC4452794 DOI: 10.1371/journal.pone.0127831] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
AP2/ERF–type transcription factors regulate important functions of plant growth and development as well as responses to environmental stimuli. A rice AP2/ERF transcription factor, OsEREBP1 is a downstream component of a signal transduction pathway in a specific interaction between rice (Oryza sativa) and its bacterial pathogen, Xoo (Xanthomonas oryzae pv. oryzae). Constitutive expression of OsEREBP1 in rice driven by maize ubiquitin promoter did not affect normal plant growth. Microarray analysis revealed that over expression of OsEREBP1 caused increased expression of lipid metabolism related genes such as lipase and chloroplastic lipoxygenase as well as several genes related to jasmonate and abscisic acid biosynthesis. PR genes, transcription regulators and Aldhs (alcohol dehydrogenases) implicated in abiotic stress and submergence tolerance were also upregulated in transgenic plants. Transgenic plants showed increase in endogenous levels of α-linolenate, several jasmonate derivatives and abscisic acid but not salicylic acid. Soluble modified GFP (SmGFP)-tagged OsEREBP1 was localized to plastid nucleoids. Comparative analysis of non-transgenic and OsEREBP1 overexpressing genotypes revealed that OsEREBP1 attenuates disease caused by Xoo and confers drought and submergence tolerance in transgenic rice. Our results suggest that constitutive expression of OsEREBP1 activates the jasmonate and abscisic acid signalling pathways thereby priming the rice plants for enhanced survival under abiotic or biotic stress conditions. OsEREBP1 is thus, a good candidate gene for engineering plants for multiple stress tolerance.
Collapse
Affiliation(s)
- V. Jisha
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Jena, Germany
| | | | | |
Collapse
|
117
|
Iberkleid I, Sela N, Brown Miyara S. Meloidogyne javanica fatty acid- and retinol-binding protein (Mj-FAR-1) regulates expression of lipid-, cell wall-, stress- and phenylpropanoid-related genes during nematode infection of tomato. BMC Genomics 2015; 16:272. [PMID: 25886179 PMCID: PMC4450471 DOI: 10.1186/s12864-015-1426-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/02/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The secreted Meloidogyne javanica fatty acid- and retinol-binding (FAR) protein Mj-FAR-1 is involved in nematode development and reproduction in host tomato roots. To gain further insight into the role of Mj-FAR-1 in regulating disease development, local transcriptional changes were monitored in tomato hairy root lines with constitutive mj-far-1 expression compared with control roots without inoculation, and 2, 5 and 15 days after inoculation (DAI), using mRNA sequencing analysis. RESULTS Gene-expression profiling revealed a total of 3970 differentially expressed genes (DEGs) between the two lines. Among the DEGs, 1093, 1039, 1959, and 1328 genes were up- or downregulated 2-fold with false discovery rate < 0.001 in noninoculated roots, and roots 2, 5, and 15 DAI compared with control roots, respectively. Four main groups of genes that might be associated with Mj-FAR-1-mediated susceptibility were identified: 1) genes involved in biotic stress responses such as pathogen-defense mechanisms and hormone metabolism; 2) genes involved in phenylalanine and phenylpropanoid metabolism; 3) genes associated with cell wall synthesis, modification or degradation; and 4) genes associated with lipid metabolism. All of these genes were overrepresented among the DEGs. Studying the distances between the treatments, samples from noninoculated roots and roots at 2 DAI clustered predominantly according to the temporal dynamics related to nematode infection. However, at the later time points (5 and 15 DAI), samples clustered predominantly according to mj-far-1 overexpression, indicating that at these time points Mj-FAR-1 is more important in defining a common transcriptome. CONCLUSIONS The presence of four groups of DEGs demonstrates a network of molecular events is mediated by Mj-FAR-1 that leads to highly complex manipulation of plant defense responses against nematode invasion. The results shed light on the in vivo role of secreted FAR proteins in parasitism, and add to the mounting evidence that secreted FAR proteins play a major role in nematode parasitism.
Collapse
Affiliation(s)
- Ionit Iberkleid
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Noa Sela
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| |
Collapse
|
118
|
Abstract
Tomato (Solanum lycopersicum), along with many other economically valuable species, belongs to the Solanaceae family. Understanding how plants in this family defend themselves against pathogens offers the opportunity of improving yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques that allow determination of changes in transcript abundance during pathogen attack. Such changes can implicate the affected gene as participating in plant defense. Testing the involvement of these candidate genes in defense has relied largely on posttranscriptional gene silencing, particularly virus-induced gene silencing. We discuss how functional genomics has played a key role in our current understanding of the defense response in tomato and related species and what are the challenges and opportunities for the future.
Collapse
|
119
|
Martel C, Zhurov V, Navarro M, Martinez M, Cazaux M, Auger P, Migeon A, Santamaria ME, Wybouw N, Diaz I, Van Leeuwen T, Navajas M, Grbic M, Grbic V. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:343-61. [PMID: 25679539 DOI: 10.1094/mpmi-09-14-0291-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.
Collapse
|
120
|
Gao C, Li P, Song A, Wang H, Wang Y, Ren L, Qi X, Chen F, Jiang J, Chen S. Isolation and characterization of six AP2/ERF transcription factor genes in Chrysanthemum nankingense. Int J Mol Sci 2015; 16:2052-65. [PMID: 25607731 PMCID: PMC4307348 DOI: 10.3390/ijms16012052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
The AP2/ERF family of plant transcription factors (TFs) regulate a variety of developmental and physiological processes. Here, we report the isolation of six AP2/ERF TF family genes from Chrysanthemum nankingense. On the basis of sequence similarity, one of these belonged to the Ethylene Responsive Factor (ERF) subfamily and the other five to the Dehydration Responsive Element Binding protein (DREB) subfamily. A transient expression experiment showed that all six AP2/ERF proteins localized to the nucleus. A yeast-one hybrid assay demonstrated that CnDREB1-1, 1-2 and 1-3 all function as transactivators, while CnERF1, CnDREB3-1 and 3-2 have no transcriptional activation ability. The transcription response of the six TFs in response to wounding, salinity and low temperature stress and treatment with abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) showed that CnERF1 was up-regulated by wounding and low temperature stress but suppressed by salinity stress. The transcription of CnDREB1-1, 1-2 and 1-3 was down-regulated by ABA and JA to varying degrees. CnDREB3-1 and 3-2 was moderately increased or decreased by wounding and SA treatment, suppressed by salinity stress and JA treatment, and enhanced by low temperature stress and ABA treatment.
Collapse
Affiliation(s)
- Chunyan Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peiling Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yinjie Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiangyu Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
121
|
Hu T, Zeng H, Hu Z, Qv X, Chen G. Simultaneous silencing of five lipoxygenase genes increases the contents of α-linolenic and linoleic acids in tomato (Solanum lycopersicum L.) fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11988-11993. [PMID: 25418937 DOI: 10.1021/jf503801u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
α-Linolenic and linoleic acids are essential fatty acids (EFAs) for humans and required for maintenance of optimal health, but they cannot be synthesized by the human body and must be obtained from dietary sources. Using TomloxC fragment, TomloxD fragment, and partial TomloxA sequence that is highly identical with TomloxB and TomloxE, a RNAi expression vector was constructed. The construct was used to transform tomato cotyledon explants with the Agrobacterium-mediated co-cultivation method. The real-time reverse transcription polymerase chain reaction analysis showed that the expression of TomloxA, TomloxB, TomloxC, TomloxD, and TomloxE in transgenic tomato plants was drastically repressed, which led to a marked decrease in the levels of lipoxygenase activity. Finally, higher accumulations of the endogenous α-linolenic and linoleic acids were detected in the transgenic tomato fruits, which were 1.65-3.99 and 2.91-4.98 times that of the non-transformed tomato fruits, respectively.
Collapse
Affiliation(s)
- Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University , Chongqing 400044, People's Republic of China
| | | | | | | | | |
Collapse
|
122
|
Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC PLANT BIOLOGY 2014; 14:351. [PMID: 25491370 PMCID: PMC4272553 DOI: 10.1186/s12870-014-0351-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/25/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Fruit maturation and ripening are genetically regulated processes that involve a complex interplay of plant hormones, growth regulators and multiple biological and environmental factors. Tomato (Solanum lycopersicum) has been used as a model of biological and genetic studies on the regulation of specific ripening pathways, including ethylene, carotenoid and cell wall metabolism. This model has also been used to investigate the functions of upstream signalling and transcriptional regulators. Thus far, many ripening-associated transcription factors that influence fruit development and ripening have been reported. NAC transcription factors are plant specific and play important roles in many stages of plant growth and development, such as lateral root formation, secondary cell wall synthesis, and embryo, floral organ, vegetative organ and fruit development. RESULTS Tissue-specific analysis by quantitative real-time PCR showed that SlNAC1 was highly accumulated in immature green fruits; the expression of SlNAC1 increased with fruit ripening till to the highest level at 7 d after the breaker stage. The overexpression of SlNAC1 resulted in reduced carotenoids by altering carotenoid pathway flux and decreasing ethylene synthesis mediated mainly by the reduced expression of ethylene biosynthetic genes of system-2, thus led to yellow or orange mature fruits. The results of yeast one-hybrid experiment demonstrated that SlNAC1 can interact with the regulatory regions of genes related lycopene and ethylene synthesis. These results also indicated that SlNAC1 inhibited fruit ripening by affecting ethylene synthesis and carotenoid accumulation in SlNAC1 overexpression lines. In addition, the overexpression of SlNAC1 reduced the firmness of the fruits and the thickness of the pericarp and produced more abscisic acid, resulting in the early softening of fruits. Hence, in SlNAC1 overexpression lines, both ethylene-dependent and abscisic acid-dependent pathways are regulated by SlNAC1 in fruit ripening regulatory network. CONCLUSIONS SlNAC1 had a broad influence on tomato fruit ripening and regulated SlNAC1 overexpression tomato fruit ripening through both ethylene-dependent and abscisic acid-dependent pathways. Thus, this study provided new insights into the current model of tomato fruit ripening regulatory network.
Collapse
Affiliation(s)
- Nana Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Hailong Feng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Xia Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Dong Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Dongyue Yang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| |
Collapse
|
123
|
Lambel S, Lanini B, Vivoda E, Fauve J, Patrick Wechter W, Harris-Shultz KR, Massey L, Levi A. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2105-15. [PMID: 25104326 DOI: 10.1007/s00122-014-2363-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/13/2014] [Indexed: 05/26/2023]
Abstract
A major quantitative trait locus (QTL) for Fusarium oxysporum Fr. f. sp. niveum race 1 resistance was identified by employing a "selective genotyping" approach together with genotyping-by-sequencing technology to identify QTLs and single nucleotide polymorphisms associated with the resistance among closely related watermelon genotypes. Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 168 F3 families (24 plants in each family) exhibited continuous distribution for Fon race 1 response. Using a "selective genotyping" approach, DNA was isolated from 91 F2 plants whose F3 progeny exhibited the highest resistance (30 F2 plants) versus highest susceptibility (32 F2 plants), or moderate resistance to Fon race 1 (29 F2 plants). Genotyping-by-sequencing (GBS) technology was used on these 91 selected F2 samples to produce 266 single nucleotide polymorphism (SNP) markers, representing the 11 chromosomes of watermelon. A major quantitative trait locus (QTL) associated with resistance to Fon race 1 was identified with a peak logarithm of odds (LOD) of 33.31 and 1-LOD confidence interval from 2.3 to 8.4 cM on chromosome 1 of the watermelon genetic map. This QTL was designated "Fo-1.1" and is positioned in a genomic region where several putative pathogenesis-related or putative disease-resistant gene sequences were identified. Additional independent, but minor QTLs were identified on chromosome 1 (LOD 4.16), chromosome 3 (LOD 4.36), chromosome 4 (LOD 4.52), chromosome 9 (LOD 6.8), and chromosome 10 (LOD 5.03 and 4.26). Following the identification of a major QTL for resistance using the "selective genotyping" approach, all 168 plants of the F 2 population were genotyped using the SNP nearest the peak LOD, confirming the association of this SNP marker with Fon race 1 resistance. The results in this study should be useful for further elucidating the mechanism of resistance to Fusarium wilt and in the development of molecular markers for use in breeding programs of watermelon.
Collapse
Affiliation(s)
- Shaunese Lambel
- HM.CLAUSE Seed Company, 9241 Mace Blvd, 95618, Davis, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Li CB, Wei J, Kang L, Li J, Li C. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. THE PLANT CELL 2014; 26:3167-84. [PMID: 25005917 PMCID: PMC4145139 DOI: 10.1105/tpc.114.128272] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 05/18/2023]
Abstract
To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.
Collapse
Affiliation(s)
- Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongshuang Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuhua Yan
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
125
|
Shi X, Pan H, Zhang H, Jiao X, Xie W, Wu Q, Wang S, Fang Y, Chen G, Zhou X, Zhang Y. Bemisia tabaci Q carrying tomato yellow leaf curl virus strongly suppresses host plant defenses. Sci Rep 2014; 4:5230. [PMID: 24912756 PMCID: PMC4050386 DOI: 10.1038/srep05230] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/15/2014] [Indexed: 11/08/2022] Open
Abstract
The concurrence of tomato yellow leaf curl virus (TYLCV) with the spread of its vector Bemisia tabaci Q rather than B in China suggests a more mutualistic relationship between TYLCV and Q. Here, we investigated the hypothesis that viruliferous B and Q have different effects on plant defenses. We found the fecundity of nonviruliferous B, nonviruliferous Q, viruliferous Q and viruliferous B was 11.080, 12.060, 10.760, and 11.220 respectively on plants previously attacked by the other biotype, however, on their respective noninfested control leaves fecundity was 12.000, 10.880, 9.760, and 8.020 respectively. Only viruliferous B had higher fecundity on viruliferous Q-infested plants than on control plants. The longevity of viruliferous B showed the same phenomenon. At 1 d infestion, the jasmonic acid content in leaves noninfested and in leaves infested with nonviruliferous B, nonviruliferous Q, viruliferous B and viruliferous Q was 407.000, 281.333, 301.333, 266.667 and 134.000 ng/g FW, respectively. The JA content was lowest in viruliferous Q-infested leaves. The proteinase inhibitor activity and expression of JA-related upstream gene LOX and downstream gene PI II showed the same trend. The substantial suppression of host defenses by Q carrying TYLCV probably enhances the spread of Q and TYLCV in China.
Collapse
Affiliation(s)
- Xiaobin Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huipeng Pan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyi Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoguo Jiao
- Faculty of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gong Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
126
|
Wasternack C. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab. PLANT CELL REPORTS 2014; 33:707-718. [PMID: 24691578 DOI: 10.1007/s00299-014-1608-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCF(COI1)-JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie's lab and Chuanyou Li's lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId's) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany,
| |
Collapse
|