101
|
Koseva NS, Rydz J, Stoyanova EV, Mitova VA. Hybrid protein-synthetic polymer nanoparticles for drug delivery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:93-119. [PMID: 25819277 DOI: 10.1016/bs.apcsb.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems.
Collapse
Affiliation(s)
- Neli S Koseva
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Joanna Rydz
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | | - Violeta A Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
102
|
Shi C, Ahmad Khan S, Wang K, Schneider M. Improved delivery of the natural anticancer drug tetrandrine. Int J Pharm 2015; 479:41-51. [DOI: 10.1016/j.ijpharm.2014.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
|
103
|
Soni G, Yadav KS. Applications of nanoparticles in treatment and diagnosis of leukemia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:156-64. [DOI: 10.1016/j.msec.2014.10.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/14/2014] [Accepted: 10/21/2014] [Indexed: 01/02/2023]
|
104
|
Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1051-61. [PMID: 25612903 DOI: 10.3109/21691401.2014.998830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
105
|
Yildiz-Unal A, Korulu S, Karabay A. Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat 2015; 11:297-310. [PMID: 25709452 PMCID: PMC4327398 DOI: 10.2147/ndt.s78226] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Calpains are calcium-dependent proteolytic enzymes that have deleterious effects on neurons upon their pathological over-activation. According to the results of numerous studies to date, there is no doubt that abnormal calpain activation triggers activation and progression of apoptotic processes in neurodegeneration, leading to neuronal death. Thus, it is very crucial to unravel all the aspects of calpain-mediated neurodegeneration in order to protect neurons through eliminating or at least minimizing its lethal effects. Protecting neurons against calpain-activated apoptosis basically requires developing effective, reliable, and most importantly, therapeutically applicable approaches to succeed. From this aspect, the most significant studies focusing on preventing calpain-mediated neurodegeneration include blocking the N-methyl-d-aspartate (NMDA)-type glutamate receptor activities, which are closely related to calpain activation; directly inhibiting calpain itself via intrinsic or synthetic calpain inhibitors, or inhibiting its downstream processes; and utilizing the neuroprotectant steroid hormone estrogen and its receptors. In this review, the most remarkable neuroprotective strategies for calpain-mediated neurodegeneration are categorized and summarized with respect to their advantages and disadvantages over one another, in terms of their efficiency and applicability as a therapeutic regimen in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysegul Yildiz-Unal
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey
| | - Sirin Korulu
- Department of Molecular Biology and Genetics, Istanbul Arel University, Istanbul Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
106
|
Kakkar D, Mazzaferro S, Thevenot J, Schatz C, Bhatt A, Dwarakanath BS, Singh H, Mishra AK, Lecommandoux S. Amphiphilic PEO-b
-PBLG Diblock and PBLG-b
-PEO-b
-PBLG Triblock Copolymer Based Nanoparticles: Doxorubicin Loading and In Vitro
Evaluation. Macromol Biosci 2014; 15:124-37. [DOI: 10.1002/mabi.201400451] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/06/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Dipti Kakkar
- Université de Bordeaux/Bordeaux-INP; ENSCBP CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629); 16 avenue Pey Berland 33607 Pessac Cedex France
- Institute of Nuclear Medicine and Allied Sciences; Brig. S.K. Mazumdar Road Timarpur Delhi 110054 India
- Centre for Biomedical Engineering; Indian Institute of Technology; Hauz Khas New Delhi 110016 India
- CNRS; Laboratoire de Chimie des Polymeres Organiques (UMR5629); Pessac France
| | - Silvia Mazzaferro
- Université de Bordeaux/Bordeaux-INP; ENSCBP CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629); 16 avenue Pey Berland 33607 Pessac Cedex France
- CNRS; Laboratoire de Chimie des Polymeres Organiques (UMR5629); Pessac France
| | - Julie Thevenot
- Université de Bordeaux/Bordeaux-INP; ENSCBP CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629); 16 avenue Pey Berland 33607 Pessac Cedex France
- CNRS; Laboratoire de Chimie des Polymeres Organiques (UMR5629); Pessac France
| | - Christophe Schatz
- Université de Bordeaux/Bordeaux-INP; ENSCBP CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629); 16 avenue Pey Berland 33607 Pessac Cedex France
- CNRS; Laboratoire de Chimie des Polymeres Organiques (UMR5629); Pessac France
| | - Anant Bhatt
- Institute of Nuclear Medicine and Allied Sciences; Brig. S.K. Mazumdar Road Timarpur Delhi 110054 India
| | - Bilikere S. Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences; Brig. S.K. Mazumdar Road Timarpur Delhi 110054 India
| | - Harpal Singh
- Centre for Biomedical Engineering; Indian Institute of Technology; Hauz Khas New Delhi 110016 India
| | - Anil K. Mishra
- Institute of Nuclear Medicine and Allied Sciences; Brig. S.K. Mazumdar Road Timarpur Delhi 110054 India
| | - Sebastien Lecommandoux
- Université de Bordeaux/Bordeaux-INP; ENSCBP CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629); 16 avenue Pey Berland 33607 Pessac Cedex France
- CNRS; Laboratoire de Chimie des Polymeres Organiques (UMR5629); Pessac France
| |
Collapse
|
107
|
Yan L, Zhang J, Lee CS, Chen X. Micro- and nanotechnologies for intracellular delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4487-504. [PMID: 25168360 DOI: 10.1002/smll.201401532] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/18/2014] [Indexed: 05/24/2023]
Abstract
The majority of drugs and biomolecules need to be delivered into cells to be effective. However, the cell membranes, a biological barrier, strictly resist drugs or biomolecules entering cells, resulting in significantly reduced intracellular delivery efficiency. To overcome this barrier, a variety of intracellular delivery approaches including chemical and physical ways have been developed in recent years. In this review, the focus is on summarizing the nanomaterial routes involved in making use of a collection of receptors for the targeted delivery of drugs and biomolecules and the physical ways of applying micro- and nanotechnologies for high-throughput intracellular delivery.
Collapse
Affiliation(s)
- Li Yan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | |
Collapse
|
108
|
Joseph MM, Aravind S, George SK, Pillai RK, Mini S, Sreelekha T. Co-encapsulation of Doxorubicin with galactoxyloglucan nanoparticles for intracellular tumor-targeted delivery in murine ascites and solid tumors. Transl Oncol 2014; 7:525-36. [PMID: 25389448 PMCID: PMC4225659 DOI: 10.1016/j.tranon.2014.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 12/22/2022] Open
Abstract
Doxorubicin (Dox) treatment is limited by severe toxicity and frequent episodes of treatment failure. To minimize adverse events and improve drug delivery efficiently and specifically in cancer cells, encapsulation of Dox with naturally obtained galactoxyloglucan polysaccharide (PST001), isolated from Tamarindus indica was attempted. Thus formed PST-Dox nanoparticles induced apoptosis and exhibited significant cytotoxicity in murine ascites cell lines, Dalton's lymphoma ascites and Ehrlich's ascites carcinoma. The mechanism contributing to the augmented cytotoxicity of nanoconjugates at lower doses was validated by measuring the Dox intracellular uptake in human colon, leukemic and breast cancer cell lines. PST-Dox nanoparticles showed rapid internalization of Dox into cancer cells within a short period of incubation. Further, in vivo efficacy was tested in comparison to the parent counterparts - PST001 and Dox, in ascites and solid tumor syngraft mice models. Treatment of ascites tumors with PST-Dox nanoparticles significantly reduced the tumor volume, viable tumor cell count, and increased survival and percentage life span in the early, established and prophylactic phases of the disease. Administration of nanoparticles through intratumoral route delivered more robust antitumor response than the intraperitoneal route in solid malignancies. Thus, the results indicate that PST-Dox nanoparticles have greater potential compared to the Dox as targeted drug delivery nanocarriers for loco regional cancer chemotherapy applications.
Collapse
Affiliation(s)
- Manu M. Joseph
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Trivandrum, Kerala, India
| | - S.R. Aravind
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Trivandrum, Kerala, India
| | - Suraj K. George
- Department of Hematopathology, UT MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | - S. Mini
- Department of Biochemistry, University of Kerala, Trivandrum, Kerala, India
| | - T.T. Sreelekha
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Trivandrum, Kerala, India
| |
Collapse
|
109
|
Daglar B, Ozgur E, Corman ME, Uzun L, Demirel GB. Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv 2014. [DOI: 10.1039/c4ra06406b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
110
|
Bhaskar A, Raturi K, Dang S, Gabrani R. Current perspectives on the therapeutic aspects of chronic myelogenous leukemia. Expert Opin Ther Pat 2014; 24:1117-27. [DOI: 10.1517/13543776.2014.953056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
111
|
Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 2014; 6:9-26. [PMID: 24104563 DOI: 10.1039/c3ib40165k] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoparticles can be engineered with distinctive composition, size, shape, and surface chemistry to enable novel techniques in a wide range of biological applications. The unique properties of nanoparticles and their behavior in biological milieu also enable exciting and integrative approaches to studying fundamental biological questions. This review will provide an overview of various types of nanoparticles and concepts of targeting nanoparticles. We will also discuss the advantages and recent applications of using nanoparticles as tools for drug delivery, imaging, sensing, and for the understanding of basic biological processes.
Collapse
Affiliation(s)
- Edina C Wang
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
112
|
Wang Y, Shim MS, Levinson NS, Sung HW, Xia Y. Stimuli-Responsive Materials for Controlled Release of Theranostic Agents. ADVANCED FUNCTIONAL MATERIALS 2014; 24:4206-4220. [PMID: 25477774 PMCID: PMC4249693 DOI: 10.1002/adfm.201400279] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Stimuli-responsive materials are so named because they can alter their physicochemical properties and/or structural conformations in response to specific stimuli. The stimuli can be internal, such as physiological or pathological variations in the target cells/tissues, or external, such as optical and ultrasound radiations. In recent years, these materials have gained increasing interest in biomedical applications due to their potential for spatially and temporally controlled release of theranostic agents in response to the specific stimuli. This article highlights several recent advances in the development of such materials, with a focus on their molecular designs and formulations. The future of stimuli-responsive materials will also be explored, including combination with molecular imaging probes and targeting moieties, which could enable simultaneous diagnosis and treatment of a specific disease, as well as multi-functionality and responsiveness to multiple stimuli, all important in overcoming intrinsic biological barriers and increasing clinical viability.
Collapse
Affiliation(s)
| | | | - Nathanael S. Levinson
- The Wallace H. Coulter Department of Biomedical Engineering, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | | |
Collapse
|
113
|
Bahreini E, Aghaiypour K, Abbasalipourkabir R, Mokarram AR, Goodarzi MT, Saidijam M. Preparation and nanoencapsulation of l-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. NANOSCALE RESEARCH LETTERS 2014; 9:340. [PMID: 25114635 PMCID: PMC4110547 DOI: 10.1186/1556-276x-9-340] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/09/2014] [Indexed: 05/25/2023]
Abstract
This paper describes the production, purification, and immobilization of l-asparaginase II (ASNase II) in chitosan nanoparticles (CSNPs). ASNase II is an effective antineoplastic agent, used in the acute lymphoblastic leukemia chemotherapy. Cloned ASNase II gene (ansB) in pAED4 plasmid was transformed into Escherichia coli BL21pLysS (DE3) competent cells and expressed under optimal conditions. The lyophilized enzyme was loaded into CSNPs by ionotropic gelation method. In order to get optimal entrapment efficiency, CSNP preparation, chitosan/tripolyphosphate (CS/TPP) ratio, and protein loading were investigated. ASNase II loading into CSNPs was confirmed by Fourier transform infrared (FTIR) spectroscopy, and morphological observation was carried out by transmission electron microscopy. Three absolute CS/TPP ratios were studied. Entrapment efficiency and loading capacity increased with increasing CS and TPP concentration. The best ratio was applied for obtaining optimal ASNase II-loaded CSNPs with the highest entrapment efficiency. Size, zeta potential, entrapment efficiency, and loading capacity of the optimal ASNase II-CSNPs were 340 ± 12 nm, 21.2 ± 3 mV, 76.2% and 47.6%, respectively. The immobilized enzyme showed an increased in vitro half-life in comparison with the free enzyme. The pH and thermostability of the immobilized enzyme was comparable with the free enzyme. This study leads to a better understanding of how to prepare CSNPs, how to achieve high encapsulation efficiency for a high molecular weight protein, and how to prolong the release of protein from CSNPs. A conceptual understanding of biological responses to ASNase II-loaded CSNPs is needed for the development of novel methods of drug delivery.
Collapse
Affiliation(s)
- Elham Bahreini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517619651, Iran
| | - Khosrow Aghaiypour
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Karaj 3197619751, Iran
| | - Roghayeh Abbasalipourkabir
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517619651, Iran
| | - Ali Rezaei Mokarram
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Karaj 3197619751, Iran
| | - Mohammad Taghi Goodarzi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517619651, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517619651, Iran
| |
Collapse
|
114
|
Kumar A, Huo S, Zhang X, Liu J, Tan A, Li S, Jin S, Xue X, Zhao Y, Ji T, Han L, Liu H, Zhang X, Zhang J, Zou G, Wang T, Tang S, Liang XJ. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS NANO 2014; 8:4205-4220. [PMID: 24730557 DOI: 10.1021/nn500152u] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Platinum-based anticancer drugs such as cisplatin, oxaliplatin, and carboplatin are some of the most potent chemotherapeutic agents but have limited applications due to severe dose-limiting side effects and a tendency for cancer cells to rapidly develop resistance. The therapeutic index can be improved through use of nanocarrier systems to target cancer cells efficiently. We developed a unique strategy to deliver a platinum(IV) drug to prostate cancer cells by constructing glutathione-stabilized (Au@GSH) gold nanoparticles. Glutathione (GSH) has well-known antioxidant properties, which lead to cancer regression. Here, we exploit the advantages of both the antioxidant properties and high surface-area-to-volume ratio of Au@GSH NPs to demonstrate their potential for delivery of a platinum(IV) drug by targeting the neuropilin-1 receptor (Nrp-1). A lethal dose of a platinum(IV) drug functionalized with the Nrp-1-targeting peptide (CRGDK) was delivered specifically to prostate cancer cells in vitro. Targeted peptide ensures specific binding to the Nrp-1 receptor, leading to enhanced cellular uptake level and cell toxicity. The nanocarriers were themselves nontoxic, but exhibited high cytotoxicity and increased efficacy when functionalized with the targeting peptide and drug. The uptake of drug-loaded nanocarriers is dependent on the interaction with Nrp-1 in cell lines expressing high (PC-3) and low (DU-145) levels of Nrp-1, as confirmed through inductively coupled plasma mass spectrometry and confocal microscopy. The nanocarriers have effective anticancer activity, through upregulation of nuclear factor kappa-B (NF-κB) protein (p50 and p65) expression and activation of NF-κB-DNA-binding activity. Our preliminary investigations with platinum(IV)-functionalized gold nanoparticles along with a targeting peptide hold significant promise for future cancer treatment.
Collapse
Affiliation(s)
- Anil Kumar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing, 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Shrestha S, Diogenes A, Kishen A. Temporal-controlled release of bovine serum albumin from chitosan nanoparticles: effect on the regulation of alkaline phosphatase activity in stem cells from apical papilla. J Endod 2014; 40:1349-54. [PMID: 25146014 DOI: 10.1016/j.joen.2014.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/20/2014] [Accepted: 02/22/2014] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The controlled delivery of bioactive molecules is crucial for the regulation of stem cell differentiation. In this study, we examined the effects of temporal-controlled release of bovine serum albumin (BSA) from chitosan nanoparticles (CSnp) to regulate the alkaline phosphatase activity (ALP) in stem cells from apical papilla (SCAP). METHODS BSA-loaded CSnp were synthesized by 2 methods to achieve the variant temporal-controlled release: (1) the encapsulation technique (BSA-CSnpI) and (2) the adsorption technique (BSA-CSnpII). After characterization of the size, charge, and release kinetics, SCAP were cultured in the presence of these bioactive molecule-loaded nanoparticles. SCAP viability was analyzed at 1, 7, 14, 21, and 28 days, and ALP activity was analyzed every 7 days until 21 days to determine the effect of these bioactive molecule-releasing nanoparticles on the cytotoxicity and differentiation potential, respectively. RESULTS BSA-CSnpI and BSA-CSnpII presented distinct in vitro release profiles of BSA in a time-controlled manner. Cell viability was significantly enhanced over time in the presence of BSA-CSnpI and BSA-CSnpII (P < .01), when compared with BSA nonloaded CSnp. ALP activity was significantly higher (P < .01) in the presence of BSA-CSnpI after 3 weeks than in BSA-CSnpII. CONCLUSIONS BSA-loaded CSnps were synthesized and characterized in this study. Based on the physical/chemical interaction of BSA with CSnp (encapsulation or surface adsorption), different time-controlled release profiles were observed that influenced the ALP activity of SCAP in vitro. This study highlighted the potential of temporal-controlled bioactive molecule release technology in the differentiation of stem cells in dentin pulp regeneration.
Collapse
Affiliation(s)
- Suja Shrestha
- Discipline of Endodontics, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anil Kishen
- Discipline of Endodontics, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
116
|
Haroun AA, Taie HA. Cytotoxicity and Antioxidant Activity of Beta vulgaris
Extract Released from Grafted Carbon Nanotubes Based Nanocomposites. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/masy.201450303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed A. Haroun
- Chemical Industries Research Division; National Research Center; 12622 Dokki Cairo Egypt
| | - Hanan A.A. Taie
- Plant Biochemistry Dept.; National Research Center; 12622 Dokki Cairo Egypt
| |
Collapse
|
117
|
Lee HJ, Park HH, Kim JA, Park JH, Ryu J, Choi J, Lee J, Rhee WJ, Park TH. Enzyme delivery using the 30Kc19 protein and human serum albumin nanoparticles. Biomaterials 2014; 35:1696-704. [DOI: 10.1016/j.biomaterials.2013.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
|
118
|
New views and insights into intracellular trafficking of drug-delivery systems by fluorescence fluctuation spectroscopy. Ther Deliv 2014; 5:173-88. [DOI: 10.4155/tde.13.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biomaterials in the nanometer size range can be engineered for site-specific delivery of drugs after injection into the blood circulation. However, translation of such nanomedicines from the bench to the bedside is still hindered by many extracellular and intracellular barriers. To realize the concept of targeted drug delivery with nanomedicines, research groups are studying intensively the extra- and intra-cellular mechanisms involved as a response to the physicochemical properties of the nanomedicines. In this review, we highlight the contributions of fluorescence fluctuations spectroscopy techniques to better understand, and in turn to bypass, the major hurdles to therapeutic delivery, focusing mostly on the intracellular dynamics of drug-delivery systems.
Collapse
|
119
|
Ernest V, Sekar G, Mukherjee A, Chandrasekaran N. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods. JOURNAL OF LUMINESCENCE 2014; 146:263-268. [DOI: 10.1016/j.jlumin.2013.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
120
|
Salvador-Morales C, Gao W, Ghatalia P, Murshed F, Aizu W, Langer R, Farokhzad OC. Multifunctional nanoparticles for prostate cancer therapy. Expert Rev Anticancer Ther 2014; 9:211-21. [DOI: 10.1586/14737140.9.2.211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
121
|
Hu CMJ, Fang RH, Luk BT, Zhang L. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. NANOSCALE 2014; 6:65-75. [PMID: 24280870 DOI: 10.1039/c3nr05444f] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Long-circulating polymeric nanotherapeutics have garnered increasing interest in research and in the clinic owing to their ability to improve the solubility and pharmacokinetics of therapeutic cargoes. Modulation of carrier properties promises more effective drug localization at the disease sites and can lead to enhanced drug safety and efficacy. In the present review, we highlight the current development of polymeric nanotherapeutics in the clinic. In light of the importance of stealth properties in therapeutic nanoparticles, we also review the advances in stealth functionalization strategies and examine the performance of different stealth polymers in the literature. In addition, we discuss the recent development of biologically inspired "self" nanoparticles, which present a differing stealth concept from conventional approaches.
Collapse
Affiliation(s)
- Che-Ming J Hu
- Department of NanoEngineering and Moores Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
122
|
Skandani AA, Al-Haik M. Reciprocal effects of the chirality and the surface functionalization on the drug delivery permissibility of carbon nanotubes. SOFT MATTER 2013; 9:11645-9. [PMID: 25535628 DOI: 10.1039/c3sm52126e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The drug delivery admissibility of nanomaterials such as carbon nanotubes and their uncertain interactions with live tissues and organs have sparked ongoing research efforts. To boost the selective diffusivity of single walled carbon nanotubes (SWCNTs), surface functionalization was adopted in several experimental attempts. Numerous studies had identified polyethylene glycol (PEG) as a bio-compatible surfactant to carbon nanotubes. In this study, a large scale, atomistic molecular dynamic simulation was utilized to disclose the cellular exposure and uptake mechanisms of PEG-functionalized single walled carbon nanotubes (f-SWCNTs) into a lipid bilayer cell membrane. Results showed that with PEGs attached to a SWCNT, the penetration depth and speed can be controlled. Also, the simulations revealed that the adhesion energy between the nanotube and the lipid membrane is affected considerably, in the presence of PEGs, by the chirality of the SWCNTs.
Collapse
Affiliation(s)
- Amir Alipour Skandani
- Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
123
|
Wittenborn TR, Larsen EKU, Nielsen T, Rydtoft LM, Hansen L, Nygaard JV, Vorup-Jensen T, Kjems J, Horsman MR, Nielsen NC. Accumulation of nano-sized particles in a murine model of angiogenesis. Biochem Biophys Res Commun 2013; 443:470-6. [PMID: 24321551 DOI: 10.1016/j.bbrc.2013.11.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate the ability of nm-scaled iron oxide particles conjugated with Azure A, a classic histological dye, to accumulate in areas of angiogenesis in a recently developed murine angiogenesis model. MATERIALS AND METHODS We characterised the Azure A particles with regard to their hydrodynamic size, zeta potential, and blood circulation half-life. The particles were then investigated by Magnetic Resonance Imaging (MRI) in a recently developed murine angiogenesis model along with reference particles (Ferumoxtran-10) and saline injections. RESULTS The Azure A particles had a mean hydrodynamic diameter of 51.8 ± 43.2 nm, a zeta potential of -17.2 ± 2.8 mV, and a blood circulation half-life of 127.8 ± 74.7 min. Comparison of MR images taken pre- and 24-h post-injection revealed a significant increase in R2(*) relaxation rates for both Azure A and Ferumoxtran-10 particles. No significant difference was found for the saline injections. The relative increase was calculated for the three groups, and showed a significant difference between the saline group and the Azure A group, and between the saline group and the Ferumoxtran-10 group. However, no significant difference was found between the two particle groups. CONCLUSION Ultrahigh-field MRI revealed localisation of both types of iron oxide particles to areas of neovasculature. However, the Azure A particles did not show any enhanced accumulation relative to Ferumoxtran-10, suggesting the accumulation in both cases to be passive.
Collapse
Affiliation(s)
- Thomas R Wittenborn
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, 8000 Aarhus C, Denmark.
| | - Esben K U Larsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, C.F. Moellers Allé 3, 8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark
| | - Thomas Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Louise M Rydtoft
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University Hospital, Noerrebrogade 44, 8000 Aarhus C, Denmark
| | - Line Hansen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, C.F. Moellers Allé 3, 8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark
| | - Jens V Nygaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Engineering, Aarhus University, Finlandsgade 22, 8000 Aarhus, Denmark
| | - Thomas Vorup-Jensen
- The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Bartholins Allé 6, 8000 Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, C.F. Moellers Allé 3, 8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, 8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark; Center for Insoluble Protein Structures (inSPIN) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
124
|
Abstract
Current first-line treatments for most cancers feature a short-list of highly potent and often target-blind interventions, including chemotherapy, radiation, and surgical excision. These treatments wreak considerable havoc upon non-cancerous tissue and organs, resulting in deleterious and sometimes fatal side effects for the patient. In response, this past decade has witnessed the robust emergence of nanoparticles and, more relevantly, nanoparticle drug delivery systems (DDS), widely touted as the panacea of cancer therapeutics. While not a cure, nanoparticle DDS can successfully negotiate the clinical payoff between drug dosage and side effects by encompassing target-specific drug delivery strategies. The expanding library of nanoparticles includes lipoproteins, liposomes, dendrimers, polymers, metal and metal oxide nano-spheres and -rods, and carbon nanotubes, so do the modes of delivery. Importantly, however, the pharmaco-dynamics and –kinetics of these nano-complexes remain an urgent issue and a serious bottleneck in the transition from bench to bedside. This review addresses the rise of nanoparticle DDS platforms for cancer and explores concepts of gene/drug delivery and cytotoxicity in pre-clinical and clinical contexts.
Collapse
|
125
|
Multimodality PET/MRI agents targeted to activated macrophages. J Biol Inorg Chem 2013; 19:247-58. [PMID: 24166283 DOI: 10.1007/s00775-013-1054-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/08/2013] [Indexed: 12/18/2022]
Abstract
The recent emergence of multimodality imaging, particularly the combination of PET and MRI, has led to excitement over the prospect of improving detection of disease. Iron oxide nanoparticles have become a popular platform for the fabrication of PET/MRI probes owing to their advantages of high MRI detection sensitivity, biocompatibility, and biodegradability. In this article, we report the synthesis of dextran-coated iron oxide nanoparticles (DIO) labeled with the positron emitter (64)Cu to generate a PET/MRI probe, and modified with maleic anhydride to increase the negative surface charge. The modified nanoparticulate PET/MRI probe (MDIO-(64)Cu-DOTA) bears repetitive anionic charges on the surface that facilitate recognition by scavenger receptor type A (SR-A), a ligand receptor found on activated macrophages but not on normal vessel walls. MDIO-(64)Cu-DOTA has an average iron oxide core size of 7-8 nm, an average hydrodynamic diameter of 62.7 nm, an r1 relaxivity of 16.8 mM(-1) s(-1), and an r 2 relaxivity of 83.9 mM(-1) s(-1) (37 °C, 1.4 T). Cell studies confirmed that the probe was nontoxic and was specifically taken up by macrophages via SR-A. In comparison with the nonmodified analog, the accumulation of MDIO in macrophages was substantially improved. These characteristics demonstrate the promise of MDIO-(64)Cu-DOTA for identification of vulnerable atherosclerotic plaques via the targeting of macrophages.
Collapse
|
126
|
Kumar BS, Saraswathi R, Kumar KV, Jha SK, Venkates DP, Dhanaraj SA. Development and characterization of lecithin stabilized glibenclamide nanocrystals for enhanced solubility and drug delivery. Drug Deliv 2013; 21:173-84. [PMID: 24102185 DOI: 10.3109/10717544.2013.840690] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel LNCs (lipid nanocrystals) were developed with an aim to improve the solubility, stability and targeting efficiency of the model drug glibenclamide (GLB). PEG 20000, Tween 80 and soybean lecithin were used as polymer, surfactant and complexing agent, respectively. GLB nanocrystals (NCs) were prepared by precipitation process and complexed using hot and cold melt technique. The LNCs were evaluated by drug loading, saturation solubility (SL), optical clarity, in vitro dissolution, solid state characterization, in vivo and stability analysis. LNCs exhibited a threefold increase in SL and a higher dissolution rate than GLB. The percentage dissolution efficiency was found to decrease with increase in PEG 20000. The average particle size was in the range of 155-842 nm and zeta potential values tend to increase after complexation. X-ray powder diffractometry and differential scanning calorimetry results proved the crystallinity prevailed in the samples. Spherical shaped particles (<1000 nm) with a lipid coat on the surface were observed in scanning electron microscopy analysis. Fourier transform infrared results proved the absence of interaction between drug and polymer and stability study findings proved that LNCs were stable. In vivo study findings showed a decrease in drug concentration to pancreas in male Wistar rats. It can be concluded that LNCs are could offer enhanced solubility, dissolution rate and stability for poorly water soluble drugs. The targeting efficiency of LNCs was decreased and further membrane permeability studies ought to be carried out.
Collapse
Affiliation(s)
- B Sajeev Kumar
- Asian Institute of Medicine Science and Technology, Semeling , Bedong , Malaysia
| | | | | | | | | | | |
Collapse
|
127
|
Hong BJ, Swindell EP, MacRenaris KW, Hankins PL, Chipre AJ, Mastarone DJ, Ahn RW, Meade TJ, O’Halloran TV, Nguyen ST. pH-Responsive Theranostic Polymer-Caged Nanobins (PCNs): Enhanced Cytotoxicity and T1 MRI Contrast by Her2-Targeting. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2013; 30:770-774. [PMID: 24516291 PMCID: PMC3916701 DOI: 10.1002/ppsc.201300158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A PCN theranostic platform comprises a doxorubicin (DXR)-loaded liposomal core and an acid-sensitive polymer shell that is functionalized with Herceptin and GdIII-based MRI contrast agents. In vitro testing reveals a 14-fold increase in DXR-based cytotoxicity versus a non-targeted analogue and an 120-fold improvement in cellular GdIII-uptake in comparison with clinically approved DOTA-GdIII, leading to significant T1 MRI contrast enhancement.
Collapse
Affiliation(s)
- Bong Jin Hong
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Elden P. Swindell
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Keith W. MacRenaris
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Patrick L. Hankins
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Anthony J. Chipre
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Daniel J. Mastarone
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Richard W. Ahn
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Thomas J. Meade
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Thomas V. O’Halloran
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - SonBinh T. Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| |
Collapse
|
128
|
Ernest V, Gajalakshmi S, Mukherjee A, Chandrasekaran N. Enhanced activity of lysozyme-AgNP conjugate with synergic antibacterial effect without damaging the catalytic site of lysozyme. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:336-43. [PMID: 23863117 DOI: 10.3109/21691401.2013.818010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
129
|
Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev 2013; 65:622-48. [PMID: 22975010 DOI: 10.1016/j.addr.2012.08.015] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 07/20/2012] [Accepted: 08/24/2012] [Indexed: 12/11/2022]
Abstract
Many kinds of inorganic nanoparticles (NPs) including semiconductor, metal, metal oxide, and lanthanide-doped NPs have been developed for imaging and therapy applications. Their unique optical, magnetic, and electronic properties can be tailored by controlling the composition, size, shape, and structure. Interaction of such NPs with cells and/or in vivo compartments is critically determined by the surface properties, and sophisticated control over the NP surface is essential to control their fate in biological environments. We review NP surface coating strategies using the categories of small surface ligand, polymer, and lipid. Use of small ligand molecules has the advantage of maintaining the minimal hydrodynamic (HD) size. Polymers can be advantageous in NP anchoring by combining multiple affinity groups. Encapsulation of NPs in polymers, lipids or surfactants can preserve the as-synthesized NPs. NP surface properties and reaction conditions should be carefully considered to obtain a bioconjugate that maintains the physicochemical properties of NP and functionalities of the conjugated biomolecules. We highlight how the surface properties of NPs impact their interactions with cells and in vivo compartments, especially focused on the important surface design parameters such as HD size, surface charge, and targeting. Typically, maximal cellular uptake can take place in the intermediate NP size range of 40-60nm. Clearance of NPs from blood circulation is largely dependent on the degree of uptake by reticuloendothelial system when they are larger than 10nm. When the HD size is below 10nm, NPs show broad distribution over many organs. Reduction of HD size below the limit of renal barrier can achieve fast clearance of NPs. For maximal tumor accumulation, NPs should have long blood circulation time and should be large enough to prevent rapid penetration. NPs are also desired to rapidly clear out from the body after the mission before they cause toxic side effects. However, efficient clearance from the body to avoid side effects may result in the reduction in residence time required for accumulation in target tissues. Smart design of NP surface coating that can meet the conflicting demands can open a new avenue of NP applications. Surface charge and hydrophobicity need to be carefully considered for NP surface design. Positively charged NPs more adsorb on cell membranes and consequently show higher level of internalizations when compared with negatively charged or neutral NPs. NPs encounter a large variety of biomolecules in vivo, where non-specific adsorptions can potentially alter the physicochemical properties of the NPs. For optimal performance, NPs are suggested to have neutral surface charge at physiological conditions, small HD size, and minimal non-specific adsorption levels. Zwitterionic NP surface coating by small surface ligands can be a promising approach. Toxicity is one of most critical issues, where proper control of the NP surface can significantly reduce the toxicities.
Collapse
|
130
|
Gang W, Jie WJ, Ping ZL, Ming DS, Ying LJ, Lei W, Fang Y. Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo. Expert Opin Drug Deliv 2013; 9:599-613. [PMID: 22607534 DOI: 10.1517/17425247.2012.679926] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The drug-loaded PEGylated nanomaterials have shown effective cell-killing in vitro, but to the best of authors' knowledge there have been no reports of successful drug delivery in vitro and in vivo using polyethyleneglycol-2000-distearoyl phosphatidyl ethanolamine (PEG2000-DSPE) nanomaterials loaded with unmodified drug molecules, such as quercetin (QUE). In this study, it remained an open question as to whether such formulations could prove effective in vitro and in vivo, and to study the distribution and clearance of PEG-DPSE-ylated lipid-based quercetin nanoliposomes (PEG2000-DPSE-QUE-NLs) as delivery vehicles for the anticancer drug in vitro and in vivo. RESEARCH DESIGN AND METHODS PEG-DPSE layers were attached to QUE-NLs, dispersed in aqueous media and characterized using TEM and HPLC/UV spectroscopy. Tumor cell killing efficacy was assessed in vitro using MTT and trypan blue exclusion assays, and the distribution and clearance pathways, as well as repeated administration in rats, were studied by HPLC spectroscopy. RESULTS PEG2000-DPSE-QUE-NLs were efficiently dispersed in aqueous media compared with controls, and PEGylated (PEG2000-DPSE) NLs were found to be effective drug delivery vehicles when simply loaded with QUE. The plasma QUE concentration decreased significantly (p < 0.05) after repeated administration of PEG2000-DSPE liposomal QUE. There was a slight ABC phenomenon with the PEG2000-DSPE-modified QUE liposomes. CONCLUSION The QUE/PEG2000-DPSE formulation was more effective than QUE in vitro on inhibiting the growth of glioma cancer cells. This work demonstrates that nanomaterials (PEG2000-DPSE) are effective drug delivery vehicles in vivo as tumor-targeted drug carriers.
Collapse
Affiliation(s)
- Wang Gang
- Hubei University of Medicine, Taihe Hospital, Department of Pharmacy, Hubei Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
131
|
Wang G, Wang J, Luo J, Wang L, Chen X, Zhang L, Jiang S. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J Biomed Mater Res A 2013; 101:3076-85. [PMID: 23529952 DOI: 10.1002/jbm.a.34607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 01/05/2013] [Accepted: 01/14/2013] [Indexed: 11/06/2022]
Abstract
In this study, PEGylated nanoparticles quercetin drug delivery vehicles were investigated as carriers for anticancer drugs induced programed cell death (PCD). PEG2000-DPSE-coated quercetin nanoparticles were prepared and tumor cell killing efficacy was studied on glioma C6 cells and assayed for cell survival, apoptosis, or necrosis. The levels of ROS production and mitochondrial membrane potential (ΔΨm) were determined. Western blot assayed p53, p-p53, cytochrome C, and caspase proteins expression were also studied. Results indicate that PEG2000-DPSE-QUE-NPS showed dose-dependent cytotoxicity to C6 glioma cells and enhanced ROS accumulation induced upregulation of p53 protein, which was accompanied with an increase in cytochrome c and caspase-3 protein levels. These results support the hypothesis that quercetin nanoparticles-coated PEG2000-DPSE remarkably enhanced anticancer effect of induced programed cell death on C6 glioma cells. Overall, PEG2000-DPSE-coated quercetin nanoparticles showed promising potential as a drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hospital Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
132
|
Drug carriers for oral delivery of peptides and proteins: accomplishments and future perspectives. Ther Deliv 2013; 4:251-65. [PMID: 23343163 DOI: 10.4155/tde.12.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective formulation for peptide and protein delivery through the oral route has always been the critical effort with the advent of biotechnology. Stability, enzymatic degradation and ineffective absorption are common difficulties found for conventional dosage forms. As a result, new drug-delivery approaches are used to circumvent these limitations and enhance effective oral drug delivery. Some of these technologies have reached late stages of clinical trials and promising results will be available in the near future. This review covers, in general, the recent carriers reported in literature.
Collapse
|
133
|
Deok Kong S, Sartor M, Jack Hu CM, Zhang W, Zhang L, Jin S. Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomater 2013; 9:5447-52. [PMID: 23149252 DOI: 10.1016/j.actbio.2012.11.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/31/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
Stimuli-responsive nanoparticles (SRNPs) offer the potential of enhancing the therapeutic efficacy and minimizing the side-effects of chemotherapeutics by controllably releasing the encapsulated drug at the target site. Currently controlled drug release through external activation remains a major challenge during the delivery of therapeutic agents. Here we report a lipid-polymer hybrid nanoparticle system containing magnetic beads for stimuli-responsive drug release using a remote radio frequency (RF) magnetic field. These hybrid nanoparticles show long-term stability in terms of particle size and polydispersity index in phosphate-buffered saline (PBS). Controllable loading of camptothecin (CPT) and Fe(3)O(4) in the hybrid nanoparticles was demonstrated. RF-controlled drug release from these nanoparticles was observed. In addition, cellular uptake of the SRNPs into MT2 mouse breast cancer cells was examined. Using CPT as a model anticancer drug the nanoparticles showed a significant reduction in MT2 mouse breast cancer cell growth in vitro in the presence of a remote RF field. The ease of preparation, stability, and controllable drug release are the strengths of the platform and provide the opportunity to improve cancer chemotherapy.
Collapse
|
134
|
|
135
|
Liu L, Hitchens TK, Ye Q, Wu Y, Barbe B, Prior DE, Li WF, Yeh FC, Foley LM, Bain DJ, Ho C. Decreased reticuloendothelial system clearance and increased blood half-life and immune cell labeling for nano- and micron-sized superparamagnetic iron-oxide particles upon pre-treatment with Intralipid. Biochim Biophys Acta Gen Subj 2013; 1830:3447-53. [PMID: 23396002 DOI: 10.1016/j.bbagen.2013.01.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/03/2013] [Accepted: 01/21/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency. METHODS Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2g/kg) 1h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology. RESULTS Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48h for USPIO and MPIO, respectively. CONCLUSIONS Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles. GENERAL SIGNIFICANCE Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Kaur J, Tikoo K. p300/CBP dependent hyperacetylation of histone potentiates anticancer activity of gefitinib nanoparticles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1028-40. [PMID: 23384777 DOI: 10.1016/j.bbamcr.2013.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/09/2013] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
Gefitinib is an Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitor, approved for patients with non-small cell lung cancer (NSCLC). In this report we demonstrate that gefitinib loaded PLGA nanoparticles (GNPs), in comparison to gefitinib, exhibited higher anti-cancer activity on A549 lung carcinoma cells and A431 skin carcinoma cells. Increased inhibition of pEGFR in both the cell types explains its higher anti-cancer activity. Interestingly, gefitinib resistant, H1975 (T790M EGFR mutant) lung carcinoma cells was also found to be sensitive to GNPs. Our data shows that GNPs hyperacetylate histone H3 in these cells, either directly or indirectly, which may account for the augmented cell death. GNPs were proficient in activating histone acetyltransferases (p300/CBP), which in turn induces the expression of p21 and cell cycle arrest. Furthermore, inhibition of histone acetyltransferases by garcinol results in alleviation of cell death caused by GNPs. In addition to this, nuclear intrusion of GNPs results in the inhibition of NO production in nucleus, possibly through nuclear EGFR, which might be responsible for preventing cell proliferation in resistant cells. To best of our knowledge, we provide first evidence that GNPs potentiate cell death by activating p300/CBP histone acetyltransferases.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | |
Collapse
|
137
|
Vollrath A, Schubert S, Schubert US. Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. J Mater Chem B 2013; 1:1994-2007. [DOI: 10.1039/c3tb20089b] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
138
|
Marrache S, Pathak RK, Darley KL, Choi JH, Zaver D, Kolishetti N, Dhar S. Nanocarriers for tracking and treating diseases. Curr Med Chem 2013; 20:3500-14. [PMID: 23834187 PMCID: PMC8085808 DOI: 10.2174/0929867311320280007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
Site directed drug delivery with high efficacy is the biggest challenge in the area of current pharmaceuticals. Biodegradable polymer-based controlled release nanoparticle platforms could be beneficial for targeted delivery of therapeutics and contrast agents for a myriad of important human diseases. Biodegradable nanoparticles, which can be engineered to load multiple drugs with varied physicochemical properties, contrast agents, and cellular or intracellular component targeting moieties, have emerged as potential alternatives for tracking and treating human diseases. In this review, we will highlight the current advances in the design and execution of such platforms for their potential application in the diagnosis and treatment of variety of diseases ranging from cancer to Alzheimer's and we will provide a critical analysis of the associated challenges for their possible clinical translation.
Collapse
Affiliation(s)
- Sean Marrache
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Rakesh Kumar Pathak
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Kasey L. Darley
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Joshua H. Choi
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Dhillon Zaver
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | | | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
139
|
Dasa SSK, Jin Q, Chen CT, Chen L. Target-specific copper hybrid T7 phage particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17372-17380. [PMID: 23163406 DOI: 10.1021/la3024919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Target-specific nanoparticles have attracted significant attention recently, and have greatly impacted life and physical sciences as new agents for imaging, diagnosis, and therapy, as well as building blocks for the assembly of novel complex materials. While most of these particles are synthesized by chemical conjugation of an affinity reagent to polymer or inorganic nanoparticles, we are promoting the use of phage particles as a carrier to host organic or inorganic functional components, as well as to display the affinity reagent on the phage surface, taking advantage of the fact that some phages host well-established vectors for protein expression. An affinity reagent can be structured in a desired geometry on the surface of phage particles, and more importantly, the number of the affinity reagent molecules per phage particle can be precisely controlled. We previously have reported the use of the T7 phage capsid as a template for synthesizing target-specific metal nanoparticles. In this study herein, we reported the synthesis of nanoparticles using an intact T7 phage as a scaffold from which to extend 415 copies of a peptide that contains a hexahistidine (6His) motif for capture of copper ions and staging the conversion of copper ions to copper metal, and a cyclic Arginine-Glycine-Aspartic Acid (RGD4C) motif for targeting integrin and cancer cells. We demonstrated that the recombinant phage could load copper ions under low bulk copper concentrations without interfering with its target specificity. Further reduction of copper ions to copper metal rendered a very stable copper hybrid T7 phage, which prevents the detachment of copper from phage particles and maintains the phage structural integrity even under harsh conditions. Cancer cells (MCF-7) can selectively uptake copper hybrid T7 phage particles through ligand-mediated transmembrane transportation, whereas normal control cells (MCF-12F) uptake 1000-fold less. We further demonstrated that copper hybrid T7 phage could be endocytosed by cancer cells in culture.
Collapse
|
140
|
Abstract
The pH (low) insertion peptide (pHLIP) family enables targeting of cells in tissues with low extracellular pH. Here, we show that ischemic myocardium is targeted, potentially opening a new route to diagnosis and therapy. The experiments were performed using two murine ischemia models: regional ischemia induced by coronary artery occlusion and global low-flow ischemia in isolated hearts. In both models, pH-sensitive pHLIPs [wild type (WT) and Var7] or WT-pHLIP-coated liposomes bind ischemic but not normal regions of myocardium, whereas pH-insensitive, kVar7, and liposomes coated with PEG showed no preference. pHLIP did not influence either the mechanical or the electrical activity of ischemic myocardium. In contrast to other known targeting strategies, the pHLIP-based binding does not require severe myocardial damage. Thus, pHLIP could be used for delivery of pharmaceutical agents or imaging probes to the myocardial regions undergoing brief restrictions of blood supply that do not induce irreversible changes in myocytes.
Collapse
|
141
|
Ayers D, Nasti A. Utilisation of nanoparticle technology in cancer chemoresistance. JOURNAL OF DRUG DELIVERY 2012; 2012:265691. [PMID: 23213536 PMCID: PMC3505656 DOI: 10.1155/2012/265691] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 01/08/2023]
Abstract
The implementation of cytotoxic chemotherapeutic drugs in the fight against cancer has played an invariably essential role for minimizing the extent of tumour progression and/or metastases in the patient and thus allowing for longer event free survival periods following chemotherapy. However, such therapeutics are nonspecific and bring with them dose-dependent cumulative adverse effects which can severely exacerbate patient suffering. In addition, the emergence of innate and/or acquired chemoresistance to the exposed cytotoxic agents undoubtedly serves to thwart effective clinical efficacy of chemotherapy in the cancer patient. The advent of nanotechnology has led to the development of a myriad of nanoparticle-based strategies with the specific goal to overcome such therapeutic hurdles in multiple cancer conditions. This paper aims to provide a brief overview and recollection of all the latest advances in the last few years concerning the application of nanoparticle technology to enhance the safe and effective delivery of chemotherapeutic agents to the tumour site, together with providing possible solutions to circumvent cancer chemoresistance in the clinical setting.
Collapse
Affiliation(s)
- Duncan Ayers
- Department of Pathology, Faculty of Medicine & Surgery, University of Malta, Msida MSD 2060, Malta
| | - Alessandro Nasti
- School of Medicine, Kanazawa University Hospital, University of Kanazawa, Kanazawa 920-1192, Japan
| |
Collapse
|
142
|
Sivaraman B, Bashur CA, Ramamurthi A. Advances in biomimetic regeneration of elastic matrix structures. Drug Deliv Transl Res 2012; 2:323-50. [PMID: 23355960 PMCID: PMC3551595 DOI: 10.1007/s13346-012-0070-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures.
Collapse
Affiliation(s)
- Balakrishnan Sivaraman
- Department of Biomedical Engineering, The Cleveland Clinic, 9500 Euclid Avenue, ND 20, Cleveland, OH 44195, USA
| | - Chris A. Bashur
- Department of Biomedical Engineering, The Cleveland Clinic, 9500 Euclid Avenue, ND 20, Cleveland, OH 44195, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, The Cleveland Clinic, 9500 Euclid Avenue, ND 20, Cleveland, OH 44195, USA
| |
Collapse
|
143
|
Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0060-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
144
|
Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm 2012; 82:1-18. [DOI: 10.1016/j.ejpb.2012.05.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022]
|
145
|
Zhang Y, Huang Y, Zhang P, Gao X, Gibbs RB, Li S. Incorporation of a selective sigma-2 receptor ligand enhances uptake of liposomes by multiple cancer cells. Int J Nanomedicine 2012; 7:4473-85. [PMID: 22927761 PMCID: PMC3422102 DOI: 10.2147/ijn.s31981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Indexed: 11/24/2022] Open
Abstract
Background: The sigma-2 receptor is an attractive target for tumor imaging and targeted therapy because it is overexpressed in multiple types of solid tumors, including prostate cancer, breast cancer, and lung cancer. SV119 is a synthetic small molecule that binds to sigma-2 receptors with high affinity and specificity. This study investigates the utility of SV119 in mediating the selective targeting of liposomal vectors in various types of cancer cells. Methods: SV119 was covalently linked with polyethylene glycol-dioleyl amido aspartic acid conjugate (PEG-DOA) to generate a novel functional lipid, SV119-PEG-DOA. This lipid was utilized for the preparation of targeted liposomes to enhance their uptake by cancer cells. Liposomes with various SV119 densities (0, 1, 3, and 5 mole%) were prepared and their cellular uptake was investigated in several tumor cell lines. In addition, doxorubicin (DOX) was loaded into the targeted and unmodified liposomes, and the cytotoxic effect on the DU-145 cells was evaluated by MTT assay. Results: Liposomes with or without SV119-PEG-DOA both have a mean diameter of approximately 90 nm and a neutral charge. The incorporation of SV119-PEG-DOA significantly increased the cellular uptake of liposomes by the DU-145, PC-3, A549, 201T, and MCF-7 tumor cells, which was shown by fluorescence microscopy and the quantitative measurement of fluorescence intensity. In contrast, the incorporation of SV119 did not increase the uptake of liposomes by the normal BEAS-2B cells. In a time course study, the uptake of SV119 liposomes by DU-145 cells was also significantly higher at each time point compared to the unmodified liposomes. Furthermore, the DOX-loaded SV119 liposomes showed significantly higher cytotoxicity to DU-145 cells compared to the DOX-loaded unmodified liposomes. Conclusion: SV119 liposomes were developed for targeted drug delivery to cancer cells. The targeting efficiency and specificity of SV119 liposomes to cancer cells was demonstrated in vitro. The results of this study suggest that SV119-modified liposomes might be a promising drug carrier for tumor-targeted delivery.
Collapse
Affiliation(s)
- Yifei Zhang
- Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
146
|
Ranjan S, Sood R, Dudas J, Glueckert R, Schrott-Fischer A, Roy S, Pyykkö I, Kinnunen PKJ. Peptide-mediated targeting of liposomes to TrkB receptor-expressing cells. Int J Nanomedicine 2012. [PMID: 22848172 DOI: 10.2147/ijn.s32367ijn-7-3475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The neurotrophic receptor tyrosine kinase B (TrkB) has diverse signaling roles in neurons and tumor cells. Accordingly, its suppressive targeting is of interest in neuroblastoma and other tumors, whereas its role in improving survival is focused in neurons. Here we describe targeting of TrkB-binding peptide-conjugated liposomes (PCL) to the TrkB-expressing mouse macrophage-like cell line RAW264, and to all-trans-retinoic acid-treated neuron-like TrkB⁺ SH-SY5Y human neuroblastoma cells. METHODS Binding and internalization of PCL was monitored by flow cytometry and confocal fluorescence microscopy. RESULTS Internalization of TrkB-targeted PCL by RAW264 cells was enhanced and faster when compared with PCL having the corresponding scrambled peptide. Likewise, binding and augmented uptake were confirmed for TrkB⁺ SH-SY5Y cells, with targeted PCL appearing in the cytoplasm after 20 minutes of incubation. CONCLUSION We demonstrate here the feasibility of targeting liposomes to TrkB-expressing cells by 18-mer peptides, promoting cellular uptake (at least partly into endosomes) via receptor-mediated pathways.
Collapse
Affiliation(s)
- Sanjeev Ranjan
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Ranjan S, Sood R, Dudas J, Glueckert R, Schrott-Fischer A, Roy S, Pyykkö I, Kinnunen PKJ. Peptide-mediated targeting of liposomes to TrkB receptor-expressing cells. Int J Nanomedicine 2012; 7:3475-85. [PMID: 22848172 PMCID: PMC3405886 DOI: 10.2147/ijn.s32367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The neurotrophic receptor tyrosine kinase B (TrkB) has diverse signaling roles in neurons and tumor cells. Accordingly, its suppressive targeting is of interest in neuroblastoma and other tumors, whereas its role in improving survival is focused in neurons. Here we describe targeting of TrkB-binding peptide-conjugated liposomes (PCL) to the TrkB-expressing mouse macrophage-like cell line RAW264, and to all-trans-retinoic acid-treated neuron-like TrkB+ SH-SY5Y human neuroblastoma cells. Methods Binding and internalization of PCL was monitored by flow cytometry and confocal fluorescence microscopy. Results Internalization of TrkB-targeted PCL by RAW264 cells was enhanced and faster when compared with PCL having the corresponding scrambled peptide. Likewise, binding and augmented uptake were confirmed for TrkB+ SH-SY5Y cells, with targeted PCL appearing in the cytoplasm after 20 minutes of incubation. Conclusion We demonstrate here the feasibility of targeting liposomes to TrkB-expressing cells by 18-mer peptides, promoting cellular uptake (at least partly into endosomes) via receptor-mediated pathways.
Collapse
Affiliation(s)
- Sanjeev Ranjan
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | | | | | | | | | | | | | | |
Collapse
|
148
|
On the cellular processing of non-viral nanomedicines for nucleic acid delivery: Mechanisms and methods. J Control Release 2012; 161:566-81. [DOI: 10.1016/j.jconrel.2012.05.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 11/24/2022]
|
149
|
Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 2012; 336:604-8. [PMID: 22556257 DOI: 10.1126/science.1216753] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Medical applications of nanotechnology typically focus on drug delivery and biosensors. Here, we combine nanotechnology and bioengineering to demonstrate that nanoparticles can be used to remotely regulate protein production in vivo. We decorated a modified temperature-sensitive channel, TRPV1, with antibody-coated iron oxide nanoparticles that are heated in a low-frequency magnetic field. When local temperature rises, TRPV1 gates calcium to stimulate synthesis and release of bioengineered insulin driven by a Ca(2+)-sensitive promoter. Studying tumor xenografts expressing the bioengineered insulin gene, we show that exposure to radio waves stimulates insulin release from the tumors and lowers blood glucose in mice. We further show that cells can be engineered to synthesize genetically encoded ferritin nanoparticles and inducibly release insulin. These approaches provide a platform for using nanotechnology to activate cells.
Collapse
Affiliation(s)
- Sarah A Stanley
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
150
|
Kumar Khanna V. Targeted delivery of nanomedicines. ISRN PHARMACOLOGY 2012; 2012:571394. [PMID: 22577576 PMCID: PMC3337487 DOI: 10.5402/2012/571394] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/11/2012] [Indexed: 05/30/2023]
Abstract
The role of targeting of the diseased region by a drug is emphasized. The rationale for resorting to nanomaterials as drug carriers is explained. A clear understanding of the biological environment, its degradation in diseased condition, and the interaction of the drug with it in normal condition and during illness lie at the core of successful drug delivery. Passive and active drug targeting approaches are differentiated. Commonly used drug targets, targeting ligands, and nanoscale systems are elaborated. Mechanisms of internalization of nanomedicines and circumventing P-glycoprotein mediated resistance are outlined. The paper presents an overview of the current scenario of targeted transportation of nanomedicines to the affected organ and suggests future research directions.
Collapse
Affiliation(s)
- Vinod Kumar Khanna
- MEMS and Microsensors, CSIR-Central Electronics Engineering Research Institute, Pilani-333031, Rajasthan, India
| |
Collapse
|