101
|
Globig AM, Mayer LS, Heeg M, Andrieux G, Ku M, Otto-Mora P, Hipp AV, Zoldan K, Pattekar A, Rana N, Schell C, Boerries M, Hofmann M, Neumann-Haefelin C, Kuellmer A, Schmidt A, Boettler T, Tomov V, Thimme R, Hasselblatt P, Bengsch B. Exhaustion of CD39-Expressing CD8 + T Cells in Crohn's Disease Is Linked to Clinical Outcome. Gastroenterology 2022; 163:965-981.e31. [PMID: 35738329 DOI: 10.1053/j.gastro.2022.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Exhaustion of CD8 T cells has been suggested to inform different clinical outcomes in Crohn's disease, but detailed analyses are lacking. This study aimed to identify the role of exhaustion on a single-cell level and identify relevant CD8 T cell populations in Crohn's disease. METHODS Blood and intestinal tissue from 58 patients with Crohn's disease (active disease or remission) were assessed for CD8 T cell expression of exhaustion markers and their cytokine profile by highly multiplexed flow and mass cytometry. Key disease-associated subsets were sorted and analyzed by RNA sequencing. CD39 inhibition assays were performed in vitro. RESULTS Activated CD39+ and CD39+PD-1+ CD8 T cell subsets expressing multiple exhaustion markers were enriched at low frequency in active Crohn's disease. Their cytokine production capacity was inversely linked to the Harvey-Bradshaw Index. Subset-level protein and transcriptome profiling revealed co-existence of effector and exhaustion programs in CD39+ and CD39+ PD-1+CD8 T cells, with CD39+ cells likely originating from the intestine. CD39 enzymatic activity controlled T cell cytokine production. Importantly, transcriptional exhaustion signatures were enriched in remission in CD39-expressing subsets with up-regulation of TOX. Subset-level transcriptomics revealed a CD39-related gene module that is associated with the clinical course. CONCLUSIONS These data showed a role for the exhaustion of peripheral CD39-expressing CD8 T cell subsets in Crohn's disease. Their low frequency illustrated the utility of single-cell cytometry methods for identification of relevant immune populations. Importantly, the link of their exhaustion status to the clinical activity and their specific gene signatures have implications for exhaustion-based personalized medicine approaches.
Collapse
Affiliation(s)
- Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Lena Sophie Mayer
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Patricia Otto-Mora
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Katharina Zoldan
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ajinkya Pattekar
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nisha Rana
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Maike Hofmann
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Armin Kuellmer
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Arthur Schmidt
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Tobias Boettler
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Vesselin Tomov
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert Thimme
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Peter Hasselblatt
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany; Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
102
|
Pietrobon AJ, Andrejew R, Custódio RWA, Oliveira LDM, Scholl JN, Teixeira FME, de Brito CA, Glaser T, Kazmierski J, Goffinet C, Turdo AC, Yendo T, Aoki V, Figueiró F, Battastini AM, Ulrich H, Benard G, Duarte AJDS, Sato MN. Dysfunctional purinergic signaling correlates with disease severity in COVID-19 patients. Front Immunol 2022; 13:1012027. [PMID: 36248842 PMCID: PMC9562777 DOI: 10.3389/fimmu.2022.1012027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients’ cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease.
Collapse
Affiliation(s)
- Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Wesley Alberca Custódio
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliete Nathali Scholl
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cyro Alves de Brito
- Technical Division of Medical Biology, Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department and Division of Infectious and Parasitic Diseases, Berlin Institute of Health, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department and Division of Infectious and Parasitic Diseases, Berlin Institute of Health, Berlin, Germany
| | - Anna Claudia Turdo
- Department and Division of Infectious and Parasitic Diseases, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Tatiana Yendo
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Valeria Aoki
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Fabricio Figueiró
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Maria Battastini
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gill Benard
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Alberto Jose da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- *Correspondence: Maria Notomi Sato,
| |
Collapse
|
103
|
Liu Z, Liu X, Shen H, Xu X, Zhao X, Fu R. Adenosinergic axis and immune checkpoint combination therapy in tumor: A new perspective for immunotherapy strategy. Front Immunol 2022; 13:978377. [PMID: 36159861 PMCID: PMC9493240 DOI: 10.3389/fimmu.2022.978377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
There are two figures and one table in this review, the review consists of 5823 words, without the description of figures and table, but including references. Tumor cells escape anti-tumor immune responses in various ways, including functionally shaping the microenvironment through the secretion of various chemokines and, cytokines. Adenosine is a powerful immunosuppressive metabolite, that is frequently elevated in the extracellular tumor microenvironment (TME). Thus, it has recently been proposed as a novel antitumor immunoassay for targeting adenosine- generating enzymes, such as CD39, CD73, and adenosine receptors. In recent years, the discovery of the immune checkpoints, such as programmed cell death 1(PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), has also greatly changed treatment methods and ideas for malignant tumors. Malignant tumor immunotherapy has been developed from point-to-point therapy targeting immune checkpoints, combining different points of different pathways to create a therapy based on the macroscopic immune regulatory system network. This article reviews the theoretical basis of the adenosine energy axis and immune checkpoint combined therapy for malignant tumors and the latest advances in malignant tumors.
Collapse
|
104
|
Carnevale J, Shifrut E, Kale N, Nyberg WA, Blaeschke F, Chen YY, Li Z, Bapat SP, Diolaiti ME, O'Leary P, Vedova S, Belk J, Daniel B, Roth TL, Bachl S, Anido AA, Prinzing B, Ibañez-Vega J, Lange S, Haydar D, Luetke-Eversloh M, Born-Bony M, Hegde B, Kogan S, Feuchtinger T, Okada H, Satpathy AT, Shannon K, Gottschalk S, Eyquem J, Krenciute G, Ashworth A, Marson A. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 2022; 609:174-182. [PMID: 36002574 PMCID: PMC9433322 DOI: 10.1038/s41586-022-05126-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 07/20/2022] [Indexed: 12/17/2022]
Abstract
The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.
Collapse
Affiliation(s)
- Julia Carnevale
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
| | - Eric Shifrut
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Pathology Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Nupura Kale
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Yan Yi Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Sagar P Bapat
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Morgan E Diolaiti
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick O'Leary
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Shane Vedova
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Julia Belk
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Theodore L Roth
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Stefanie Bachl
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Alejandro Allo Anido
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brooke Prinzing
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jorge Ibañez-Vega
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon Lange
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Marie Luetke-Eversloh
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Maelys Born-Bony
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bindu Hegde
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Kogan
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Hideho Okada
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
| | - Kevin Shannon
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Alan Ashworth
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
105
|
Lee YJ, Kim JY, Jeon SH, Nam H, Jung JH, Jeon M, Kim ES, Bae SJ, Ahn J, Yoo TK, Sun WY, Ahn SG, Jeong J, Park SH, Park WC, Kim SI, Shin EC. CD39 + tissue-resident memory CD8 + T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer. Sci Immunol 2022; 7:eabn8390. [PMID: 36026440 DOI: 10.1126/sciimmunol.abn8390] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite being a standard treatment option in breast cancer, immune checkpoint inhibitors (ICIs) are only efficacious for a subset of patients. To gain a better understanding of the antitumor immune response in breast cancer, we examined the heterogeneity of CD8+ T cells in tumors, metastatic lymph nodes (mLNs), and peripheral blood from patients with early breast cancer (n = 131). Among tissue-resident memory CD8+ T (TRM) cells, including virus- and tumor-specific CD8+ T cells, CD39 expression was observed in a tumor-specific and exhausted subpopulation in both tumors and mLNs. CD39+ TRM cells from tumors and mLNs exhibited a phenotypic similarity and clonally overlapped with each other. Moreover, tumor or mLN CD39+ TRM cells clonally overlapped with CD39- TRM and non-TRM cells in the same compartment, implying a tissue-specific differentiation process. These inter-subpopulationally overlapping CD39+ TRM clonotypes were frequently detected among effector memory CD8+ T cells in peripheral blood, suggesting a systemic clonal overlap. CD39+ TRM cell enrichment was heterogeneous among molecular subtypes of breast cancer, which is associated with the different role of antitumor immune responses in each subtype. In vitro blockade of PD-1 and/or CTLA-4 effectively restored proliferation of CD39+ TRM cells and enhanced cytokine production by CD8+ T cells from tumors or mLNs, particularly in the presence of CD39+ TRM enrichment. This suggests that CD39+ TRM cells have a capacity for functional restoration upon ICI treatment. Thus, our study indicates that CD39+ TRM cells with a clonal overlap across compartments are key players in antitumor immunity in breast cancer.
Collapse
Affiliation(s)
- Yong Joon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jee Ye Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Hyuck Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Heejin Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae Hyung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eui-Soon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Juneyoung Ahn
- Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Tae-Kyung Yoo
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Woo Young Sun
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul 34943, Republic of Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woo Chan Park
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
106
|
Aramini B, Masciale V, Samarelli AV, Dubini A, Gaudio M, Stella F, Morandi U, Dominici M, De Biasi S, Gibellini L, Cossarizza A. Phenotypic, functional, and metabolic heterogeneity of immune cells infiltrating non–small cell lung cancer. Front Immunol 2022; 13:959114. [PMID: 36032082 PMCID: PMC9399732 DOI: 10.3389/fimmu.2022.959114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cancer in the world, accounting for 1.2 million of new cases annually, being responsible for 17.8% of all cancer deaths. In particular, non–small cell lung cancer (NSCLC) is involved in approximately 85% of all lung cancers with a high lethality probably due to the asymptomatic evolution, leading patients to be diagnosed when the tumor has already spread to other organs. Despite the introduction of new therapies, which have improved the long-term survival of these patients, this disease is still not well cured and under controlled. Over the past two decades, single-cell technologies allowed to deeply profile both the phenotypic and metabolic aspects of the immune cells infiltrating the TME, thus fostering the identification of predictive biomarkers of prognosis and supporting the development of new therapeutic strategies. In this review, we discuss phenotypic and functional characteristics of the main subsets of tumor-infiltrating lymphocytes (TILs) and tumor-infiltrating myeloid cells (TIMs) that contribute to promote or suppress NSCLC development and progression. We also address two emerging aspects of TIL and TIM biology, i.e., their metabolism, which affects their effector functions, proliferation, and differentiation, and their capacity to interact with cancer stem cells.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
- *Correspondence: Andrea Cossarizza,
| |
Collapse
|
107
|
Martinez-Gomez C, Michelas M, Scarlata CM, Salvioni A, Gomez-Roca C, Sarradin V, Lauzéral-Vizcaino F, Féliu V, Dupret-Bories A, Ferron G, Sarini J, Devaud C, Delord JP, Balança CC, Martinez A, Ayyoub M. Circulating Exhausted PD-1+CD39+ Helper CD4 T Cells Are Tumor-Antigen-Specific and Predict Response to PD-1/PD-L1 Axis Blockade. Cancers (Basel) 2022; 14:cancers14153679. [PMID: 35954341 PMCID: PMC9367599 DOI: 10.3390/cancers14153679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Not all cancer patients receiving immunotherapy by immune checkpoint blockade experience a clinical benefit. Our study was aimed at identifying biomarkers that could guide the selection of immunotherapy-responsive patients. Immunotherapy targets two major populations of lymphocytes: CD8 T cells, which directly kill tumor cells, and CD4 T cells, which provide help to CD8 T cells, the role of which in clinical responsiveness to immunotherapy has been less explored. We identified, in the blood of cancer patients, a population of CD4 T cells expressing inhibitory receptors targeted by immunotherapy. We showed that these cells were activated and proliferating, indicating their potential involvement in ongoing immune responses. Accordingly, we showed that they were specific for tumor antigens. In a prospective cohort, we showed that high proportions of these cells prior to therapy were associated with a response to immunotherapy. Abstract Tumor-infiltrating exhausted PD-1hiCD39+ tumor-antigen (Ag)-specific CD4 T cells contribute to the response to immune checkpoint blockade (ICB), but their circulating counterparts, which could represent accessible biomarkers, have not been assessed. Here, we analyzed circulating PD-1+CD39+ CD4 T cells and show that this population was present at higher proportions in cancer patients than in healthy individuals and was enriched in activated HLA-DR+ and ICOS+ and proliferating KI67+ cells, indicative of their involvement in ongoing immune responses. Among memory CD4 T cells, this population contained the lowest proportions of cells producing effector cytokines, suggesting they were exhausted. In patients with HPV-induced malignancies, the PD-1+CD39+ population contained high proportions of HPV Ag-specific T cells. In patients treated by ICB for HPV-induced tumors, the proportion of circulating PD-1+CD39+ CD4 T cells was predictive of the clinical response. Our results identify CD39 expression as a surrogate marker of circulating helper tumor-Ag-specific CD4 T cells.
Collapse
Affiliation(s)
- Carlos Martinez-Gomez
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Marie Michelas
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Clara-Maria Scarlata
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Immune Monitoring Core Facility, IUCT-Oncopole, 31059 Toulouse, France
| | - Anna Salvioni
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Carlos Gomez-Roca
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Medical Oncology, IUCT-Oncopole, 31059 Toulouse, France
| | - Victor Sarradin
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Medical Oncology, IUCT-Oncopole, 31059 Toulouse, France
| | - Françoise Lauzéral-Vizcaino
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Virginie Féliu
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Agnès Dupret-Bories
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Gwénaël Ferron
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Jérôme Sarini
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Christel Devaud
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Jean-Pierre Delord
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Medical Oncology, IUCT-Oncopole, 31059 Toulouse, France
| | - Camille-Charlotte Balança
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Alejandra Martinez
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Maha Ayyoub
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Immune Monitoring Core Facility, IUCT-Oncopole, 31059 Toulouse, France
- Correspondence: ; Tel.: +33-(0)582741687
| |
Collapse
|
108
|
Zhigarev D, Varshavsky A, MacFarlane AW, Jayaguru P, Barreyro L, Khoreva M, Dulaimi E, Nejati R, Drenberg C, Campbell KS. Lymphocyte Exhaustion in AML Patients and Impacts of HMA/Venetoclax or Intensive Chemotherapy on Their Biology. Cancers (Basel) 2022; 14:cancers14143352. [PMID: 35884414 PMCID: PMC9320805 DOI: 10.3390/cancers14143352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Patients with acute myeloid leukemia (AML) are routinely treated with either intensive chemotherapy or DNA hypomethylating agents (HMA) in combination with the Bcl-2 inhibitor, venetoclax. While both treatment regimens are highly cytotoxic to the aggressive AML tumor cells, they are also toxic to immune cells. Therefore, we sought to establish the detrimental impacts of these therapies on lymphocytes and their recovery over time in AML patients. Even prior to treatment initiation, the patients were found to have exhausted lymphocytes in peripheral blood, and additional signs of exhaustion were noted after treatment with HMA/venetoclax. In fact, the lymphocytes were still suppressed for two to three months after the initiation of induction therapy. Furthermore, T cells in a subset of patients subsequently found to be resistant to venetoclax therapy exhibited a higher expression of perforin and CD39 and more pronounced IFN-γ production. Abstract Acute myeloid leukemia (AML) is an aggressive malignancy that requires rapid treatment with chemotherapies to reduce tumor burden. However, these chemotherapies can compromise lymphocyte function, thereby hindering normal anti-tumor immune responses and likely limiting the efficacy of subsequent immunotherapy. To better understand these negative impacts, we assessed the immunological effects of standard-of-care AML therapies on lymphocyte phenotype and function over time. When compared to healthy donors, untreated AML patients showed evidence of lymphocyte activation and exhaustion and had more prevalent CD57+NKG2C+ adaptive NK cells, which was independent of human cytomegalovirus (HCMV) status. HMA/venetoclax treatment resulted in a greater fraction of T cells with effector memory phenotype, inhibited IFN-γ secretion by CD8+ T cells, upregulated perforin expression in NK cells, downregulated PD-1 and 2B4 expression on CD4+ T cells, and stimulated Treg proliferation and CTLA-4 expression. Additionally, we showed increased expression of perforin and CD39 and enhanced IFN-γ production by T cells from pre-treatment blood samples of venetoclax-resistant AML patients. Our results provide insight into the lymphocyte status in previously untreated AML patients and the effects of standard-of-care treatments on their biology and functions. We also found novel pre-treatment characteristics of T cells that could potentially predict venetoclax resistance.
Collapse
Affiliation(s)
- Dmitry Zhigarev
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (D.Z.); (A.W.M.IV)
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Asya Varshavsky
- Department of Bone Marrow Transplant and Cellular Therapies, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Alexander W. MacFarlane
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (D.Z.); (A.W.M.IV)
| | - Prathiba Jayaguru
- Oncology Translational Research, Janssen R&D, Spring House, PA 19477, USA; (P.J.); (L.B.); (C.D.)
| | - Laura Barreyro
- Oncology Translational Research, Janssen R&D, Spring House, PA 19477, USA; (P.J.); (L.B.); (C.D.)
| | - Marina Khoreva
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (E.D.); (R.N.)
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (E.D.); (R.N.)
| | - Christina Drenberg
- Oncology Translational Research, Janssen R&D, Spring House, PA 19477, USA; (P.J.); (L.B.); (C.D.)
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (D.Z.); (A.W.M.IV)
- Correspondence: ; Tel.: +1-215-728-7761; Fax: +1-215-727-2412
| |
Collapse
|
109
|
Brandi J, Riehn M, Hadjilaou A, Jacobs T. Increased Expression of Multiple Co-Inhibitory Molecules on Malaria-Induced CD8 + T Cells Are Associated With Increased Function Instead of Exhaustion. Front Immunol 2022; 13:878320. [PMID: 35874786 PMCID: PMC9301332 DOI: 10.3389/fimmu.2022.878320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Activated cytotoxic CD8+ T cells can selectively kill target cells in an antigen-specific manner. However, their prolonged activation often has detrimental effects on tissue homeostasis and function. Indeed, overwhelming cytotoxic activity of CD8+ T cells can drive immunopathology, and therefore, the extent and duration of CD8+ T cell effector function needs to be tightly regulated. One way to regulate CD8+ T cell function is their suppression through engagement of co-inhibitory molecules to their cognate ligands (e.g., LAG-3, PD-1, TIM-3, TIGIT and CTLA-4). During chronic antigen exposure, the expression of co-inhibitory molecules is associated with a loss of T cell function, termed T cell exhaustion and blockade of co-inhibitory pathways often restores T cell function. We addressed the effect of co-inhibitory molecule expression on CD8+ T cell function during acute antigen exposure using experimental malaria. To this end, we infected OT-I mice with a transgenic P. berghei ANKA strain that expresses ovalbumin (PbTG), which enables the characterization of antigen-specific CD8+ T cell responses. We then compared antigen-specific CD8+ T cell populations expressing different levels of the co-inhibitory molecules. High expression of LAG-3 correlated with high expression of PD-1, TIGIT, TIM-3 and CTLA-4. Contrary to what has been described during chronic antigen exposure, antigen-specific CD8+ T cells with the highest expression of LAG-3 appeared to be fully functional during acute malaria. We evaluated this by measuring IFN-γ, Granzyme B and Perforin production and confirmed the results by employing a newly developed T cell cytotoxicity assay. We found that LAG-3high CD8+ T cells are more cytotoxic than LAG-3low or activated but LAG-3neg CD8+ T cells. In conclusion, our data imply that expression of co-inhibitory molecules in acute malaria is not necessarily associated with functional exhaustion but may be associated with an overwhelming T cell activation. Taken together, our findings shed new light on the induction of co-inhibitory molecules during acute T cell activation with ramifications for immunomodulatory therapies targeting these molecules in acute infectious diseases.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alexandros Hadjilaou
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
110
|
Zhang H, Feng L, de Andrade Mello P, Mao C, Near R, Csizmadia E, Chan LLY, Enjyoji K, Gao W, Zhao H, Robson SC. Glycoengineered anti-CD39 promotes anticancer responses by depleting suppressive cells and inhibiting angiogenesis in tumor models. J Clin Invest 2022; 132:e157431. [PMID: 35775486 PMCID: PMC9246388 DOI: 10.1172/jci157431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Immunosuppressive cells accumulating in the tumor microenvironment constitute a formidable barrier that interferes with current immunotherapeutic approaches. A unifying feature of these tumor-associated immune and vascular endothelial cells appears to be the elevated expression of ectonucleotidase CD39, which in tandem with ecto-5'-nucleotidase CD73, catalyzes the conversion of extracellular ATP into adenosine. We glycoengineered an afucosylated anti-CD39 IgG2c and tested this reagent in mouse melanoma and colorectal tumor models. We identified major biological effects of this approach on cancer growth, associated with depletion of immunosuppressive cells, mediated through enhanced Fcγ receptor-directed (FcγR-directed), antibody-dependent cellular cytotoxicity (ADCC). Furthermore, regulatory/exhausted T cells lost CD39 expression, as a consequence of antibody-mediated trogocytosis. Most strikingly, tumor-associated macrophages and endothelial cells with high CD39 expression were effectively depleted following antibody treatment, thereby blocking angiogenesis. Tumor site-specific cellular modulation and lack of angiogenesis synergized with chemotherapy and anti-PD-L1 immunotherapy in experimental tumor models. We conclude that depleting suppressive cells and targeting tumor vasculature, through administration of afucosylated anti-CD39 antibody and the activation of ADCC, comprises an improved, purinergic system-modulating strategy for cancer therapy.
Collapse
Affiliation(s)
- Haohai Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lili Feng
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Paola de Andrade Mello
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Changchuin Mao
- Antagen Institute for Biomedical Research, Boston, Massachusetts, USA
| | - Richard Near
- Antagen Institute for Biomedical Research, Boston, Massachusetts, USA
| | - Eva Csizmadia
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom from PerkinElmer, Lawrence, Massachusetts, USA
| | - Keiichi Enjyoji
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, Massachusetts, USA
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
111
|
Dorneles GP, Teixeira PC, da Silva IM, Schipper LL, Santana Filho PC, Rodrigues Junior LC, Bonorino C, Peres A, Fonseca SG, Monteiro MC, Boeck CR, Eller S, Oliveira TF, Wendland EM, Romão PRT. Alterations in CD39/CD73 axis of T cells associated with COVID-19 severity. J Cell Physiol 2022; 237:3394-3407. [PMID: 35754396 PMCID: PMC9349448 DOI: 10.1002/jcp.30805] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
Purinergic signaling modulates immune function and is involved in the immunopathogenesis of several viral infections. This study aimed to investigate alterations in purinergic pathways in coronavirus disease 2019 (COVID‐19) patients. Mild and severe COVID‐19 patients had lower extracellular adenosine triphosphate and adenosine levels, and higher cytokines than healthy controls. Mild COVID‐19 patients presented lower frequencies of CD4+CD25+CD39+ (activated/memory regulatory T cell [mTreg]) and increased frequencies of high‐differentiated (CD27−CD28−) CD8+ T cells compared with healthy controls. Severe COVID‐19 patients also showed higher frequencies of CD4+CD39+, CD4+CD25−CD39+ (memory T effector cell), and high‐differentiated CD8+ T cells (CD27−CD28−), and diminished frequencies of CD4+CD73+, CD4+CD25+CD39+ mTreg cell, CD8+CD73+, and low‐differentiated CD8+ T cells (CD27+CD28+) in the blood in relation to mild COVID‐19 patients and controls. Moreover, severe COVID‐19 patients presented higher expression of PD‐1 on low‐differentiated CD8+ T cells. Both severe and mild COVID‐19 patients presented higher frequencies of CD4+Annexin‐V+ and CD8+Annexin‐V+ T cells, indicating increased T‐cell apoptosis. Plasma samples collected from severe COVID‐19 patients were able to decrease the expression of CD73 on CD4+ and CD8+ T cells of a healthy donor. Interestingly, the in vitro incubation of peripheral blood mononuclear cell from severe COVID‐19 patients with adenosine reduced the nuclear factor‐κB activation in T cells and monocytes. Together, these data add new knowledge to the COVID‐19 immunopathology through purinergic regulation.
Collapse
Affiliation(s)
- Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Paula C Teixeira
- Laboratory of Cellular and Molecular Immunology, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Igor M da Silva
- Laboratory of Cellular and Molecular Immunology, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Lucas L Schipper
- Laboratory of Cellular and Molecular Immunology, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Paulo C Santana Filho
- Laboratory of Cellular and Molecular Immunology, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luiz C Rodrigues Junior
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Cristina Bonorino
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Simone G Fonseca
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marta C Monteiro
- Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil
| | - Carina R Boeck
- Graduate Program in Nanosciences and Health Sciences and Life, Universidade Franciscana-UFN, Santa Maria, Brazil
| | - Sarah Eller
- Pharmacosciences Department, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago F Oliveira
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Pharmacosciences Department, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Eliana M Wendland
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Pediatrics, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
112
|
Fang F, Cao W, Mu Y, Okuyama H, Li L, Qiu J, Weyand CM, Goronzy JJ. IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression. JCI Insight 2022; 7:e157509. [PMID: 35730568 PMCID: PMC9309057 DOI: 10.1172/jci.insight.157509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The ectonucleotidase CD39 functions as a checkpoint in purinergic signaling on effector T cells. By depleting eATP and initiating the generation of adenosine, it impairs memory cell development and contributes to T cell exhaustion, thereby causing defective tumor immunity and deficient T cell responses in older adults who have increased CD39 expression. Tuning enzymatic activity of CD39 and targeting the transcriptional regulation of ENTPD1 can be used to modulate purinergic signaling. Here, we describe that STAT6 phosphorylation downstream of IL-4 signaling represses CD39 expression on activated T cells by inducing a transcription factor network including GATA3, GFI1, and YY1. GATA3 suppresses ENTPD1 transcription through prevention of RUNX3 recruitment to the ENTPD1 promoter. Conversely, pharmacological STAT6 inhibition decreases T cell effector functions via increased CD39 expression, resulting in the defective signaling of P2X receptors by ATP and stimulation of A2A receptors by adenosine. Our studies suggest that inhibiting the STAT6 pathway to increase CD39 expression has the potential to treat autoimmune disease while stimulation of the pathway could improve T cell immunity.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Hirohisa Okuyama
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Jingtao Qiu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
113
|
Pfeifer R, Henze J, Wittich K, Gosselink A, Kinkhabwala A, Gremse F, Bleilevens C, Bigott K, Jungblut M, Hardt O, Alves F, Al Rawashdeh W. A multimodal imaging workflow for monitoring CAR T cell therapy against solid tumor from whole-body to single-cell level. Am J Cancer Res 2022; 12:4834-4850. [PMID: 35836798 PMCID: PMC9274742 DOI: 10.7150/thno.68966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/19/2022] [Indexed: 01/12/2023] Open
Abstract
CAR T cell research in solid tumors often lacks spatiotemporal information and therefore, there is a need for a molecular tomography to facilitate high-throughput preclinical monitoring of CAR T cells. Furthermore, a gap exists between macro- and microlevel imaging data to better assess intratumor infiltration of therapeutic cells. We addressed this challenge by combining 3D µComputer tomography bioluminescence tomography (µCT/BLT), light-sheet fluorescence microscopy (LSFM) and cyclic immunofluorescence (IF) staining. Methods: NSG mice with subcutaneous AsPC1 xenograft tumors were treated with EGFR CAR T cell (± IL-2) or control BDCA-2 CAR T cell (± IL-2) (n = 7 each). Therapeutic T cells were genetically modified to co-express the CAR of interest and the luciferase CBR2opt. IL-2 was administered s.c. under the xenograft tumor on days 1, 3, 5 and 7 post-therapy-initiation at a dose of 25,000 IU/mouse. CAR T cell distribution was measured in 2D BLI and 3D µCT/BLT every 3-4 days. On day 6, 4 tumors were excised for cyclic IF where tumor sections were stained with a panel of 25 antibodies. On day 6 and 13, 8 tumors were excised from rhodamine lectin-preinjected mice, permeabilized, stained for CD3 and imaged by LSFM. Results: 3D µCT/BLT revealed that CAR T cells pharmacokinetics is affected by antigen recognition, where CAR T cell tumor accumulation based on target-dependent infiltration was significantly increased in comparison to target-independent infiltration, and spleen accumulation was delayed. LSFM supported these findings and revealed higher T cell accumulation in target-positive groups at day 6, which also infiltrated the tumor deeper. Interestingly, LSFM showed that most CAR T cells accumulate at the tumor periphery and around vessels. Surprisingly, LSFM and cyclic IF revealed that local IL-2 application resulted in early-phase increased proliferation, but long-term overstimulation of CAR T cells, which halted the early added therapeutic effect. Conclusion: Overall, we demonstrated that 3D µCT/BLT is a valuable non-isotope-based technology for whole-body cell therapy monitoring and investigating CAR T cell pharmacokinetics. We also presented combining LSFM and MICS for ex vivo 3D- and 2D-microscopy tissue analysis to assess intratumoral therapeutic cell distribution and status.
Collapse
Affiliation(s)
- Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Janina Henze
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany.,University Medical Center Göttingen, Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Haematology and Medical Oncology, Göttingen, Lower Saxony, Germany
| | - Katharina Wittich
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Andre Gosselink
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany.,Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Ali Kinkhabwala
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Felix Gremse
- Gremse-IT GmbH, Aachen, North Rhine-Westphalia, Germany
| | - Cathrin Bleilevens
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Kevin Bigott
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Melanie Jungblut
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Frauke Alves
- University Medical Center Göttingen, Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Haematology and Medical Oncology, Göttingen, Lower Saxony, Germany.,Max-Planck-Institute for Multidisciplinary Science, Translational Molecular Imaging, Göttingen, Lower Saxony, Germany
| | - Wa'el Al Rawashdeh
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany.,Ossium Health Inc, Indianapolis, Indiana, United States of America.,✉ Corresponding author: E-mail: (W.A.)
| |
Collapse
|
114
|
Cristofoletti C, Bresin A, Fioretti M, Russo G, Narducci MG. Combined High-Throughput Approaches Reveal the Signals Driven by Skin and Blood Environments and Define the Tumor Heterogeneity in Sézary Syndrome. Cancers (Basel) 2022; 14:cancers14122847. [PMID: 35740513 PMCID: PMC9221051 DOI: 10.3390/cancers14122847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Sézary syndrome (SS) is a leukemic and incurable variant of cutaneous T-cell lymphoma characterized by the accumulation of neoplastic CD4+ lymphocytes in the blood, lymph nodes, and skin. With the exception of allogenic transplantation, no curative chance is available to treat SS, and it is a priority to find new therapies that target SS cells within all disease compartments. This review aims to summarize the more recent analyses conducted on skin- and blood-derived SS cells concurrently obtained from the same SS patients. The results highlighted that skin-SS cells were more active/proliferating with respect to matched blood SS cells that instead appeared quiescent. These data shed the light on the possibility to treat blood and skin SS cells with different compounds, respectively. Moreover, this review recaps the more recent findings on the heterogeneity of circulating SS cells that presented a series of novel markers that could improve diagnosis, prognosis and therapy of this lymphoma. Abstract Sézary syndrome (SS) is an aggressive variant of cutaneous t-cell lymphoma characterized by the accumulation of neoplastic CD4+ lymphocytes—the SS cells—mainly in blood, lymph nodes, and skin. The tumor spread pattern of SS makes this lymphoma a unique model of disease that allows a concurrent blood and skin sampling for analysis. This review summarizes the recent studies highlighting the transcriptional programs triggered by the crosstalk between SS cells and blood–skin microenvironments. Emerging data proved that skin-derived SS cells show consistently higher activation/proliferation rates, mainly driven by T-cell receptor signaling with respect to matched blood SS cells that instead appear quiescent. Biochemical analyses also demonstrated an hyperactivation of PI3K/AKT/mTOR, a targetable pathway by multiple inhibitors currently in clinical trials, in skin SS cells compared with a paired blood counterpart. These results indicated that active and quiescent SS cells coexist in this lymphoma, and that they could be respectively treated with different therapeutics. Finally, this review underlines the more recent discoveries into the heterogeneity of circulating SS cells, highlighting a series of novel markers that could improve the diagnosis and that represent novel therapeutic targets (GPR15, PTPN13, KLRB1, and ITGB1) as well as new genetic markers (PD-1 and CD39) able to stratify SS patients for disease aggressiveness.
Collapse
|
115
|
Wildner NH, Walker A, Brauneck F, Ditt V, Peine S, Huber S, Haag F, Beisel C, Timm J, Schulze zur Wiesch J. Transcriptional Pattern Analysis of Virus-Specific CD8+ T Cells in Hepatitis C Infection: Increased Expression of TOX and Eomesodermin During and After Persistent Antigen Recognition. Front Immunol 2022; 13:886646. [PMID: 35734162 PMCID: PMC9207347 DOI: 10.3389/fimmu.2022.886646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Thymocyte selection-associated high mobility group box (TOX) has been described to be a key regulator in the formation of CD8+ T cell exhaustion. Hepatitis C virus (HCV) infection with different lengths of antigen exposure in acute, chronic, and after resolution of HCV infection is the ideal immunological model to study the expression of TOX in HCV-specific CD8+ T cells with different exposure to antigen. HCV-specific CD8+ T cells from 35 HLA-A*01:01, HLA-A*02:01, and HLA-A*24:02 positive patients were analyzed with a 16-color FACS-panel evaluating the surface expression of lineage markers (CD3, CD8), ectoenzymes (CD39, CD73), markers of differentiation (CD45RO, CCR7, CD127), and markers of exhaustion and activation (TIGIT, PD-1, KLRG1, CD226) and transcription factors (TOX, Eomesodermin, T-bet). Here, we defined on-target T cells as T cells against epitopes without escape mutations and off-target T cells as those against a "historical" antigen mutated in the autologous sequence. TOX+HCV-specific CD8+ T cells from patients with chronic HCV and on-target T cells displayed co-expression of Eomesodermin and were associated with the formation of terminally exhausted CD127-PD1hi, CD39hi, CD73low CD8+ T cells. In contrast, TOX+HCV-specific CD8+ T cells in patients with off-target T cells represented a progenitor memory Tex phenotype characterized by CD127hi expression and a CD39low and CD73hi phenotype. TOX+HCV-specified CD8+ T cells in patients with a sustained virologic response were characterized by a memory phenotype (CD127+, CD73hi) and co-expression of immune checkpoints and Eomesodermin, indicating a key structure in priming of HCV-specific CD8+ T cells in the chronic stage, which persisted as a residual after therapy. Overall, the occurrence of TOX+HCV-specific CD8+ T cells was revealed at each disease stage, which impacted the development of progenitor Tex, intermediate Tex, and terminally exhausted T cell through an individual molecular footprint. In sum, TOX is induced early during acute infection but is modulated by changes in viral sequence and antigen recognition. In the case of antigen persistence, the interaction with Eomesodermin leads to the formation of terminally exhausted virus-specific CD8+ T cells, and there was a direct correlation of the co-expression of TOX and Eomes and terminally exhausted phenotype of virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Nils H. Wildner
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Walker
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Franziska Brauneck
- II. Department of Medicine, Center for Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Ditt
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Beisel
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Joerg Timm
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Julian Schulze zur Wiesch
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
116
|
Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, Thangavelu L, Shomali N, Aslaminabad R, Marofi F, Tahavvori M, Danishna S, Akbari M, Ercan G. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun Signal 2022; 20:79. [PMID: 35655192 PMCID: PMC9162381 DOI: 10.1186/s12964-022-00856-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease (COVID-19) is a viral infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The infection was reported in Wuhan, China, in late December 2019 and has become a major global concern due to severe respiratory infections and high transmission rates. Evidence suggests that the strong interaction between SARS-CoV-2 and patients' immune systems leads to various clinical symptoms of COVID-19. Although the adaptive immune responses are essential for eliminating SARS-CoV-2, the innate immune system may, in some cases, cause the infection to progress. The cytotoxic CD8+ T cells in adaptive immune responses demonstrated functional exhaustion through upregulation of exhaustion markers. In this regard, humoral immune responses play an essential role in combat SARS-CoV-2 because SARS-CoV-2 restricts antigen presentation through downregulation of MHC class I and II molecules that lead to the inhibition of T cell-mediated immune response responses. This review summarizes the exact pathogenesis of SARS-CoV-2 and the alteration of the immune response during SARS-CoV-2 infection. In addition, we've explained the exhaustion of the immune system during SARS-CoV-2 and the potential immunomodulation approach to overcome this phenomenon. Video Abstract.
Collapse
Affiliation(s)
- Rebar N. Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan University of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sarchinar District, Sulaimaniyah, Iraq
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Aslaminabad
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Tahavvori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, Turkey
| |
Collapse
|
117
|
Grebinoski S, Zhang Q, Cillo AR, Manne S, Xiao H, Brunazzi EA, Tabib T, Cardello C, Lian CG, Murphy GF, Lafyatis R, Wherry EJ, Das J, Workman CJ, Vignali DAA. Autoreactive CD8 + T cells are restrained by an exhaustion-like program that is maintained by LAG3. Nat Immunol 2022; 23:868-877. [PMID: 35618829 PMCID: PMC9179227 DOI: 10.1038/s41590-022-01210-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 01/02/2023]
Abstract
Impaired chronic viral and tumor clearance has been attributed to CD8+ T cell exhaustion, a differentiation state in which T cells have reduced and altered effector function that can be partially reversed upon blockade of inhibitory receptors. The role of the exhaustion program and transcriptional networks that control CD8+ T cell function and fate in autoimmunity is not clear. Here we show that intra-islet CD8+ T cells phenotypically, transcriptionally, epigenetically and metabolically possess features of canonically exhausted T cells, yet maintain important differences. This 'restrained' phenotype can be perturbed and disease accelerated by CD8+ T cell-restricted deletion of the inhibitory receptor lymphocyte activating gene 3 (LAG3). Mechanistically, LAG3-deficient CD8+ T cells have enhanced effector-like functions, trafficking to the islets, and have a diminished exhausted phenotype, highlighting a physiological role for an exhaustion program in limiting autoimmunity and implicating LAG3 as a target for autoimmune therapy.
Collapse
Affiliation(s)
- Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- CMU-Pitt Joint Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
118
|
Ishihara M, Kitano S, Kageyama S, Miyahara Y, Yamamoto N, Kato H, Mishima H, Hattori H, Funakoshi T, Kojima T, Sasada T, Sato E, Okamoto S, Tomura D, Nukaya I, Chono H, Mineno J, Kairi MF, Diem Hoang Nguyen P, Simoni Y, Nardin A, Newell E, Fehlings M, Ikeda H, Watanabe T, Shiku H. NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome. J Immunother Cancer 2022; 10:e003811. [PMID: 35768164 PMCID: PMC9244667 DOI: 10.1136/jitc-2021-003811] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Because of the shortage of ideal cell surface antigens, the development of T-cell receptor (TCR)-engineered T cells (TCR-T) that target intracellular antigens such as NY-ESO-1 is a promising approach for treating patients with solid tumors. However, endogenous TCRs in vector-transduced T cells have been suggested to impair cell-surface expression of transduced TCR while generating mispaired TCRs that can become self-reactive. METHODS We conducted a first-in-human phase I clinical trial with the TCR-transduced T-cell product (TBI-1301) in patients with NY-ESO-1-expressing solid tumors. In manufacturing TCR-T cells, we used a novel affinity-enhanced NY-ESO-1-specific TCR that was transduced by a retroviral vector that enables siRNA (small interfering RNA)-mediated silencing of endogenous TCR. The patients were divided into two cohorts. Cohort 1 was given a dose of 5×108 cells (whole cells including TCR-T cells) preconditioned with 1500 mg/m2 cyclophosphamide. Cohort 2 was given 5× 109 cells preconditioned with 1500 mg/m2 cyclophosphamide. RESULTS In vitro study showed that both the CD8+ and CD4+ T fractions of TCR-T cells exhibited cytotoxic effects against NY-ESO-1-expressing tumor cells. Three patients and six patients were allocated to cohort 1 and cohort 2, respectively. Three of the six patients who received 5×109 cells showed tumor response, while three patients developed early-onset cytokine release syndrome (CRS). One of the patients developed a grade 3 lung injury associated with the infiltration of the TCR-T cells. No siRNA-related adverse events other than CRS were observed. Cytokines including interleukin 6 I and monocyte chemotactic protein-1/chemokine (C-C motif) ligand (CCL2)increased in the sera of patients with CRS. In vitro analysis showed these cytokines were not secreted from the T cells infused. A significant fraction of the manufactured T cells in patients with CRS was found to express either CD244, CD39, or both at high levels. CONCLUSIONS The trial showed that endogenous TCR-silenced and affinity-enhanced NY-ESO-1 TCR-T cells were safely administered except for grade 3 lung injury. The TCR-T cell infusion exhibited significant tumor response and early-onset CRS in patients with tumors that express NY-ESO-1 at high levels. The differentiation properties of the manufactured T cells may be prognostic for TCR-T-related CRS. TRIAL REGISTRATION NUMBER NCT02366546.
Collapse
Affiliation(s)
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Institue Hospital, Tokyo, Japan
| | - Shinichi Kageyama
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshihiro Miyahara
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Institue Hospital, Tokyo, Japan
| | - Hidefumi Kato
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Japan
| | | | - Hiroyoshi Hattori
- Laboratory of Advanced Therapy, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Eiichi Sato
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Watanabe
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroshi Shiku
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
119
|
Diaz-Cano I, Paz-Ares L, Otano I. Adoptive tumor infiltrating lymphocyte transfer as personalized immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:163-192. [PMID: 35798505 DOI: 10.1016/bs.ircmb.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, a large group of patients fail to respond to therapy or progress after initial response, which brings the need for additional treatment options. Manipulating the immune system using a variety of approaches has been explored for the past years with successful results. Sustained progress has been made to understand the T cell-mediated anti-tumor responses counteracting the tumorigenesis process. The T-lymphocyte pool, especially its capacity for antigen-directed cytotoxicity, has become a central focus for engaging the immune system in defeating cancer. The adoptive cell transfer of autologous tumor-infiltrating lymphocytes has been used in humans for over 30 years to treat metastatic melanoma. In this review, we provide a brief history of ACT-TIL and discuss the current state of ACT-TIL clinical development in solid tumors. We also discuss how key advances in understanding genetic intratumor heterogeneity, to accurately identify neoantigens, and new strategies designed to overcome T-cell exhaustion and tumor immunosuppression have improved the efficacy of the TIL-therapy infusion. Characteristics of the TIL products will be discussed, as well as new strategies, including the selective expansion of specific fractions from the cell product or the genetic manipulation of T cells for improving the in-vivo survival and functionality. In summary, this review outlines the potential of ACT-TIL as a personalized approach for epithelial tumors and continued discoveries are making it increasingly more effective against other types of cancers.
Collapse
Affiliation(s)
- Ines Diaz-Cano
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/Spanish National Cancer Research Center (CNIO), Madrid, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain; Medicine and Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Itziar Otano
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/Spanish National Cancer Research Center (CNIO), Madrid, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain.
| |
Collapse
|
120
|
Zhang Y, Li W, Zhai J, Jin Y, Zhang L, Chen C. Phenotypic and functional characterizations of CD8 + T cell populations in malignant pleural effusion. Exp Cell Res 2022; 417:113212. [PMID: 35588796 DOI: 10.1016/j.yexcr.2022.113212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/18/2022]
Abstract
Malignant pleural effusions (MPE) are a common terminal pathway for many types of cancer, especially non-small cell lung cancer (NSCLC). However, the phenotype and differentiation status of MPE-infiltrating CD8+ T cells have not yet been systematically addressed. In this study, the surface molecules and cytokine secretion of T cells in MPE and peripheral blood (PB) were analyzed using flow cytometry. We found an increased frequency of CD8+ T cells in MPE compared to PB among lung cancer patients, of which the effector memory subset (Tem, CCR7- CD45RA-) and central memory subset (Tcm, CCR7+ CD45RA-) were upregulated. MPE-derived Tem and Tcm subsets expressed more PD1 or CD39, and there was a greater population of cells in these subsets that co-expressed them. In addition, Tem and Tcm cells from MPE had higher cytokine production than terminally differentiated effector memory cells (TemRA, CCR7- CD45RA+) and naïve cells (Tnaive, CCR7+CD45RA+). Our results demonstrate that the Tem and Tcm cells in MPE may have advantages in both tumor reactivity and immune functionality. Altogether, these findings help to characterize the phenotype of MPE-derived CD8+ T cells in terms of differentiation and tumor reactivity and reveal their potential as a target for immunotherapy.
Collapse
Affiliation(s)
- Yaoxin Zhang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Wenhui Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Jiawei Zhai
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujia Jin
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
| | - Cheng Chen
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
121
|
Van Buren E, Hu M, Cheng L, Wrobel J, Wilhelmsen K, Su L, Li Y, Wu D. TWO-SIGMA-G: a new competitive gene set testing framework for scRNA-seq data accounting for inter-gene and cell-cell correlation. Brief Bioinform 2022; 23:bbac084. [PMID: 35325048 PMCID: PMC9271221 DOI: 10.1093/bib/bbac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 11/14/2022] Open
Abstract
We propose TWO-SIGMA-G, a competitive gene set test for scRNA-seq data. TWO-SIGMA-G uses a mixed-effects regression model based on our previously published TWO-SIGMA to test for differential expression at the gene-level. This regression-based model provides flexibility and rigor at the gene-level in (1) handling complex experimental designs, (2) accounting for the correlation between biological replicates and (3) accommodating the distribution of scRNA-seq data to improve statistical inference. Moreover, TWO-SIGMA-G uses a novel approach to adjust for inter-gene-correlation (IGC) at the set-level to control the set-level false positive rate. Simulations demonstrate that TWO-SIGMA-G preserves type-I error and increases power in the presence of IGC compared with other methods. Application to two datasets identified HIV-associated interferon pathways in xenograft mice and pathways associated with Alzheimer's disease progression in humans.
Collapse
Affiliation(s)
- Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University
| | - John Wrobel
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill
| | - Kirk Wilhelmsen
- Departments of Genetics and Neurology, Renaissance Computing Institute, University of North Carolina at Chapel Hill
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill
- Departments of Pharmacology, Microbiology & Immunology University of Maryland School of Medicine
| | - Yun Li
- Department of Biostatistics, The University of North Carolina at Chapel Hill
- Department of Genetics, The University of North Carolina at Chapel Hill
- Department of Computer Science, The University of North Carolina at Chapel Hill
| | - Di Wu
- Department of Biostatistics, The University of North Carolina at Chapel Hill
- Department of Computer Science, The University of North Carolina at Chapel Hill
| |
Collapse
|
122
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
123
|
Janho dit Hreich S, Benzaquen J, Hofman P, Vouret-Craviari V. The Purinergic Landscape of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14081926. [PMID: 35454832 PMCID: PMC9025794 DOI: 10.3390/cancers14081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the most common cancer worldwide. Despite recent therapeutic advances, including targeted therapies and immune checkpoint inhibitors, the disease progresses in almost all advanced lung cancers and in up to 50% of early-stage cancers. The purpose of this review is to discuss whether purinergic checkpoints (CD39, CD73, P2RX7, and ADORs), which shape the immune response in the tumor microenvironment, may represent novel therapeutic targets to combat progression of non-small cell lung cancer by enhancing the antitumor immune response.
Collapse
Affiliation(s)
- Serena Janho dit Hreich
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Jonathan Benzaquen
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Paul Hofman
- CHU Nice, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France;
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM, Team 4), Université Côte d’Azur, 06100 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Université Côte d’Azur, 06000 Nice, France
| | - Valérie Vouret-Craviari
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
- Correspondence: ; Tel.: +33-492-031-223
| |
Collapse
|
124
|
Lubbers JM, Ważyńska MA, van Rooij N, Kol A, Workel HH, Plat A, Paijens ST, Vlaming MR, Spierings DCJ, Elsinga PH, Bremer E, Nijman HW, de Bruyn M. Expression of CD39 Identifies Activated Intratumoral CD8+ T Cells in Mismatch Repair Deficient Endometrial Cancer. Cancers (Basel) 2022; 14:cancers14081924. [PMID: 35454831 PMCID: PMC9028869 DOI: 10.3390/cancers14081924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Identification of human cancer-reactive CD8+ T cells is crucial for the stratification of patients for immunotherapy and determination of immune-therapeutic effects. Here, we report on the CD103− CD39+ subset of CD8+ T cells in tumors and reveal this subset to be activated and likely tumor-reactive. Our data further suggest that TGF-β signaling in the tumor micro-environment causes the differentiation of these recently activated CD103− CD39+ CD8+ T cells towards a CD39+ CD103+ tissue-resident memory-like phenotype. Abstract Identification of human cancer-reactive CD8+ T cells is crucial for the stratification of patients for immunotherapy and determination of immune-therapeutic effects. To date, these T cells have been identified mainly based on cell surface expression of programmed cell death protein 1 (PD-1) or co-expression of CD103 and CD39. A small subset of CD103− CD39+ CD8+ T cells is also present in tumors, but little is known about these T cells. Here, we report that CD103− CD39+ CD8+ T cells from mismatch repair-deficient endometrial tumors are activated and characterized predominantly by expression of TNFRSF9. In vitro, transforming growth factor-beta (TGF-β) drives the disappearance of this subset, likely through the conversion of CD103− CD39+ cells to a CD103+ phenotype. On the transcriptomic level, T cell activation and induction of CD39 was associated with a number of tissue residence and TGF-β responsive transcription factors. Altogether, our data suggest CD39+ CD103− CD8+ tumor-infiltrating T cells are recently activated and likely rapidly differentiate towards tissue residence upon exposure to TGF-β in the tumor micro-environment, explaining their relative paucity in human tumors.
Collapse
Affiliation(s)
- Joyce M. Lubbers
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.M.L.); (M.A.W.); (N.v.R.); (A.K.); (H.H.W.); (A.P.); (S.T.P.); (H.W.N.)
| | - Marta A. Ważyńska
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.M.L.); (M.A.W.); (N.v.R.); (A.K.); (H.H.W.); (A.P.); (S.T.P.); (H.W.N.)
| | - Nienke van Rooij
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.M.L.); (M.A.W.); (N.v.R.); (A.K.); (H.H.W.); (A.P.); (S.T.P.); (H.W.N.)
| | - Arjan Kol
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.M.L.); (M.A.W.); (N.v.R.); (A.K.); (H.H.W.); (A.P.); (S.T.P.); (H.W.N.)
| | - Hagma H. Workel
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.M.L.); (M.A.W.); (N.v.R.); (A.K.); (H.H.W.); (A.P.); (S.T.P.); (H.W.N.)
| | - Annechien Plat
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.M.L.); (M.A.W.); (N.v.R.); (A.K.); (H.H.W.); (A.P.); (S.T.P.); (H.W.N.)
| | - Sterre T. Paijens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.M.L.); (M.A.W.); (N.v.R.); (A.K.); (H.H.W.); (A.P.); (S.T.P.); (H.W.N.)
| | - Martijn R. Vlaming
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.R.V.); (E.B.)
| | - Diana C. J. Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.R.V.); (E.B.)
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.M.L.); (M.A.W.); (N.v.R.); (A.K.); (H.H.W.); (A.P.); (S.T.P.); (H.W.N.)
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.M.L.); (M.A.W.); (N.v.R.); (A.K.); (H.H.W.); (A.P.); (S.T.P.); (H.W.N.)
- Correspondence:
| |
Collapse
|
125
|
Giles JR, Manne S, Freilich E, Oldridge DA, Baxter AE, George S, Chen Z, Huang H, Chilukuri L, Carberry M, Giles L, Weng NPP, Young RM, June CH, Schuchter LM, Amaravadi RK, Xu X, Karakousis GC, Mitchell TC, Huang AC, Shi J, Wherry EJ. Human epigenetic and transcriptional T cell differentiation atlas for identifying functional T cell-specific enhancers. Immunity 2022; 55:557-574.e7. [PMID: 35263570 PMCID: PMC9214622 DOI: 10.1016/j.immuni.2022.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/27/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
The clinical benefit of T cell immunotherapies remains limited by incomplete understanding of T cell differentiation and dysfunction. We generated an epigenetic and transcriptional atlas of T cell differentiation from healthy humans that included exhausted CD8 T cells and applied this resource in three ways. First, we identified modules of gene expression and chromatin accessibility, revealing molecular coordination of differentiation after activation and between central memory and effector memory. Second, we applied this healthy molecular framework to three settings-a neoadjuvant anti-PD1 melanoma trial, a basal cell carcinoma scATAC-seq dataset, and autoimmune disease-associated SNPs-yielding insights into disease-specific biology. Third, we predicted genome-wide cis-regulatory elements and validated this approach for key effector genes using CRISPR interference, providing functional annotation and demonstrating the ability to identify targets for non-coding cellular engineering. These studies define epigenetic and transcriptional regulation of human T cells and illustrate the utility of interrogating disease in the context of a healthy T cell atlas.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Freilich
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek A Oldridge
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangeeth George
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hua Huang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lakshmi Chilukuri
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Carberry
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lydia Giles
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nan-Ping P Weng
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tara C Mitchell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
126
|
Mac QD, Sivakumar A, Phuengkham H, Xu C, Bowen JR, Su FY, Stentz SZ, Sim H, Harris AM, Li TT, Qiu P, Kwong GA. Urinary detection of early responses to checkpoint blockade and of resistance to it via protease-cleaved antibody-conjugated sensors. Nat Biomed Eng 2022; 6:310-324. [PMID: 35241815 DOI: 10.1038/s41551-022-00852-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Immune checkpoint blockade (ICB) therapy does not benefit the majority of treated patients, and those who respond to the therapy can become resistant to it. Here we report the design and performance of systemically administered protease activity sensors conjugated to anti-programmed cell death protein 1 (αPD1) antibodies for the monitoring of antitumour responses to ICB therapy. The sensors consist of a library of mass-barcoded protease substrates that, when cleaved by tumour proteases and immune proteases, are released into urine, where they can be detected by mass spectrometry. By using syngeneic mouse models of colorectal cancer, we show that random forest classifiers trained on mass spectrometry signatures from a library of αPD1-conjugated mass-barcoded activity sensors for differentially expressed tumour proteases and immune proteases can be used to detect early antitumour responses and discriminate resistance to ICB therapy driven by loss-of-function mutations in either the B2m or Jak1 genes. Biomarkers of protease activity may facilitate the assessment of early responses to ICB therapy and the classification of refractory tumours based on resistance mechanisms.
Collapse
Affiliation(s)
- Quoc D Mac
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Anirudh Sivakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Hathaichanok Phuengkham
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Congmin Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - James R Bowen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Fang-Yi Su
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Samuel Z Stentz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Hyoungjun Sim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Adrian M Harris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Tonia T Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Peng Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA.,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, USA.,The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA. .,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, USA. .,The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA. .,Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, USA. .,Integrated Cancer Research Center, Georgia Tech, Atlanta, GA, USA.
| |
Collapse
|
127
|
Egelston CA, Guo W, Tan J, Avalos C, Simons DL, Lim MH, Huang YJ, Nelson MS, Chowdhury A, Schmolze DB, Yim JH, Kruper L, Melstrom L, Margolin K, Mortimer JE, Yuan Y, Waisman JR, Lee PP. Tumor-infiltrating exhausted CD8+ T cells dictate reduced survival in premenopausal estrogen receptor-positive breast cancer. JCI Insight 2022; 7:153963. [PMID: 35132960 PMCID: PMC8855819 DOI: 10.1172/jci.insight.153963] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
CD8+ tumor-infiltrating lymphocytes (TILs) are associated with improved survival in triple-negative breast cancer (TNBC) yet have no association with survival in estrogen receptor–positive (ER+) BC. The basis for these contrasting findings remains elusive. We identified subsets of BC tumors infiltrated by CD8+ T cells with characteristic features of exhausted T cells (TEX). Tumors with abundant CD8+ TEX exhibited a distinct tumor microenvironment marked by amplified interferon-γ signaling–related pathways and higher programmed death ligand 1 expression. Paradoxically, higher levels of tumor-infiltrating CD8+ TEX associated with decreased overall survival of patients with ER+ BC but not patients with TNBC. Moreover, high tumor expression of a CD8+ TEX signature identified dramatically reduced survival in premenopausal, but not postmenopausal, patients with ER+ BC. Finally, we demonstrated the value of a tumor TEX signature score in identifying high-risk premenopausal ER+ BC patients among those with intermediate Oncotype DX Breast Recurrence Scores. Our data highlight the complex relationship between CD8+ TILs, interferon-γ signaling, and ER status in BC patient survival. This work identifies tumor-infiltrating CD8+ TEX as a key feature of reduced survival outcomes in premenopausal patients with early-stage ER+ BC.
Collapse
Affiliation(s)
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute
| | - Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute
| | | | - Diana L Simons
- Department of Immuno-Oncology, Beckman Research Institute
| | - Min Hui Lim
- Department of Immuno-Oncology, Beckman Research Institute
| | | | - Michael S Nelson
- Light Microscopy Digital Imaging Core, Beckman Research Institute
| | - Arnab Chowdhury
- Division of Biostatistics, Department of Computational and Quantitative Medicine, Beckman Research Institute; and
| | | | | | | | | | - Kim Margolin
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California, USA
| | - Joanne E Mortimer
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California, USA
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California, USA
| | - James R Waisman
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute
| |
Collapse
|
128
|
Horn S, Ritter M, Arndts K, Borrero-Wolff D, Wiszniewsky A, Debrah LB, Debrah AY, Osei-Mensah J, Chachage M, Hoerauf A, Kroidl I, Layland LE. Filarial Lymphedema Patients Are Characterized by Exhausted CD4 + T Cells. Front Cell Infect Microbiol 2022; 11:767306. [PMID: 35071034 PMCID: PMC8770542 DOI: 10.3389/fcimb.2021.767306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Worldwide, more than 200 million people are infected with filariae which can cause severe symptoms leading to reduced quality of life and contribute to disability-adjusted life years (DALYs). In particular, lymphatic filariasis (LF) caused by Wuchereria bancrofti can lead to lymphedema (LE) and consequently presents a serious health problem. To understand why only a fraction of the infected individuals develop pathology, it is essential to understand how filariae regulate host immunity. The central role of T cells for immunity against filariae has been shown in several studies. However, there is little knowledge about T cell exhaustion, which causes T cell dysfunction and impaired immune responses, in this group of individuals. Recently, we showed that LE patients from Ghana harbor distinct patterns of exhausted effector and memory CD8+ T cell subsets. Based on these findings, we now characterized CD4+ T cell subsets from the same Ghanaian patient cohort by analyzing distinct markers within a 13-colour flow cytometry panel. We revealed that LE patients had increased frequencies of CD4+ T cells expressing exhaustion-associated receptors such as KLRG-1, TIM-3 and PD-1 compared to healthy endemic normal and W. bancrofti-infected individuals. Moreover, CD4+ T cells in LE patients were characterized by distinct co-expression patterns of inhibitory receptors. Collectively with the previous findings on CD8+ T cell exhaustion patterns, the data shown here demonstrates that filarial LE patients harbor distinct subsets of exhausted T cells. Thus, T cell exhaustion patterns in LE patients need attention especially in regards to susceptibility of concomitant infections and should be taken into consideration for LE management measures.
Collapse
Affiliation(s)
- Sacha Horn
- Division of Infectious Diseases and Tropical Medicine, University Hospital Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Dennis Borrero-Wolff
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Anna Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Linda Batsa Debrah
- Filariasis Unit, Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.,Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Kumasi, Kumasi, Ghana
| | - Alexander Y Debrah
- Filariasis Unit, Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Kumasi, Kumasi, Ghana.,Faculty of Allied Health Sciences, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | - Jubin Osei-Mensah
- Filariasis Unit, Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Kumasi, Kumasi, Ghana
| | - Mkunde Chachage
- Division of Infectious Diseases and Tropical Medicine, University Hospital Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany.,Department of Immunology, National Institute for Medical Research (NIMR)-Mbeya Medical Research Center (MMRC), Mbeya, Tanzania.,Department of Microbiology and Immunology, University of Dar es Salaam-Mbeya College of Health and Allied Sciences (UDSM-MCHAS), Mbeya, Tanzania
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Neglected Tropical Disease, Partner Site, Bonn-Cologne, Bonn, Germany
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany.,German Centre for Infection Research (DZIF), Neglected Tropical Disease, Partner Site, Munich, Munich, Germany
| | - Laura E Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German Centre for Infection Research (DZIF), Neglected Tropical Disease, Partner Site, Bonn-Cologne, Bonn, Germany
| |
Collapse
|
129
|
T cell subtype profiling measures exhaustion and predicts anti-PD-1 response. Sci Rep 2022; 12:1342. [PMID: 35079117 PMCID: PMC8789795 DOI: 10.1038/s41598-022-05474-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Anti-PD-1 therapy can provide long, durable benefit to a fraction of patients. The on-label PD-L1 test, however, does not accurately predict response. To build a better biomarker, we created a method called T Cell Subtype Profiling (TCSP) that characterizes the abundance of T cell subtypes (TCSs) in FFPE specimens using five RNA models. These TCS RNA models are created using functional methods, and robustly discriminate between naïve, activated, exhausted, effector memory, and central memory TCSs, without the reliance on non-specific, classical markers. TCSP is analytically valid and corroborates associations between TCSs and clinical outcomes. Multianalyte biomarkers based on TCS estimates predicted response to anti-PD-1 therapy in three different cancers and outperformed the indicated PD-L1 test, as well as Tumor Mutational Burden. Given the utility of TCSP, we investigated the abundance of TCSs in TCGA cancers and created a portal to enable researchers to discover other TCSP-based biomarkers.
Collapse
|
130
|
Zahran AM, Rayan A, Zahran ZAM, Mohamed WMY, Mohamed DO, Abdel-Rahim MH, El-Badawy O. Overexpression of PD-1 and CD39 in tumor-infiltrating lymphocytes compared with peripheral blood lymphocytes in triple-negative breast cancer. PLoS One 2022; 17:e0262650. [PMID: 35051220 PMCID: PMC8775239 DOI: 10.1371/journal.pone.0262650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIM Growing evidence highlighted the primary role of the immune system in the disease course of triple-negative breast cancer (TNBC). The study aim was to investigate the expression of PD-1 and CD39 on CD4+ and CD8+ cells infiltrating tumor tissue compared to their counterparts in peripheral blood and explore its association with tumor characteristics, disease progression, and prognosis in females with TNBC. PATIENTS AND METHODS The study included 30 TNBC patients and 20 healthy controls. Cancer and normal breast tissue and peripheral blood samples were collected for evaluation of the expression of PD-1 and CD39 on CD4+ and CD8+T cells by flow cytometry. RESULTS A marked reduction in the percentage of CD8+ T lymphocytes and a significant increase in the frequencies of CD4+ T lymphocytes and CD4+ and CD8+ T lymphocytes expressing PD1 and CD39 were evident in tumor tissue in comparison with the normal breast tissue. The DFS was inversely related to the cancer tissue PD1+CD8+ and CD39+CD8+ T lymphocytes. Almost all studied cells were significantly increased in the tumor tissue than in peripheral blood. Positive correlations were detected among peripheral PD1+CD4+T lymphocytes and each of cancer tissue PD1+CD4+, PD1+CD8+and CD39+CD8+T cells, and among peripheral and cancer tissue CD39+CD4+and CD39+CD8+ T cells. CONCLUSIONS The CD39 and PD1 inhibitory pathways are synergistically utilized by TNBC cells to evade host immune response causing poor survival. Hence, combinational immunotherapy blocking these pathways might be a promising treatment strategy in this type of cancer.
Collapse
Affiliation(s)
- Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Wael M. Y. Mohamed
- Oncology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
- Consultant Medical Oncologist Locum, Swansea University Hospital, Swansea, United Kingdom
| | - Dalia O. Mohamed
- Department of Radiation Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mona H. Abdel-Rahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
131
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
132
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
133
|
Li S, Zhuang S, Heit A, Koo SL, Tan AC, Chow IT, Kwok WW, Tan IB, Tan DS, Simoni Y, Newell EW. Bystander CD4 + T cells infiltrate human tumors and are phenotypically distinct. Oncoimmunology 2022; 11:2012961. [PMID: 36524209 PMCID: PMC9746624 DOI: 10.1080/2162402x.2021.2012961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor-specific T cells likely underpin effective immune checkpoint-blockade therapies. Yet, most studies focus on Treg cells and CD8+ tumor-infiltrating lymphocytes (TILs). Here, we study CD4+ TILs in human lung and colorectal cancers and observe that non-Treg CD4+ TILs average more than 70% of total CD4+ TILs in both cancer types. Leveraging high dimensional analyses including mass cytometry, we reveal that CD4+ TILs are phenotypically heterogeneous, within each tumor and across patients. Consistently, we find different subsets of CD4+ TILs showing characteristics of effectors, tissue resident memory (Trm) or exhausted cells (expressing PD-1, CTLA-4 and CD39). In both cancer types, the frequencies of CD39- non-Treg CD4+ TILs strongly correlate with frequencies of CD39- CD8+ TILs, which we and others have previously shown to be enriched for cells specific for cancer-unrelated antigens (bystanders). Ex-vivo, we demonstrate that CD39- CD4+ TILs can be specific for cancer-unrelated antigens, such as HCMV epitopes. Overall, our findings highlight that CD4+ TILs can also recognize cancer-unrelated antigens and suggest measuring CD39 expression as a straightforward way to quantify or isolate bystander CD4+ T cells.
Collapse
Affiliation(s)
- Shamin Li
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| | - Summer Zhuang
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| | - Antja Heit
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| | - Si-Lin Koo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore,Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | - Aaron C. Tan
- Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | - I-Ting Chow
- Agency for Science Technology and Research (A*Star), Genome Institute of Singapore (GIS), Singapore, Singapore
| | - William W. Kwok
- Agency for Science Technology and Research (A*Star), Genome Institute of Singapore (GIS), Singapore, Singapore
| | - Iain Beehuat Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore,Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | | | - Yannick Simoni
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA,Université de Paris, Institut Cochin INSERM U1016, Paris, France,CONTACT Yannick Simoni Université de Paris, Institut Cochin INSERM U1016, 22 Rue Mechain, Paris75014, France
| | - Evan W. Newell
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA,Evan W. Newell Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, 1100 Fairview Ave. N., Mail Stop S2-204, Seattle, WA98109, USA
| |
Collapse
|
134
|
Smith AS, Knochelmann HM, Wyatt MM, Rangel Rivera GO, Rivera-Reyes AM, Dwyer CJ, Ware MB, Cole AC, Neskey DM, Rubinstein MP, Liu B, Thaxton JE, Bartee E, Paulos CM. B cells imprint adoptively transferred CD8 + T cells with enhanced tumor immunity. J Immunother Cancer 2022; 10:e003078. [PMID: 35017148 PMCID: PMC8753437 DOI: 10.1136/jitc-2021-003078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Adoptive T cell transfer (ACT) therapy improves outcomes in patients with advanced malignancies, yet many individuals relapse due to the infusion of T cells with poor function or persistence. Toll-like receptor (TLR) agonists can invigorate antitumor T cell responses when administered directly to patients, but these responses often coincide with toxicities. We posited that TLR agonists could be repurposed ex vivo to condition T cells with remarkable potency in vivo, circumventing TLR-related toxicity. METHODS In this study we investigated how tumor-specific murine CD8+ T cells and human tumor infiltrating lymphocytes (TILs) are impacted when expanded ex vivo with the TLR9 agonist CpG. RESULTS Herein we reveal a new way to reverse the tolerant state of adoptively transferred CD8+ T cells against tumors using TLR-activated B cells. We repurposed the TLR9 agonist, CpG, commonly used in the clinic, to bolster T cell-B cell interactions during expansion for ACT. T cells expanded ex vivo from a CpG-treated culture demonstrated potent antitumor efficacy and prolonged persistence in vivo. This antitumor efficacy was accomplished without in vivo administration of TLR agonists or other adjuvants of high-dose interleukin (IL)-2 or vaccination, which are classically required for effective ACT therapy. CpG-conditioned CD8+ T cells acquired a unique proteomic signature hallmarked by an IL-2RαhighICOShighCD39low phenotype and an altered metabolic profile, all reliant on B cells transiently present in the culture. Likewise, human TILs benefitted from expansion with CpG ex vivo, as they also possessed the IL-2RαhighICOShighCD39low phenotype. CpG fostered the expansion of potent CD8+ T cells with the signature phenotype and antitumor ability via empowering a direct B-T cell interaction. Isolated B cells also imparted T cells with the CpG-associated phenotype and improved tumor immunity without the aid of additional antigen-presenting cells or other immune cells in the culture. CONCLUSIONS Our results demonstrate a novel way to use TLR agonists to improve immunotherapy and reveal a vital role for B cells in the generation of potent CD8+ T cell-based therapies. Our findings have immediate implications in the clinical treatment of advanced solid tumors.
Collapse
Affiliation(s)
- Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Megan M Wyatt
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Guillermo O Rangel Rivera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Amalia M Rivera-Reyes
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael B Ware
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Anna C Cole
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - David M Neskey
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Cell and Molecular Pharmacology and Developmental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark P Rubinstein
- Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jessica E Thaxton
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric Bartee
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
135
|
LRRC15 + myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 2022; 611:148-154. [PMID: 36171287 PMCID: PMC9630141 DOI: 10.1038/s41586-022-05272-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/24/2022] [Indexed: 12/20/2022]
Abstract
Recent single-cell studies of cancer in both mice and humans have identified the emergence of a myofibroblast population specifically marked by the highly restricted leucine-rich-repeat-containing protein 15 (LRRC15)1-3. However, the molecular signals that underlie the development of LRRC15+ cancer-associated fibroblasts (CAFs) and their direct impact on anti-tumour immunity are uncharacterized. Here in mouse models of pancreatic cancer, we provide in vivo genetic evidence that TGFβ receptor type 2 signalling in healthy dermatopontin+ universal fibroblasts is essential for the development of cancer-associated LRRC15+ myofibroblasts. This axis also predominantly drives fibroblast lineage diversity in human cancers. Using newly developed Lrrc15-diphtheria toxin receptor knock-in mice to selectively deplete LRRC15+ CAFs, we show that depletion of this population markedly reduces the total tumour fibroblast content. Moreover, the CAF composition is recalibrated towards universal fibroblasts. This relieves direct suppression of tumour-infiltrating CD8+ T cells to enhance their effector function and augments tumour regression in response to anti-PDL1 immune checkpoint blockade. Collectively, these findings demonstrate that TGFβ-dependent LRRC15+ CAFs dictate the tumour-fibroblast setpoint to promote tumour growth. These cells also directly suppress CD8+ T cell function and limit responsiveness to checkpoint blockade. Development of treatments that restore the homeostatic fibroblast setpoint by reducing the population of pro-disease LRRC15+ myofibroblasts may improve patient survival and response to immunotherapy.
Collapse
|
136
|
Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, Ren X, Wang L, Wu X, Zhang J, Wu N, Zhang N, Zheng H, Ouyang H, Chen K, Bu Z, Hu X, Ji J, Zhang Z. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 2021; 374:abe6474. [PMID: 34914499 DOI: 10.1126/science.abe6474] [Citation(s) in RCA: 637] [Impact Index Per Article: 159.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liangtao Zheng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shishang Qin
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wen Si
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Anqiang Wang
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Ranran Gao
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Li Wang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaojiang Wu
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Ji Zhang
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Nan Wu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Ning Zhang
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hong Zheng
- Department of Gynecologic Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hanqiang Ouyang
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
| | - Keyuan Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
| | - Zhaode Bu
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xueda Hu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China.,Analytical Biosciences Limited, Beijing 100084, China
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China.,Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zemin Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
137
|
Xue G, Zheng N, Fang J, Jin G, Li X, Dotti G, Yi Q, Lu Y. Adoptive cell therapy with tumor-specific Th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells. Cancer Cell 2021; 39:1610-1622.e9. [PMID: 34678150 PMCID: PMC8678313 DOI: 10.1016/j.ccell.2021.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023]
Abstract
Resistance can occur in patients receiving adoptive cell therapy (ACT) due to antigen-loss-variant (ALV) cancer cell outgrowth. Here we demonstrate that murine and human T helper (Th) 9 cells, but not Th1/Tc1 or Th17 cells, expressing tumor-specific T cell receptors (TCRs) or chimeric antigen receptors (CARs), eradicate advanced tumors that contain ALVs. This unprecedented antitumor capacity of Th9 cells is attributed to both enhanced direct tumor cell killing and bystander antitumor effects promoted by intratumor release of interferon (IFN) α/β. Mechanistically, tumor-specific Th9 cells increase the intratumor accumulation of extracellular ATP (eATP; released from dying tumor cells), because of a unique feature of Th9 cells that lack the expression of ATP degrading ectoenzyme cluster of differentiation (CD) 39. Intratumor enrichment of eATP promotes the monocyte infiltration and stimulates their production of IFNα/β by inducing eATP-endogenous retrovirus-Toll-like receptor 3 (TLR3)/mitochondrial antiviral signaling (MAVS) pathway activation. These results identify tumor-specific Th9 cells as a unique T cell subset endowed with the unprecedented capacity to eliminate ALVs for curative responses.
Collapse
Affiliation(s)
- Gang Xue
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jing Fang
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston, TX 77030, USA.
| | - Yong Lu
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
138
|
Schulte S, Heide J, Ackermann C, Peine S, Ramharter M, Mackroth MS, Woost R, Jacobs T, Schulze zur Wiesch J. Deciphering the Plasmodium falciparum malaria-specific CD4+ T-cell response: ex vivo detection of high frequencies of PD-1+TIGIT+ EXP1-specific CD4+ T cells using a novel HLA-DR11-restricted MHC class II tetramer. Clin Exp Immunol 2021; 207:227-236. [PMID: 35020841 PMCID: PMC8982981 DOI: 10.1093/cei/uxab027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023] Open
Abstract
Relatively little is known about the ex vivo frequency and phenotype of the Plasmodium falciparum-specific CD4+ T-cell response in humans. The exported protein 1 (EXP1) is expressed by plasmodia at both, the liver stage and blood stage, of infection making it a potential target for CD4+ and CD8+ effector T cells. Here, a fluorochrome-labelled HLA-DRB1∗11:01-restriced MHC class II tetramer derived from the P. falciparum EXP1 (aa62-74) was established for ex vivo tetramer analysis and magnetic bead enrichment in 10 patients with acute malaria. EXP1-specific CD4+ T cells were detectable in 9 out of 10 (90%) malaria patients expressing the HLA-DRB1∗11 molecule with an average ex vivo frequency of 0.11% (0-0.22%) of total CD4+ T cells. The phenotype of EXP1-specific CD4+ T cells was further assessed using co-staining with activation (CD38, HLA-DR, CD26), differentiation (CD45RO, CCR7, KLRG1, CD127), senescence (CD57), and co-inhibitory (PD-1, TIGIT, LAG-3, TIM-3) markers as well as the ectonucleotidases CD39 and CD73. EXP1-specific tetramer+ CD4+ T cells had a distinct phenotype compared to bulk CD4+ T cells and displayed a highly activated effector memory phenotype with elevated levels of co-inhibitory receptors and activation markers: EXP1-specific CD4+ T cells universally expressed the co-inhibitory receptors PD-1 and TIGIT as well as the activation marker CD38 and showed elevated frequencies of CD39. These results demonstrate that MHC class II tetramer enrichment is a sensitive approach to investigate ex vivo antigen-specific CD4+ T cells in malaria patients that will aid further analysis of the role of CD4+ T cells during malaria.
Collapse
Affiliation(s)
- Sophia Schulte
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christin Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Ramharter
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Department of Tropical Medicine, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Maria Sophia Mackroth
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Department of Tropical Medicine, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany,Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Robin Woost
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Jacobs
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Correspondence: Julian Schulze zur Wiesch, Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
139
|
Li B, Li G, Yan X, Zhu D, Lin PP, Wang Z, Qu H, He X, Fu Y, Zhu X, Lin P, Zhang J, Li X, Dai H, Chen H, Poznansky MC, Lin N, Ye Z. Fresh Tissue Multi-omics Profiling Reveals Immune Classification and Suggests Immunotherapy Candidates for Conventional Chondrosarcoma. Clin Cancer Res 2021; 27:6543-6558. [PMID: 34426437 PMCID: PMC9401490 DOI: 10.1158/1078-0432.ccr-21-1893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE There is still no standard nonsurgical regimen for conventional chondrosarcoma (CHS). We aimed to identify whether any CHSs have a favored microenvironment for immunotherapy via multidimensional evaluation of the immunologic characteristics of this tumor. EXPERIMENTAL DESIGN We obtained 98 newly-diagnosed CHS fresh tumors from several institutions and performed comprehensive analysis of data from CyTOF, whole-exome sequencing, and flow cytometry in 22 cases. Clinical data from immunotherapy responders and nonresponders were compared to explore possible biomarkers of immunotherapy response. Mechanism studies were conducted to interpret the biomarker phenotype. RESULTS Based on the integrated data of single-cell CyTOF and flow cytometry, the CHS immune-microenvironment phenotypes were classified into three groups: subtype I, the "granulocytic-myeloid-derived suppressor cell (G-MDSC) dominant" cluster, with high number of HLA-DR- CD14- myeloid cells; subtype II, the "immune exhausted" cluster, with high exhausted T-cell and dendritic-cell infiltration; and subtype III, the "immune desert" cluster, with few immune cells. Immune cell-rich subtypes (subtype I and II) were characterized by IDH mutation, pathologic high grade, and peritumoral edema, while subtype I cases were exclusively featured by myxoid transformation. In clinical practice involving 12 individuals who received PD-1 antibody immunotherapy, all of the 3 cases with controlled diseases were retrospectively classified as subtype II. In mechanism, IDH mutation significantly elevated chemokine levels and immune-cell infiltration in immune-inactivated tumors. CONCLUSIONS This study is the first to provide immune characterization of CHS, representing a major step to precise immunotherapy against this malignancy. Immunotherapy is promising for the "immune exhausted" subtype of patients with CHS.
Collapse
Affiliation(s)
- Binghao Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Guoqi Li
- Orthopedic Research Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xiaobo Yan
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Dan Zhu
- Division of Mass Cytometry, PLTTECH Institute, Hangzhou, China
| | - Patrick P. Lin
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zenan Wang
- Orthopedic Research Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Hao Qu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuexin He
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanbiao Fu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuliang Zhu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Lin
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute, Zhejiang University, Hangzhou, China
| | - Jiangnan Zhang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoya Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Dai
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nong Lin
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China.,Corresponding Authors: Nong Lin, Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310009, China. Phone: 86-571-8778-3567; E-mail: ; and Zhaoming Ye, E-mail:
| | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China.,Corresponding Authors: Nong Lin, Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310009, China. Phone: 86-571-8778-3567; E-mail: ; and Zhaoming Ye, E-mail:
| |
Collapse
|
140
|
Guo AL, Zhao JF, Gao L, Huang HH, Zhang JY, Zhang C, Song JW, Xu RN, Fan X, Shi M, Jiao YM, Wang FS. HIV-1-Specific CD11c + CD8 + T Cells Display Low PD-1 Expression and Strong Anti-HIV-1 Activity. Front Immunol 2021; 12:757457. [PMID: 34721433 PMCID: PMC8554207 DOI: 10.3389/fimmu.2021.757457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Exhaustion of HIV-1-specific CD8+ T cells prevents optimal control of HIV-1 infection. Identifying unconventional CD8+ T cell subsets to effectively control HIV-1 replication is vital. In this study, the role of CD11c+ CD8+ T cells during HIV-1 infection was evaluated. The frequencies of CD11c+ CD8+ T cells significantly increased and were negatively correlated with viral load in HIV-1-infected treatment-naïve patients. HIV-1-specific cells were enriched more in CD11c+ CD8+ T cells than in CD11c- CD8+ T cells, which could be induced by HIV-1-derived overlapping peptides, marking an HIV-1-specific CD8+ T cell population. This subset expressed higher levels of activating markers (CD38 and HLA-DR), cytotoxic markers (granzyme B, perforin, and CD107a), and cytokines (IL-2 and TNF-α), with lower levels of PD-1 compared to the CD11c- CD8+ T cell subset. In vitro analysis verified that CD11c+ CD8+ T cells displayed a stronger HIV-1-specific killing capacity than the CD11c- counterparts. These findings indicate that CD11c+ CD8+ T cells have potent immunotherapeutic efficacy in controlling HIV-1 infection.
Collapse
Affiliation(s)
- An-Liang Guo
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Fang Zhao
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lin Gao
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Hui-Huang Huang
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
141
|
Kumar N, Singh A, Gulati HK, Bhagat K, Kaur K, Kaur J, Dudhal S, Duggal A, Gulati P, Singh H, Singh JV, Bedi PMS. Phytoconstituents from ten natural herbs as potent inhibitors of main protease enzyme of SARS-COV-2: In silico study. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021. [PMID: 35403086 DOI: 10.1016/j.phyplu.2021.100139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. PURPOSE The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. METHODS We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. RESULTS All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. CONCLUSION Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.
Collapse
Key Words
- ACE-2, Angiotensin converting enzyme- 2
- ADMET
- ADMET, absorption, Distribution, metabolism, excretion and toxicity
- Ala, Alanine
- Approx., approximately
- Arg, arginine
- Asn, Asparagine
- Asp, Aspartic acid
- CADD, Computer Aided Drug Design
- CHARMM, Chemistry at Harvard Macromolecular Mechanics
- COV, coronavirus
- COVID, Novel corona-virus disease
- Covid-19
- Cys, cysteine
- DSBDS, Dassault's Systems Biovia's Discovery studio
- Gln, Glutamine
- Glu, glutamate
- Gly, Glycine
- His, histidine
- Ile, isoleucine
- K, Kelvin
- Kcal/mol, kilo calories per mol
- Leu, Leucine
- Leu, leucine
- Lys, Lysine
- MD, Molecular Dynamics
- Met, Methionine
- MoISA, Molecular Surface Area
- Molecular dynamic simulations
- Mpro protein
- Mpro, Main protease enzyme
- N protein, nucleocapsid protein
- NI, N-(4-methylpyridin-3-yl) acetamide inhibitor
- NPT, amount of substance (N), pressure (P) and temperature (T)
- NVT, amount of substance (N), volume (V) and temperature (T)
- Natural Antiviral herbs
- PDB, protein data bank
- PPB, plasma protein binding
- PSA, Polar Surface Area
- Phi, Phenylalanine
- Pro, Proline
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMS, Root Mean Square
- RMSD, Root Mean Square Deviation
- RMSF, root mean square fluctuations
- RNA, Ribonucleic acid
- SAR-COV-2, severe acute respiratory syndrome coronavirus 2
- SDF, structure data format
- Ser, serine
- T, Temperature
- Thr, Threonine
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- kDa, kilo Dalton
- nCOV-19, Novel Coronavirus 2019
- ns/nsec, nano seconds
- ps, pentoseconds
- rGyr, Radius of gyration
- w.r.t., with respect to
- Å, angstrom
- α, alpha
- β, beta
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
- Drug and Pollution testing Lab, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jaspreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Shilpa Dudhal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Amit Duggal
- Drugs Control Wing, Sector 16, Chandigarh, India, 160015
| | - Puja Gulati
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India, 147301
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | | |
Collapse
|
142
|
Wang N, Vuerich M, Kalbasi A, Graham JJ, Csizmadia E, Manickas-Hill ZJ, Woolley A, David C, Miller EM, Gorman K, Hecht JL, Shaefi S, Robson SC, Longhi MS. Limited TCR repertoire and ENTPD1 dysregulation mark late-stage COVID-19. iScience 2021; 24:103205. [PMID: 34608452 PMCID: PMC8482538 DOI: 10.1016/j.isci.2021.103205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
T cell exhaustion and dysfunction are hallmarks of severe COVID-19. To gain insights into the pathways underlying these alterations, we performed a comprehensive transcriptome analysis of peripheral-blood-mononuclear-cells (PBMCs), spleen, lung, kidney, liver, and heart obtained at autopsy from COVID-19 patients and matched controls, using the nCounter CAR-T-Characterization panel. We found substantial gene alterations in COVID-19-impacted organs, especially the lung where altered TCR repertoires are noted. Reduced TCR repertoires are also observed in PBMCs of severe COVID-19 patients. ENTPD1/CD39, an ectoenzyme defining exhausted T-cells, is upregulated in the lung, liver, spleen, and PBMCs of severe COVID-19 patients where expression positively correlates with markers of vasculopathy. Heightened ENTPD1/CD39 is paralleled by elevations in STAT-3 and HIF-1α transcription factors; and by markedly reduced CD39-antisense-RNA, a long-noncoding-RNA negatively regulating ENTPD1/CD39 at the post-transcriptional level. Limited TCR repertoire and aberrant regulation of ENTPD1/CD39 could have permissive roles in COVID-19 progression and indicate potential therapeutic targets to reverse disease. Transcriptome profiling of COVID-19 autoptic tissue and PBMC was carried out There is limited TCR repertoire in lung, kidney and PBMC of severe COVID-19 cases There are increased CD39 levels in PBMC of severe COVID-19 patients High HIF-1a and STAT-3 and low CD39-antisense might be linked with CD39 increase
Collapse
Affiliation(s)
- Na Wang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong 250021, China.,School of Medicine, Shandong University, 44 Wenhuaxilu, Jinan, Shandong 250021, China
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Ahmadreza Kalbasi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Jonathon J Graham
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Eva Csizmadia
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | - Ann Woolley
- Division of Infectious Diseases, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Clement David
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - Eric M Miller
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - Kara Gorman
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Shahzad Shaefi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
143
|
Vuerich M, Wang N, Kalbasi A, Graham JJ, Longhi MS. Dysfunctional Immune Regulation in Autoimmune Hepatitis: From Pathogenesis to Novel Therapies. Front Immunol 2021; 12:746436. [PMID: 34650567 PMCID: PMC8510512 DOI: 10.3389/fimmu.2021.746436] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory disorder characterized by hypergammaglobulinemia, presence of serum autoantibodies and histological features of interface hepatitis. AIH therapeutic management still relies on the administration of corticosteroids, azathioprine and other immunosuppressants like calcineurin inhibitors and mycophenolate mofetil. Withdrawal of immunosuppression often results in disease relapse, and, in some cases, therapy is ineffective or associated with serious side effects. Understanding the mechanisms underlying AIH pathogenesis is therefore of paramount importance to develop more effective and well tolerated agents capable of restoring immunotolerance to liver autoantigens. Imbalance between effector and regulatory cells permits liver damage perpetuation and progression in AIH. Impaired expression and regulation of CD39, an ectoenzyme key to immunotolerance maintenance, have been reported in Tregs and effector Th17-cells derived from AIH patients. Interference with these altered immunoregulatory pathways may open new therapeutic avenues that, in addition to limiting aberrant inflammatory responses, would also reconstitute immune homeostasis. In this review, we highlight the most recent findings in AIH immunopathogenesis and discuss how these could inform and direct the development of novel therapeutic tools.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Na Wang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Ahmadreza Kalbasi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathon J Graham
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
144
|
Shoukry NH, Walker CM. T cell responses during HBV and HCV infections: similar but not quite the same? Curr Opin Virol 2021; 51:80-86. [PMID: 34619514 DOI: 10.1016/j.coviro.2021.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022]
Abstract
The hepatitis B and C viruses persist by evasion of T cell immunity. Persistence depends upon premature failure of CD4+ T cell help and loss of CD8+ T cell control because of epitope mutational escape and/or functional exhaustion. Powerful new immunological and transcriptomic tools provide insight into the mechanisms of T cell silencing by HBV and HCV. Similarities are apparent, including dysregulated expression of common inhibitory/immune checkpoint receptors and transcription factors. There are also differences. T cell exhaustion is uniform in HCV infection, but varies in HBV infection depending on disease stage and/or protein target. Here, we review recent advances defining similarities and differences in T cell evasion by HBV and HCV, and the potential for reversal following antiviral therapy.
Collapse
Affiliation(s)
- Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
145
|
Park J, Daniels J, Wartewig T, Ringbloom KG, Martinez-Escala ME, Choi S, Thomas JJ, Doukas PG, Yang J, Snowden C, Law C, Lee Y, Lee K, Zhang Y, Conran C, Tegtmeyer K, Mo SH, Pease DR, Jothishankar B, Kwok PY, Abdulla FR, Pro B, Louissaint A, Boggon TJ, Sosman J, Guitart J, Rao D, Ruland J, Choi J. Integrated genomic analyses of cutaneous T-cell lymphomas reveal the molecular bases for disease heterogeneity. Blood 2021; 138:1225-1236. [PMID: 34115827 PMCID: PMC8499046 DOI: 10.1182/blood.2020009655] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/20/2021] [Indexed: 11/20/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a clinically heterogeneous collection of lymphomas of the skin-homing T cell. To identify molecular drivers of disease phenotypes, we assembled representative samples of CTCLs from patients with diverse disease subtypes and stages. Via DNA/RNA-sequencing, immunophenotyping, and ex vivo functional assays, we identified the landscape of putative driver genes, elucidated genetic relationships between CTCLs across disease stages, and inferred molecular subtypes in patients with stage-matched leukemic disease. Collectively, our analysis identified 86 putative driver genes, including 19 genes not previously implicated in this disease. Two mutations have never been described in any cancer. Functionally, multiple mutations augment T-cell receptor-dependent proliferation, highlighting the importance of this pathway in lymphomagenesis. To identify putative genetic causes of disease heterogeneity, we examined the distribution of driver genes across clinical cohorts. There are broad similarities across disease stages. Many driver genes are shared by mycosis fungoides (MF) and Sezary syndrome (SS). However, there are significantly more structural variants in leukemic disease, leading to highly recurrent deletions of putative tumor suppressors that are uncommon in early-stage skin-centered MF. For example, TP53 is deleted in 7% and 87% of MF and SS, respectively. In both human and mouse samples, PD1 mutations drive aggressive behavior. PD1 wild-type lymphomas show features of T-cell exhaustion. PD1 deletions are sufficient to reverse the exhaustion phenotype, promote a FOXM1-driven transcriptional signature, and predict significantly worse survival. Collectively, our findings clarify CTCL genetics and provide novel insights into pathways that drive diverse disease phenotypes.
Collapse
Affiliation(s)
- Joonhee Park
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jay Daniels
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tim Wartewig
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Kimberly G Ringbloom
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | - Jane J Thomas
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Jingyi Yang
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Caroline Snowden
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Calvin Law
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yujin Lee
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Katie Lee
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yancong Zhang
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Kyle Tegtmeyer
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Samuel H Mo
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Balaji Jothishankar
- Department of Medicine, Section of Dermatology, University of Chicago Pritzker School of Medicine, Chicago, IL
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Farah R Abdulla
- Division of Dermatology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Barbara Pro
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Abner Louissaint
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Titus J Boggon
- Department of Pharmacology and
- Department of Molecular Biology and Biophysics, Yale University School of Medicine, New Haven, CT
| | - Jeffrey Sosman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | | | - Deepak Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany; and
- German Center for Infection Research (DZIF), Munich, Germany
| | - Jaehyuk Choi
- Department of Dermatology, and
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| |
Collapse
|
146
|
Kverneland AH, Chamberlain CA, Borch TH, Nielsen M, Mørk SK, Kjeldsen JW, Lorentzen CL, Jørgensen LP, Riis LB, Yde CW, Met Ö, Donia M, Marie Svane I. Adoptive cell therapy with tumor-infiltrating lymphocytes supported by checkpoint inhibition across multiple solid cancer types. J Immunother Cancer 2021; 9:jitc-2021-003499. [PMID: 34607899 PMCID: PMC8491427 DOI: 10.1136/jitc-2021-003499] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
Background Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) has shown remarkable results in malignant melanoma (MM), while studies on the potential in other cancer diagnoses are sparse. Further, the prospect of using checkpoint inhibitors (CPIs) to support TIL production and therapy remains to be explored. Study design TIL-based ACT with CPIs was evaluated in a clinical phase I/II trial. Ipilimumab (3 mg/kg) was administered prior to tumor resection and nivolumab (3 mg/kg, every 2 weeks ×4) in relation to TIL infusion. Preconditioning chemotherapy was given before TIL infusion and followed by low-dose (2 10e6 international units (UI) ×1 subcutaneous for 14 days) interleukin-2 stimulation. Results Twenty-five patients covering 10 different cancer diagnoses were treated with in vitro expanded TILs. Expansion of TILs was successful in 97% of recruited patients. Five patients had sizeable tumor regressions of 30%–63%, including two confirmed partial responses in patients with head-and-neck cancer and cholangiocarcinoma. Safety and feasibility were comparable to MM trials of ACT with the addition of expected CPI toxicity. In an exploratory analysis, tumor mutational burden and expression of the alpha-integrin CD103 (p=0.025) were associated with increased disease control. In vitro tumor reactivity was seen in both patients with an objective response and was associated with regressions in tumor size (p=0.028). Conclusion High success rates of TIL expansion were demonstrated across multiple solid cancers. TIL ACTs were found feasible, independent of previous therapy. Tumor regressions after ACT combined with CPIs were demonstrated in several cancer types supported by in vitro antitumor reactivity of the TILs. Trial registration numbers NCT03296137, and EudraCT No. 2017-002323-25.
Collapse
Affiliation(s)
- Anders Handrup Kverneland
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Christopher Aled Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Troels Holz Borch
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Morten Nielsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Sofie Kirial Mørk
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Julie Westerlin Kjeldsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Cathrine Lund Lorentzen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lise Pyndt Jørgensen
- Department of Pathology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lene Buhl Riis
- Department of Pathology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Christina Westmose Yde
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Glostrup, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Marco Donia
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark .,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
147
|
Ren H, Cao K, Wang M. A Correlation Between Differentiation Phenotypes of Infused T Cells and Anti-Cancer Immunotherapy. Front Immunol 2021; 12:745109. [PMID: 34603332 PMCID: PMC8479103 DOI: 10.3389/fimmu.2021.745109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
T-cell therapy, usually with ex-vivo expansion, is very promising to treat cancer. Differentiation status of infused T cells is a crucial parameter for their persistence and antitumor immunity. Key phenotypic molecules are effective and efficient to analyze differentiation status. Differentiation status is crucial for T cell exhaustion, in-vivo lifespan, antitumor immunity, and even antitumor pharmacological interventions. Strategies including cytokines, Akt, Wnt and Notch signaling, epigenetics, and metabolites have been developed to produce less differentiated T cells. Clinical trials have shown better clinical outcomes from infusion of T cells with less differentiated phenotypes. CD27+, CCR7+ and CD62L+ have been the most clinically relevant phenotypic molecules, while Tscm and Tcm the most clinically relevant subtypes. Currently, CD27+, CD62L+ and CCR7+ are recommended in the differentiation phenotype to evaluate strategies of enhancing stemness. Future studies may discover highly clinically relevant differentiation phenotypes for specific T-cell production methods or specific subtypes of cancer patients, with the advantages of precision medicine.
Collapse
Affiliation(s)
- Hao Ren
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Kunkun Cao
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| |
Collapse
|
148
|
Hixson EA, Borker PV, Jackson EK, Macatangay BJ. The Adenosine Pathway and Human Immunodeficiency Virus-Associated Inflammation. Open Forum Infect Dis 2021; 8:ofab396. [PMID: 34557556 PMCID: PMC8454523 DOI: 10.1093/ofid/ofab396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Human immunodeficiency virus (HIV) is associated with an increased risk of age-associated comorbidities and mortality compared to people without HIV. This has been attributed to HIV-associated chronic inflammation and immune activation despite viral suppression. The adenosine pathway is an established mechanism by which the body regulates persistent inflammation to limit tissue damage associated with inflammatory conditions. However, HIV infection is associated with derangements in the adenosine pathway that limits its ability to control HIV-associated inflammation. This article reviews the function of purinergic signaling and the role of the adenosine signaling pathway in HIV-associated chronic inflammation. This review also discusses the beneficial and potential detrimental effects of pharmacotherapeutic strategies targeting this pathway among people with HIV.
Collapse
Affiliation(s)
- Emily A Hixson
- Department of Infectious Disease and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Priya V Borker
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bernard J Macatangay
- Department of Infectious Disease and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pennsylvania, USA
| |
Collapse
|
149
|
Spatola BN, Lerner AG, Wong C, Dela Cruz T, Welch M, Fung W, Kovalenko M, Losenkova K, Yegutkin GG, Beers C, Corbin J, Soros VB. Fully human anti-CD39 antibody potently inhibits ATPase activity in cancer cells via uncompetitive allosteric mechanism. MAbs 2021; 12:1838036. [PMID: 33146056 PMCID: PMC7646477 DOI: 10.1080/19420862.2020.1838036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extracellular ATP/adenosine axis in the tumor microenvironment (TME) has emerged as an important immune-regulatory pathway. Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), otherwise known as CD39, is highly expressed in the TME, both on infiltrating immune cells and tumor cells across a broad set of cancer indications. CD39 processes pro-inflammatory extracellular ATP to ADP and AMP, which is then processed by Ecto-5ʹ-nucleotidase/CD73 to immunosuppressive adenosine. Directly inhibiting the enzymatic function of CD39 via an antibody has the potential to unleash an immune-mediated anti-tumor response via two mechanisms: 1) increasing the availability of immunostimulatory extracellular ATP released by damaged and/or dying cells, and 2) reducing the generation and accumulation of suppressive adenosine within the TME. Tizona Therapeutics has engineered a novel first-in-class fully human anti-CD39 antibody, TTX-030, that directly inhibits CD39 ATPase enzymatic function with sub-nanomolar potency. Further characterization of the mechanism of inhibition by TTX-030 using CD39+ human melanoma cell line SK-MEL-28 revealed an uncompetitive allosteric mechanism (α < 1). The uncompetitive mechanism of action enables TTX-030 to inhibit CD39 at the elevated ATP concentrations reported in the TME. Maximal inhibition of cellular CD39 ATPase velocity was 85%, which compares favorably to results reported for antibody inhibitors to other enzyme targets. The allosteric mechanism of TTX-030 was confirmed via mapping the epitope to a region of CD39 distant from its active site, which suggests possible models for how potent inhibition is achieved. In summary, TTX-030 is a potent allosteric inhibitor of CD39 ATPase activity that is currently being evaluated in clinical trials for cancer therapy.
Collapse
Affiliation(s)
- Bradley N Spatola
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| | - Alana G Lerner
- Immunology, Tizona Therapeutics , South San Francisco, CA, USA
| | - Clifford Wong
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| | - Tracy Dela Cruz
- Immunology, Tizona Therapeutics , South San Francisco, CA, USA.,Immunology, Trishula Therapeutics, South San Francisco , CA, USA
| | - Megan Welch
- Immunology, Tizona Therapeutics , South San Francisco, CA, USA
| | - Wanchi Fung
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| | | | | | | | - Courtney Beers
- Immunology, Tizona Therapeutics , South San Francisco, CA, USA
| | - John Corbin
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| | - Vanessa B Soros
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| |
Collapse
|
150
|
D'Amico D, Valdebenito S, Eugenin EA. The role of Pannexin-1 channels and extracellular ATP in the pathogenesis of the human immunodeficiency virus. Purinergic Signal 2021; 17:563-576. [PMID: 34542793 DOI: 10.1007/s11302-021-09817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
Only recently, the role of large ionic channels such as Pannexin-1 channels and Connexin hemichannels has been implicated in several physiological and pathological conditions, including HIV infection and associated comorbidities. These channels are in a closed stage in healthy conditions, but in pathological conditions including HIV, Pannexin-1 channels and Connexin hemichannels become open. Our data demonstrate that acute and chronic HIV infection induces channel opening (Pannexin and Connexin channels), ATP release into the extracellular space, and subsequent activation of purinergic receptors in immune and non-immune cells. We demonstrated that Pannexin and Connexin channels contribute to HIV infection and replication, the long-term survival of viral reservoirs, and comorbidities such as NeuroHIV. Here, we discuss the available data to support the participation of these channels in the HIV life cycle and the potential therapeutic approach to prevent HIV-associated comorbidities.
Collapse
Affiliation(s)
- Daniela D'Amico
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Eliseo A Eugenin
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA.
| |
Collapse
|