101
|
Zuidewind P, Cotton M, Barnabas S, Van Rensburg AJ, van Zyl G, Gordijn C. Approach to the management of paediatric HIV spontaneous controllers. S Afr J Infect Dis 2022; 37:399. [PMID: 35815221 PMCID: PMC9257930 DOI: 10.4102/sajid.v37i1.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Paediatric HIV spontaneous controllers (HSCs) are a unique and understudied population with potential to inform alternative treatment options for patients living with HIV. As HSCs are so rare and often not recognised prior to antiretroviral treatment (ART) initiation, it can be difficult for clinicians to optimally manage this group. We describe the diagnosis, history and management of three paediatric HSCs, two girls and a boy who were followed for 2, 1.25 and 10.4 years, respectively, before starting ART. All had low but detectable viral loads throughout follow-up but mostly marginally low CD4:CD8 ratios. The reason for starting ART in all was a gradual tendency to poorer virological control. This case series should assist in recognising paediatric HSCs. Clinical dilemmas arising in the management of paediatric HSCs include arriving at a correct HIV-positive diagnosis, correct diagnosis as an HSC, as well as whether to initiate ART. Decision-making for initiation of ART in paediatric HSCs should be individualised. Factors supporting ART initiation in these patients included increased frequency of viral load blips, increasing detectable viral load, CD4 percentage and CD4:CD8 ratio. Other factors included Hepatitis C serology and highly sensitive C-reactive protein. All three patients ultimately required ART, which supports universal initiation of ART in paediatric HSCs, but further research is required.
Collapse
Affiliation(s)
- Peter Zuidewind
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa
| | - Mark Cotton
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa
| | - Shaun Barnabas
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa
| | - Anita Janse Van Rensburg
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa
| | - Gert van Zyl
- Department of Virology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa
| | - Carli Gordijn
- Department of Virology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
102
|
Shao Y, Xun J, Chen J, Lu H. Significance of initiating antiretroviral therapy in the early stage of HIV infection. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:373-379. [PMID: 36207834 PMCID: PMC9511487 DOI: 10.3724/zdxbyxb-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
A growing number of guidelines now recommend that human immunodeficiency virus (HIV) infected patients should be given early antiretroviral therapy (ART), especially in acute HIV infection. ART during early infection can limit viral reservoirs and improve immune cell function. From a societal prospect, early-infected individuals who achieve a state of viral suppression through ART can reduce the chance of HIV transmission and reduce the acquired immunodeficiency syndrome (AIDS)-related disease burden. However, there are many problems in the early diagnosis and treatment of HIV infection, including personal and social factors, which hinder the implementation and development of early treatment. It is recommended that initiating ART in the early stage of HIV infection, combined with other treatment strategies, so as to achieve functional cure.
Collapse
Affiliation(s)
- Yueming Shao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jingna Xun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
| |
Collapse
|
103
|
Kleinman AJ, Sivanandham S, Sette P, Sivanandham R, Policicchio BB, Xu C, Penn E, Brocca-Cofano E, Le Hingrat Q, Ma D, Pandrea I, Apetrei C. Changes to the Simian Immunodeficiency Virus (SIV) Reservoir and Enhanced SIV-Specific Responses in a Rhesus Macaque Model of Functional Cure after Serial Rounds of Romidepsin Administrations. J Virol 2022; 96:e0044522. [PMID: 35638831 PMCID: PMC9215247 DOI: 10.1128/jvi.00445-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sindhuja Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjit Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ellen Penn
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dongzhu Ma
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
104
|
Single-Cell Imaging Shows That the Transcriptional State of the HIV-1 Provirus and Its Reactivation Potential Depend on the Integration Site. mBio 2022; 13:e0000722. [PMID: 35708287 PMCID: PMC9426465 DOI: 10.1128/mbio.00007-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current antiretroviral treatment fails to cure HIV-1 infection since latent provirus resides in long-lived cellular reservoirs, rebounding whenever therapy is discontinued. The molecular mechanisms underlying HIV-1 latency are complex where the possible link between integration and transcription is poorly understood. HIV-1 integration is targeted toward active chromatin by the direct interaction with a host protein, lens epithelium-derived growth factor (LEDGF/p75). LEDGINs are small-molecule inhibitors of the LEDGF/p75-integrase (IN) interaction that effectively inhibit and retarget HIV-1 integration out of preferred integration sites, resulting in residual provirus that is more latent. Here, we describe a single-cell branched DNA imaging method for simultaneous detection of viral DNA and RNA. We investigated how treatment with LEDGINs affects the location, transcription, and reactivation of HIV-1 in both cell lines and primary cells. This approach demonstrated that LEDGIN-mediated retargeting hampered the baseline transcriptional state and the transcriptional reactivation of the provirus, evidenced by the reduction in viral RNA expression per residual copy. Moreover, treatment of primary cells with LEDGINs induced an enrichment of provirus in deep latency. These results corroborate the impact of integration site selection for the HIV-1 transcriptional state and support block-and-lock functional cure strategies in which the latent reservoir is permanently silenced after retargeting.
Collapse
|
105
|
Insights into the HIV-1 Latent Reservoir and Strategies to Cure HIV-1 Infection. DISEASE MARKERS 2022; 2022:6952286. [PMID: 35664434 PMCID: PMC9157282 DOI: 10.1155/2022/6952286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Since the first discovery of human immunodeficiency virus 1 (HIV-1) in 1983, the targeted treatment, antiretroviral therapy (ART), has effectively limited the detected plasma viremia below a very low level and the technique has been improved rapidly. However, due to the persistence of the latent reservoir of replication-competent HIV-1 in patients treated with ART, a sudden withdrawal of the drug inevitably results in HIV viral rebound and HIV progression. Therefore, more understanding of the HIV-1 latent reservoir (LR) is the priority before developing a cure that thoroughly eliminates the reservoir. HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review, the definition, establishment, and maintenance of the HIV-1 LR, along with the state-of-the-art quantitative approaches that directly quantify HIV-1 intact proviruses, are elucidated. Strategies to cure HIV infection are highlighted. This review will renew hope for a better and more thorough cure of HIV infection for mankind and encourage more clinical trials to achieve ART-free HIV remission.
Collapse
|
106
|
Calvet-Mirabent M, Sánchez-Cerrillo I, Martín-Cófreces N, Martínez-Fleta P, de la Fuente H, Tsukalov I, Delgado-Arévalo C, Calzada MJ, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Buzón MJ, Martín-Gayo E. Antiretroviral therapy duration and immunometabolic state determine efficacy of ex vivo dendritic cell-based treatment restoring functional HIV-specific CD8+ T cells in people living with HIV. EBioMedicine 2022; 81:104090. [PMID: 35665682 PMCID: PMC9301875 DOI: 10.1016/j.ebiom.2022.104090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. Methods We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. Findings HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1− cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. Interpretation Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines. Funding NIH (R21AI140930), MINECO/FEDER RETOS (RTI2018-097485-A-I00) and CIBERINF grants.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martín-Cófreces
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | | | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maria J Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain.
| |
Collapse
|
107
|
Giron LB, Abdel-Mohsen M. Viral and Host Biomarkers of HIV Remission Post Treatment Interruption. Curr HIV/AIDS Rep 2022; 19:217-233. [PMID: 35438384 DOI: 10.1007/s11904-022-00607-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW HIV rebound/remission after antiretroviral therapy (ART) interruption is likely influenced by (a) the size of the inducible replication-competent HIV reservoir and (b) factors in the host environment that influence immunological pressures on this reservoir. Identifying viral and/or host biomarkers of HIV rebound after ART cessation may improve the safety of treatment interruptions and our understanding of how the viral-host interplay results in post-treatment control. Here we review the predictive and functional significance of recently suggested viral and host biomarkers of time to viral rebound and post-treatment control following ART interruption. RECENT FINDINGS There are currently no validated viral or host biomarkers of viral rebound; however, several biomarkers have been recently suggested. A combination of viral and host factors will likely be needed to predict viral rebound and to better understand the mechanisms contributing to post-treatment control of HIV, critical steps to developing a cure for HIV infection.
Collapse
|
108
|
Bernard NF, Kant S, Kiani Z, Tremblay C, Dupuy FP. Natural Killer Cells in Antibody Independent and Antibody Dependent HIV Control. Front Immunol 2022; 13:879124. [PMID: 35720328 PMCID: PMC9205404 DOI: 10.3389/fimmu.2022.879124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Infection with the human immunodeficiency virus (HIV), when left untreated, typically leads to disease progression towards acquired immunodeficiency syndrome. Some people living with HIV (PLWH) control their virus to levels below the limit of detection of standard viral load assays, without treatment. As such, they represent examples of a functional HIV cure. These individuals, called Elite Controllers (ECs), are rare, making up <1% of PLWH. Genome wide association studies mapped genes in the major histocompatibility complex (MHC) class I region as important in HIV control. ECs have potent virus specific CD8+ T cell responses often restricted by protective MHC class I antigens. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors also use a subset of MHC class I antigens as ligands. This interaction educates NK cells, priming them to respond to HIV infected cell with reduced MHC class I antigen expression levels. NK cells can also be activated through the crosslinking of the activating NK cell receptor, CD16, which binds the fragment crystallizable portion of immunoglobulin G. This mode of activation confers NK cells with specificity to HIV infected cells when the antigen binding portion of CD16 bound immunoglobulin G recognizes HIV Envelope on infected cells. Here, we review the role of NK cells in antibody independent and antibody dependent HIV control.
Collapse
Affiliation(s)
- Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Nicole F. Bernard,
| | - Sanket Kant
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
109
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
110
|
Tisseraud M, Goutal S, Bonasera T, Goislard M, Desjardins D, Le Grand R, Parry CM, Tournier N, Kuhnast B, Caillé F. Isotopic Radiolabeling of the Antiretroviral Drug [ 18F]Dolutegravir for Pharmacokinetic PET Imaging. Pharmaceuticals (Basel) 2022; 15:587. [PMID: 35631413 PMCID: PMC9143889 DOI: 10.3390/ph15050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Deciphering the drug/virus/host interactions at infected cell reservoirs is a key leading to HIV-1 remission for which positron emission tomography (PET) imaging using radiolabeled antiretroviral (ARV) drugs is a powerful asset. Dolutegravir (DTG) is one of the preferred therapeutic options to treat HIV and can be isotopically labeled with fluorine-18. [18F]DTG was synthesized via a three-step approach of radiofluorination/nitrile reduction/peptide coupling with optimization for each step. Radiofluorination was performed on 2-fluoro-4-nitrobenzonitrile in 90% conversion followed by nitrile reduction using sodium borohydride and aqueous nickel(II) chloride with 72% conversion. Final peptide coupling reaction followed by HPLC purification and formulation afforded ready-to-inject [18F]DTG in 5.1 ± 0.8% (n = 10) decay-corrected radiochemical yield within 95 min. The whole process was automatized using a TRACERlab® FX NPro module, and quality control performed by analytical HPLC showed that [18F]DTG was suitable for in vivo injection with >99% chemical and radiochemical purity and a molar activity of 83 ± 18 GBq/µmol (n = 10). Whole-body distribution of [18F]DTG was performed by PET imaging on a healthy macaque and highlighted the elimination routes of the tracer. This study demonstrated the feasibility of in vivo [18F]DTG PET imaging and paved the way to explore drug/virus/tissues interactions in animals and humans.
Collapse
Affiliation(s)
- Marion Tisseraud
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Thomas Bonasera
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK;
| | - Maud Goislard
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, 92032 Paris, France; (D.D.); (R.L.G.)
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, 92032 Paris, France; (D.D.); (R.L.G.)
| | - Chris M. Parry
- ViiV Healthcare, 980 Great West Road, London TW8 9GS, UK;
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France; (M.T.); (S.G.); (M.G.); (N.T.); (B.K.)
| |
Collapse
|
111
|
York J, Gowrishankar K, Micklethwaite K, Palmer S, Cunningham AL, Nasr N. Evolving Strategies to Eliminate the CD4 T Cells HIV Viral Reservoir via CAR T Cell Immunotherapy. Front Immunol 2022; 13:873701. [PMID: 35572509 PMCID: PMC9098815 DOI: 10.3389/fimmu.2022.873701] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although the advent of ART has significantly reduced the morbidity and mortality associated with HIV infection, the stable pool of HIV in latently infected cells requires lifelong treatment adherence, with the cessation of ART resulting in rapid reactivation of the virus and productive HIV infection. Therefore, these few cells containing replication-competent HIV, known as the latent HIV reservoir, act as the main barrier to immune clearance and HIV cure. While several strategies involving HIV silencing or its reactivation in latently infected cells for elimination by immune responses have been explored, exciting cell based immune therapies involving genetically engineered T cells expressing synthetic chimeric receptors (CAR T cells) are highly appealing and promising. CAR T cells, in contrast to endogenous cytotoxic T cells, can function independently of MHC to target HIV-infected cells, are efficacious and have demonstrated acceptable safety profiles and long-term persistence in peripheral blood. In this review, we present a comprehensive picture of the current efforts to target the HIV latent reservoir, with a focus on CAR T cell therapies. We highlight the current challenges and advances in this field, while discussing the importance of novel CAR designs in the efforts to find a HIV cure.
Collapse
Affiliation(s)
- Jarrod York
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kavitha Gowrishankar
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory – Institute of Clinical Pathology and Medical Research (ICPMR) Westmead, Sydney, NSW, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
112
|
Liang Y, Lin H, Dzakah EE, Tang S. Influence of Combination Antiretroviral Therapy on HIV-1 Serological Responses and Their Implications: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:844023. [PMID: 35432309 PMCID: PMC9006953 DOI: 10.3389/fimmu.2022.844023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to analyze HIV-1 seroreversion caused by combination antiretroviral therapy (cART) and to explore antibody levels of anti-HIV-1 as an alternative biomarker of HIV-1 reservoir. We searched PubMed, Embase, the Cochrane Library, and Web of Science up to August 2021 for publications about the performance of HIV-1 serological assays or the association between antibody responses against HIV-1 and HIV-1 reservoirs. Potential sources of heterogeneity were explored by meta-regression analysis, including the year of publication, country, pretreatment viral load, sample size, the timing of treatment, time on cART, and principle or type of serological assay. Twenty-eight eligible studies with a total population of 1,883 were included in the meta-analysis. The pooled frequency of HIV-1 seronegativity is 38.0% (95% CI: 28.0%–49.0%) among children with vertical HIV-1 infection and cART initiation at the age of less than 6 months, while the percentage of HIV-1 seronegativity declined to 1.0% (95% CI: 0%–3.0%) when cART was initiated at the age of >6 months. For adult patients, 16.0% (95% CI: 9.0%–24.0%) of them were serologically negative when cART was initiated at acute/early infection of HIV-1, but the seronegative reaction was rarely detected when cART was started at chronic HIV-1 infection. Substantial heterogeneity was observed among the studies to estimate the frequency of HIV-1 seronegativity in the early-cART population (I2 ≥ 70%, p < 0.05 and all), while mild heterogeneity existed for the deferred-cART subjects. Moreover, anti-HIV-1 antibody response positively correlates with HIV-1 reservoir size with a pooled rho of 0.43 (95% CI: 0.28–0.55), suggesting that anti-HIV antibody level may be a feasible biomarker of HIV-1 reservoir size.
Collapse
Affiliation(s)
- Yuanhao Liang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongqing Lin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Emmanuel Enoch Dzakah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
113
|
Schröter J, Anelone AJN, de Boer RJ. Quantification of CD4 Recovery in Early-Treated Infants Living With HIV. J Acquir Immune Defic Syndr 2022; 89:546-557. [PMID: 35485581 PMCID: PMC8901030 DOI: 10.1097/qai.0000000000002905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Perinatally HIV-acquired infants benefit from an early antiretroviral treatment initiation. Thanks to a short viral exposure time, their immune system can be maintained or reconstituted, allowing a "normal" immune development. METHODS In this study, we mathematically modeled and quantified individual CD4+ T-cell reconstitution of a subset of 276 children who started treatment within 6 months of age and achieved sustained viral suppression. Considering natural age differences in CD4+ T-cell dynamics, we fitted distances to age-matched healthy reference values with a linear model approaching an asymptote. RESULTS Depleted CD4+ percentages (CD4%) and CD4+ counts (CD4ct) restored healthy levels during treatment. CD4ct recovered with a median rate of 4 cells/µL/d, and individual recovery rates were correlated negatively with their initial CD4ct. CD4 values at onset of treatment decrease with age, whereas recovery times and levels seem to be age-independent. CD4 recovery correlates positively with viral suppression, and the stabilization of CD4 levels usually occurs after viral suppression. CD4 levels stabilize within 3-13 months after treatment initiation. The recovery dynamics of the CD4% is comparable with those of the CD4ct. CONCLUSIONS In early-treated children with successful viral suppression, the CD4 depletion is typically mild and CD4+ T cells tend to "fully" recover in numbers.
Collapse
Affiliation(s)
- Juliane Schröter
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, the Netherlands; and
| | - Anet J. N. Anelone
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, the Netherlands; and
- Currently, School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Rob J. de Boer
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, the Netherlands; and
| |
Collapse
|
114
|
Molinos-Albert LM, Lorin V, Monceaux V, Orr S, Essat A, Dufloo J, Schwartz O, Rouzioux C, Meyer L, Hocqueloux L, Sáez-Cirión A, Mouquet H, Prazuck T, Dieuleveult BD, Bani-Sadr F, Hentzien M, Berger JL, Kmiec I, Pichancourt G, Nasri S, Hittinger G, Lambry V, Beauey AC, Pialoux G, Palacios C, Siguier M, Adda A, Foucoin J, Weiss L, Karmochkine M, Meghadecha M, Ptak M, Salmon-Ceron D, Blanche P, Piétri MP, Molina JM, Taulera O, Lascoux-Combe C, Ponscarme D, Bertaut JD, Makhloufi D, Godinot M, Artizzu V, Yazdanpanah Y, Matheron S, Godard C, Julia Z, Bernard L, Bastides F, Bourgault O, Jacomet C, Goncalves E, Meybeck A, Huleux T, Cornavin P, Debab Y, Théron D, Miailhes P, Cotte L, Pailhes S, Ogoudjobi S, Viard JP, Dulucq MJ, Bodard L, Churaqui F, Guimard T, Laine L. Transient viral exposure drives functionally-coordinated humoral immune responses in HIV-1 post-treatment controllers. Nat Commun 2022; 13:1944. [PMID: 35410989 PMCID: PMC9001681 DOI: 10.1038/s41467-022-29511-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractHIV-1 post-treatment controllers are rare individuals controlling HIV-1 infection for years after antiretroviral therapy interruption. Identification of immune correlates of control in post-treatment controllers could aid in designing effective HIV-1 vaccine and remission strategies. Here, we perform comprehensive immunoprofiling of the humoral response to HIV-1 in long-term post-treatment controllers. Global multivariate analyses combining clinico-virological and humoral immune data reveal distinct profiles in post-treatment controllers experiencing transient viremic episodes off therapy compared to those stably aviremic. Virally-exposed post-treatment controllers display stronger HIV-1 humoral responses, and develop more frequently Env-specific memory B cells and cross-neutralizing antibodies. Both are linked to short viremic exposures, which are also accompanied by an increase in blood atypical memory B cells and activated subsets of circulating follicular helper T cells. Still, most humoral immune variables only correlate with Th2-like circulating follicular helper T cells. Thus, post-treatment controllers form a heterogeneous group with two distinct viral behaviours and associated immune signatures. Post-treatment controllers stably aviremic present “silent” humoral profiles, while those virally-exposed develop functionally robust HIV-specific B-cell and antibody responses, which may participate in controlling infection.
Collapse
|
115
|
Oriol-Tordera B, Esteve-Codina A, Berdasco M, Rosás-Umbert M, Gonçalves E, Duran-Castells C, Català-Moll F, Llano A, Cedeño S, Puertas MC, Tolstrup M, Søgaard OS, Clotet B, Martínez-Picado J, Hanke T, Combadiere B, Paredes R, Hartigan-O'Connor D, Esteller M, Meulbroek M, Calle ML, Sanchez-Pla A, Moltó J, Mothe B, Brander C, Ruiz-Riol M. Epigenetic landscape in the kick-and-kill therapeutic vaccine BCN02 clinical trial is associated with antiretroviral treatment interruption (ATI) outcome. EBioMedicine 2022; 78:103956. [PMID: 35325780 PMCID: PMC8938861 DOI: 10.1016/j.ebiom.2022.103956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The BCN02-trial combined therapeutic vaccination with a viral latency reversing agent (romidepsin, RMD) in HIV-1-infected individuals and included a monitored antiretroviral pause (MAP) as an efficacy read-out identifying individuals with an early or late (< or > 4weeks) viral-rebound. Integrated -omics analyses were applied prior treatment interruption to identify markers of virus control during MAP. METHODS PBMC, whole-genome DNA methylation and transcriptomics were assessed in 14 BCN02 participants, including 8 Early and 4 Late viral-rebound individuals. Chromatin state, histone marks and integration analysis (histone-3 acetylation (H3Ac), viral load, proviral levels and HIV-specific T cells responses) were included. REDUC-trial samples (n = 5) were included as a control group for RMD administration alone. FINDINGS DNA methylation imprints after receiving the complete intervention discriminated Early versus Late viral-rebound individuals before MAP. Also, differential chromatin accessibility and histone marks at DNA methylation level were detected. Importantly, the differential DNA methylation positions (DMPs) between Early and Late rebounders before MAP were strongly associated with viral load, proviral levels as well as the HIV-specific T-cell responses. Most of these DMPs were already present prior to the intervention and accentuated after RMD infusion. INTERPRETATION This study identifies host DNA methylation profiles and epigenetic cascades that are predictive of subsequent virus control in a kick-and-kill HIV cure strategy. FUNDING European Union Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement N°681137-EAVI2020 and N°847943-MISTRAL, the Ministerio de Ciencia e Innovación (SAF2017_89726_R), and the National Institutes of Health-National Institute of Allergy and Infectious Diseases Program Grant P01-AI131568.
Collapse
Affiliation(s)
- Bruna Oriol-Tordera
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Av. de Can Domènech 737, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Barcelona Science Park - Tower I, Carrer de Baldiri Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10-12, Barcelona 08002, Spain
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, Vinguda de la Granvia de l'Hospitalet 199, L'Hospitalet de Llobregat, Barcelona 08907, Spain; Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti - Camí de les Escoles, s/n, Badalona, Barcelona 08916, Spain
| | - Míriam Rosás-Umbert
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; Department of Clinical Medicine - Department of Infectious Disease, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, East Jutland, Aarhus 8200, Denmark
| | - Elena Gonçalves
- Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Sorbonne Université, Bd de l'Hôpital 91, Paris, Île de France 75013, France
| | - Clara Duran-Castells
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Av. de Can Domènech 737, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Francesc Català-Moll
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain
| | - Anuska Llano
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain
| | - Samandhy Cedeño
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain
| | - Maria C Puertas
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain
| | - Martin Tolstrup
- Department of Clinical Medicine - Department of Infectious Disease, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, East Jutland, Aarhus 8200, Denmark
| | - Ole S Søgaard
- Department of Clinical Medicine - Department of Infectious Disease, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, East Jutland, Aarhus 8200, Denmark
| | - Bonaventura Clotet
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain; Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Ctra del Canyet s/n, Badalona, Barcelona 08916, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain
| | - Javier Martínez-Picado
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford, Oxfordshire OX3 7DQ, UK; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto City, Chuo-ku 860-0811, Japan
| | - Behazine Combadiere
- Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Sorbonne Université, Bd de l'Hôpital 91, Paris, Île de France 75013, France
| | - Roger Paredes
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain; Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Ctra del Canyet s/n, Badalona, Barcelona 08916, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain
| | - Dennis Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Veterinary Medicine 3A, Davis, CA 95616, USA; Division of Experimental Medicine, UC Davis School of Medicine, 4610 X Street, Sacramento, CA 95817, USA
| | - Manel Esteller
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain; Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti - Camí de les Escoles, s/n, Badalona, Barcelona 08916, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Av. Monforte de Lemos 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Feixa Llarga, s/n, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Michael Meulbroek
- Projecte dels NOMS-Hispanosida, BCN Checkpoint, Carrer del Comte Borrell, 164-166, Barcelona 08015, Spain
| | - María Luz Calle
- Biosciences Department, Faculty of Sciences and Technology, University of Vic-Central University of Catalonia, Carrer de la Laura 13 - Torre dels Frares, Vic, Barcelona 08500, Spain
| | - Alex Sanchez-Pla
- Statistics Department, Biology Faculty, University of Barcelona, Diagonal 643, Barcelona 08028, Spain; Statistics and Bioinformatics Unit Vall d'Hebron Institut de Recerca (VHIR), Passeig de la Vall d'Hebron, 129, Barcelona 08035, Spain
| | - José Moltó
- CIBERINFEC, Madrid, Spain; Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Ctra del Canyet s/n, Badalona, Barcelona 08916, Spain
| | - Beatriz Mothe
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain; Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Ctra del Canyet s/n, Badalona, Barcelona 08916, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain
| | - Christian Brander
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain.
| |
Collapse
|
116
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
117
|
De Clercq J, Rutsaert S, De Scheerder MA, Verhofstede C, Callens S, Vandekerckhove L. Benefits of antiretroviral therapy initiation during acute HIV infection. Acta Clin Belg 2022; 77:168-176. [PMID: 32468932 DOI: 10.1080/17843286.2020.1770413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: In the last decade, there has been increasing scientific and legislative focus on antiretroviral treatment (ART) for all people living with HIV. Especially early ART initiation, preferably during acute HIV infection, has been named as a promising strategy, both for the individual and for the society. This article will review the benefits and possible future applications of immediate ART initiation during acute HIV infection and explore the remaining hurdles towards this strategy.Results: On an individual level, initiation of ART during acute HIV infection limits the viral reservoir, preserves immune function, and decreases systemic inflammation. In addition, obtaining viral suppression soon after infection can be beneficial for the society by decreasing the chance of onward HIV transmission. Reducing the transmission will reduce HIV incidence and can curtail HIV-related health expenditure. Furthermore, the favorable immunological and virological profile obtained by treating during acute HIV infection will form an ideal starting point for several HIV cure strategies.Conclusions: Initiation of ART during acute HIV infection has shown distinct benefits for the individual, for the society, and for future research on HIV cure. In order to implement this strategy, equal focus should be placed on early diagnosis.
Collapse
Affiliation(s)
- Jozefien De Clercq
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Chris Verhofstede
- AIDS Reference Laboratory, Ghent University Hospital, Ghent, Belgium
| | - Steven Callens
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
118
|
George AF, Luo X, Neidleman J, Hoh R, Vohra P, Thomas R, Shin MG, Lee MJ, Blish CA, Deeks S, Greene WC, Lee SA, Roan NR. Deep Phenotypic Analysis of Blood and Lymphoid T and NK Cells From HIV+ Controllers and ART-Suppressed Individuals. Front Immunol 2022; 13:803417. [PMID: 35154118 PMCID: PMC8829545 DOI: 10.3389/fimmu.2022.803417] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
T and natural killer (NK) cells are effector cells with key roles in anti-HIV immunity, including in lymphoid tissues, the major site of HIV persistence. However, little is known about the features of these effector cells from people living with HIV (PLWH), particularly from those who initiated antiretroviral therapy (ART) during acute infection. Our study design was to use 42-parameter CyTOF to conduct deep phenotyping of paired blood- and lymph node (LN)-derived T and NK cells from three groups of HIV+ aviremic individuals: elite controllers (N = 5), and ART-suppressed individuals who had started therapy during chronic (N = 6) vs. acute infection (N = 8), the latter of which is associated with better outcomes. We found that acute-treated individuals are enriched for specific subsets of T and NK cells, including blood-derived CD56-CD16+ NK cells previously associated with HIV control, and LN-derived CD4+ T follicular helper cells with heightened expansion potential. An in-depth comparison of the features of the cells from blood vs. LNs of individuals from our cohort revealed that T cells from blood were more activated than those from LNs. By contrast, LNs were enriched for follicle-homing CXCR5+ CD8+ T cells, which expressed increased levels of inhibitory receptors and markers of survival and proliferation as compared to their CXCR5- counterparts. In addition, a subset of memory-like CD56brightTCF1+ NK cells was enriched in LNs relative to blood. These results together suggest unique T and NK cell features in acute-treated individuals, and highlight the importance of examining effector cells not only in blood but also the lymphoid tissue compartment, where the reservoir mostly persists, and where these cells take on distinct phenotypic features.
Collapse
Affiliation(s)
- Ashley F. George
- Gladstone Institute of Virology, San Francisco, CA, United States,Department of Urology, University of California San Francisco, San Francisco, CA, United States
| | - Xiaoyu Luo
- Gladstone Institute of Virology, San Francisco, CA, United States
| | - Jason Neidleman
- Gladstone Institute of Virology, San Francisco, CA, United States,Department of Urology, University of California San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Poonam Vohra
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Reuben Thomas
- Gladstone Institutes, San Francisco, CA, United States
| | | | - Madeline J. Lee
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Program in Immunology, Stanford School of Medicine, Stanford, CA, United States
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Program in Immunology, Stanford School of Medicine, Stanford, CA, United States
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Warner C. Greene
- Gladstone Institute of Virology, San Francisco, CA, United States,Departments of Medicine, and Microbiology & Immunology, University of California San Francisco, San Francisco, CA, United States
| | - Sulggi A. Lee
- Zuckerberg San Francisco General Hospital and the University of California San Francisco, San Francisco, CA, United States,*Correspondence: Sulggi A. Lee, ; Nadia R. Roan,
| | - Nadia R. Roan
- Gladstone Institute of Virology, San Francisco, CA, United States,Department of Urology, University of California San Francisco, San Francisco, CA, United States,*Correspondence: Sulggi A. Lee, ; Nadia R. Roan,
| |
Collapse
|
119
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
120
|
Zacharopoulou P, Marchi E, Ogbe A, Robinson N, Brown H, Jones M, Parolini L, Pace M, Grayson N, Kaleebu P, Rees H, Fidler S, Goulder P, Klenerman P, Frater J. Expression of type I interferon-associated genes at antiretroviral therapy interruption predicts HIV virological rebound. Sci Rep 2022; 12:462. [PMID: 35013427 PMCID: PMC8748440 DOI: 10.1038/s41598-021-04212-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Although certain individuals with HIV infection can stop antiretroviral therapy (ART) without viral load rebound, the mechanisms under-pinning 'post-treatment control' remain unclear. Using RNA-Seq we explored CD4 T cell gene expression to identify evidence of a mechanism that might underpin virological rebound and lead to discovery of associated biomarkers. Fourteen female participants who received 12 months of ART starting from primary HIV infection were sampled at the time of stopping therapy. Two analysis methods (Differential Gene Expression with Gene Set Enrichment Analysis, and Weighted Gene Co-expression Network Analysis) were employed to interrogate CD4+ T cell gene expression data and study pathways enriched in post-treatment controllers versus early rebounders. Using independent analysis tools, expression of genes associated with type I interferon responses were associated with a delayed time to viral rebound following treatment interruption (TI). Expression of four genes identified by Cox-Lasso (ISG15, XAF1, TRIM25 and USP18) was converted to a Risk Score, which associated with rebound (p < 0.01). These data link transcriptomic signatures associated with innate immunity with control following stopping ART. The results from this small sample need to be confirmed in larger trials, but could help define strategies for new therapies and identify new biomarkers for remission.
Collapse
Affiliation(s)
- P Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Marchi
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - A Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - N Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - N Grayson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - P Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | - H Rees
- Wits Reproductive Health and HIV Institute of the University of the Witwatersrand in Johannesburg, Johannesburg, South Africa
| | - S Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
- Imperial College NIHR Biomedical Research Centre, London, UK
| | - P Goulder
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - P Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Biomedical Research Centre, Oxford, UK
| | - J Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- National Institute of Health Research Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
121
|
Salido J, Czernikier A, Trifone C, Polo ML, Figueroa MI, Urioste A, Cahn P, Sued O, Salomon H, Laufer N, Ghiglione Y, Turk G. Pre-cART Immune Parameters in People Living With HIV Might Help Predict CD8+ T-Cell Characteristics, Inflammation Levels, and Reservoir Composition After Effective cART. Pathog Immun 2022; 6:60-89. [PMID: 34988339 PMCID: PMC8714178 DOI: 10.20411/pai.v6i2.447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background Combined antiretroviral treatment (cART) for HIV infection is highly effective in controlling viral replication. However, it cannot achieve a sterilizing cure. Several strategies have been proposed to achieve a functional cure, some of them based on immune-mediated clearing of persistently infected cells. Here, we aimed at identifying factors related to CD8TC and CD4TC quality before cART initiation that associate with the persistence of CD8TC antiviral response after cART, inflammation levels, and the size of the viral reservoir. Methods Samples from 25 persons living with HIV were obtained before and after (15 months) cART initiation. Phenotype and functionality of bulk and HIV-specific T cells were assayed by flow cytometry ex vivo or after expansion in pre-cART or post-cART samples, respectively. Cell-Associated (CA) HIV DNA (total and integrated) and RNA (unspliced [US] and multiple spliced [MS]) were quantitated by real-time PCR on post-cART samples. Post-cART plasma levels of CXCL10 (IP-10), soluble CD14 (sCD14) and soluble CD163 (sCD163) were measured by ELISA. Results Pre-cART phenotype of CD8TCs and magnitude and phenotype of HIV-specific response correlated with the phenotype and functionality of CD8TCs post-cART. Moreover, the phenotype of the CD8TCs pre-cART correlated with markers of HIV persistence and inflammation post-cART. Finally, exhaustion and differentiation of CD4TCs pre-cART were associated with the composition of the HIV reservoir post-cART and the level of inflammation. Conclusions Overall, this work provides data to help understand and identify parameters that could be used as markers in the development of immune-based functional HIV cure strategies.
Collapse
Affiliation(s)
- Jimena Salido
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Alejandro Czernikier
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - César Trifone
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - María Laura Polo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | | | - Alejandra Urioste
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomon
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Hospital General de Agudos "Dr. JA Fernández" Buenos Aires, Argentina
| | - Yanina Ghiglione
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Gabriela Turk
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
122
|
Navarrete-Muñoz MA, Llorens C, Benito JM, Rallón N. Extracellular Vesicles as a New Promising Therapy in HIV Infection. Front Immunol 2022; 12:811471. [PMID: 35058938 PMCID: PMC8765339 DOI: 10.3389/fimmu.2021.811471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Combination antiretroviral therapy (cART) effectively blocks HIV replication but cannot completely eliminate HIV from the body mainly due to establishment of a viral reservoir. To date, clinical strategies designed to replace cART for life and alternatively to eliminate the HIV reservoir have failed. The reduced expression of viral antigens in the latently infected cells is one of the main reasons behind the failure of the strategies to purge the HIV reservoir. This situation has forced the scientific community to search alternative therapeutic strategies to control HIV infection. In this regard, recent findings have pointed out extracellular vesicles as therapeutic agents with enormous potential to control HIV infection. This review focuses on their role as pro-viral and anti-viral factors, as well as their potential therapeutic applications.
Collapse
Affiliation(s)
- Maria A. Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
- Biotechvana, Madrid Scientific Park Foundation, Madrid, Spain
| | - Carlos Llorens
- Biotechvana, Madrid Scientific Park Foundation, Madrid, Spain
| | - José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
123
|
Turk G, Seiger K, Lian X, Sun W, Parsons EM, Gao C, Rassadkina Y, Polo ML, Czernikier A, Ghiglione Y, Vellicce A, Varriale J, Lai J, Yuki Y, Martin M, Rhodes A, Lewin SR, Walker BD, Carrington M, Siliciano R, Siliciano J, Lichterfeld M, Laufer N, Yu XG. A Possible Sterilizing Cure of HIV-1 Infection Without Stem Cell Transplantation. Ann Intern Med 2022; 175:95-100. [PMID: 34781719 PMCID: PMC9215120 DOI: 10.7326/l21-0297] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A sterilizing cure of HIV-1 infection has been reported in 2 persons living with HIV-1 who underwent allogeneic hematopoietic stem cell transplantations from donors who were homozygous for the CCR5Δ32 gene polymorphism. However, this has been considered elusive during natural infection. OBJECTIVE To evaluate persistent HIV-1 reservoir cells in an elite controller with undetectable HIV-1 viremia for more than 8 years in the absence of antiretroviral therapy. DESIGN Detailed investigation of virologic and immunologic characteristics. SETTING Tertiary care centers in Buenos Aires, Argentina, and Boston, Massachusetts. PATIENT A patient with HIV-1 infection and durable drug-free suppression of HIV-1 replication. MEASUREMENTS Analysis of genome-intact and replication-competent HIV-1 using near-full-length individual proviral sequencing and viral outgrowth assays, respectively; analysis of HIV-1 plasma RNA by ultrasensitive HIV-1 viral load testing. RESULTS No genome-intact HIV-1 proviruses were detected in analysis of a total of 1.188 billion peripheral blood mononuclear cells and 503 million mononuclear cells from placental tissues. Seven defective proviruses, some of them derived from clonally expanded cells, were detected. A viral outgrowth assay failed to retrieve replication-competent HIV-1 from 150 million resting CD4+ T cells. No HIV-1 RNA was detected in 4.5 mL of plasma. LIMITATIONS Absence of evidence for intact HIV-1 proviruses in large numbers of cells is not evidence of absence of intact HIV-1 proviruses. A sterilizing cure of HIV-1 can never be empirically proved. CONCLUSION Genome-intact and replication-competent HIV-1 were not detected in an elite controller despite analysis of massive numbers of cells from blood and tissues, suggesting that this patient may have naturally achieved a sterilizing cure of HIV-1 infection. These observations raise the possibility that a sterilizing cure may be an extremely rare but possible outcome of HIV-1 infection. PRIMARY FUNDING SOURCE National Institutes of Health and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Gabriela Turk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kyra Seiger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Elizabeth M. Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Maria Laura Polo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Czernikier
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Vellicce
- Department of Hematology, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Joseph Varriale
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ajantha Rhodes
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Sharon R. Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, and Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts; Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland; and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Robert Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janet Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Natalia Laufer
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET – Universidad de Buenos Aires, and Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, and Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
124
|
Ivison GT, Vendrame E, Martínez-Colón GJ, Ranganath T, Vergara R, Zhao NQ, Martin MP, Bendall SC, Carrington M, Cyktor JC, McMahon DK, Eron J, Jones RB, Mellors JW, Bosch RJ, Gandhi RT, Holmes S, Blish CA. Natural Killer Cell Receptors and Ligands Are Associated With Markers of HIV-1 Persistence in Chronically Infected ART Suppressed Patients. Front Cell Infect Microbiol 2022; 12:757846. [PMID: 35223535 PMCID: PMC8866573 DOI: 10.3389/fcimb.2022.757846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The latent HIV-1 reservoir represents a major barrier to achieving a long-term antiretroviral therapy (ART)-free remission or cure for HIV-1. Natural Killer (NK) cells are innate immune cells that play a critical role in controlling viral infections and have been shown to be involved in preventing HIV-1 infection and, in those who are infected, delaying time to progression to AIDS. However, their role in limiting HIV-1 persistence on long term ART is still uncharacterized. To identify associations between markers of HIV-1 persistence and the NK cell receptor-ligand repertoire, we used twin mass cytometry panels to characterize the peripheral blood NK receptor-ligand repertoire in individuals with long-term antiretroviral suppression enrolled in the AIDS Clinical Trial Group A5321 study. At the time of testing, participants had been on ART for a median of 7 years, with virological suppression <50 copies/mL since at most 48 weeks on ART. We found that the NK cell receptor and ligand repertoires did not change across three longitudinal samples over one year-a median of 25 weeks and 50 weeks after the initial sampling. To determine the features of the receptor-ligand repertoire that associate with markers of HIV-1 persistence, we performed a LASSO normalized regression. This analysis revealed that the NK cell ligands CD58, HLA-B, and CRACC, as well as the killer cell immunoglobulin-like receptors (KIRs) KIR2DL1, KIR2DL3, and KIR2DS4 were robustly predictive of markers of HIV-1 persistence, as measured by total HIV-1 cell-associated DNA, HIV-1 cell-associated RNA, and single copy HIV-RNA assays. To characterize the roles of cell populations defined by multiple markers, we augmented the LASSO analysis with FlowSOM clustering. This analysis found that a less mature NK cell phenotype (CD16+CD56dimCD57-LILRB1-NKG2C-) was associated with lower HIV-1 cell associated DNA. Finally, we found that surface expression of HLA-Bw6 measured by CyTOF was associated with lower HIV-1 persistence. Genetic analysis revealed that this was driven by lower HIV-1 persistence in HLA-Bw4/6 heterozygotes. These findings suggest that there may be a role for NK cells in controlling HIV-1 persistence in individuals on long-term ART, which must be corroborated by future studies.
Collapse
Affiliation(s)
- Geoffrey T Ivison
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.,Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Elena Vendrame
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Giovanny J Martínez-Colón
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Thanmayi Ranganath
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rosemary Vergara
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Nancy Q Zhao
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Maureen P Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National, Cancer Institute, Frederick, MD, United States.,Laboratory of Integrative Cancer, Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National, Cancer Institute, Frederick, MD, United States.,Laboratory of Integrative Cancer, Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.,Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Boston, MA, United States
| | - Joshua C Cyktor
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Deborah K McMahon
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Joseph Eron
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for AIDS Research, Harvard University, Boston, MA, United States
| | - Susan Holmes
- Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, CA, United States
| | - Catherine A Blish
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | | |
Collapse
|
125
|
Bergstresser S, Kulpa DA. TGF-β Signaling Supports HIV Latency in a Memory CD4+ T Cell Based In Vitro Model. Methods Mol Biol 2022; 2407:69-79. [PMID: 34985658 DOI: 10.1007/978-1-0716-1871-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During antiretroviral therapy (ART), HIV-1 persists as a latent reservoir in CD4+ T cell subsets in central (TCM), transitional (TTM) and effector memory (TEM) CD4+ T cells. Understanding the mechanisms that support HIV-1 latency in each of these subsets is essential to the identification of cure strategies to eliminate them. Due to the very low frequency of latently infected cells in vivo, model systems that can accurately reflect the heterogenous population of HIV-1 infected cells are a critical component in HIV cure discoveries. Here, we describe a novel primary cell-based model of HIV-1 latency that recapitulates the complex dynamics of the establishment and maintenance of the latent reservoir in different memory T cell subsets. The latency and reversion assay (LARA ) culture conditions uniquely retain phenotypically and transcriptionally distinct memory CD4+ T cell subsets that allow in a single assay to assess LRA activity in each memory subset and differential examination of the dynamics of HIV latency reversal.
Collapse
Affiliation(s)
- Sydney Bergstresser
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
126
|
Vieira VA, Millar J, Adland E, Muenchhoff M, Roider J, Guash CF, Peluso D, Thomé B, Garcia-Guerrero MC, Puertas MC, Bamford A, Brander C, Carrington M, Martinez-Picado J, Frater J, Tudor-Williams G, Goulder P. Robust HIV-specific CD4+ and CD8+ T-cell responses distinguish elite control in adolescents living with HIV from viremic nonprogressors. AIDS 2022; 36:95-105. [PMID: 34581306 PMCID: PMC8654249 DOI: 10.1097/qad.0000000000003078] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Elite controllers are therapy-naive individuals living with HIV capable of spontaneous control of plasma viraemia for at least a year. Although viremic nonprogressors are more common in vertical HIV-infection than in adults' infection, elite control has been rarely characterized in the pediatric population. DESIGN We analyzed the T-cell immunophenotype and the HIV-specific response by flow cytometry in four pediatric elite controllers (PECs) compared with age-matched nonprogressors (PNPs), progressors and HIV-exposed uninfected (HEUs) adolescents. RESULTS PECs T-cell populations had lower immune activation and exhaustion levels when compared with progressors, reflected by a more sustained and preserved effector function. The HIV-specific T-cell responses among PECs were characterized by high-frequency Gag-specific CD4+ T-cell activity, and markedly more polyfunctional Gag-specific CD8+ activity, compared with PNPs and progressors. These findings were consistently observed even in the absence of protective HLA-I molecules such as HLA-B∗27/57/81. CONCLUSION Pediatric elite control is normally achieved after years of infection, and low immune activation in PNPs precedes the increasing ability of CD8+ T-cell responses to achieve immune control of viraemia over the course of childhood, whereas in adults, high immune activation in acute infection predicts subsequent CD8+ T-cell mediated immune control of viremia, and in adult elite controllers, low immune activation is therefore the consequence of the rapid CD8+ T-cell mediated immune control generated after acute infection. This distinct strategy adopted by PECs may help identify pathways that facilitate remission in posttreatment controllers, in whom protective HLA-I molecules are not the main factor.
Collapse
Affiliation(s)
| | - Jane Millar
- Department of Paediatrics, University of Oxford, Oxford, UK
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal (UKZN), Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Maximilian Muenchhoff
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University
- German Center for Infection Research (DZIF)
| | - Julia Roider
- German Center for Infection Research (DZIF)
- Department of Infectious Diseases, Ludwig-Maximilians-University, Munich, Germany
| | - Claudia Fortuny Guash
- Unidad de Enfermedades Infecciosas, Servicio de Pediatría, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | | | - Beatriz Thomé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventiva, São Paulo, Brazil
| | | | | | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, Maryland, USA
| | - Javier Martinez-Picado
- IrsiCaixa - AIDS Research Institute, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - John Frater
- Nuffield Department of Medicine, University of Oxford
- Oxford NIHR Biomedical Research Centre, Oxford
| | | | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, UK
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal (UKZN), Durban, South Africa
| |
Collapse
|
127
|
Wonderlich ER, Reece MD, Kulpa DA. Ex Vivo Differentiation of Resting CD4+ T Lymphocytes Enhances Detection of Replication Competent HIV-1 in Viral Outgrowth Assays. Methods Mol Biol 2022; 2407:315-331. [PMID: 34985673 DOI: 10.1007/978-1-0716-1871-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantifying the number of cells harboring inducible and replication competent HIV-1 provirus is critical to evaluating HIV-1 cure interventions, but precise quantification of the latent reservoir has proven to be technically challenging. Existing protocols to quantify the frequency of replication-competent HIV-1 in resting CD4+ T cells from long-term ART treated individuals have helped to investigate the dynamics of reservoir stability, however these approaches have significant barriers to the induction of HIV-1 expression required to effectively evaluate the intact reservoir. Differentiation of CD4+ T cells to an effector memory phenotype is a successful strategy for promoting latency reversal in vitro, and significantly enhances the performance and sensitivity of viral outgrowth assays.
Collapse
Affiliation(s)
| | - Monica D Reece
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
128
|
Lau JSY, Cromer D, Pinkevych M, Lewin SR, Rasmussen TA, McMahon JH, Davenport MP. OUP accepted manuscript. J Infect Dis 2022; 226:236-245. [PMID: 35104873 PMCID: PMC9400422 DOI: 10.1093/infdis/jiac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/30/2022] [Indexed: 11/14/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Jillian S Y Lau
- Correspondence: Jillian Lau, MBBS, FRACP, PhD, Department of Infectious Diseases, The Alfred Hospital, 85 Commercial Road, Prahran, 3181 Victoria, Australia ()
| | | | - Mykola Pinkevych
- Infection Analytics Program, Kirby Institute, University of New South Wales, Sydney, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital, Prahran, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thomas A Rasmussen
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | | |
Collapse
|
129
|
Gilbertson A, Tucker JD, Dubé K, Dijkstra M, Rennie S. Ethical considerations for HIV remission clinical research involving participants diagnosed during acute HIV infection. BMC Med Ethics 2021; 22:169. [PMID: 34961509 PMCID: PMC8714439 DOI: 10.1186/s12910-021-00716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
HIV remission clinical researchers are increasingly seeking study participants who are diagnosed and treated during acute HIV infection—the brief period between infection and the point when the body creates detectable HIV antibodies. This earliest stage of infection is often marked by flu-like illness and may be an especially tumultuous period of confusion, guilt, anger, and uncertainty. Such experiences may present added ethical challenges for HIV research recruitment, participation, and retention. The purpose of this paper is to identify potential ethical challenges associated with involving acutely diagnosed people living with HIV in remission research and considerations for how to mitigate them. We identify three domains of potential ethical concern for clinicians, researchers, and ethics committee members to consider: 1) Recruitment and informed consent; (2) Transmission risks and partner protection; and (3) Ancillary and continuing care. We discuss each of these domains with the aim of inspiring further work to advance the ethical conduct of HIV remission research. For example, experiences of confusion and uncertainty regarding illness and diagnosis during acute HIV infection may complicate informed consent procedures in studies that seek to recruit directly after diagnosis. To address this, it may be appropriate to use staged re-consent procedures or comprehension assessment. Responsible conduct of research requires a broad understanding of acute HIV infection that encompasses its biomedical, psychological, social, and behavioral dimensions. We argue that the lived experience of acute HIV infection may introduce ethical concerns that researchers and reviewers should address during study design and ethical approval.
Collapse
Affiliation(s)
- Adam Gilbertson
- Pacific Institute for Research and Evaluation, Chapel Hill Center, 101 Conner Drive, Suite 200, Chapel Hill, NC, 27514-7038, USA. .,UNC Center for Bioethics, Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Joseph D Tucker
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WCE1, UK.,UNC Project-China, 2 Lujing Road, Guangzhou, China
| | - Karine Dubé
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maartje Dijkstra
- Department of Infectious Diseases, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, The Netherlands
| | - Stuart Rennie
- UNC Center for Bioethics, Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
130
|
Saeb S, Assche JV, Loustau T, Rohr O, Wallet C, Schwartz C. Suicide gene therapy in cancer and HIV-1 infection: An alternative to conventional treatments. Biochem Pharmacol 2021; 197:114893. [PMID: 34968484 DOI: 10.1016/j.bcp.2021.114893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Suicide Gene Therapy (SGT) aims to introduce a gene encoding either a toxin or an enzyme making the targeted cell more sensitive to chemotherapy. SGT represents an alternative approach to combat pathologies where conventional treatments fail such as pancreatic cancer or the high-grade glioblastoma which are still desperately lethal. We review the possibility to use SGT to treat these cancers which have shown promising results in vitro and in preclinical trials. However, SGT has so far failed in phase III clinical trials thus further improvements are awaited. We can now take advantages of the many advances made in SGT for treating cancer to combat other pathologies such as HIV-1 infection. In the review we also discuss the feasibility to add SGT to the therapeutic arsenal used to cure HIV-1-infected patients. Indeed, preliminary results suggest that both productive and latently infected cells are targeted by the SGT. In the last section, we address the limitations of this approach and how we might improve it.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
131
|
Xue J, Chong H, Zhu Y, Zhang J, Tong L, Lu J, Chen T, Cong Z, Wei Q, He Y. Efficient treatment and pre-exposure prophylaxis in rhesus macaques by an HIV fusion-inhibitory lipopeptide. Cell 2021; 185:131-144.e18. [PMID: 34919814 DOI: 10.1016/j.cell.2021.11.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023]
Abstract
Two HIV fusion-inhibitory lipopeptides (LP-97 and LP-98) were designed with highly potent, long-acting antiviral activity. Monotherapy using a low dose of LP-98 sharply reduced viral loads and maintained long-term viral suppression in 21 SHIVSF162P3-infected rhesus macaques. We found that five treated monkeys achieved potential posttreatment control (PTC) efficacy and had lower viral DNA in deep lymph nodes, whereas monkeys with a stable viral rebound had higher viral DNA in superficial lymph nodes. The tissues of PTC monkeys exhibited significantly decreased quantitative viral outgrowth and fewer PD-1+ central memory CD4+ T cells, and CD8+ T cells contributed to virologic control efficacy. Moreover, LP-98 administrated as a pre-exposure prophylaxis (PrEP) provided complete protection against SHIVSF162P3 and SIVmac239 infections in 51 monkeys via intrarectal, intravaginal, or intravenous challenge. In conclusion, our lipopeptides exhibit high potential as an efficient HIV treatment or prevention strategy.
Collapse
Affiliation(s)
- Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jingjing Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Ling Tong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Jiahan Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Ting Chen
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Zhe Cong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Qiang Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
132
|
Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, Lambotte O, Lamplough R, Ndung'u T, Sugarman J, Tiemessen CT, Vandekerckhove L, Lewin SR. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat Med 2021; 27:2085-2098. [PMID: 34848888 DOI: 10.1038/s41591-021-01590-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Despite the success of antiretroviral therapy (ART) for people living with HIV, lifelong treatment is required and there is no cure. HIV can integrate in the host genome and persist for the life span of the infected cell. These latently infected cells are not recognized as foreign because they are largely transcriptionally silent, but contain replication-competent virus that drives resurgence of the infection once ART is stopped. With a combination of immune activators, neutralizing antibodies, and therapeutic vaccines, some nonhuman primate models have been cured, providing optimism for these approaches now being evaluated in human clinical trials. In vivo delivery of gene-editing tools to either target the virus, boost immunity or protect cells from infection, also holds promise for future HIV cure strategies. In this Review, we discuss advances related to HIV cure in the last 5 years, highlight remaining knowledge gaps and identify priority areas for research for the next 5 years.
Collapse
Affiliation(s)
- Steven G Deeks
- University of California San Francisco, San Fransisco, CA, USA.
| | - Nancie Archin
- UNC HIV Cure Center, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Paula Cannon
- University of Southern California, Los Angeles, CA, USA
| | | | - R Brad Jones
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Olivier Lambotte
- University Paris Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, Paris, France
| | | | - Thumbi Ndung'u
- Africa Health Research Institute and University of KwaZulu-Natal, Durban, South Africa
- University College London, London, UK
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Jeremy Sugarman
- Berman Institute of Bioethics and Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Caroline T Tiemessen
- National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Sharon R Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
133
|
Dijkstra M, Prins H, Prins JM, Reiss P, Boucher C, Verbon A, Rokx C, de Bree G. Cohort profile: the Netherlands Cohort Study on Acute HIV infection (NOVA), a prospective cohort study of people with acute or early HIV infection who immediately initiate HIV treatment. BMJ Open 2021; 11:e048582. [PMID: 34845066 PMCID: PMC8634014 DOI: 10.1136/bmjopen-2020-048582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/14/2021] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Initiation of combination antiretroviral therapy (cART) during acute or early HIV-infection (AEHI) limits the size of the viral reservoir and preserves immune function. This renders individuals who started cART during AEHI promising participants in HIV-cure trials. Therefore, we established a multicentre prospective cohort study in the Netherlands that enrols people with AEHI. In anticipation of future cure trials, we will longitudinally investigate the properties of the viral reservoir size and HIV-specific immune responses among cohort participants. PARTICIPANTS Participants immediately initiate intensified cART: dolutegravir, emtricitabine/tenofovir and darunavir/ritonavir (DRV/r). After 4 weeks, once baseline resistance data are available, DRV/r is discontinued. Three study groups are assembled based on the preparedness of individuals to participate in the extensiveness of sampling. Participants accepting immediate treatment and follow-up but declining additional sampling are included in study group 1 ('standard') and routine diagnostic procedures are performed. Participants willing to undergo blood, leukapheresis and semen sampling are included in study group 2 ('less invasive'). In study group 3 ('extended'), additional tissue (gut-associated lymphoid tissue, peripheral lymph node) and cerebrospinal fluid sampling are performed. FINDINGS TO DATE Between 2015 and 2020, 140 individuals with AEHI have been enrolled at nine study sites. At enrolment, median age was 36 (IQR 28-47) years, and 134 (95.7%) participants were men. Distribution of Fiebig stages was as follows: Fiebig I, 3 (2.1%); II, 20 (14.3%); III, 7 (5.0%); IV, 49 (35.0%); V, 39 (27.9%); VI, 22 (15.7%). Median plasma HIV RNA was 5.9 (IQR 4.7-6.7) log10 copies/mL and CD4 count 510 (IQR 370-700) cells/mm3. Median time from cART initiation to viral suppression was 8.0 (IQR 4.0-16.0) weeks. FUTURE PLANS The Netherlands Cohort Study on Acute HIV infection remains open for participant enrolment and for additional sites to join the network. This cohort provides a unique nationwide platform for conducting future in-depth virological, immunological, host genetic and interventional studies investigating HIV-cure strategies.
Collapse
Affiliation(s)
- Maartje Dijkstra
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, Netherlands
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity (AII), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Henrieke Prins
- Department of Internal Medicine, Division of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan M Prins
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity (AII), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Reiss
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity (AII), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- HIV Monitoring Foundation, Amsterdam, Noord-Holland, Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Charles Boucher
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Division of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Division of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Godelieve de Bree
- Department of Internal Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
134
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
135
|
Adeniji OS, Kuri-Cervantes L, Yu C, Xu Z, Ho M, Chew GM, Shikuma C, Tomescu C, George AF, Roan NR, Ndhlovu LC, Liu Q, Muthumani K, Weiner DB, Betts MR, Xiao H, Abdel-Mohsen M. Siglec-9 defines and restrains a natural killer subpopulation highly cytotoxic to HIV-infected cells. PLoS Pathog 2021; 17:e1010034. [PMID: 34762717 PMCID: PMC8584986 DOI: 10.1371/journal.ppat.1010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Siglec-9 is an MHC-independent inhibitory receptor expressed on a subset of natural killer (NK) cells. Siglec-9 restrains NK cytotoxicity by binding to sialoglycans (sialic acid-containing glycans) on target cells. Despite the importance of Siglec-9 interactions in tumor immune evasion, their role as an immune evasion mechanism during HIV infection has not been investigated. Using in vivo phenotypic analyses, we found that Siglec-9+ CD56dim NK cells, during HIV infection, exhibit an activated phenotype with higher expression of activating receptors and markers (NKp30, CD38, CD16, DNAM-1, perforin) and lower expression of the inhibitory receptor NKG2A, compared to Siglec-9- CD56dim NK cells. We also found that levels of Siglec-9+ CD56dim NK cells inversely correlate with viral load during viremic infection and CD4+ T cell-associated HIV DNA during suppressed infection. Using in vitro cytotoxicity assays, we confirmed that Siglec-9+ NK cells exhibit higher cytotoxicity towards HIV-infected cells compared to Siglec-9- NK cells. These data are consistent with the notion that Siglec-9+ NK cells are highly cytotoxic against HIV-infected cells. However, blocking Siglec-9 enhanced NK cells' ability to lyse HIV-infected cells, consistent with the known inhibitory function of the Siglec-9 molecule. Together, these data support a model in which the Siglec-9+ CD56dim NK subpopulation is highly cytotoxic against HIV-infected cells even whilst being restrained by the inhibitory effects of Siglec-9. To harness the cytotoxic capacity of the Siglec-9+ NK subpopulation, which is dampened by Siglec-9, we developed a proof-of-concept approach to selectively disrupt Siglec/sialoglycan interactions between NK and HIV-infected cells. We achieved this goal by conjugating Sialidase to several HIV broadly neutralizing antibodies. These conjugates selectively desialylated HIV-infected cells and enhanced NK cells' capacity to kill them. In summary, we identified a novel, glycan-based interaction that may contribute to HIV-infected cells' ability to evade NK immunosurveillance and developed an approach to break this interaction.
Collapse
Affiliation(s)
- Opeyemi S. Adeniji
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Chenfei Yu
- Rice University, Houston, Texas, United States of America
| | - Ziyang Xu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michelle Ho
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Glen M. Chew
- University of Hawaii, Honolulu, Hawaii, United States of America
| | - Cecilia Shikuma
- University of Hawaii, Honolulu, Hawaii, United States of America
| | - Costin Tomescu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Ashley F. George
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
| | - Nadia R. Roan
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
| | - Lishomwa C. Ndhlovu
- University of Hawaii, Honolulu, Hawaii, United States of America
- Weill Cornell Medicine, New York, New York, United States of America
| | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David B. Weiner
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Betts
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Han Xiao
- Rice University, Houston, Texas, United States of America
| | - Mohamed Abdel-Mohsen
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
136
|
Vieira VA, Adland E, Malone DFG, Martin MP, Groll A, Ansari MA, Garcia-Guerrero MC, Puertas MC, Muenchhoff M, Guash CF, Brander C, Martinez-Picado J, Bamford A, Tudor-Williams G, Ndung’u T, Walker BD, Ramsuran V, Frater J, Jooste P, Peppa D, Carrington M, Goulder PJR. An HLA-I signature favouring KIR-educated Natural Killer cells mediates immune control of HIV in children and contrasts with the HLA-B-restricted CD8+ T-cell-mediated immune control in adults. PLoS Pathog 2021; 17:e1010090. [PMID: 34793581 PMCID: PMC8639058 DOI: 10.1371/journal.ppat.1010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Mari C. Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Claudia Fortuny Guash
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Department of Pediatrics, Sant Joan de Déu Hospital Research Foundation, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
137
|
Distinct mechanisms of long-term virologic control in two HIV-infected individuals after treatment interruption of anti-retroviral therapy. Nat Med 2021; 27:1893-1898. [PMID: 34711975 DOI: 10.1038/s41591-021-01503-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Certain infected individuals suppress human immunodeficiency virus (HIV) in the absence of anti-retroviral therapy (ART). Elucidating the underlying mechanism(s) is of high interest. Here we present two contrasting case reports of HIV-infected individuals who controlled plasma viremia for extended periods after undergoing analytical treatment interruption (ATI). In Participant 04, who experienced viral blips and initiated undisclosed self-administration of suboptimal ART detected shortly before day 1,250, phylogenetic analyses of plasma HIV env sequences suggested continuous viral evolution and/or reactivation of pre-existing viral reservoirs over time. Antiviral CD8+ T cell activities were higher in Participant 04 than in Participant 30. In contrast, Participant 30 exhibited potent plasma-IgG-mediated neutralization activity against autologous virus that became ineffective when he experienced sudden plasma viral rebound 1,434 d after ATI due to HIV superinfection. Our data provide insight into distinct mechanisms of post-treatment interruption control and highlight the importance of frequent monitoring of undisclosed use of ART and superinfection during the ATI phase.
Collapse
|
138
|
Naidoo KK, Ndumnego OC, Ismail N, Dong KL, Ndung'u T. Antigen Presenting Cells Contribute to Persistent Immune Activation Despite Antiretroviral Therapy Initiation During Hyperacute HIV-1 Infection. Front Immunol 2021; 12:738743. [PMID: 34630420 PMCID: PMC8498034 DOI: 10.3389/fimmu.2021.738743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus (HIV)-induced changes in immune cells during the acute phase of infection can cause irreversible immunological damage and predict the rate of disease progression. Antiretroviral therapy (ART) remains the most effective strategy for successful immune restoration in immunocompromised people living with HIV and the earlier ART is initiated after infection, the better the long-term clinical outcomes. Here we explored the effect of ART on peripheral antigen presenting cell (APC) phenotype and function in women with HIV-1 subtype C infection who initiated ART in the hyperacute phase (before peak viremia) or during chronic infection. Peripheral blood mononuclear cells obtained longitudinally from study participants were used for immunophenotyping and functional analysis of monocytes and dendritic cells (DCs) using multiparametric flow cytometry and matched plasma was used for measurement of inflammatory markers IL-6 and soluble CD14 (sCD14) by enzyme-linked immunosorbent assay. HIV infection was associated with expansion of monocyte and plasmacytoid DC (pDC) frequencies and perturbation of monocyte subsets compared to uninfected persons despite antiretroviral treatment during hyperacute infection. Expression of activation marker CD69 on monocytes and pDCs in early treated HIV was similar to uninfected individuals. However, despite early ART, HIV infection was associated with elevation of plasma IL-6 and sCD14 levels which correlated with monocyte activation. Furthermore, HIV infection with or without early ART was associated with downmodulation of the co-stimulatory molecule CD86. Notably, early ART was associated with preserved toll-like receptor (TLR)-induced IFN-α responses of pDCs. Overall, this data provides evidence of the beneficial impact of ART initiated in hyperacute infection in preservation of APC functional cytokine production activity; but also highlights persistent inflammation facilitated by monocyte activation even after prolonged viral suppression and suggests the need for therapeutic interventions that target residual immune activation.
Collapse
Affiliation(s)
- Kewreshini K Naidoo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Nasreen Ismail
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Krista L Dong
- Females Rising Through Education, Support and Health, Durban, South Africa.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute, Durban, South Africa.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States.,Max Planck Institute for Infection Biology, Berlin, Germany.,Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
139
|
Tarancón-Diez L, Rull A, Herrero P, Vazquez-Alejo E, Peraire J, Guillén S, Navarro-Gomez ML, Viladés C, Muñoz-Fernandez MÁ, Vidal F. Early antiretroviral therapy initiation effect on metabolic profile in vertically HIV-1-infected children. J Antimicrob Chemother 2021; 76:2993-3001. [PMID: 34463735 DOI: 10.1093/jac/dkab277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Early combined antiretroviral treatment (cART) in perinatally acquired HIV-1 children has been associated with a rapid viral suppression, small HIV-1 reservoir size and reduced mortality and morbidity. Immunometabolism has emerged as an important field in HIV-1 infection offering both relevant knowledge regarding immunopathogenesis and potential targets for therapies against HIV-1. OBJECTIVES To characterize the proteomic, lipidomic and metabolomic profile of HIV-1-infected children depending on their age at cART initiation. PATIENTS AND METHODS Plasma samples from perinatally HIV-1-infected children under suppressive cART who initiated an early cART (first 12 weeks after birth, EARLY, n = 10) and late cART (12-50 weeks after birth, LATE, n = 10) were analysed. Comparative plasma proteomics, lipidomics and metabolomics analyses were performed by nanoLC-Orbitrap, UHPLC-qTOF and GC-qTOF, respectively. RESULTS Seven of the 188 proteins identified exhibited differences comparing EARLY and LATE groups of HIV-1-infected children. Despite no differences in the lipidomic (n = 115) and metabolomic (n = 81) profiles, strong correlations were found between proteins and lipid levels as well as metabolites, including glucidic components and amino acids, with clinical parameters. The ratio among different proteins showed high discriminatory power of EARLY and LATE groups. CONCLUSIONS Protein signature show a different proinflammatory state associated with a late cART introduction. Its associations with lipid levels and the relationships found between metabolites and clinical parameters may potentially trigger premature non-AIDS events in this HIV-1 population, including atherosclerotic diseases and metabolic disorders. Antiretroviral treatment should be started as soon as possible in perinatally acquired HIV-1-infected children to prevent them from future long-life complications.
Collapse
Affiliation(s)
- Laura Tarancón-Diez
- Molecular Immunology Laboratory, Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Anna Rull
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Ciències Òmiques (Unitat Mixta de Eurecat-Universitat Rovira i Virgili), Infraestructura Científico-Tècnica Singular (ICTS), Reus, Spain
| | - Elena Vazquez-Alejo
- Molecular Immunology Laboratory, Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Joaquim Peraire
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Sara Guillén
- Department of Pediatrics, Hospital Universitario de Getafe, Madrid, Spain
| | - Maria Luisa Navarro-Gomez
- Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Consuelo Viladés
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Mª Ángeles Muñoz-Fernandez
- Molecular Immunology Laboratory, Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish HIV-HGM BioBank, Madrid, Spain
| | - Francesc Vidal
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| |
Collapse
|
140
|
Payne H, Chan MK, Watters SA, Otwombe K, Hsiao NY, Babiker A, Violari A, Cotton MF, Gibb DM, Klein NJ. Early ART-initiation and longer ART duration reduces HIV-1 proviral DNA levels in children from the CHER trial. AIDS Res Ther 2021; 18:63. [PMID: 34587974 PMCID: PMC8482761 DOI: 10.1186/s12981-021-00389-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Background Reduction of the reservoir of latent HIV-infected cells might increase the possibility of long-term remission in individuals living with HIV. We investigated factors associated with HIV-1 proviral DNA levels in children receiving different antiretroviral therapy (ART) strategies in the children with HIV early antiretroviral therapy (CHER) trial. Methods Infants with HIV < 12 weeks old with CD4% ≥ 25% were randomized in the CHER trial to early limited ART for 40 or 96 weeks (ART-40 W, ART-96 W), or deferred ART (ART-Def). For ART-Def infants or following ART interruption in ART-40 W/ART-96 W, ART was started/re-started for clinical progression or CD4% < 25%. In 229 participants, HIV-1 proviral DNA was quantified by PCR from stored peripheral blood mononuclear cells from children who had received ≥ 24 weeks ART and two consecutive undetectable HIV-1 RNA 12–24 weeks apart. HIV-1 proviral DNA was compared between ART-Def and ART-96 W at week 96, and in all arms at week 248. Factors associated with HIV-1 proviral DNA levels were evaluated using linear regression. Findings Longer duration of ART was significantly associated with lower HIV-1 proviral DNA at both 96 (p = 0.0003) and 248 weeks (p = 0.0011). Higher total CD8 count at ART initiation was associated with lower HIV-1 proviral DNA at both 96 (p = 0.0225) and 248 weeks (p = 0.0398). Week 248 HIV-1 proviral DNA was significantly higher in those with positive HIV-1 serology at week 84 than those with negative serology (p = 0.0042). Intepretation Longer ART duration is key to HIV-1 proviral DNA reduction. Further understanding is needed of the effects of “immune-attenuation” through early HIV-1 exposure. Funding Wellcome Trust, National Institutes of Health, Medical Research Council.
Collapse
|
141
|
Li Y, Mohammadi A, Li JZ. Challenges and Promise of Human Immunodeficiency Virus Remission. J Infect Dis 2021; 223:4-12. [PMID: 33586773 DOI: 10.1093/infdis/jiaa568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antiretroviral therapy effectively controls human immunodeficiency virus (HIV) replication but it is unable to fully eradicate the HIV reservoir and treatment must be life-long. Progress toward a strategy for HIV remission will require overcoming key hurdles to fill gaps in our understanding of HIV persistence, but the identification of individuals who have attained sterilizing or functional HIV cure show that such a goal is achievable. In this review, we first outline challenges in targeting the HIV reservoir, including difficulties identifying HIV-infected cells, ongoing work elucidating the complex intracellular environment that contribute to HIV latency, and barriers to reactivating and clearing the HIV reservoir. We then review reported cases of HIV sterilizing cure and explore natural models of HIV remission and the promise that such HIV spontaneous and posttreatment controllers may hold in our search for a broadly-applicable strategy for the millions of patients living with HIV.
Collapse
Affiliation(s)
- Yijia Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abbas Mohammadi
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
142
|
McMahon J, Lewin SR, Rasmussen TA. Viral, inflammatory, and reservoir characteristics of posttreatment controllers. Curr Opin HIV AIDS 2021; 16:249-256. [PMID: 34334614 DOI: 10.1097/coh.0000000000000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of studies to date that have identified posttreatment controllers (PTCs) and to explore current evidence around clinical characteristics, immune effector function, and inflammatory and viral reservoir characteristics that may underlie the control mechanism. RECENT FINDINGS PTCs are broadly defined as individuals capable of maintaining control of HIV replication after cessation of antiretroviral therapy (ART). While starting ART early after HIV infection is associated with PTC, genetic disposition or CD8+ T-cell function do not appear to explain this phenomenon, but these features have not been exhaustively analyzed in PTCs. A lower frequency of latently infected cells prior to stopping ART has been associated with achieving PTC, including a lower level of intact HIV DNA, but more studies are needed to map the genetic location, epigenetic characteristics, and tissue distribution of the intact HIV reservoir in PTCs. SUMMARY Current studies are small and heterogeneous and there is a significant need to agree on a uniform definition of PTC. Many aspects of PTC are still unexplored including whether specific features of genetic disposition, immune effector functions, and/or viral reservoir characteristics play a role in PTC. A large multisite international cohort study could aide in providing the important insights needed to fully understand PTC.
Collapse
Affiliation(s)
- James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University
- Department of Infectious Diseases, Monash Medical Centre
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University
- Department of Infectious Diseases, The University of Melbourne at The Doherty Institute for Infection and Immunity
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Doherty Institute for Infection and Immunity
- Department of Infectious Diseases, Aarhus University Hospital, Arhus, Denmark
| |
Collapse
|
143
|
Insights from Clonal Expansion and HIV Persistence in Perinatal Infections. mBio 2021; 12:e0098321. [PMID: 34425702 PMCID: PMC8406253 DOI: 10.1128/mbio.00983-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The latent HIV reservoir forms early in the course of infection and is maintained for life despite effective antiretroviral treatment (ART), including early treatment. Perinatal HIV infection presents a unique opportunity to limit seeding of the reservoir through early ART. However, a greater understanding of the persistence of the integrated proviruses is needed for targeting the residual proviruses that form barriers to cure. A study was performed by Bale and Katusiime et al. (M. J. Bale, M. G. Katusiime, D. Wells, X. Wu, et al., mBio 12:e00568-21, 2021, https://doi.org/10.1128/mBio.00568-21) using in-depth integration site analysis in 11 children before ART and after up to nine years of ART. They have identified early development of long-lived proviruses, although the replication competence is unknown. A small fraction of cells bearing integrated proviruses clonally expand early during infection and persist. Integration in the oncogenes STAT5B and BACH2 were also found; these findings confirm the early development of clonal proliferation in perinatal HIV infection despite early effective ART, with a propensity for oncogenes.
Collapse
|
144
|
Gobran ST, Ancuta P, Shoukry NH. A Tale of Two Viruses: Immunological Insights Into HCV/HIV Coinfection. Front Immunol 2021; 12:726419. [PMID: 34456931 PMCID: PMC8387722 DOI: 10.3389/fimmu.2021.726419] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nearly 2.3 million individuals worldwide are coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Odds of HCV infection are six times higher in people living with HIV (PLWH) compared to their HIV-negative counterparts, with the highest prevalence among people who inject drugs (PWID) and men who have sex with men (MSM). HIV coinfection has a detrimental impact on the natural history of HCV, including higher rates of HCV persistence following acute infection, higher viral loads, and accelerated progression of liver fibrosis and development of end-stage liver disease compared to HCV monoinfection. Similarly, it has been reported that HCV coinfection impacts HIV disease progression in PLWH receiving anti-retroviral therapies (ART) where HCV coinfection negatively affects the homeostasis of CD4+ T cell counts and facilitates HIV replication and viral reservoir persistence. While ART does not cure HIV, direct acting antivirals (DAA) can now achieve HCV cure in nearly 95% of coinfected individuals. However, little is known about how HCV cure and the subsequent resolution of liver inflammation influence systemic immune activation, immune reconstitution and the latent HIV reservoir. In this review, we will summarize the current knowledge regarding the pathogenesis of HIV/HCV coinfection, the effects of HCV coinfection on HIV disease progression in the context of ART, the impact of HIV on HCV-associated liver morbidity, and the consequences of DAA-mediated HCV cure on immune reconstitution and HIV reservoir persistence in coinfected patients.
Collapse
Affiliation(s)
- Samaa T Gobran
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Petronela Ancuta
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
145
|
Crowell TA, Ritz J, Coombs RW, Zheng L, Eron JJ, Mellors JW, Dragavon J, van Zyl GU, Lama JR, Ruxrungtham K, Grinsztejn B, Arduino RC, Fox L, Ananworanich J, Daar ES. Novel Criteria for Diagnosing Acute and Early Human Immunodeficiency Virus Infection in a Multinational Study of Early Antiretroviral Therapy Initiation. Clin Infect Dis 2021; 73:e643-e651. [PMID: 33382405 DOI: 10.1093/cid/ciaa1893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Antiretroviral therapy (ART) initiation during acute and early human immunodeficiency virus infection (AEHI) limits HIV reservoir formation and may facilitate post-ART control but is logistically challenging. We evaluated the performance of AEHI diagnostic criteria from a prospective study of early ART initiation. METHODS AIDS Clinical Trials Group A 5354 enrolled adults at 30 sites in the Americas, Africa, and Asia who met any 1 of 6 criteria based on combinations of results of HIV RNA, HIV antibody, Western blot or Geenius assay, and/or the signal-to-cutoff (S/CO) ratio of the ARCHITECT HIV Ag/Ab Combo or GS HIV Combo Ag/Ab EIA. HIV status and Fiebig stage were confirmed by centralized testing. RESULTS From 2017 through 2019, 195 participants were enrolled with median age of 27 years (interquartile range, 23-39). Thirty (15.4%) were female. ART was started by 171 (87.7%) on the day of enrollment and 24 (12.3%) the next day. AEHI was confirmed in 188 (96.4%) participants after centralized testing, 4 (2.0%) participants were found to have chronic infection, and 3 (1.5%) found not to have HIV discontinued ART and were withdrawn. Retrospectively, a nonreactive or indeterminate HIV antibody on the Geenius assay combined with ARCHITECT S/CO ≥10 correctly identified 99 of 122 (81.2%) Fiebig II-IV AEHI cases with no false-positive results. CONCLUSIONS Novel AEHI criteria that incorporate ARCHITECT S/CO facilitated rapid and efficient ART initiation without waiting for an HIV RNA result. These criteria may facilitate AEHI diagnosis, staging, and immediate ART initiation in future research studies and clinical practice. CLINICAL TRIALS REGISTRATION NCT02859558.
Collapse
Affiliation(s)
- Trevor A Crowell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Justin Ritz
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Robert W Coombs
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Lu Zheng
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joan Dragavon
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Gert U van Zyl
- Department of Pathology, Stellenbosch University, Cape Town, South Africa
| | - Javier R Lama
- Asociación Civil Impacta Salud y Educación, Lima, Peru
| | - Kiat Ruxrungtham
- Thai Red Cross AIDS Research Centre, Bangkok, Thailand.,Department of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Roberto C Arduino
- Department of Internal Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA.,Department of Global Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric S Daar
- Lundquist Institute at Harbor-University of California-Los Angeles Medical Center, Torrance, California, USA
| | | |
Collapse
|
146
|
Pastori C, Galli L, Siracusano G, Spagnuolo V, Muccini C, Mastrangelo A, Bruzzesi E, Ranzenigo M, Chiurlo M, Castagna A, Lopalco L. Serum IgG1 and IgG4 could contribute to partial control of viral rebound in chronically HIV-1-infected patients. AIDS 2021; 35:1549-1559. [PMID: 33993130 DOI: 10.1097/qad.0000000000002944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Few studies have investigated chronically infected individuals after antiretroviral therapy (ART) interruption (ATI, analytical therapy interruption); thus, we investigated the association between some HIV-specific antibodies and viral control. DESIGN All enrolled patients were previously described in the APACHE study. Briefly, the study was conducted on HIV-1 chronically infected patients, with HIV-RNA less than 50 copies/ml for at least 10 years, CD4+ cell count greater than 500 cells/μl and HIV-DNA less than 100 copies/106 PBMC. The ART regimen in use at the time of ATI was resumed at confirmed viral rebound (CVR, defined as two consecutive HIV-RNA >50 copies/ml). METHODS Collection of sera and analysis of both binding antibodies (BAbs) and neutralizing antibodies (NAbs) was performed at three different time points: ATI, CVR and time of viral re-suppression after ART resumption. RESULTS IgG subclasses (IgG1, IgG2, IgG3 and IgG4) from the four patients with highest levels of neutralization were found to block viral infection. All patients had CVR after ATI at a median time of 21 days (14-56). After ART resumption, all the enrolled patients achieved HIV-RNA less than 50 copies/ml in 42 days (21-98). We observed a strong increase of either BAbs and NAbs titers from ATI to viral re-suppression in one patient, who showed the longest period of virus undetectability during ATI. In this patient, BAbs and NAbs specifically belonged to both IgG1 and IgG4 subclasses, directed to env antigen. CONCLUSION env-specific NAbs and BAbs belonging to IgG1, IgG4 subclasses could be helpful to monitor long-term responses able to control virus replication and eradicate HIV infection.
Collapse
Affiliation(s)
- Claudia Pastori
- Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute
| | - Laura Galli
- Infectious Diseases, San Raffaele Scientific Institute
| | - Gabriel Siracusano
- Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute
| | | | | | | | | | | | | | - Antonella Castagna
- Infectious Diseases, San Raffaele Scientific Institute
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lucia Lopalco
- Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute
| |
Collapse
|
147
|
Borrajo López A, Penedo MA, Rivera-Baltanas T, Pérez-Rodríguez D, Alonso-Crespo D, Fernández-Pereira C, Olivares JM, Agís-Balboa RC. Microglia: The Real Foe in HIV-1-Associated Neurocognitive Disorders? Biomedicines 2021; 9:925. [PMID: 34440127 PMCID: PMC8389599 DOI: 10.3390/biomedicines9080925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
The current use of combined antiretroviral therapy (cART) is leading to a significant decrease in deaths and comorbidities associated with human immunodeficiency virus type 1 (HIV-1) infection. Nonetheless, none of these therapies can extinguish the virus from the long-lived cellular reservoir, including microglia, thereby representing an important obstacle to curing HIV. Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS) and are believed to be involved in the development of HIV-1-associated neurocognitive disorder (HAND). At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that removing these infected cells from the brain, as well as obtaining a better understanding of the specific molecular mechanisms of HIV-1 latency in these cells, should help in the design of new strategies to prevent HAND and achieve a cure for these diseases. The goal of this review was to study the current state of knowledge of the neuropathology and research models of HAND containing virus susceptible target cells (microglial cells) and potential pharmacological treatment approaches under investigation.
Collapse
Affiliation(s)
- Ana Borrajo López
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - Tania Rivera-Baltanas
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
| | - Daniel Pérez-Rodríguez
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - David Alonso-Crespo
- Nursing Team-Intensive Care Unit, Área Sanitaria de Vigo, Estrada de Clara Campoamor 341, SERGAS-UVigo, 36312 Virgo, Spain;
| | - Carlos Fernández-Pereira
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Department of Psychiatry, Área Sanitaria de Vigo, Estrada de Clara Campoamor 341, SERGAS-UVigo, 36312 Vigo, Spain
| | - Roberto Carlos Agís-Balboa
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
| |
Collapse
|
148
|
Scutari R, Costabile V, Galli L, Bellocchi MC, Carioti L, Barbaliscia S, Poli A, Galli A, Perno CF, Santoro MM, Castagna A, Ceccherini-Silberstein F, Alteri C, Spagnuolo V. Impact of Analytical Treatment Interruption on Burden and Diversification of HIV Peripheral Reservoir: A Pilot Study. Viruses 2021; 13:v13071403. [PMID: 34372609 PMCID: PMC8310290 DOI: 10.3390/v13071403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND If analytical antiretroviral-treatment (ART) interruption (ATI) might significantly impact quantitative or qualitative peripheral-total HIV-DNA is still debated. METHODS Six chronically HIV-1 infected patients enrolled in APACHE-study were analysed for peripheral-total HIV-DNA and residual viremia, major-resistance-mutations (MRMs) and C2-V3-C3 evolution at pre-ATI (T1), during ATI (T2) and at achievement of virological success after ART-resumption (post-ATI, T3). These data were obtained at three comparable time-points in five chronically HIV-1 infected patients on suppressive ART for ≥1 year, enrolled in MODAt-study. RESULTS At T1, APACHE and MODAt individuals had similar peripheral-total HIV-DNA and residual viremia (p = 0.792 and 0.662, respectively), and no significant changes for these parameters were observed between T1 and T3 in both groups. At T1, 4/6 APACHE and 2/5 MODAt carried HIV-DNA MRMs. MRMs disappeared at T3 in 3/4 APACHE. All disappearing MRMs were characterized by T1 intra-patient prevalence <80%, and mainly occurred in APOBEC3-related sites. All MRMs persisted over-time in the 2 MODAt. C2-V3-C3 genetic-distance significantly changed from T1 to T3 in APACHE individuals (+0.36[0.11-0.41], p = 0.04), while no significant changes were found in MODAt. Accordingly, maximum likelihood trees (bootstrap > 70%) and genealogical sorting indices (GSI > 0.50 with p-value < 0.05) showed that T1 C2-V3-C3 DNA sequences were distinct from T2 and T3 viruses in 4/6 APACHE. Virus populations at all three time-points were highly interspersed in MODAt. CONCLUSIONS This pilot study indicates that short ATI does not alter peripheral-total HIV-DNA burden and residual viremia, but in some cases could cause a genetic diversification of peripheral viral reservoir in term of both MRMs rearrangement and viral evolution.
Collapse
Affiliation(s)
- Rossana Scutari
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Valentino Costabile
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Laura Galli
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
| | - Maria Concetta Bellocchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Silvia Barbaliscia
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Andrea Poli
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
| | - Andrea Galli
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
| | - Carlo Federico Perno
- Unit of Diagnostic Microbiology and Immunology, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Antonella Castagna
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: ; Tel.: +39-(0)6-6859-7096
| | - Vincenzo Spagnuolo
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
149
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
150
|
SenGupta D, Brinson C, DeJesus E, Mills A, Shalit P, Guo S, Cai Y, Wallin JJ, Zhang L, Humeniuk R, Begley R, Geleziunas R, Mellors J, Wrin T, Jones N, Milush J, Ferre AL, Shacklett BL, Laird GM, Moldt B, Vendrame E, Brainard DM, Ramgopal M, Deeks SG. The TLR7 agonist vesatolimod induced a modest delay in viral rebound in HIV controllers after cessation of antiretroviral therapy. Sci Transl Med 2021; 13:13/599/eabg3071. [PMID: 34162752 DOI: 10.1126/scitranslmed.abg3071] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Toll-like receptor 7 (TLR7) agonists, in combination with other therapies, can induce sustained control of simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) in nonhuman primates. Here, we report the results of a randomized, double-blind, placebo-controlled phase 1b clinical trial of an oral TLR7 agonist, vesatolimod, in HIV-1-infected controllers on antiretroviral therapy (ART). We randomized participants 2:1 to receive vesatolimod (n = 17) or placebo (n = 8) once every other week for a total of 10 doses while continuing on ART. ART was then interrupted, and the time to viral rebound was analyzed using the Kaplan-Meier method. Vesatolimod was associated with induction of immune cell activation, decreases in intact proviral DNA during ART, and a modest increase in time to rebound after ART was interrupted. The delayed viral rebound was predicted by the lower intact proviral DNA at the end of vesatolimod treatment (13 days after the final dose). Inferred pathway analysis suggested increased dendritic cell and natural killer cell cross-talk and an increase in cytotoxicity potential after vesatolimod dosing. Larger clinical studies will be necessary to assess the efficacy of vesatolimod-based combination therapies aimed at long-term control of HIV infection.
Collapse
Affiliation(s)
| | | | | | | | - Peter Shalit
- Peter Shalit MD and Associates, Seattle, WA, USA
| | - Susan Guo
- Gilead Sciences Inc., Foster City, CA, USA
| | - Yanhui Cai
- Gilead Sciences Inc., Foster City, CA, USA
| | | | - Liao Zhang
- Gilead Sciences Inc., Foster City, CA, USA
| | | | | | | | | | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA, USA
| | - Norman Jones
- University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Milush
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Steven G Deeks
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|