101
|
Kouhbananinejad SM, Derakhshani A, Vahidi R, Dabiri S, Fatemi A, Armin F, Farsinejad A. A fibrinous and allogeneic fibroblast-enriched membrane as a biocompatible material can improve diabetic wound healing. Biomater Sci 2019; 7:1949-1961. [DOI: 10.1039/c8bm01377b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The novel fibroblast-loaded fibrin membrane was prepared to promote diabetic wound healing.
Collapse
Affiliation(s)
- Seyedeh Mehrnaz Kouhbananinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center
- Kerman University of Medical Sciences
- Kerman
- Iran
- Department of Hematology and Laboratory Sciences
| | - Ali Derakhshani
- Research Center for Hydatid Disease in Iran
- Kerman University of Medical Sciences
- Kerman
- Iran
- Pathology and Stem Cell Research Center
| | - Reza Vahidi
- Research Center for Hydatid Disease in Iran
- Kerman University of Medical Sciences
- Kerman
- Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center
- Kerman University of Medical Sciences
- Kerman
- Iran
| | - Ahmad Fatemi
- Department of Hematology and Laboratory Sciences
- Faculty of Allied Medical Sciences
- Kerman University of Medical Sciences
- Kerman
- Iran
| | - Farzaneh Armin
- Department of Hematology and Laboratory Sciences
- Faculty of Allied Medical Sciences
- Kerman University of Medical Sciences
- Kerman
- Iran
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center
- Kerman University of Medical Sciences
- Kerman
- Iran
- Department of Hematology and Laboratory Sciences
| |
Collapse
|
102
|
Fibroblast gene expression following asthmatic bronchial epithelial cell conditioning correlates with epithelial donor lung function and exacerbation history. Sci Rep 2018; 8:15768. [PMID: 30361541 PMCID: PMC6202408 DOI: 10.1038/s41598-018-34021-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/06/2018] [Indexed: 11/08/2022] Open
Abstract
Airway remodeling may contribute to decreased lung function in asthmatic children. Bronchial epithelial cells (BECs) may regulate fibroblast expression of extracellular matrix (ECM) constituents and fibroblast-to-myofibroblast transition (FMT). Our objective was to determine if human lung fibroblast (HLF) expression of collagen I (COL1A1), hyaluronan synthase 2 (HAS2), and the FMT marker alpha-smooth muscle actin (α-SMA) by HLFs conditioned by BECs from asthmatic and healthy children correlate with lung function measures and exacerbation history among BEC donors. BECs from asthmatic (n = 23) and healthy children (n = 15) were differentiated at an air-liquid interface (ALI) and then co-cultured with HLFs for 96 hours. Expression of COL1A1, HAS2, and α-SMA by HLFs was determined by quantitative polymerase chain reaction (qPCR). FMT was quantified by measuring HLF cytoskeletal α-SMA by flow cytometry. Pro-collagen Iα1, hyaluronan (HA), and PGE2 were measured in BEC-HLF supernatant. Correlations between lung function measures of BEC donors, and COL1A1, HAS2, and α-SMA gene expression, as well as supernatant concentrations of HA, pro-collagen Iα1, hyaluronan (HA), and PGE2 were assessed. We observed that expression of α-SMA and COL1A1 by HLFs co-cultured with asthmatic BECs was negatively correlated with BEC donor lung function. BEC-HLF supernatant concentrations of pro-collagen Iα1 were negatively correlated, and PGE2 concentrations positively correlated, with asthmatic BEC donor lung function. Expression of HAS2, but not α-SMA or COL1A1, was greater by HLFs co-cultured with asthmatic BECs from donors with a history of severe exacerbations than by HLFs co-cultured with BECs from donors who lacked a history of severe exacerbations. In conclusion, α-SMA and COL1A1 expression by HLFs co-cultured with BECs from asthmatic children were negatively correlated with lung function measures, supporting our hypothesis that epithelial regulation of HLFs and airway deposition of ECM constituents by HLFs contributes to lung function deficits among asthmatic children. Furthermore, epithelial regulation of airway HAS2 may influence the susceptibility of children with asthma to experience severe exacerbations. Finally, epithelial-derived PGE2 is a potential regulator of airway FMT and HLF production of collagen I that should be investigated further in future studies.
Collapse
|
103
|
Ji YD, Luo ZL, Chen CX, Li B, Gong J, Wang YX, Chen L, Yao SL, Shang Y. BML-111 suppresses TGF-β1-induced lung fibroblast activation in vitro and decreases experimental pulmonary fibrosis in vivo. Int J Mol Med 2018; 42:3083-3092. [PMID: 30280199 PMCID: PMC6202103 DOI: 10.3892/ijmm.2018.3914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Pulmonary fibrosis is an aggressive end‑stage disease. Transforming growth factor‑β1 (TGF‑β1) mediates lung fibroblast activation and is essential for the progress of pulmonary fibrosis. BML‑111, a lipoxinA4 (LXA4) receptor (ALX) agonist, has been reported to possess anti‑fibrotic properties. The present study aimed to elucidate whether BML‑111 inhibits TGF‑β1‑induced mouse embryo lung fibroblast (NIH3T3 cell line) activation in vitro and bleomycin (BLM)‑induced pulmonary fibrosis in vivo. In vitro experiments demonstrated that BML‑111 treatment inhibits TGF‑β1‑induced NIH3T3 cell viability and the expression of smooth muscle α actin (α‑SMA), fibronectin and total collagen. Furthermore, this suppressive effect was associated with mothers against decapentaplegic homolog (Smad)2/3, extracellular signal‑regulated kinase (ERK) and Akt phosphorylation interference. In vivo experiments revealed that BML‑111 treatment markedly improved survival rate and ameliorated the destruction of lung tissue structure. It also reduced interleukin‑1β (IL‑1β), tumor necrosis factor‑α (TNF‑α) and TGF‑β1 expression in the BLM intratracheal mouse model. In addition, the expression ofα‑SMA and extracellular matrix (ECM) deposition (total collagen, hydroxyproline and fibronectin) were also suppressed following BML‑111 treatment. However, BOC‑2, an antagonist of ALX, partially weakened the effects of BML‑111. In conclusion, these results indicated that BML‑111 inhibits TGF‑β1‑induced fibroblasts activation and alleviates BLM‑induced pulmonary fibrosis. Therefore, BML‑111 may be used as a potential therapeutic agent for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Yu-Dong Ji
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhen-Long Luo
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chun-Xiu Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bo Li
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Gong
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lin Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shang-Long Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
104
|
Luan J, Zhang Z, Shen W, Chen Y, Yang X, Chen X, Yu L, Sun J, Ding J. Thermogel Loaded with Low-Dose Paclitaxel as a Facile Coating to Alleviate Periprosthetic Fibrous Capsule Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30235-30246. [PMID: 30102023 DOI: 10.1021/acsami.8b13548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Medical-grade silicones as implants have been utilized for decades. However, the postoperative complications, such as capsular formation and contracture, have not yet been fully controlled and resolved. The aim of the present study is to elucidate whether the capsular formation can be alleviated by local and sustained delivery of low-dose paclitaxel (PTX) during the critical phase after the insertion of silicone implants. A biocompatible and thermogelling poly(lactic acid- co-glycolic acid)- b-poly(ethylene glycol)- b-poly(lactic acid- co-glycolic acid) triblock copolymer was synthesized by us. The micelles formed by the amphiphilic polymers in water could act as a reservoir for the solubilization of PTX, a very hydrophobic drug. The concentrated polymer aqueous solution containing PTX exhibited a sol-gel transition upon heating and formed a thermogel depot at body temperature. In vitro release tests demonstrated that the entrapped microgram-level PTX displayed a sustained release manner up to 57 days without a significant initial burst effect. Customized silicone implants coated with the PTX-loaded thermogels at various drug concentrations were inserted into the pockets of the subpanniculus carnosus plane of rats. The histological observations performed 1 month postoperation showed that the sustained release of PTX with an appropriate dose significantly reduced the peri-implant capsule thickness, production and deposition of collagen, and expression of contracture-mediating factors compared with bare silicone implants. More importantly, such an optimum dose had an excellent repeatability for the suppression of the capsular formation. Therefore, this study provides a strategic foothold regarding the sustained release of low-dose PTX to alleviate fibrotic capsule formation after implantation, and the microgram-level PTX-loaded thermogel holds great potential as an "all-purpose antifibrosis coating" for veiling the surfaces of various implantable medical devices.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zheng Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yipei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jian Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
105
|
Cao H, Wang C, Chen X, Hou J, Xiang Z, Shen Y, Han X. Inhibition of Wnt/β-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis. Sci Rep 2018. [PMID: 30206265 DOI: 10.1038/s41598-018-28968-9.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An emerging paradigm proposes a crucial role for lung resident mesenchymal stem cells (LR-MSCs) via a fibroblastic transdifferentiation event in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Aberrant activation of Wnt/β-catenin signaling occurs in virtually all fibrotic lung diseases and is relevant to the differentiation of mesenchymal stem cells (MSCs). In vitro, by measuring the protein levels of several key components involved in Wnt/β-catenin signaling, we confirmed that this signaling pathway was activated in the myofibroblast differentiation of LR-MSCs. Targeted inhibition of Wnt/β-catenin signaling by a small molecule, ICG-001, dose-dependently impeded the proliferation and transforming growth factor-β1 (TGF-β1)-mediated fibrogenic actions of LR-MSCs. In vivo, ICG-001 exerted its lung protective effects after bleomycin treatment through blocking mesenchymal-myofibroblast transition, repressing matrix gene expression, and reducing cell apoptosis. Moreover, delayed administration of ICG-001 attenuated bleomycin-induced lung fibrosis, which may present a promising therapeutic strategy for intervention of IPF. Interestingly, these antifibrotic actions of ICG-001 are operated by a mechanism independent of any disruption of Smad activation. In conclusion, our study demonstrated that Wnt/β-catenin signaling may be an essential mechanism underlying the regulation of myofibroblast differentiation of LR-MSCs and their further participation in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Cong Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
106
|
Cao H, Wang C, Chen X, Hou J, Xiang Z, Shen Y, Han X. Inhibition of Wnt/β-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis. Sci Rep 2018; 8:13644. [PMID: 30206265 PMCID: PMC6134002 DOI: 10.1038/s41598-018-28968-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/25/2018] [Indexed: 02/08/2023] Open
Abstract
An emerging paradigm proposes a crucial role for lung resident mesenchymal stem cells (LR-MSCs) via a fibroblastic transdifferentiation event in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Aberrant activation of Wnt/β-catenin signaling occurs in virtually all fibrotic lung diseases and is relevant to the differentiation of mesenchymal stem cells (MSCs). In vitro, by measuring the protein levels of several key components involved in Wnt/β-catenin signaling, we confirmed that this signaling pathway was activated in the myofibroblast differentiation of LR-MSCs. Targeted inhibition of Wnt/β-catenin signaling by a small molecule, ICG-001, dose-dependently impeded the proliferation and transforming growth factor-β1 (TGF-β1)-mediated fibrogenic actions of LR-MSCs. In vivo, ICG-001 exerted its lung protective effects after bleomycin treatment through blocking mesenchymal-myofibroblast transition, repressing matrix gene expression, and reducing cell apoptosis. Moreover, delayed administration of ICG-001 attenuated bleomycin-induced lung fibrosis, which may present a promising therapeutic strategy for intervention of IPF. Interestingly, these antifibrotic actions of ICG-001 are operated by a mechanism independent of any disruption of Smad activation. In conclusion, our study demonstrated that Wnt/β-catenin signaling may be an essential mechanism underlying the regulation of myofibroblast differentiation of LR-MSCs and their further participation in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Cong Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
107
|
Zent J, Guo LW. Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cell Physiol Biochem 2018; 49:848-868. [PMID: 30184544 DOI: 10.1159/000493217] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Myofibroblasts are central mediators of fibrosis. Typically derived from resident fibroblasts, myofibroblasts represent a heterogeneous population of cells that are principally defined by acquired contractile function and high synthetic ability to produce extracellular matrix (ECM). Current literature sheds new light on the critical role of ECM signaling coupled with mechanotransduction in driving myofibroblastic activation. In particular, transforming growth factor β1 (TGF-β1) and extra domain A containing fibronectin (EDA-FN) are thought to be the primary ECM signaling mediators that form and also induce positive feedback loops. The outside-in and inside-out signaling circuits are transmitted and integrated by TGF-β receptors and integrins at the cell membrane, ultimately perpetuating the abundance and activities of TGF-β1 and EDA-FN in the ECM. In this review, we highlight these conceptual advances in understanding myofibroblastic activation, in hope of revealing its therapeutic anti-fibrotic implications.
Collapse
Affiliation(s)
- Joshua Zent
- Medical Scientist Training Program, the Ohio State University, Columbus, Columbus, Ohio, USA
| | - Lian-Wang Guo
- Department of Surgery, Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
108
|
Paw M, Wnuk D, Kądziołka D, Sęk A, Lasota S, Czyż J, Madeja Z, Michalik M. Fenofibrate Reduces the Asthma-Related Fibroblast-To-Myofibroblast Transition by TGF-Β/Smad2/3 Signaling Attenuation and Connexin 43-Dependent Phenotype Destabilization. Int J Mol Sci 2018; 19:ijms19092571. [PMID: 30158495 PMCID: PMC6163263 DOI: 10.3390/ijms19092571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
The activation of human bronchial fibroblasts by transforming growth factor-β1 (TGF-β1) leads to the formation of highly contractile myofibroblasts in the process of the fibroblast–myofibroblast transition (FMT). This process is crucial for subepithelial fibrosis and bronchial wall remodeling in asthma. However, this process evades current therapeutic asthma treatment strategies. Since our previous studies showed the attenuation of the TGF-β1-induced FMT in response to lipid-lowering agents (e.g., statins), we were interested to see whether a corresponding effect could be obtained upon administration of hypolipidemic agents. In this study, we investigated the effect of fenofibrate on FMT efficiency in populations of bronchial fibroblasts derived from asthmatic patients. Fenofibrate exerted a dose-dependent inhibitory effect on the FMT, even though it did not efficiently affect the expression of α-smooth muscle actin (α-SMA; marker of myofibroblasts); however, it considerably reduced its incorporation into stress fibers through connexin 43 regulation. This effect was accompanied by disturbances in the actin cytoskeleton architecture, impairments in the maturation of focal adhesions, and the fenofibrate-induced deactivation of TGF-β1/Smad2/3 signaling. These data suggest that fenofibrate interferes with myofibroblastic differentiation during asthma-related subepithelial fibrosis. The data indicate the potential application of fenofibrate in the therapy and prevention of bronchial remodeling during the asthmatic process.
Collapse
Affiliation(s)
- Milena Paw
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Dawid Wnuk
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Dominika Kądziołka
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Aleksandra Sęk
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
- Nencki Institute of Experimental Biology, Laboratory of Intracellular Ion Channels, 02-093 Warsaw, Poland.
| | - Sławomir Lasota
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Jarosław Czyż
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Zbigniew Madeja
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Marta Michalik
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| |
Collapse
|
109
|
Serrano-Mollar A. Cell Therapy in Idiopathic Pulmonary Fibrosis †. Med Sci (Basel) 2018; 6:medsci6030064. [PMID: 30104544 PMCID: PMC6164035 DOI: 10.3390/medsci6030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal disease with no effective or curative treatment options. In recent decades, cell-based therapies using stem cells or lung progenitor cells to regenerate lung tissue have experienced rapid growth in both preclinical animal models and translational clinical studies. In this review, the current knowledge of these cell therapies is summarized. Although further investigations are required, these studies indicate that cell therapies are a promising therapeutic approach for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Anna Serrano-Mollar
- Departamento de Patología Experimental, Instituto de Investigaciones Biomédicas de Barcelona IIBB-CSIC-IDIBAPS, Rosselló, 161, 08036 Barcelona, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
110
|
James RG, Reeves SR, Barrow KA, White MP, Glukhova VA, Haghighi C, Seyoum D, Debley JS. Deficient Follistatin-like 3 Secretion by Asthmatic Airway Epithelium Impairs Fibroblast Regulation and Fibroblast-to-Myofibroblast Transition. Am J Respir Cell Mol Biol 2018; 59:104-113. [PMID: 29394092 PMCID: PMC6039878 DOI: 10.1165/rcmb.2017-0025oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/01/2018] [Indexed: 01/03/2023] Open
Abstract
Bronchial epithelial cells (BECs) from healthy children inhibit human lung fibroblast (HLF) expression of collagen and fibroblast-to-myofibroblast transition (FMT), whereas asthmatic BECs do so less effectively, suggesting that diminished epithelial-derived regulatory factors contribute to airway remodeling. Preliminary data demonstrated that secretion of the activin A inhibitor follistatin-like 3 (FSTL3) by healthy BECs was greater than that by asthmatic BECs. We sought to determine the relative secretion of FSTL3 and activin A by asthmatic and healthy BECs, and whether FSTL3 inhibits FMT. To quantify the abundance of the total proteome FSTL3 and activin A in supernatants of differentiated BEC cultures from healthy children and children with asthma, we performed mass spectrometry and ELISA. HLFs were cocultured with primary BECs and then HLF expression of collagen I and α-smooth muscle actin (α-SMA) was quantified by qPCR, and FMT was quantified by flow cytometry. Loss-of-function studies were conducted using lentivirus-delivered shRNA. Using mass spectrometry and ELISA results from larger cohorts, we found that FSTL3 concentrations were greater in media conditioned by healthy BECs compared with asthmatic BECs (4,012 vs. 2,553 pg/ml; P = 0.002), and in media conditioned by asthmatic BECs from children with normal lung function relative to those with airflow obstruction (FEV1/FVC ratio < 0.8; n = 9; 3,026 vs. 1,922 pg/ml; P = 0.04). shRNA depletion of FSTL3 in BECs (n = 8) increased HLF collagen I expression by 92% (P = 0.001) and α-SMA expression by 88% (P = 0.02), and increased FMT by flow cytometry in cocultured HLFs, whereas shRNA depletion of activin A (n = 6) resulted in decreased α-SMA (22%; P = 0.01) expression and decreased FMT. Together, these results indicate that deficient FSTL3 expression by asthmatic BECs impairs epithelial regulation of HLFs and FMT.
Collapse
Affiliation(s)
- Richard G. James
- Department of Pediatrics
- Department of Pharmacology, and
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Stephen R. Reeves
- Division of Pulmonary Medicine, Seattle Children’s Hospital, University of Washington, Seattle, Washington; and
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Kaitlyn A. Barrow
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Maria P. White
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Veronika A. Glukhova
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Candace Haghighi
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Dana Seyoum
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Jason S. Debley
- Division of Pulmonary Medicine, Seattle Children’s Hospital, University of Washington, Seattle, Washington; and
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| |
Collapse
|
111
|
Heinzelmann K, Lehmann M, Gerckens M, Noskovičová N, Frankenberger M, Lindner M, Hatz R, Behr J, Hilgendorff A, Königshoff M, Eickelberg O. Cell-surface phenotyping identifies CD36 and CD97 as novel markers of fibroblast quiescence in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L682-L696. [PMID: 29952218 DOI: 10.1152/ajplung.00439.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fibroblasts play an important role in lung homeostasis and disease. In lung fibrosis, fibroblasts adopt a proliferative and migratory phenotype, with increased expression of α-smooth muscle actin (αSMA) and enhanced secretion of extracellular matrix components. Comprehensive profiling of fibroblast heterogeneity is limited because of a lack of specific cell-surface markers. We have previously profiled the surface proteome of primary human lung fibroblasts. Here, we sought to define and quantify a panel of cluster of differentiation (CD) markers in primary human lung fibroblasts and idiopathic pulmonary fibrosis (IPF) lung tissue, using immunofluorescence and FACS analysis. Fibroblast function was assessed by analysis of replicative senescence. We observed the presence of distinct fibroblast phenotypes in vivo, characterized by various combinations of Desmin, αSMA, CD36, or CD97 expression. Most markers demonstrated stable expression over passages in vitro, but significant changes were observed for CD36, CD54, CD82, CD106, and CD140a. Replicative senescence of fibroblasts was observed from passage 10 onward. CD36- and CD97-positive but αSMA-negative cells were present in remodeled areas of IPF lungs. Transforming growth factor (TGF)-β treatment induced αSMA and collagen I expression but repressed CD36 and CD97 expression. We identified a panel of stable surface markers in human lung fibroblasts, applicable for positive-cell isolation directly from lung tissue. TGF-β exposure represses CD36 and CD97 expression, despite increasing αSMA expression; we therefore identified complex surface protein changes during fibroblast-myofibroblast activation. Coexistence of quiescence and activated fibroblast subtypes in the IPF lung suggests dynamic remodeling of fibroblast activation upon subtle changes to growth factor exposure in local microenvironmental niches.
Collapse
Affiliation(s)
- Katharina Heinzelmann
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians University, Munich and Helmholtz Zentrum München, Member of the Comprehensive Pneumology Center-Munich BioArchive, Member of the German Center for Lung Research , Munich , Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians University, Munich and Helmholtz Zentrum München, Member of the Comprehensive Pneumology Center-Munich BioArchive, Member of the German Center for Lung Research , Munich , Germany
| | - Michael Gerckens
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians University, Munich and Helmholtz Zentrum München, Member of the Comprehensive Pneumology Center-Munich BioArchive, Member of the German Center for Lung Research , Munich , Germany
| | - Nina Noskovičová
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians University, Munich and Helmholtz Zentrum München, Member of the Comprehensive Pneumology Center-Munich BioArchive, Member of the German Center for Lung Research , Munich , Germany
| | - Marion Frankenberger
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians University, Munich and Helmholtz Zentrum München, Member of the Comprehensive Pneumology Center-Munich BioArchive, Member of the German Center for Lung Research , Munich , Germany
| | - Michael Lindner
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians University, Munich and Helmholtz Zentrum München, Member of the Comprehensive Pneumology Center-Munich BioArchive, Member of the German Center for Lung Research , Munich , Germany.,Thoraxchirurgisches Zentrum München, Asklepios Fachkliniken München-Gauting, Munich , Germany
| | - Rudolf Hatz
- Thoraxchirurgisches Zentrum München, Asklepios Fachkliniken München-Gauting, Munich , Germany.,Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäss- und Thoraxchirurgie, Klinikum Grosshadern, Ludwig-Maximilians-Universität, Munich , Germany
| | - Jürgen Behr
- Thoraxchirurgisches Zentrum München, Asklepios Fachkliniken München-Gauting, Munich , Germany.,Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich , Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians University, Munich and Helmholtz Zentrum München, Member of the Comprehensive Pneumology Center-Munich BioArchive, Member of the German Center for Lung Research , Munich , Germany.,Department of Neonatology, Perinatal Center Grosshadern, Ludwig-Maximilians University , Munich , Germany.,Center for Comprehensive Developmental Care, Dr. von Haunersches Children's Hospital University Hospital Ludwig-Maximilians University , Munich , Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians University, Munich and Helmholtz Zentrum München, Member of the Comprehensive Pneumology Center-Munich BioArchive, Member of the German Center for Lung Research , Munich , Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado , Denver, Colorado
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians University, Munich and Helmholtz Zentrum München, Member of the Comprehensive Pneumology Center-Munich BioArchive, Member of the German Center for Lung Research , Munich , Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado , Denver, Colorado
| |
Collapse
|
112
|
Risk factors of upper gastrointestinal hemorrhage with acute coronary syndrome. Am J Emerg Med 2018; 37:615-619. [PMID: 30381146 DOI: 10.1016/j.ajem.2018.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/30/2018] [Accepted: 06/24/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Research showed that the mortality of upper gastrointestinal hemorrhage (UGH) complicated with acute coronary syndrome (ACS) was higher than single UGH in elderly patients. This study aimed to determine the risk factors that associated with an increased risk of ACS occurrence after UGH. METHODS A population-based nested case-control study was conducted analyzing the hospital information system database of Shengjing Hospital of China Medical University from September 1, 2009 to December 31, 2014. We included 3217 elderly patients who experienced a UGH, among which 152 cases were identified and matched 604 selected controls. Multivariate conditional logistic regression models were used to characterize risk factors associated with ACS occurrence and death after UGH. RESULTS Diabetes (odds ratio (OR) = 1.84, 95% confidence interval (CI) 1.13-2.71, P = 0.039), smoking (OR = 1.87, 95% CI 1.19-2.73, P = 0.028), vasopressin or terlipressin use (OR = 1.51, 95% CI 1.02-2.14, P = 0.043), liver cirrhosis (OR = 2.43, 95% CI 1.45-4.38, P = 0.013), hemoglobin level (OR = 2.36, 95% CI 1.65-3.79, P = 0.014) and history of ACS (OR = 1.98, 95% CI 1.13-3.49, P = 0.017) increased risk of ACS incidence in elderly patients with UGH. Moreover, diabetes (OR = 2.14, 95% CI 1.15-4.21, P = 0.041), smoking (OR = 2.93, 95% CI 1.17-5.31, P = 0.043) and hemoglobin levels (OR = 1.95, 95% CI 1.24-3.16, P = 0.038) were independent variables for the mortality underwent UGH with ACS in elderly patients. CONCLUSIONS History of diabetes, vasopressin or terlipressin use, smoking, liver cirrhosis, hemoglobin level and history of ACS are risk factors to develop ACS in elderly patients with UGH. Importantly, diabetes, smoking and lower hemoglobin level are key variables for mortality.
Collapse
|
113
|
Gouda MM, Bhandary YP. Curcumin down-regulates IL-17A mediated p53-fibrinolytic system in bleomycin induced acute lung injury in vivo. J Cell Biochem 2018; 119:7285-7299. [PMID: 29775223 DOI: 10.1002/jcb.27026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
Bleomycin (BLM) induced cellular damage causes inflammation in the alveolar compartment and impairment of fibrinolytic system leads to alveolar epithelial cell apoptosis. Here, we describe novel inflammatory pathway associated with p53-fibrinolytic system and apoptosis of alveolar epithelial cells and pharmacological efficiency of curcumin against this action. In the present study we used C57BL/6 mice. The specific dose and time interval of curcumin were analyzed to assess the intervention. Experiments were designed to investigate the IL-17A mediated modulation in the alveolar epithelial cell apoptosis and injury. Various techniques such as Western blot, RT-PCR, Immunohistochemistry were used for this study. We observed that the BLM-induced lung injury and its progression were successfully regulated by the effective dose and time intervention of curcumin. There was also decreased expression of chemokines, p53, and fibrinolytic components such as PAI-1 and increased uPA, uPAR expression, and decreased alveolar epithelial cell apoptosis, which indicates the IL-17A mediated novel inflammatory pathway. It is confirmed that the IL-17A involved in the modulation of p53-fibrinolytic system and epithelial cell apoptosis in BLM induced mice. The cross-talk between the inflammatory, fibrinolytic, and apoptotic pathways were resolved by curcumin intervention. This pathway and intervention could serve as a modern therapy to resolve the complications to cure the lung injury and its progression.
Collapse
Affiliation(s)
- Mahesh M Gouda
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| | | |
Collapse
|
114
|
Penke LR, Speth JM, Dommeti VL, White ES, Bergin IL, Peters-Golden M. FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis. J Clin Invest 2018; 128:2389-2405. [PMID: 29733296 DOI: 10.1172/jci87631] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/20/2018] [Indexed: 12/23/2022] Open
Abstract
While the transcription factor forkhead box M1 (FOXM1) is well known as a proto-oncogene, its potential role in lung fibroblast activation has never been explored. Here, we show that FOXM1 is more highly expressed in fibrotic than in normal lung fibroblasts in humans and mice. FOXM1 was required not only for cell proliferation in response to mitogens, but also for myofibroblast differentiation and apoptosis resistance elicited by TGF-β. The lipid mediator PGE2, acting via cAMP signaling, was identified as an endogenous negative regulator of FOXM1. Finally, genetic deletion of FOXM1 in fibroblasts or administration of the FOXM1 inhibitor Siomycin A in a therapeutic protocol attenuated bleomycin-induced pulmonary fibrosis. Our results identify FOXM1 as a driver of lung fibroblast activation and underscore the therapeutic potential of targeting FOXM1 for pulmonary fibrosis.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Vijaya L Dommeti
- Michigan Center for Translational Pathology, Department of Pathology, and
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| |
Collapse
|
115
|
Sapudom J, Wu X, Chkolnikov M, Ansorge M, Anderegg U, Pompe T. Fibroblast fate regulation by time dependent TGF-β1 and IL-10 stimulation in biomimetic 3D matrices. Biomater Sci 2018; 5:1858-1867. [PMID: 28676875 DOI: 10.1039/c7bm00286f] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The presentation of TGF-β1 during the early stage of wound healing is a prerequisite for extracellular matrix (ECM) synthesis and remodeling by activated fibroblasts, called myofibroblasts. At later stages, clearance of myofibroblasts is needed to avoid overshooting ECM production. Apoptosis of myofibroblasts and the macrophage-released anti-inflammatory cytokine IL-10 are controversially discussed as regulating cues in this context. To reveal the regulating cues, defined biomaterial scaffolds are needed to conduct in-depth in vitro studies in a physiologically relevant context. In this work, we used an in vitro biomimetic wound healing model. It consists of a 3D fibrillar matrix from collagen I and fibronectin and different temporal stimuli by TGF-β1 and IL-10. Human dermal fibroblast behavior was investigated in terms of myofibroblast differentiation (αSMA expression), matrix remodeling, proliferation and migration in the permanent or sequential presence of TGF-β1 and IL-10 over 4 days. We could show that removal of TGF-β1 after initial stimulation resulted in an increase of apoptosis of myofibroblasts. In contrast, TGF-β1 stimulation followed by IL-10 treatment did not result in increased cell apoptosis but instead led to a significant increase of cell motility and reduction of myofibroblasts. The findings suggest that myofibroblasts are a transiently "activated" fibroblastic phenotype and can be de-differentiated to fibroblasts in the presence of IL-10. Overall, our 3D ECM model allows mimicking the early and late stages of wound healing and highlights the temporal sequence of TGF-β1 and IL-10 as an important cue for completion of tissue formation and maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Leipzig 04103, Germany.
| | | | | | | | | | | |
Collapse
|
116
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
117
|
Clifford RL, Fishbane N, Patel J, MacIsaac JL, McEwen LM, Fisher AJ, Brandsma CA, Nair P, Kobor MS, Hackett TL, Knox AJ. Altered DNA methylation is associated with aberrant gene expression in parenchymal but not airway fibroblasts isolated from individuals with COPD. Clin Epigenetics 2018; 10:32. [PMID: 29527240 PMCID: PMC5838860 DOI: 10.1186/s13148-018-0464-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease of the lungs that is currently the fourth leading cause of death worldwide. Genetic factors account for only a small amount of COPD risk, but epigenetic mechanisms, including DNA methylation, have the potential to mediate the interactions between an individual's genetics and environmental exposure. DNA methylation is highly cell type-specific, and individual cell type studies of DNA methylation in COPD are sparse. Fibroblasts are present within the airway and parenchyma of the lung and contribute to the aberrant deposition of extracellular matrix in COPD. No assessment or comparison of genome-wide DNA methylation profiles in the airway and parenchymal fibroblasts from individuals with and without COPD has been undertaken. These data provide valuable insight into the molecular mechanisms contributing to COPD and the differing pathologies of small airways disease and emphysema in COPD. Methods Genome-wide DNA methylation was evaluated at over 485,000 CpG sites using the Illumina Infinium HumanMethylation450 BeadChip array in the airway (non-COPD n = 8, COPD n = 7) and parenchymal fibroblasts (non-COPD n = 17, COPD n = 29) isolated from individuals with and without COPD. Targeted gene expression was assessed by qPCR in matched RNA samples. Results Differentially methylated DNA regions were identified between cells isolated from individuals with and without COPD in both airway and parenchymal fibroblasts. Only in parenchymal fibroblasts was differential DNA methylation associated with differential gene expression. A second analysis of differential DNA methylation variability identified 359 individual differentially variable CpG sites in parenchymal fibroblasts. No differentially variable CpG sites were identified in the airway fibroblasts. Five differentially variable-methylated CpG sites, associated with three genes, were subsequently assessed for gene expression differences. Two genes (OAT and GRIK2) displayed significantly increased gene expression in cells isolated from individuals with COPD. Conclusions Differential and variable DNA methylation was associated with COPD status in the parenchymal fibroblasts but not airway fibroblasts. Aberrant DNA methylation was associated with altered gene expression imparting biological function to DNA methylation changes. Changes in DNA methylation are therefore implicated in the molecular mechanisms underlying COPD pathogenesis and may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Rachel L. Clifford
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Nick Fishbane
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Jamie Patel
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Julia L. MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Lisa M. McEwen
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Andrew J. Fisher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, Groningen, The Netherlands
- GRIAC (Groningen Research Institute of Asthma and COPD), University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, McMaster University, Hamilton, Ontario Canada
| | - Michael S. Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology, & Therapeutics, University of British Columbia, Vancouver, Canada
| | - Alan J. Knox
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| |
Collapse
|
118
|
Wang S, Zeng H, Xie XJ, Tao YK, He X, Roman RJ, Aschner JL, Chen JX. Loss of prolyl hydroxylase domain protein 2 in vascular endothelium increases pericyte coverage and promotes pulmonary arterial remodeling. Oncotarget 2018; 7:58848-58861. [PMID: 27613846 PMCID: PMC5312280 DOI: 10.18632/oncotarget.11585] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a leading cause of heart failure. Although pulmonary endothelial dysfunction plays a crucial role in the progression of the PAH, the underlying mechanisms are poorly understood. The HIF-α hydroxylase system is a key player in the regulation of vascular remodeling. Knockout of HIF-2α has been reported to cause pulmonary hypertension. The present study examined the role of endothelial cell specific prolyl hydroxylase-2 (PHD2) in the development of PAH and pulmonary vascular remodeling. The PHD2f/f mouse was crossbred with VE-Cadherin-Cre promoter mouse to generate an endothelial specific PHD2 knockout (Cdh5-Cre-PHD2ECKO) mouse. Pulmonary arterial pressure and the size of the right ventricle was significantly elevated in the PHD2ECKO mice relative to the PHD2f/f controls. Knockout of PHD2 in EC was associated with vascular remodeling, as evidenced by an increase in pulmonary arterial media to lumen ratio and number of muscularized arterioles. The pericyte coverage and vascular smooth muscle cells were also significantly increased in the PA. The increase in vascular pericytes was associated with elevated expression of fibroblast specific protein-1 (FSP-1). Moreover, perivascular interstitial fibrosis of pulmonary arteries was significantly increased in the PHD2ECKO mice. Mechanistically, knockout of PHD2 in EC increased the expression of Notch3 and transforming growth factor (TGF-β) in the lung tissue. We conclude that the expression of PHD2 in endothelial cells plays a critical role in preventing pulmonary arterial remodeling in mice. Increased Notch3/TGF-β signaling and excessive pericyte coverage may be contributing to the development of PAH following deletion of endothelial PHD2.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Xue-Jiao Xie
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA.,School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yong-Kang Tao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine and The Children's Hospital at Montefiore, Bronx, NY, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA.,School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
119
|
Armbruster-Lee J, Cavender CP, Lieberman JA, Samarasinghe AE. Understanding fibrosis in eosinophilic esophagitis: Are we there yet? J Leukoc Biol 2018; 104:31-40. [DOI: 10.1002/jlb.5mr1017-395r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jennifer Armbruster-Lee
- Department of Pediatrics; Division of Gastroenterology, University of Tennessee Health Science Center; Memphis Tennessee USA
| | - Cary P. Cavender
- Department of Pediatrics; Division of Gastroenterology, University of Tennessee Health Science Center; Memphis Tennessee USA
| | - Jay A. Lieberman
- Department of Pediatrics; Division of Allergy/Immunology, University of Tennessee Health Science Center; Memphis Tennessee USA
| | - Amali E. Samarasinghe
- Department of Pediatrics; Division of Pulmonology; University of Tennessee Health Science Center; Memphis Tennessee USA
- Children's Foundation Research Institute; Memphis Tennessee USA
| |
Collapse
|
120
|
Ebnerasuly F, Hajebrahimi Z, Tabaie SM, Darbouy M. Effect of Simulated Microgravity Conditions on Differentiation of Adipose Derived Stem Cells towards Fibroblasts Using Connective Tissue Growth Factor. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:241-251. [PMID: 29845076 DOI: 10.15171/ijb.1747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 06/14/2017] [Accepted: 07/08/2017] [Indexed: 12/12/2022]
Abstract
Background: Mesenchymal stem cells (MSCs) are multipotent cells able to differentiating into a variety of mesenchymal tissues including osteoblasts, adipocytes and several other tissues. Objectives: Differentiation of MSCs into fibroblast cells in vitro is an attractive strategy to achieve fibroblast cell and use them for purposes such as regeneration medicine. The goal of this study was investigate the simulated microgravity effect on differentiation of Adipose Derived Stem Cells (ADSCs) to fibroblasts. Materials and Methods: To fibroblast differentiation 100 ng.mL-1 of connective tissue growth factor (CTGF), and for simulation microgravity, 2D clinostat was used. After isolation the human ADSCs from adipose, cells were passaged, and at passages 3 they were used for characterization and subsequent steps. After 7 days of CTGF and simulated microgravity treatment, proliferation, and differentiation were analyzed collectively by MTT assay, quantitative PCR analyses, and Immunocytochemistry staining. Results: MTT assay revealed that CTGF stimulate the proliferation but simulated microgravity didn't have statistically significant effect on cell proliferation. In RNA level the expression of these genes are investigated: collagen type I (COLI), elastin (ELA), collagen type III (ColIII), Matrix Metalloproteinases I(MMP1), Fibronectin 1 (FN1), CD44, Fibroblast Specific protein (FSP-1), Integrin Subunit Beta 1 (ITGB1), Vimentin (VIM) and Fibrillin (FBN). We found that expression of ELN, FN1, FSP1, COL1A1, ITGB1, MMP1 and COL3A1 in both condition, and VIM and FBN1 just in differentiation medium in normal gravity increased. In protein level the expression of COL III and ELN in simulated microgravity increased. Conclusions: These findings collectively demonstrate that the simulated microgravity condition alters the marker fibroblast gene expression in fibroblast differentiation process.
Collapse
Affiliation(s)
- Farid Ebnerasuly
- Department of Biology, Fars Science and Research Branch , Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Zahra Hajebrahimi
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| | - Seyed Mehdi Tabaie
- Medical Laser Research Center, Iranian Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mojtaba Darbouy
- Department of Biology, Fars Science and Research Branch , Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
121
|
Abstract
Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose "organ," and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. © 2018 American Physiological Society. Compr Physiol 8:237-282, 2018.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashley M. Fuller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
122
|
Marts LT, Green DE, Mills ST, Murphy T, Sueblinvong V. MiR-21-Mediated Suppression of Smad7 Induces TGFβ1 and Can Be Inhibited by Activation of Nrf2 in Alcohol-Treated Lung Fibroblasts. Alcohol Clin Exp Res 2017; 41:1875-1885. [PMID: 28888052 DOI: 10.1111/acer.13496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND We previously demonstrated that chronic alcohol ingestion augments TGFβ1 expression in the lung fibroblast and increases the risk of fibroproliferative disrepair in a mouse model of acute lung injury. The effect of alcohol on TGFβ1 is mitigated by treatment with sulforaphane (SFP), which can activate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). However, the mechanisms by which alcohol amplifies, or SFP attenuates, TGFβ1 expression in the fibroblast are not known. MicroRNA (miR)-21 has been shown to inhibit Smad7, a TGFβ1 signaling inhibitor. In this study, we hypothesized that alcohol augments TGFβ1 expression through up-regulation of miR-21, which subsequently inhibits Smad7. METHODS Primary mouse lung fibroblasts were cultured ± alcohol ± SFP and assessed for gene expression of miR-21, and gene and/or protein expression of Nrf2, Nrf2-regulated antioxidant enzymes, Smad7, STAT3, and TGFβ1. NIH 3T3 fibroblasts were transfected with a miR-21 inhibitor and cultured ± alcohol. α-SMA, Smad7, and TGFβ1 protein expression were then assessed. In parallel, NIH 3T3 lung fibroblasts were transfected with Nrf2 silencing RNA (siRNA) and cultured ± alcohol ± SFP. Gene expression of miR-21, Nrf2, Smad7, and TGFβ1 was assessed. RESULTS MiR-21 gene expression was increased by 12-fold at 48 hours, and Smad7 gene expression and protein expression were reduced by ~30% in alcohol-treated fibroblasts. In parallel, inhibition of miR-21 attenuated alcohol-mediated decrease in Smad7 and increase in TGFβ1 and α-SMA protein expression. Treatment with SFP mitigated the effect of alcohol on miR-21, Smad7 and total and phosphorylated STAT3, and restored Nrf2-regulated antioxidant gene expression. Silencing of Nrf2 prevented the effect of SFP on miR-21, Smad7, and TGFβ1 gene expression in alcohol-treated NIH 3T3 fibroblasts. CONCLUSIONS Alcohol treatment increases TGFβ1 in fibroblasts, at least in part, through augmentation of miR-21, which then inhibits Smad7 expression. These effects can be attenuated by activation of Nrf2 with SFP.
Collapse
Affiliation(s)
- Lucian T Marts
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - David E Green
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Atlanta VAMC, Decatur, Georgia
| | - Stephen T Mills
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
123
|
Hou J, Ma T, Cao H, Chen Y, Wang C, Chen X, Xiang Z, Han X. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis. J Cell Physiol 2017; 233:2409-2419. [PMID: 28731277 DOI: 10.1002/jcp.26112] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease of unknown cause. It has been reported that both lung resident mesenchymal stem cells (LR-MSCs) and tumor necrosis factor-α (TNF-α) play important roles in the development of pulmonary fibrosis. However, the underlying connections between LR-MSCs and TNF-α in the pathogenesis of pulmonary fibrosis are still elusive. In this study, we found that the pro-inflammatory cytokine TNF-α and the transcription factor nuclear factor kappa B (NF-κB) p65 subunit were both upregulated in bleomycin-induced fibrotic lung tissue. In addition, we discovered that TNF-α promotes myofibroblast differentiation of LR-MSCs through activating NF-κB signaling. Interestingly, we also found that TNF-α promotes the expression of β-catenin. Moreover, we demonstrated that suppression of the NF-κB signaling could attenuate myofibroblast differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis which were accompanied with decreased expression of β-catenin. Our data implicates that inhibition of the NF-κB signaling pathway may provide a therapeutic strategy for pulmonary fibrosis, a disease that warrants more effective treatment approaches.
Collapse
Affiliation(s)
- Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Cong Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Zou Xiang
- Faculty of Health and Social Sciences, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
124
|
Lombardi B, Casale C, Imparato G, Urciuolo F, Netti PA. Spatiotemporal Evolution of the Wound Repairing Process in a 3D Human Dermis Equivalent. Adv Healthc Mater 2017; 6. [PMID: 28407433 DOI: 10.1002/adhm.201601422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/14/2017] [Indexed: 01/01/2023]
Abstract
Several skin equivalent models have been developed to investigate in vitro the re-epithelialization process occurring during wound healing. Although these models recapitulate closure dynamics of epithelial cells, they fail to capture how a wounded connective tissue rebuilds its 3D architecture until the evolution in a scar. Here, the in vitro tissue repair dynamics of a connective tissue is replicated by using a 3D human dermis equivalent (3D-HDE) model composed of fibroblasts embedded in their own extracellular matrix (ECM). After inducing a physical damage, 3D-HDE undergoes a series of cellular and extracellular events quite similar to those occurring in the native dermis. In particular, fibroblasts differentiation toward myofibroblasts phenotype and neosynthesis of hyaluronic acid, fibronectin, and collagen during the repair process are assessed. Moreover, tissue reorganization after physical damage is investigated by measuring the diameter of bundles and the orientation of fibers of the newly formed ECM network. Finally, the ultimate formation of a scar-like tissue as physiological consequence of the repair and closure process is demonstrated. Taking together, the results highlight that the presence of cell-assembled and responsive stromal components enables quantitative and qualitative in vitro evaluation of the processes involved in scarring during wound healing.
Collapse
Affiliation(s)
- Bernadette Lombardi
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
- Department of Chemical, Materials and Industrial Production (DICMAPI); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 80125 Naples Italy
- Department of Chemical, Materials and Industrial Production (DICMAPI); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.leTecchio 80 80125 Naples Italy
| |
Collapse
|
125
|
|
126
|
Barros RC, Gelens E, Bulten E, Tuin A, de Jong MR, Kuijer R, van Kooten TG. Self-assembled nanofiber coatings for controlling cell responses. J Biomed Mater Res A 2017; 105:2252-2265. [PMID: 28513985 DOI: 10.1002/jbm.a.36092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 01/29/2023]
Abstract
Nanofibers are thought to enhance cell adhesion, growth, and function. We demonstrate that the choice of building blocks in self-assembling nanofiber systems can be used to control cell behavior. The use of 2 D-coated, self-assembled nanofibers in controlling lens epithelial cells, fibroblasts, and mesenchymal stem cells was investigated, focusing on gene and protein expression related to the fibrotic response. To this end, three nanofibers with different characteristics (morphology, topography, and wettability) were compared with two standard materials frequently used in culturing cells, TCPS, and a collagen type I coating. Cell metabolic activity, cell morphology, and gene and protein expression were analyzed. The most hydrophilic nanofiber with more compact network consisting of small fibers proved to provide a beneficial 2 D environment for cell proliferation and matrix formation while decreasing the fibrotic/stress behavior in all cell lines when compared with TCPS and the collagen type I coating. This nanofiber demonstrates the potential to be used as a biomimetic coating to study the development of fibrosis through epithelial-to-mesenchymal transition. This study also shows that nanofiber structures do not enhance cell function by definition, because the physico-chemical characteristics of the nanofibers influence cell behavior as well and actually can be used to regulate cell behavior toward suboptimal performance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2252-2265, 2017.
Collapse
Affiliation(s)
- Raquel C Barros
- Department of Biomedical Engineering, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713, GZ Groningen, The Netherlands
| | - Edith Gelens
- Nano Fiber Matrices B.V. (Nano-FM), Zernikepark 6-8, Groningen, 9747 AN, The Netherlands
| | - Erna Bulten
- Nano Fiber Matrices B.V. (Nano-FM), Zernikepark 6-8, Groningen, 9747 AN, The Netherlands
| | - Annemarie Tuin
- Nano Fiber Matrices B.V. (Nano-FM), Zernikepark 6-8, Groningen, 9747 AN, The Netherlands
| | - Menno R de Jong
- Nano Fiber Matrices B.V. (Nano-FM), Zernikepark 6-8, Groningen, 9747 AN, The Netherlands
| | - Roel Kuijer
- Department of Biomedical Engineering, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713, GZ Groningen, The Netherlands
| | - Theo G van Kooten
- Department of Biomedical Engineering, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713, GZ Groningen, The Netherlands
| |
Collapse
|
127
|
Asano S, Ito S, Takahashi K, Furuya K, Kondo M, Sokabe M, Hasegawa Y. Matrix stiffness regulates migration of human lung fibroblasts. Physiol Rep 2017; 5:5/9/e13281. [PMID: 28507166 PMCID: PMC5430127 DOI: 10.14814/phy2.13281] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
In patients with pulmonary diseases such as idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome, progressive pulmonary fibrosis is caused by dysregulated wound healing via activation of fibroblasts after lung inflammation or severe damage. Migration of fibroblasts toward the fibrotic lesions plays an important role in pulmonary fibrosis. Fibrotic tissue in the lung is much stiffer than normal lung tissue. Emerging evidence supports the hypothesis that the stiffness of the matrix is not only a consequence of fibrosis, but also can induce fibroblast activation. Nevertheless, the effects of substrate rigidity on migration of lung fibroblasts have not been fully elucidated. We evaluated the effects of substrate stiffness on the morphology, α-smooth muscle actin (α-SMA) expression, and cell migration of primary human lung fibroblasts by using polyacrylamide hydrogels with stiffnesses ranging from 1 to 50 kPa. Cell motility was assessed by platelet-derived growth factor (PDGF)-induced chemotaxis and random walk migration assays. As the stiffness of substrates increased, fibroblasts became spindle-shaped and spread. Expression of α-SMA proteins was higher on the stiffer substrates (25 kPa gel and plastic dishes) than on the soft 2 kPa gel. Both PDGF-induced chemotaxis and random walk migration of fibroblasts precultured on stiff substrates (25 kPa gel and plastic dishes) were significantly higher than those of cells precultured on 2 kPa gel. Transfection of the fibroblasts with short interfering RNA for α-SMA inhibited cell migration. These findings suggest that fibroblast activation induced by a stiff matrix is involved in mechanisms of the pathophysiology of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shuichi Asano
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan .,Department of Respiratory Medicine and Allergology, Aichi Medical University, Nagakute, Japan
| | - Kota Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
128
|
Takahashi K, Ito S, Furuya K, Asano S, Sokabe M, Hasegawa Y. Real-time imaging of mechanically and chemically induced ATP release in human lung fibroblasts. Respir Physiol Neurobiol 2017; 242:96-101. [PMID: 28442443 DOI: 10.1016/j.resp.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) acts as an inflammatory mediator of pulmonary fibrosis. We investigated the effects of mechanical and chemical stimuli on ATP release from primary normal human lung fibroblasts. We visualized the ATP release from fibroblasts in real time using a luminescence imaging system while acquiring differential interference contrast cell images with infrared optics. Immediately following a single uniaxial stretch for 1s, ATP was released from a certain population of cells and spread to surrounding spaces. Hypotonic stress, which causes plasma membrane stretching, also induced the ATP release. Compared with the effects of mechanical stretch, ATP-induced release sites were homogeneously distributed. In contrast to the effects of mechanical stimuli, application of platelet-derived growth factor caused ATP release from small numbers of the cells. Our real-time ATP imaging demonstrates that there is a heterogeneous nature of ATP release from lung fibroblasts in response to mechanical and chemical stimuli.
Collapse
Affiliation(s)
- Kota Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Respiratory Medicine and Allergology, Aichi Medical University, Nagakute 480-1195, Japan.
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuichi Asano
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
129
|
Paraquat poisoning induced pulmonary epithelial mesenchymal transition through Notch1 pathway. Sci Rep 2017; 7:924. [PMID: 28424456 PMCID: PMC5430447 DOI: 10.1038/s41598-017-01069-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Progressive pulmonary fibrosis is the most characteristic feature of subacute PQ poisoning. Epithelial-to-mesenchymal transition (EMT) is reported to be involved in the pulmonary fibrosis after PQ exposure. Recent evidence suggested Notch signaling is required for EMT. In this study, we investigated whether Notch1 and TGF-β1/Smad3 signaling was involved in EMT caused by PQ. It is demonstrated that A549 cells underwent EMT after treated with PQ at dose of 300 μmol/L for 6 days, charactered by increasing expression of mesenchymal marker α-SMA and decreasing expression of epithelial marker E-cadherin. We found that there was an apparent increased expression of Notch1 and jagged-1 in PQ induced EMT process. EMT could be enhanced by Jagged-1 ligand of Notch1, and be blocked by DAPT, a γ-secretase inhibitor. Our data also showed that the expression of TGF-β1/Smad3 increased after Notch1 is elevated in EMT caused by PQ. Jagged-1 significantly induced SMA expression, and this induction was completely inhibited by SB431542 in A549 cells. In conclusion, we demonstrated that Notch1 pathway was important in EMT induced by PQ, and TGF-β1/Smad3 signaling partly plays a role as the downstream of Notch1.
Collapse
|
130
|
Tomos IP, Tzouvelekis A, Aidinis V, Manali ED, Bouros E, Bouros D, Papiris SA. Extracellular matrix remodeling in idiopathic pulmonary fibrosis. It is the 'bed' that counts and not 'the sleepers'. Expert Rev Respir Med 2017; 11:299-309. [PMID: 28274188 DOI: 10.1080/17476348.2017.1300533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by irreversible fibrosis. Current disease pathogenesis assumes an aberrant wound healing process in response to repetitive injurious stimuli leading to apoptosis of epithelial cells, activation of fibroblasts and accumulation of extracellular matrix (ECM). Particularly, lung ECM is a highly dynamic structure that lies at the core of several physiological and developmental pathways. The scope of this review article is to summarize current knowledge on the role of ECM in the pathogenesis of IPF, unravel novel mechanistic data and identify future more effective therapeutic targets. Areas covered: The exact mechanisms through which lung microenvironment activates fibroblasts and inflammatory cells, regulates profibrotic signaling cascades through growth factors, integrins and degradation enzymes ultimately leading to excessive matrix deposition are discussed. Furthermore, the potential therapeutic usefulness of specific inhibitors of matrix deposition or activators of matrix degradation pathways are also presented. Expert commentary: With a gradually increasing worldwide incidence IPF still present a major challenge in clinical research due to its unknown etiopathogenesis and current ineffective treatment approaches. Today, there is an amenable need for more effective therapeutic targets and ECM components may represent one.
Collapse
Affiliation(s)
- Ioannis P Tomos
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Argyrios Tzouvelekis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Vassilis Aidinis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Effrosyni D Manali
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Evangelos Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Demosthenes Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Spyros A Papiris
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
131
|
Wight TN, Frevert CW, Debley JS, Reeves SR, Parks WC, Ziegler SF. Interplay of extracellular matrix and leukocytes in lung inflammation. Cell Immunol 2017; 312:1-14. [PMID: 28077237 PMCID: PMC5290208 DOI: 10.1016/j.cellimm.2016.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
During inflammation, leukocytes influx into lung compartments and interact with extracellular matrix (ECM). Two ECM components, versican and hyaluronan, increase in a range of lung diseases. The interaction of leukocytes with these ECM components controls leukocyte retention and accumulation, proliferation, migration, differentiation, and activation as part of the inflammatory phase of lung disease. In addition, bronchial epithelial cells from asthmatic children co-cultured with human lung fibroblasts generate an ECM that is adherent for monocytes/macrophages. Macrophages are present in both early and late lung inflammation. Matrix metalloproteinase 10 (MMP10) is induced in alveolar macrophages with injury and infection and modulates macrophage phenotype and their ability to degrade collagenous ECM components. Collectively, studies outlined in this review highlight the importance of specific ECM components in the regulation of inflammatory events in lung disease. The widespread involvement of these ECM components in the pathogenesis of lung inflammation make them attractive candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
132
|
Kimura M, Hashimoto N, Kusunose M, Aoyama D, Sakamoto K, Miyazaki S, Ando A, Omote N, Imaizumi K, Kawabe T, Hasegawa Y. Exogenous induction of unphosphorylated PTEN reduces TGFβ-induced extracellular matrix expressions in lung fibroblasts. Wound Repair Regen 2017; 25:86-97. [PMID: 28019709 DOI: 10.1111/wrr.12506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/20/2016] [Indexed: 01/15/2023]
Abstract
Transforming growth factor β (TGFβ) plays an important role in regulating aberrant extracellular matrix (ECM) production from alveolar/epithelial cells (AECs) and fibroblasts in pulmonary fibrosis. Although the tumor suppressor gene phosphatase and tensin homologue deleted from chromosome 10 (PTEN) can negatively control many TGFβ-activated signaling pathways via the phosphatase activity, hyperactivation of the TGFβ-related signaling pathways is often observed in fibrosis. Loss of PTEN expression might cause TGFβ-induced ECM production. In addition, TGFβ was recently shown to induce loss of PTEN enzymatic activity by phosphorylating the PTEN C-terminus. Therefore, we hypothesized that exogenous transfer of unphosphorylated PTEN (PTEN4A) might lead to reduce TGFβ-induced ECM expression in not only epithelial cells but also fibroblasts. Adenovirus-based exogenous PTEN4A induction successfully reduced TGFβ-induced fibronectin expression and retained β-catenin at the cell membrane in human epithelial cells. Exogenous unphosphorylated PTEN also attenuated TGFβ-induced ECM production and inhibited TGFβ-induced β-catenin translocation in a human fibroblast cell line and in mouse primary isolated lung fibroblasts. Conversely, TGFβ-induced α-smooth muscle actin expression did not seem to be inhibited in these fibroblasts. Our data suggest that exogenous administration of unphosphorylated PTEN might be a promising strategy to restore TGFβ-induced loss of PTEN activity and reduce aberrant TGFβ-induced ECM production from epithelial cells and fibroblasts in lung fibrosis as compared with wild-type PTEN induction.
Collapse
Affiliation(s)
- Motohiro Kimura
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Kusunose
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Aoyama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Miyazaki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Ando
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norihiro Omote
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine and allergy, Fujita Health University, Toyoake, Japan
| | - Tsutomu Kawabe
- Department of Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
133
|
Cruz-Solbes AS, Youker K. Epithelial to Mesenchymal Transition (EMT) and Endothelial to Mesenchymal Transition (EndMT): Role and Implications in Kidney Fibrosis. Results Probl Cell Differ 2017; 60:345-372. [PMID: 28409352 DOI: 10.1007/978-3-319-51436-9_13] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tubulointerstitial injury is one of the hallmarks of renal disease. In particular, interstitial fibrosis has a prominent role in the development and progression of kidney injury. Collagen-producing fibroblasts are responsible for the ECM deposition. However, the origin of those activated fibroblasts is not clear. This chapter will discuss in detail the concept of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) in the context of fibrosis and kidney disease. In short, EMT and EndMT involve a change in cell shape, loss of polarity and increased motility associated with increased collagen production. Thus, providing a new source of fibroblasts. However, many controversies exist regarding the existence of EMT and EndMT in kidney disease, as well as its burden and role in disease development. The aim of this chapter is to provide an overview of the concepts and profibrotic pathways and to present the evidence that has been published in favor and against EMT and EndMT.
Collapse
|
134
|
Xiao L, Dudley AC. Fine-tuning vascular fate during endothelial-mesenchymal transition. J Pathol 2017; 241:25-35. [PMID: 27701751 PMCID: PMC5164846 DOI: 10.1002/path.4814] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
In the heart and other organs, endothelial-mesenchymal transition (EndMT) has emerged as an important developmental process that involves coordinated migration, differentiation, and proliferation of the endothelium. In multiple disease states including cancer angiogenesis and cardiovascular disease, the processes that regulate EndMT are recapitulated, albeit in an uncoordinated and dysregulated manner. Members of the transforming growth factor beta (TGFβ) superfamily are well known to impart cellular plasticity during EndMT by the timely activation (or repression) of transcription factors and miRNAs in addition to epigenetic regulation of gene expression. On the other hand, fibroblast growth factors (FGFs) are reported to augment or oppose TGFβ-driven EndMT in specific contexts. Here, we have synthesized the currently understood roles of TGFβ and FGF signalling during EndMT and have provided a new, comprehensive paradigm that delineates how an autocrine and paracrine TGFβ/FGF axis coordinates endothelial cell specification and plasticity. We also provide new guidelines and nomenclature that considers factors such as endothelial cell heterogeneity to better define EndMT across different vascular beds. This perspective should therefore help to clarify why TGFβ and FGF can both cooperate with or oppose one another during the complex process of EndMT in both health and disease. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew C. Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA 22908, USA
- Emily Couric Cancer Center, The University of Virginia
| |
Collapse
|
135
|
Li H, Yao Z, He W, Gao H, Bai Y, Yang S, Zhang L, Zhan R, Tan J, Zhou J, Takata M, Wu J, Luo G. P311 induces the transdifferentiation of epidermal stem cells to myofibroblast-like cells by stimulating transforming growth factor β1 expression. Stem Cell Res Ther 2016; 7:175. [PMID: 27906099 PMCID: PMC5131552 DOI: 10.1186/s13287-016-0421-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background Epithelial to mesenchymal transition, especially to myofibroblasts, plays an important role in wound healing, fibrosis, and carcinogenesis. Epidermal stem cells (EpSCs) are responsible for epidermal renewal and wound re-epithelialization. However, it remains unclear whether and how EpSCs transdifferentiate into myofibroblasts or myofibroblast-like cells (MFLCs). Here, we provide the first evidence showing that P311 induces EpSC to MFLC transdifferentiation (EpMyT) via TGFβ1/Smad signaling. Methods Wound healing and mesenchymal features were observed in the P311 KO and P311 WT mouse model of superficial second-degree burns. After the primary human or mouse EpSCs were forced to highly express P311 using an adenoviral vector, EpMyT was observed by immunofluorescence, real-time PCR, and western blot. The activity of TGFβ1 and Smad2/3 in EpSCs with different P311 levels was observed by western blot. The TβRI/II inhibitor LY2109761 and Smad3 siRNA were applied to block the EpMyT in P311-overexpressing EpSCs and exogenous TGFβ1 was to restore the EpMyT in P311 KO EpSCs. Furthermore, the mechanism of P311 regulating TGFβ1 was investigated by bisulfite sequencing PCR, luciferase activity assay, and real-time PCR. Results P311 KO mouse wounds showed delayed re-epithelialization and reduced mesenchymal features. The human or mouse EpSCs with overexpressed P311 exhibited fusiform morphological changes, upregulated expression of myofibroblast markers (α-SMA and vimentin), and downregulated expression of EpSC markers (β1-integrin and E-cadherin). P311-expressing EpSCs showed decreased TGFβ1 mRNA and increased TGFβ1 protein, TβRI/II mRNA, and activated Smad2/3. Moreover, LY2109761 and Smad3 siRNA reversed P311-induced EpMyT. Under the stimulation of exogenous TGFβ1, the phosphorylation of Smad2 and Smad3 in P311 KO EpSCs was significantly lower than that in P311 WT EpSCs and the EpMyT in P311 KO EpSCs was restored. Furthermore, P311 enhanced the methylation of TGFβ1 promoter and increased activities of TGFβ1 5′/3′ untranslated regions (UTRs) to stimulate TGFβ1 expression. P311+α-SMA+ cells and P311+vimentin+ cells were observed in the epidermis of human burn wounds. Also, P311 was upregulated by IL-1β, IL-6, TNFα, and hypoxia. Conclusions P311 is a novel TGFβ1/Smad signaling-mediated regulator of transdifferentiation in EpSCs during cutaneous wound healing. Furthermore, P311 might stimulate TGFβ1 expression by promoting TGFβ1 promoter methylation and by activating the TGFβ1 5′/3′ UTR. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0421-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhihui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.,People's Liberation Army Hospital 59, Kaiyuan, Yunnan Province, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongyan Gao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yang Bai
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Sisi Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lu Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junyi Zhou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
136
|
Dong J, Ma Q. Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Part Fibre Toxicol 2016; 13:60. [PMID: 27814727 PMCID: PMC5097370 DOI: 10.1186/s12989-016-0172-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023] Open
Abstract
Carbon nanotubes (CNTs) are newly developed materials with unique properties and a range of industrial and commercial applications. A rapid expansion in the production of CNT materials may increase the risk of human exposure to CNTs. Studies in rodents have shown that certain forms of CNTs are potent fibrogenic inducers in the lungs to cause interstitial, bronchial, and pleural fibrosis characterized by the excessive deposition of collagen fibers and the scarring of involved tissues. The cellular and molecular basis underlying the fibrotic response to CNT exposure remains poorly understood. Myofibroblasts are a major type of effector cells in organ fibrosis that secrete copious amounts of extracellular matrix proteins and signaling molecules to drive fibrosis. Myofibroblasts also mediate the mechano-regulation of fibrotic matrix remodeling via contraction of their stress fibers. Recent studies reveal that exposure to CNTs induces the differentiation of myofibroblasts from fibroblasts in vitro and stimulates pulmonary accumulation and activation of myofibroblasts in vivo. Moreover, mechanistic analyses provide insights into the molecular underpinnings of myofibroblast differentiation and function induced by CNTs in the lungs. In view of the apparent fibrogenic activity of CNTs and the emerging role of myofibroblasts in the development of organ fibrosis, we discuss recent findings on CNT-induced lung fibrosis with emphasis on the role of myofibroblasts in the pathologic development of lung fibrosis. Particular attention is given to the formation and activation of myofibroblasts upon CNT exposure and the possible mechanisms by which CNTs regulate the function and dynamics of myofibroblasts in the lungs. It is evident that a fundamental understanding of the myofibroblast and its function and regulation in lung fibrosis will have a major influence on the future research on the pulmonary response to nano exposure, particle and fiber-induced pneumoconiosis, and other human lung fibrosing diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV, USA.
| |
Collapse
|
137
|
Lung surfactant metabolism: early in life, early in disease and target in cell therapy. Cell Tissue Res 2016; 367:721-735. [PMID: 27783217 DOI: 10.1007/s00441-016-2520-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
Abstract
Lung surfactant is a complex mixture of lipids and proteins lining the alveolar epithelium. At the air-liquid interface, surfactant lowers surface tension, avoiding alveolar collapse and reducing the work of breathing. The essential role of lung surfactant in breathing and therefore in life, is highlighted by surfactant deficiency in premature neonates, which causes neonatal respiratory distress syndrome and results in early death after birth. In addition, defects in surfactant metabolism alter lung homeostasis and lead to disease. Special attention should be paid to two important key cells responsible for surfactant metabolism: alveolar epithelial type II cells (AE2C) and alveolar macrophages (AM). On the one hand, surfactant deficiency coming from abnormal AE2C function results in high surface tension, promoting alveolar collapse and mechanical stress in the epithelium. This epithelial injury contributes to tissue remodeling and lung fibrosis. On the other hand, impaired surfactant catabolism by AM leads to accumulation of surfactant in air spaces and the associated altered lung function in pulmonary alveolar proteinosis (PAP). We review here two recent cell therapies that aim to recover the activity of AE2C or AM, respectively, therefore targeting the restoring of surfactant metabolism and lung homeostasis. Applied therapies successfully show either transplantation of healthy AE2C in fibrotic lungs, to replace injured AE2C cells and surfactant, or transplantation of bone marrow-derived macrophages to counteract accumulation of surfactant lipid and proteinaceous material in the alveolar spaces leading to PAP. These therapies introduce an alternative treatment with great potential for patients suffering from lung diseases.
Collapse
|
138
|
Li L, Huang W, Li K, Zhang K, Lin C, Han R, Lu C, Wang Y, Chen H, Sun F, He Y. Metformin attenuates gefitinib-induced exacerbation of pulmonary fibrosis by inhibition of TGF-β signaling pathway. Oncotarget 2016; 6:43605-19. [PMID: 26497205 PMCID: PMC4791254 DOI: 10.18632/oncotarget.6186] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
Interstitial lung disease (ILD) is a serious side-effect of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment. Therefore, it is necessary to study underlying mechanisms for the development of pulmonary fibrosis induced by EGFR-TKI and potential approaches to attenuate it. Metformin is a well-established and widely prescribed oral hypoglycemic drug, and has gained attention for its potential anticancer effects. Recent reports have also demonstrated its role in inhibiting epithelial-mesenchymal transition and fibrosis. However, it is unknown whether metformin attenuates EGFR-TKI-induced pulmonary fibrosis. The effect of metformin on EGFR-TKI-induced exacerbation of pulmonary fibrosis was examined in vitro and in vivo using MTT, Ki67 incorporation assay, flow cytometry, immunostaining, Western blot analysis, and a bleomycin-induced pulmonary fibrosis rat model. We found that in lung HFL-1 fibroblast cells, TGF-β or conditioned medium from TKI-treated lung cancer PC-9 cells or conditioned medium from TKI-resistant PC-9GR cells, induced significant fibrosis, as shown by increased expression of Collegen1a1 and α-actin, while metformin inhibited expression of fibrosis markers. Moreover, metformin decreased activation of TGF-β signaling as shown by decreased expression of pSMAD2 and pSMAD3. In vivo, oral administration of gefitinib exacerbated bleomycin-induced pulmonary fibrosis in rats, as demonstrated by HE staining and Masson staining. Significantly, oral co-administration of metformin suppressed exacerbation of bleomycin-induced pulmonary fibrosis by gefitinib. We have shown that metformin attenuates gefitinib-induced exacerbation of TGF-β or bleomycin-induced pulmonary fibrosis. These observations indicate metformin may be combined with EGFR-TKI to treat NSCLC patients.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wenting Huang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kunlin Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kejun Zhang
- Department of Clinical Labratory, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hengyi Chen
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fenfen Sun
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
139
|
Sekhon HK, Sircar K, Kaur G, Marwah M. Evaluation of Role of Myofibroblasts in Oral Cancer: A Systematic Review. Int J Clin Pediatr Dent 2016; 9:233-239. [PMID: 27843256 PMCID: PMC5086012 DOI: 10.5005/jp-journals-10005-1370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
Aim To conduct a systematic review on the role of myofibroblasts in progression of oral cancer. The myofibroblast is essential for the integrity of the mammalian body by virtue of its role in wound healing, but it also plays a negative role due to their role in promoting tumor development. Settings and design Systematic review. Materials and methods Bibliographic searches were conducted in several electronic databases using all publications in PubMed, PubMed central, EMBASE, CancerLit, Google scholar, and Cochrane CCTR between 1990 and June 2015. Results The search of all publications from various electronic databases revealed 1,371 citations. The total number of studies considered for systematic review was 43. The total number of patients included in the studies was 990. Conclusion Myofibroblasts are a significant component in stroma of oral cancer cases, though not identified in all cases. This systematic review shows that clinical, pathological, and immunohistochemistry tests have correlated the presence of high myofibroblast count in oral cancer cell stroma. Key Messages Myofibroblasts play a significant role in oral cancer invasion and progression. Various studies have demonstrated their association with oral cancer. This review tends to highlight their role in the pathogenesis of oral cancer over the decade. How to cite this article Sekhon HK, Sircar K, Kaur G, Marwah M. Evaluation of Role of Myofibroblasts in Oral Cancer: A Systematic Review. Int J Clin Pediatr Dent 2016;9(3):233-239.
Collapse
Affiliation(s)
- Harjeet K Sekhon
- Senior Lecturer, Department of Oral Pathology and Microbiology, D.J. College of Dental Sciences & Research, Modinagar, Uttar Pradesh, India
| | - Keya Sircar
- Head, Department of Oral Pathology and Microbiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Gurbani Kaur
- Ex-post Graduate Student, Department of Periodontology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Muneet Marwah
- Postgraduate, Department of Prosthodontics, Government Dental College Thiruvananthapuram, Kerala, India
| |
Collapse
|
140
|
Safety and Tolerability of Alveolar Type II Cell Transplantation in Idiopathic Pulmonary Fibrosis. Chest 2016; 150:533-43. [DOI: 10.1016/j.chest.2016.03.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/01/2016] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
|
141
|
Wang C, Gu S, Cao H, Li Z, Xiang Z, Hu K, Han X. miR-877-3p targets Smad7 and is associated with myofibroblast differentiation and bleomycin-induced lung fibrosis. Sci Rep 2016; 6:30122. [PMID: 27444321 PMCID: PMC4957095 DOI: 10.1038/srep30122] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
Myofibroblast differentiation of lung resident mesenchymal stem cells (LR-MSC) plays an important role in idiopathic pulmonary fibrosis. By comparing the expression profiles of miRNAs before and after myofibroblast differentiation of LR-MSC, we identified miR-877-3p as a fibrosis-related miRNA. We found that miR-877-3p sequestration inhibited the myofibroblast differentiation of LR-MSC and attenuates bleomycin-induced lung fibrosis by targeting Smad7. Smad7, as an inhibitory smad in the TGF-β1 signaling pathway, was decreased in the myofibroblast differentiation of LR-MSC and up-regulation of Smad7 could inhibit the differentiation process. Our data implicates a potential application of miR-877-3p as a fibrosis suppressor for pulmonary fibrosis therapy and also as a fibrosis marker for predicting prognosis.
Collapse
Affiliation(s)
- Cong Wang
- Immunology and Reproduction Biology Laboratory &State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Shen Gu
- Immunology and Reproduction Biology Laboratory &State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory &State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zutong Li
- Immunology and Reproduction Biology Laboratory &State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Kebin Hu
- Department of Medicine, Division of Nephrology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory &State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
142
|
Kishimoto Y, Kishimoto AO, Ye S, Kendziorski C, Welham NV. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds. J Transl Med 2016; 96:807-16. [PMID: 27111284 PMCID: PMC4920689 DOI: 10.1038/labinvest.2016.43] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 02/02/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Following injury, pathologically activated vocal fold fibroblasts (VFFs) can engage in disordered extracellular matrix (ECM) remodeling, leading to VF fibrosis and impaired voice function. Given the importance of scar VFFs to phenotypically appropriate in vitro modeling of VF fibrosis, we pursued detailed characterization of scar VFFs obtained from surgically injured rat VF mucosae, compared with those obtained from experimentally naïve, age-matched tissue. Scar VFFs initially exhibited a myofibroblast phenotype characterized by increased proliferation, increased Col1a1 transcription and collagen, type I synthesis, increased Acta2 transcription and α-smooth muscle actin synthesis, and enhanced contractile function. These features were most distinct at passage 1 (P1); we observed a coalescence of the scar and naïve VFF phenotypes at later passages. An empirical Bayes statistical analysis of the P1 cell transcriptome identified 421 genes that were differentially expressed by scar, compared with naïve, VFFs. These genes were primarily associated with the wound response, ECM regulation, and cell proliferation. Follow-up comparison of P1 scar VFFs and their in vivo tissue source showed substantial transcriptomic differences. Finally, P1 scar VFFs responded to treatment with hepatocyte growth factor and transforming growth factor-β3, two biologics with reported therapeutic value. Despite the practical limitations inherent to working with early passage cells, this experimental model is easily implemented in any suitably equipped laboratory and has the potential to improve the applicability of preclinical VF fibrosis research.
Collapse
Affiliation(s)
- Yo Kishimoto
- Department of Surgery, Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Ayami Ohno Kishimoto
- Department of Surgery, Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Shuyun Ye
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Nathan V. Welham
- Department of Surgery, Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
143
|
Chapman MA, Meza R, Lieber RL. Skeletal muscle fibroblasts in health and disease. Differentiation 2016; 92:108-115. [PMID: 27282924 DOI: 10.1016/j.diff.2016.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
As the primary producer of extracellular matrix (ECM) proteins in skeletal muscle, fibroblasts play an important role providing structural support to muscle. Skeletal muscle ECM is vital for force transduction from muscle cells to tendons and bones to create movement. It is these ECM connections that allow the movement created in muscle to be transmitted to our skeleton. This review discusses how fibroblasts participate in maintaining this healthy ECM within skeletal muscle. Additionally, from a basic science perspective, we discuss current methods to identify and study skeletal muscle fibroblasts, as this is critical to bettering our understanding of these important cells. Finally, skeletal muscle fibrosis is discussed, which is a devastating clinical condition characterized by an overproduction of ECM within skeletal muscle. We discuss the role that fibroblasts and other cells play in muscle fibrosis as well as the implications of this work.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Rachel Meza
- Department of Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Richard L Lieber
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States; Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0863, United States; Department of Veteran's Affairs, 9500 Gilman Drive, La Jolla, CA 92093-0863, United States; Rehabilitation Institute of Chicago, 345 East Superior Street, Chicago, IL 60611, United States.
| |
Collapse
|
144
|
Micha D, Voermans E, Eekhoff MEW, van Essen HW, Zandieh-Doulabi B, Netelenbos C, Rustemeyer T, Sistermans EA, Pals G, Bravenboer N. Inhibition of TGFβ signaling decreases osteogenic differentiation of fibrodysplasia ossificans progressiva fibroblasts in a novel in vitro model of the disease. Bone 2016; 84:169-180. [PMID: 26769004 DOI: 10.1016/j.bone.2016.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Fibrodysplasia ossificans progressiva is a rare genetic disorder characterized by progressive heterotopic ossification. FOP patients develop soft tissue lumps as a result of inflammation-induced flare-ups which leads to the irreversible replacement of skeletal muscle tissue with bone tissue. Classical FOP patients possess a mutation (c.617G>A; R206H) in the ACVR1-encoding gene which leads to dysregulated BMP signaling. Nonetheless, not all FOP patients with this mutation exhibit equal severity in symptom presentation or disease progression which indicates a strong contribution by environmental factors. Given the pro-inflammatory role of TGFβ, we studied the role of TGFβ in the progression of osteogenic differentiation in primary dermal fibroblasts from five classical FOP patients based on a novel method of platelet lysate-based osteogenic transdifferentiation. During the course of transdifferentiation the osteogenic properties of the cells were evaluated by the mRNA expression of Sp7/Osterix, Runx2, Alp, OC and the presence of mineralization. During transdifferentiation the expression of osteoblast markers Runx2 (p<0.05) and Alp were higher in patient cells compared to healthy controls. All cell lines exhibited increase in mineralisation. FOP fibroblasts also expressed higher baseline Sp7/Osterix levels (p<0.05) confirming their higher osteogenic potential. The pharmacological inhibition of TGFβ signaling during osteogenic transdifferentiation resulted in the attenuation of osteogenic transdifferentiation in all cell lines as shown by the decrease in the expression of Runx2 (p<0.05), Alp and mineralization. We suggest that blocking of TGFβ signaling can decrease the osteogenic transdifferentiation of FOP fibroblasts.
Collapse
Affiliation(s)
- Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Elise Voermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Marelise E W Eekhoff
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands.
| | - Huib W van Essen
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute, Amsterdam, The Netherlands.
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, MOVE Research Institute, Amsterdam, The Netherlands.
| | - Coen Netelenbos
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands.
| | - Thomas Rustemeyer
- Department of Dermatology, VU University Medical Centre, Amsterdam, The Netherlands.
| | - E A Sistermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerard Pals
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
145
|
Bagul N, Ganjre A, Goryawala SN, Kathariya R, Dusane S. Dynamic role of myofibroblasts in oral lesions. World J Clin Oncol 2015; 6:264-271. [PMID: 26677439 PMCID: PMC4675911 DOI: 10.5306/wjco.v6.i6.264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/04/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are the most abundant cellular components of connective tissue. They possess phenotypical heterogenicity and may be present in the form of smooth muscle cells or myofibroblasts (MFs). MFs are spindle-shaped cells with stress fibres and well-developed fibronexus, and they display α-smooth muscle actin immunohistochemically and smooth-muscle myofilaments ultrastructurally. MFs play a crucial role in physiological and pathological processes. Derived from various sources, they play pivotal roles not only by synthesizing and producing extracellular matrix components, such as other connective tissue cells, but also are involved in force production. In the tissue remodelling phase of wound closure, integrin-mediated interactions between MFs and type I collagen result in scar tissue formation. The tumour stroma in oral cancer actively recruits various cell types into the tumour mass, where they act as different sources of MFs. This article reviews the importance of MFs and its role in pathological processes such as wound healing, odontogenic cysts and tumours, salivary gland tumours, oral preneoplasia, and oral squamous cell carcinoma. Research oriented on blocking the transdifferentiation of fibroblasts into MFs can facilitate the development of noninvasive therapeutic strategies for the treatment of fibrosis and/or cancer.
Collapse
|
146
|
Khojasteh A, Motamedian SR, Rad MR, Shahriari MH, Nadjmi N. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation. World J Stem Cells 2015; 7:1215-1221. [PMID: 26640621 PMCID: PMC4663374 DOI: 10.4252/wjsc.v7.i10.1215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/04/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells (hDPSCs) on four commercially available scaffold biomaterials.
METHODS: hDPSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. hDPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureOss (Allograft), Cerabone (Xenograft), PLLA (Synthetic), and OSTEON II Collagen (Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy (SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase (ALP) activity assay, respectively.
RESULTS: All scaffold biomaterials except SureOss (Allograft) supported hDPSC adhesion, proliferation and differentiation. hDPSCs seeded on PLLA (Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hDPSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA (Synthetic) and OSTEON II Collagen (Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone (Xenograft) and OSTEON II Collagen (Composite) scaffolds, the hDPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape.
CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hDPSCs. Hence, it may be useful in combination with hDPSCs for cell-based reconstructive therapy.
Collapse
|
147
|
Lai LM, McCarville MB, Kirby P, Kao SCS, Moritani T, Clark E, Ishigami K, Bahrami A, Sato Y. Shedding light on inflammatory pseudotumor in children: spotlight on inflammatory myofibroblastic tumor. Pediatr Radiol 2015; 45:1738-52. [PMID: 25964134 DOI: 10.1007/s00247-015-3360-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/11/2015] [Accepted: 04/06/2015] [Indexed: 01/03/2023]
Abstract
Inflammatory pseudotumor is a generic term used to designate a heterogeneous group of inflammatory mass-forming lesions histologically characterized by myofibroblastic proliferation with chronic inflammatory infiltrate. Inflammatory pseudotumor is multifactorial in etiology and generally benign, but it is often mistaken for malignancy given its aggressive appearance. It can occur throughout the body and is seen in all age groups. Inflammatory pseudotumor has been described in the literature by many organ-specific names, resulting in confusion. Recently within this generic category of inflammatory pseudotumor, inflammatory myofibroblastic tumor has emerged as a distinct entity and is now recognized as a fibroblastic/myofibroblastic neoplasm with intermediate biological potential and occurring mostly in children. We present interesting pediatric cases of inflammatory myofibroblastic tumors given this entity's tendency to occur in children. Familiarity and knowledge of the imaging features of inflammatory pseudotumor can help in making an accurate diagnosis, thereby avoiding unnecessary radical surgery.
Collapse
Affiliation(s)
- Lillian M Lai
- Department of Radiology, Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Room 3970 JPP, Iowa City, IA, 52242, USA.
| | - M Beth McCarville
- Department of Radiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patricia Kirby
- Department of Pathology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Simon C S Kao
- Department of Radiology, Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Room 3970 JPP, Iowa City, IA, 52242, USA
| | - Toshio Moritani
- Department of Radiology, Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Room 3970 JPP, Iowa City, IA, 52242, USA
| | - Eve Clark
- Department of Radiology, Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Room 3970 JPP, Iowa City, IA, 52242, USA
| | - Kousei Ishigami
- Department of Radiology, Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Room 3970 JPP, Iowa City, IA, 52242, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yutaka Sato
- Department of Radiology, Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Room 3970 JPP, Iowa City, IA, 52242, USA
| |
Collapse
|
148
|
Neary R, Watson CJ, Baugh JA. Epigenetics and the overhealing wound: the role of DNA methylation in fibrosis. FIBROGENESIS & TISSUE REPAIR 2015; 8:18. [PMID: 26435749 PMCID: PMC4591063 DOI: 10.1186/s13069-015-0035-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022]
Abstract
Fibrosis is a progressive and potentially fatal process that can occur in numerous organ systems. Characterised by the excessive deposition of extracellular matrix proteins such as collagens and fibronectin, fibrosis affects normal tissue architecture and impedes organ function. Although a considerable amount of research has focused on the mechanisms underlying disease pathogenesis, current therapeutic options do not directly target the pro-fibrotic process. As a result, there is a clear unmet clinical need to develop new agents. Novel findings implicate a role for epigenetic modifications contributing to the progression of fibrosis by alteration of gene expression profiles. This review will focus on DNA methylation; its association with fibroblast differentiation and activation and the consequent buildup of fibrotic scar tissue. The potential use of therapies that modulate this epigenetic pathway for the treatment of fibrosis in several organ systems is also discussed.
Collapse
Affiliation(s)
- Roisin Neary
- UCD School of Medicine and Medical Science, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 Ireland
| | - Chris J Watson
- UCD School of Medicine and Medical Science, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 Ireland
| | - John A Baugh
- UCD School of Medicine and Medical Science, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 Ireland
| |
Collapse
|
149
|
Hu B, Wu Z, Bai D, Liu T, Ullenbruch MR, Phan SH. Mesenchymal deficiency of Notch1 attenuates bleomycin-induced pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3066-75. [PMID: 26358219 DOI: 10.1016/j.ajpath.2015.07.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/23/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Abstract
Notch signaling pathway is involved in the regulation of cell fate, differentiation, proliferation, and apoptosis in development and disease. Previous studies suggest the importance of Notch1 in myofibroblast differentiation in lung alveogenesis and fibrosis. However, direct in vivo evidence of Notch1-mediated myofibroblast differentiation is lacking. In this study, we examined the effects of conditional mesenchymal-specific deletion of Notch1 on pulmonary fibrosis. Crossing of mice bearing the floxed Notch1 gene with α2(I) collagen enhancer-Cre-ER(T)-bearing mice successfully generated progeny with a conditional knockout (CKO) of Notch1 in collagen I-expressing (mesenchymal) cells on treatment with tamoxifen (Notch1 CKO). Because Notch signaling is known to be activated in the bleomycin model of pulmonary fibrosis, control and Notch1 CKO mice were analyzed for their responses to bleomycin treatment. The results showed significant attenuation of pulmonary fibrosis in CKO relative to control mice, as examined by collagen deposition, myofibroblast differentiation, and histopathology. However, there were no significant differences in inflammatory or immune cell influx between bleomycin-treated CKO and control mouse lungs. Analysis of isolated lung fibroblasts confirmed absence of Notch1 expression in cells from CKO mice, which contained fewer myofibroblasts and significantly diminished collagen I expression relative to those from control mice. These findings revealed an essential role for Notch1-mediated myofibroblast differentiation in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David Bai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matthew R Ullenbruch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
150
|
Batra H, Antony VB. Pleural mesothelial cells in pleural and lung diseases. J Thorac Dis 2015; 7:964-80. [PMID: 26150910 DOI: 10.3978/j.issn.2072-1439.2015.02.19] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
During development, the mesoderm maintains a complex relationship with the developing endoderm giving rise to the mature lung. Pleural mesothelial cells (PMCs) derived from the mesoderm play a key role during the development of the lung. The pleural mesothelium differentiates to give rise to the endothelium and smooth muscle cells via epithelial-to-mesenchymal transition (EMT). An aberrant recapitulation of such developmental pathways can play an important role in the pathogenesis of disease processes such as idiopathic pulmonary fibrosis (IPF). The PMC is the central component of the immune responses of the pleura. When exposed to noxious stimuli, it demonstrates innate immune responses such as Toll-like receptor (TLR) recognition of pathogen associated molecular patterns as well as causes the release of several cytokines to activate adaptive immune responses. Development of pleural effusions occurs due to an imbalance in the dynamic interaction between junctional proteins, n-cadherin and β-catenin, and phosphorylation of adherens junctions between PMCs, which is caused in part by vascular endothelial growth factor (VEGF) released by PMCs. PMCs play an important role in defense mechanisms against bacterial and mycobacterial pleural infections, and in pathogenesis of malignant pleural effusion, asbestos related pleural disease and malignant pleural mesothelioma. PMCs also play a key role in the resolution of inflammation, which can occur with or without fibrosis. Fibrosis occurs as a result of disordered fibrin turnover and due to the effects of cytokines such as transforming growth factor-β, platelet-derived growth factor (PDGF), and basic fibroblast growth factor; which are released by PMCs. Recent studies have demonstrated a role for PMCs in the pathogenesis of IPF suggesting their potential as a cellular biomarker of disease activity and as a possible therapeutic target. Pleural-based therapies targeting PMCs for treatment of IPF and other lung diseases need further exploration.
Collapse
Affiliation(s)
- Hitesh Batra
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|