101
|
Oikonomidis L, Santangelo AM, Shiba Y, Clarke FH, Robbins TW, Roberts AC. A dimensional approach to modeling symptoms of neuropsychiatric disorders in the marmoset monkey. Dev Neurobiol 2017; 77:328-353. [PMID: 27589556 PMCID: PMC5412688 DOI: 10.1002/dneu.22446] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
Some patients suffering from the same neuropsychiatric disorder may have no overlapping symptoms whilst others may share symptoms common to other distinct disorders. Therefore, the Research Domain Criteria initiative recognises the need for better characterisation of the individual symptoms on which to focus symptom-based treatment strategies. Many of the disorders involve dysfunction within the prefrontal cortex (PFC) and so the marmoset, due to their highly developed PFC and small size, is an ideal species for studying the neurobiological basis of the behavioural dimensions that underlie these symptoms.Here we focus on a battery of tests that address dysfunction spanning the cognitive (cognitive inflexibility and working memory), negative valence (fear generalisation and negative bias) and positive valence (anhedonia) systems pertinent for understanding disorders such as ADHD, Schizophrenia, Anxiety, Depression and OCD. Parsing the separable prefrontal and striatal circuits and identifying the selective neurochemical modulation (serotonin vs dopamine) that underlie cognitive dysfunction have revealed counterparts in the clinical domain. Aspects of the negative valence system have been explored both at individual- (trait anxiety and genetic variation in serotonin transporter) and circuit-based levels enabling the understanding of generalisation processes, negative biases and differential responsiveness to SSRIs. Within the positive valence system, the combination of cardiovascular and behavioural measures provides a framework for understanding motivational, anticipatory and consummatory aspects of anhedonia and their neurobiological mechanisms. Together, the direct comparison of experimental findings in marmosets with clinical studies is proving an excellent translational model to address the behavioural dimensions and neurobiology of neuropsychiatric symptoms. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 328-353, 2017.
Collapse
Affiliation(s)
- Lydia Oikonomidis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Andrea M Santangelo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Yoshiro Shiba
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - F Hannah Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| |
Collapse
|
102
|
Computational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in Monkeys. eNeuro 2017; 4:eN-NWR-0306-16. [PMID: 28275714 PMCID: PMC5329620 DOI: 10.1523/eneuro.0306-16.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/21/2022] Open
Abstract
The statistical structure of intrinsic parietal and parieto-frontal connectivity in monkeys was studied through hierarchical cluster analysis. Based on their inputs, parietal and frontal areas were grouped into different clusters, including a variable number of areas that in most instances occupied contiguous architectonic fields. Connectivity tended to be stronger locally: that is, within areas of the same cluster. Distant frontal and parietal areas were targeted through connections that in most instances were reciprocal and often of different strength. These connections linked parietal and frontal clusters formed by areas sharing basic functional properties. This led to five different medio-laterally oriented pillar domains spanning the entire extent of the parieto-frontal system, in the posterior parietal, anterior parietal, cingulate, frontal, and prefrontal cortex. Different information processing streams could be identified thanks to inter-domain connectivity. These streams encode fast hand reaching and its control, complex visuomotor action spaces, hand grasping, action/intention recognition, oculomotor intention and visual attention, behavioral goals and strategies, and reward and decision value outcome. Most of these streams converge on the cingulate domain, the main hub of the system. All of them are embedded within a larger eye–hand coordination network, from which they can be selectively set in motion by task demands.
Collapse
|
103
|
Ho SS, Nakamura Y. Healing Dysfunctional Identity: Bridging Mind-Body Intervention to Brain Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbbs.2017.73013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
104
|
Shadi K, Bakhshi S, Gutman DA, Mayberg HS, Dovrolis C. A Symmetry-Based Method to Infer Structural Brain Networks from Probabilistic Tractography Data. Front Neuroinform 2016; 10:46. [PMID: 27867354 PMCID: PMC5096263 DOI: 10.3389/fninf.2016.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/10/2016] [Indexed: 11/30/2022] Open
Abstract
Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP)1 have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The proposed method, referred to as Minimum Asymmetry Network Inference Algorithm (MANIA), does not determine the connectivity between two ROIs based on an arbitrary connectivity threshold. Instead, we exploit a basic limitation of the tractography process: the observed streamlines from a source to a target do not provide any information about the polarity of the underlying white matter, and so if there are some fibers connecting two voxels (or two ROIs) X and Y, tractography should be able in principle to follow this connection in both directions, from X to Y and from Y to X. We leverage this limitation to formulate the network inference process as an optimization problem that minimizes the (appropriately normalized) asymmetry of the observed network. We evaluate the proposed method using both the FiberCup dataset and based on a noise model that randomly corrupts the observed connectivity of synthetic networks. As a case-study, we apply MANIA on diffusion MRI data from 28 healthy subjects to infer the structural network between 18 corticolimbic ROIs that are associated with various neuropsychiatric conditions including depression, anxiety and addiction.
Collapse
Affiliation(s)
- Kamal Shadi
- School of Computer Science, Georgia Institute of Technology Atlanta, GA, USA
| | - Saideh Bakhshi
- School of Computer Science, Georgia Institute of Technology Atlanta, GA, USA
| | - David A Gutman
- Department of Neurology, Psychiatry and Biomedical Informatics, Emory University Atlanta, GA, USA
| | - Helen S Mayberg
- Psychiatric Neuroimaging and Therapeutics, Department of Psychiatry, Neurology, and Radiology, Emory University Atlanta, GA, USA
| | | |
Collapse
|
105
|
Mars RB, Foxley S, Verhagen L, Jbabdi S, Sallet J, Noonan MP, Neubert FX, Andersson JL, Croxson PL, Dunbar RIM, Khrapitchev AA, Sibson NR, Miller KL, Rushworth MFS. The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study. Brain Struct Funct 2016; 221:4059-4071. [PMID: 26627483 PMCID: PMC5065901 DOI: 10.1007/s00429-015-1146-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/12/2015] [Indexed: 11/02/2022]
Abstract
We compared the course and cortical projections of white matter fibers passing through the extreme capsule in humans and macaques. Previous comparisons of this tract have suggested a uniquely human posterior projection, but these studies have always employed different techniques in the different species. Here we used the same technique, diffusion MRI, in both species to avoid attributing differences in techniques to differences in species. Diffusion MRI-based probabilistic tractography was performed from a seed area in the extreme capsule in both human and macaques. We compared in vivo data of humans and macaques as well as one high-resolution ex vivo macaque dataset. Tractography in the macaque was able to replicate most results known from macaque tracer studies, including selective innervation of frontal cortical areas and targets in the superior temporal cortex. In addition, however, we also observed some tracts that are not commonly reported in macaque tracer studies and that are more reminiscent of results previously only reported in the human. In humans, we show that the ventrolateral prefrontal cortex innervations are broadly similar to those in the macaque. These results suggest that evolutionary changes in the human extreme capsule fiber complex are likely more gradual than punctuated. Further, they demonstrate both the potential and limitations of diffusion MRI tractography.
Collapse
Affiliation(s)
- Rogier B Mars
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ, Nijmegen, The Netherlands.
| | - Sean Foxley
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lennart Verhagen
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | - Saad Jbabdi
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Jérôme Sallet
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
- Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Franz-Xaver Neubert
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | - Jesper L Andersson
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Paula L Croxson
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | - Alexandre A Khrapitchev
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Nicola R Sibson
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Karla L Miller
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Matthew F S Rushworth
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| |
Collapse
|
106
|
Anhedonia is associated with reduced incentive cue related activation in the basal ganglia. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 15:749-67. [PMID: 26105776 DOI: 10.3758/s13415-015-0366-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research has shown that reward incentives improve cognitive control in motivationally salient situations. Much previous work in this domain has focused on incentive cue-related activity in a number of brain regions, including the dorsolateral prefrontal cortex (DLPFC) and striatum. However, the more sustained changes in functional brain activity during task contexts with incentives have been relatively less explored. Here, we examined both the cue-related and sustained effects of rewards (i.e., monetary incentives) on cognitive control, with a particular focus on the roles of the DLPFC and striatum, using a mixed state-item design. We investigated whether variability in a reward-related trait (i.e., anhedonia) would modulate the sustained and/or the cue-related transient aspects of motivated cognitive control. Twenty-seven healthy individuals performed a modified response conflict task (Padmala & Pessoa, Journal of Cognitive Neuroscience, 23, 3419-3432, 2011) during scanning, in which participants were asked to categorize images as either houses or buildings with either congruent or incongruent overlaid words. Participants performed a baseline condition without knowledge of monetary incentives, followed by reward blocks with monetary incentives on some cued trials (reward cues) for fast and correct responses. We replicated previous work by showing increases in both sustained activity during reward versus baseline blocks and transient. cue-related activity in bilateral DLPFC and the basal ganglia. Importantly, healthy individuals with higher anhedonia showed less of an increase in trial-by-trial activity as a function of reward in the lateral globus pallidus. Together, our results suggest that reduced hedonic experience may be related to abnormality of reward cue-related activity in the basal ganglia.
Collapse
|
107
|
Matsunaga M, Kawamichi H, Koike T, Yoshihara K, Yoshida Y, Takahashi HK, Nakagawa E, Sadato N. Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness. Neuroimage 2016; 134:132-141. [PMID: 27085503 DOI: 10.1016/j.neuroimage.2016.04.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/17/2022] Open
Affiliation(s)
- Masahiro Matsunaga
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | - Hiroaki Kawamichi
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Takahiko Koike
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Yumiko Yoshida
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Haruka K Takahashi
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| | - Eri Nakagawa
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| |
Collapse
|
108
|
Becker M, Schubert T, Strobach T, Gallinat J, Kühn S. Simultaneous interpreters vs. professional multilingual controls: Group differences in cognitive control as well as brain structure and function. Neuroimage 2016; 134:250-260. [DOI: 10.1016/j.neuroimage.2016.03.079] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/31/2016] [Indexed: 11/15/2022] Open
|
109
|
Leong JK, Pestilli F, Wu CC, Samanez-Larkin GR, Knutson B. White-Matter Tract Connecting Anterior Insula to Nucleus Accumbens Correlates with Reduced Preference for Positively Skewed Gambles. Neuron 2016; 89:63-9. [PMID: 26748088 DOI: 10.1016/j.neuron.2015.12.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/06/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
Individuals sometimes show inconsistent risk preferences, including excessive attraction to gambles featuring small chances of winning large amounts (called "positively skewed" gambles). While functional neuroimaging research indicates that nucleus accumbens (NAcc) and anterior insula (AIns) activity inversely predict risky choice, structural connections between these regions have not been described in humans. By combining diffusion-weighted MRI with tractography, we identified the anatomical trajectory of white-matter tracts projecting from the AIns to the NAcc and statistically validated these tracts using Linear Fascicle Evaluation (LiFE) and virtual lesions. Coherence of the right AIns-NAcc tract correlated with reduced preferences for positively skewed gambles. Further, diminished NAcc activity during gamble presentation mediated the association between tract structure and choice. These results identify an unreported tract connecting the AIns to the NAcc in humans and support the notion that structural connections can alter behavior by influencing brain activity as individuals weigh uncertain gains against uncertain losses.
Collapse
Affiliation(s)
- Josiah K Leong
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Charlene C Wu
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | | | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Stanford Neuroscience Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
110
|
Eickhoff SB, Laird AR, Fox PT, Bzdok D, Hensel L. Functional Segregation of the Human Dorsomedial Prefrontal Cortex. Cereb Cortex 2016; 26:304-21. [PMID: 25331597 PMCID: PMC4677979 DOI: 10.1093/cercor/bhu250] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human dorsomedial prefrontal cortex (dmPFC) has been implicated in various complex cognitive processes, including social cognition. To unravel its functional organization, we assessed the dmPFC's regional heterogeneity, connectivity patterns, and functional profiles. First, the heterogeneity of a dmPFC seed, engaged during social processing, was investigated by assessing local differences in whole-brain coactivation profiles. Second, functional connectivity of the ensuing dmPFC clusters was compared by task-constrained meta-analytic coactivation mapping and task-unconstrained resting-state correlations. Third, dmPFC clusters were functionally profiled by forward/reverse inference. The dmPFC seed was thus segregated into 4 clusters (rostroventral, rostrodorsal, caudal-right, and caudal-left). Both rostral clusters were connected to the amygdala and hippocampus and associated with memory and social cognitive tasks in functional decoding. The rostroventral cluster exhibited strongest connectivity to the default mode network. Unlike the rostral segregation, the caudal dmPFC was divided by hemispheres. The caudal-right cluster was strongly connected to a frontoparietal network (dorsal attention network), whereas the caudal-left cluster was strongly connected to the anterior midcingulate cortex and bilateral anterior insula (salience network). In conclusion, we demonstrate that a dmPFC seed reflecting social processing can be divided into 4 separate functional modules that contribute to distinct facets of advanced human cognition.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich 52428, Germany Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL 11200, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX 7703, USA
| | - Danilo Bzdok
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich 52428, Germany Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Lukas Hensel
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich 52428, Germany
| |
Collapse
|
111
|
Ray KL, Zald DH, Bludau S, Riedel MC, Bzdok D, Yanes J, Falcone KE, Amunts K, Fox PT, Eickhoff SB, Laird AR. Co-activation based parcellation of the human frontal pole. Neuroimage 2015; 123:200-11. [PMID: 26254112 PMCID: PMC4626376 DOI: 10.1016/j.neuroimage.2015.07.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/14/2015] [Accepted: 07/27/2015] [Indexed: 12/16/2022] Open
Abstract
Historically, the human frontal pole (FP) has been considered as a single architectonic area. Brodmann's area 10 is located in the frontal lobe with known contributions in the execution of various higher order cognitive processes. However, recent cytoarchitectural studies of the FP in humans have shown that this portion of cortex contains two distinct cytoarchitectonic regions. Since architectonic differences are accompanied by differential connectivity and functions, the frontal pole qualifies as a candidate region for exploratory parcellation into functionally discrete sub-regions. We investigated whether this functional heterogeneity is reflected in distinct segregations within cytoarchitectonically defined FP-areas using meta-analytic co-activation based parcellation (CBP). The CBP method examined the co-activation patterns of all voxels within the FP as reported in functional neuroimaging studies archived in the BrainMap database. Voxels within the FP were subsequently clustered into sub-regions based on the similarity of their respective meta-analytically derived co-activation maps. Performing this CBP analysis on the FP via k-means clustering produced a distinct 3-cluster parcellation for each hemisphere corresponding to previously identified cytoarchitectural differences. Post-hoc functional characterization of clusters via BrainMap metadata revealed that lateral regions of the FP mapped to memory and emotion domains, while the dorso- and ventromedial clusters were associated broadly with emotion and social cognition processes. Furthermore, the dorsomedial regions contain an emphasis on theory of mind and affective related paradigms whereas ventromedial regions couple with reward tasks. Results from this study support previous segregations of the FP and provide meta-analytic contributions to the ongoing discussion of elucidating functional architecture within human FP.
Collapse
Affiliation(s)
- K L Ray
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - D H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - S Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - M C Riedel
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - D Bzdok
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany; Parietal Team, INRIA, NeuroSpin, Bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France; NeuroSpin, CEA, Bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - J Yanes
- Department of Physics, Florida International University, Miami, FL, USA
| | - K E Falcone
- Department of Physics, Florida International University, Miami, FL, USA
| | - K Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - P T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; Research Service, South Texas Veterans Administration Medical Center, San Antonio, TX, USA; State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong; School of Medicine, Shenzhen University, Shenzhen, China
| | - S B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - A R Laird
- Department of Physics, Florida International University, Miami, FL, USA.
| |
Collapse
|
112
|
Oh J, Chun JW, Joon Jo H, Kim E, Park HJ, Lee B, Kim JJ. The neural basis of a deficit in abstract thinking in patients with schizophrenia. Psychiatry Res 2015; 234:66-73. [PMID: 26329118 DOI: 10.1016/j.pscychresns.2015.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/06/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023]
Abstract
Abnormal abstract thinking is a major cause of social dysfunction in patients with schizophrenia, but little is known about its neural basis. In this study, we aimed to determine the characteristic abstract thinking-related brain responses in patients using a task reflecting social situations. We conducted functional magnetic resonance imaging while 16 patients with schizophrenia and 16 healthy controls performed a theme-identification task, in which various emotional pictures depicting social situations were presented. Compared with healthy controls, the patients showed significantly decreased activity in the left frontopolar and right orbitofrontal cortices during theme identification. Activity in these two regions correlated well in the controls, but not in patients. Instead, the patients exhibited a close correlation between activity in both sides of the frontopolar cortex, and a positive correlation between the right orbitofrontal cortex activity and degrees of theme identification. Reduced activity in the left frontopolar and right orbitofrontal cortices and the underlying aberrant connectivity may be implicated in the patients' deficits in abstract thinking. These newly identified features of the neural basis of abnormal abstract thinking are important as they have implications for the impaired social behavior of patients with schizophrenia during real-life situations.
Collapse
Affiliation(s)
- Jooyoung Oh
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ji-Won Chun
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hang Joon Jo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Eunseong Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boreom Lee
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea; School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
113
|
Boschin EA, Buckley MJ. Differential contributions of dorsolateral and frontopolar cortices to working memory processes in the primate. Front Syst Neurosci 2015; 9:144. [PMID: 26578901 PMCID: PMC4624853 DOI: 10.3389/fnsys.2015.00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
The ability to maintain and manipulate information across temporal delays is a fundamental requirement to bridge the gap between perception and action. In the case of higher-order behavior, the maintenance of rules and strategies is particularly helpful in bridging this gap. The prefrontal cortex (PFC) has long been considered critical for such processes, and research has focused on different subdivisions of PFC to gain an insight into their diverse contributions to these mechanisms. Substantial evidence indicates that dorsolateral PFC (dlPFC) is an important structure for maintaining information across delays, with cells actively firing across delays and lesions to this region causing deficits in tasks involving delayed responses and maintenance of rules online. Frontopolar cortex (FP), on the other hand, appears to show the opposite pattern of results, with cells not firing across delays and lesions to this region not affecting the same rule-based, delayed response tasks that are impaired following dlPFC lesions. The body of evidence therefore suggests that dlPFC and FP’s contributions to working memory differ. In this article, we will provide a perspective on how these regions might implement distinct but complementary and interactive functions that contribute to more general temporally-extended processes and support flexible, dynamic behavior.
Collapse
Affiliation(s)
- Erica A Boschin
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford Oxford, UK
| |
Collapse
|
114
|
Single-cell coding of sensory, spatial and numerical magnitudes in primate prefrontal, premotor and cingulate motor cortices. Exp Brain Res 2015; 234:241-54. [DOI: 10.1007/s00221-015-4449-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
|
115
|
Breeden AL, Cardinale EM, Lozier LM, VanMeter JW, Marsh AA. Callous-unemotional traits drive reduced white-matter integrity in youths with conduct problems. Psychol Med 2015; 45:3033-46. [PMID: 26087816 PMCID: PMC5160028 DOI: 10.1017/s0033291715000987] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Callous-unemotional (CU) traits represent a significant risk factor for severe and persistent conduct problems in children and adolescents. Extensive neuroimaging research links CU traits to structural and functional abnormalities in the amygdala and ventromedial prefrontal cortex. In addition, adults with psychopathy (a disorder for which CU traits are a developmental precursor) exhibit reduced integrity in uncinate fasciculus, a white-matter (WM) tract that connects prefrontal and temporal regions. However, research in adolescents has not yet yielded similarly consistent findings. METHOD We simultaneously modeled CU traits and externalizing behaviors as continuous traits, while controlling for age and IQ, in order to identify the unique relationship of each variable with WM microstructural integrity, assessed using diffusion tensor imaging. We used tract-based spatial statistics to evaluate fractional anisotropy, an index of WM integrity, in uncinate fasciculus and stria terminalis in 47 youths aged 10-17 years, of whom 26 exhibited conduct problems and varying levels of CU traits. RESULTS Whereas both CU traits and externalizing behaviors were negatively correlated with WM integrity in bilateral uncinate fasciculus and stria terminalis/fornix, simultaneously modeling both variables revealed that these effects were driven by CU traits; the severity of externalizing behavior was not related to WM integrity after controlling for CU traits. CONCLUSIONS These results indicate that WM abnormalities similar to those observed in adult populations with psychopathy may emerge in late childhood or early adolescence, and may be critical to understanding the social and affective deficits observed in this population.
Collapse
Affiliation(s)
- A. L. Breeden
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - E. M. Cardinale
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - L. M. Lozier
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - J. W. VanMeter
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - A. A. Marsh
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|
116
|
Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices. Proc Natl Acad Sci U S A 2015; 112:E3940-9. [PMID: 26150522 DOI: 10.1073/pnas.1422629112] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys' ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals' abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals.
Collapse
|
117
|
Caminiti R, Innocenti GM, Battaglia-Mayer A. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 2015; 56:73-96. [PMID: 26112130 DOI: 10.1016/j.neubiorev.2015.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/08/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
Abstract
The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution.
Collapse
Affiliation(s)
- Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Brain and Mind Institute, Federal Institute of Technology, EPFL, Lausanne, Switzerland
| | - Alexandra Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
118
|
Hu S, Ide JS, Zhang S, Li CSR. Anticipating conflict: Neural correlates of a Bayesian belief and its motor consequence. Neuroimage 2015; 119:286-95. [PMID: 26095091 DOI: 10.1016/j.neuroimage.2015.06.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 02/05/2023] Open
Abstract
Previous studies have examined the neural correlates of proactive control using a variety of behavioral paradigms; however, the neural network relating the control process to its behavioral consequence remains unclear. Here, we applied a dynamic Bayesian model to a large fMRI data set of the stop signal task to address this issue. By estimating the probability of the stop signal - p(Stop) - trial by trial, we showed that higher p(Stop) is associated with prolonged go trial reaction time (RT), indicating proactive control of motor response. In modeling fMRI signals at trial and target onsets, we distinguished activities of proactive control, prediction error, and RT slowing. We showed that the anterior pre-supplementary motor area (pre-SMA) responds specifically to increased stop signal likelihood, and its activity is correlated with activations of the posterior pre-SMA and bilateral anterior insula during prolonged response times. This directional link is also supported by Granger causality analysis. Furthermore, proactive control, prediction error, and time-on-task are each mapped to distinct areas in the medial prefrontal cortex. Together, these findings dissect regional functions of the medial prefrontal cortex in cognitive control and provide system level evidence associating conflict anticipation with its motor consequence.
Collapse
Affiliation(s)
- Sien Hu
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA.
| | - Jaime S Ide
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA; Department of Neurobiology, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
119
|
Nahas Z. Epidural Cortical Stimulation. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
120
|
Stolk A, D’Imperio D, di Pellegrino G, Toni I. Altered Communicative Decisions following Ventromedial Prefrontal Lesions. Curr Biol 2015; 25:1469-74. [DOI: 10.1016/j.cub.2015.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
|
121
|
Orr JM, Smolker HR, Banich MT. Organization of the Human Frontal Pole Revealed by Large-Scale DTI-Based Connectivity: Implications for Control of Behavior. PLoS One 2015; 10:e0124797. [PMID: 25945925 PMCID: PMC4422440 DOI: 10.1371/journal.pone.0124797] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 03/06/2015] [Indexed: 12/17/2022] Open
Abstract
The goal of the current study was to examine the pattern of anatomical connectivity of the human frontal pole so as to inform theories of function of the frontal pole, perhaps one of the least understood region of the human brain. Rather than simply parcellating the frontal pole into subregions, we focused on examining the brain regions to which the frontal pole is anatomically and functionally connected. While the current findings provided support for previous work suggesting the frontal pole is connected to higher-order sensory association cortex, we found novel evidence suggesting that the frontal pole in humans is connected to posterior visual cortex. Furthermore, we propose a functional framework that incorporates these anatomical connections with existing cognitive theories of the functional organization of the frontal pole. In addition to a previously discussed medial-lateral distinction, we propose a dorsal-ventral gradient based on the information the frontal pole uses to guide behavior. We propose that dorsal regions are connected to other prefrontal regions that process goals and action plans, medial regions are connected to other brain regions that monitor action outcomes and motivate behaviors, and ventral regions connect to regions that process information about stimuli, values, and emotion. By incorporating information across these different levels of information, the frontal pole can effectively guide goal-directed behavior.
Collapse
Affiliation(s)
- Joseph M. Orr
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail:
| | - Harry R. Smolker
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Marie T. Banich
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
122
|
Abstract
Reinforcement learning (RL) theory posits that learning is driven by discrepancies between the predicted and actual outcomes of actions (prediction errors [PEs]). In social environments, learning is often guided by similar RL mechanisms. For example, teachers monitor the actions of students and provide feedback to them. This feedback evokes PEs in students that guide their learning. We report the first study that investigates the neural mechanisms that underpin RL signals in the brain of a teacher. Neurons in the anterior cingulate cortex (ACC) signal PEs when learning from the outcomes of one's own actions but also signal information when outcomes are received by others. Does a teacher's ACC signal PEs when monitoring a student's learning? Using fMRI, we studied brain activity in human subjects (teachers) as they taught a confederate (student) action-outcome associations by providing positive or negative feedback. We examined activity time-locked to the students' responses, when teachers infer student predictions and know actual outcomes. We fitted a RL-based computational model to the behavior of the student to characterize their learning, and examined whether a teacher's ACC signals when a student's predictions are wrong. In line with our hypothesis, activity in the teacher's ACC covaried with the PE values in the model. Additionally, activity in the teacher's insula and ventromedial prefrontal cortex covaried with the predicted value according to the student. Our findings highlight that the ACC signals PEs vicariously for others' erroneous predictions, when monitoring and instructing their learning. These results suggest that RL mechanisms, processed vicariously, may underpin and facilitate teaching behaviors.
Collapse
|
123
|
Abstract
During learning, performance changes often involve a transition from controlled processing in which performance is flexible and responsive to ongoing error feedback, but effortful and slow, to a state in which processing becomes swift and automatic. In this state, performance is unencumbered by the requirement to process feedback, but its insensitivity to feedback reduces its flexibility. Many properties of automatic processing are similar to those that one would expect of forward models, and many have suggested that these may be instantiated in cerebellar circuitry. Since hierarchically organized frontal lobe areas can both send and receive commands, I discuss the possibility that they can act both as controllers and controlled objects and that their behaviors can be independently modeled by forward models in cerebellar circuits. Since areas of the prefrontal cortex contribute to this hierarchically organized system and send outputs to the cerebellar cortex, I suggest that the cerebellum is likely to contribute to the automation of cognitive skills, and to the formation of habitual behavior which is resistant to error feedback. An important prerequisite to these ideas is that cerebellar circuitry should have access to higher order error feedback that signals the success or failure of cognitive processing. I have discussed the pathways through which such feedback could arrive via the inferior olive and the dopamine system. Cerebellar outputs inhibit both the inferior olive and the dopamine system. It is possible that learned representations in the cerebellum use this as a mechanism to suppress the processing of feedback in other parts of the nervous system. Thus, cerebellar processes that control automatic performance may be completed without triggering the engagement of controlled processes by prefrontal mechanisms.
Collapse
Affiliation(s)
- Narender Ramnani
- Department of Psychology, Royal Holloway, University of London, Egham, UK.
| |
Collapse
|
124
|
Shen T, Li C, Wang B, Yang WM, Zhang C, Wu Z, Qiu MH, Liu J, Xu YF, Peng DH. Increased cognition connectivity network in major depression disorder: a FMRI study. Psychiatry Investig 2015; 12:227-34. [PMID: 25866524 PMCID: PMC4390594 DOI: 10.4306/pi.2015.12.2.227] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/21/2014] [Accepted: 09/19/2014] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Evidence of the brain network involved in cognitive dysfunction has been inconsistent for major depressive disorder (MDD), especially during early stage of MDD. This study seeks to examine abnormal cognition connectivity network (CCN) in MDD within the whole brain. METHODS Sixteen patients with MDD and 16 health controls were scanned during resting-state using 3.0 T functional magnetic resonance imaging (fMRI). All patients were first episode without any history of antidepressant treatment. Both the left and right dorsolateral prefrontal cortex (DLPFC) were used as individual seeds to identify CCN by the seed-target correlation analysis. Two sample t test was used to calculate between-group differences in CCN using fisher z-transformed correlation maps. RESULTS The CCN was constructed by bilateral seed DLPFC in two groups separately. Depressed subjects exhibited significantly increased functional connectivity (FC) by left DLPFC in one cluster, overlapping middle frontal gyrus, BA7, BA43, precuneus, BA6, BA40, superior temporal gyrus, BA22, inferior parietal lobule, precentral gyrus, BA4 and cingulate gyrus in left cerebrum. Health controls did not show any cluster with significantly greater FC compared to depressed subjects in left DLPFC network. There was no significant difference of FC in right DLPFC network between depressed subjects and the health controls. CONCLUSION There are differences in CCN during early stage of MDD, as identified by increased FCs among part of frontal gyrus, parietal cortex, cingulate cortex, and BA43, BA22, BA4 with left DLPFC. These brain areas might be involved in the underlying mechanisms of cognitive dysfunction in MDD.
Collapse
Affiliation(s)
- Ting Shen
- Division of Mood Disorders, Psychiatry Department, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Cao Li
- Division of Mood Disorders, Psychiatry Department, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Biao Wang
- Division of Mood Disorders, Psychiatry Department, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Wei-min Yang
- Division of Mood Disorders, Psychiatry Department, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Chen Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Zhiguo Wu
- Division of Mood Disorders, Psychiatry Department, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Mei-hui Qiu
- Division of Mood Disorders, Psychiatry Department, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Jun Liu
- Department of Medical Imaging, Shanghai Fifth People's Hospital, Shanghai, China
| | - Yi-feng Xu
- Division of Mood Disorders, Psychiatry Department, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
- Huashan Hospital, Fudan University, Shanghai, China
| | - Dai-hui Peng
- Division of Mood Disorders, Psychiatry Department, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
125
|
Mill RD, Cavin I, O'Connor AR. Differentiating the functional contributions of resting connectivity networks to memory decision-making: fMRI support for multistage control processes. J Cogn Neurosci 2015; 27:1617-32. [PMID: 25803597 DOI: 10.1162/jocn_a_00808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neural substrates of memory control are engaged when participants encounter unexpected mnemonic stimuli (e.g., a new word when told to expect an old word). The present fMRI study (n = 18) employed the likelihood cueing recognition task to elucidate the role of functional connectivity (fcMRI) networks in supporting memory control processes engaged by these unexpected events. Conventional task-evoked BOLD analyses recovered a memory control network similar to that previously reported, comprising medial prefrontal, lateral prefrontal, and inferior parietal regions. These were split by their differential affiliation to distinct fcMRI networks ("conflict detection" and "confirmatory retrieval" networks). Subsequent ROI analyses clarified the functional significance of this connectivity differentiation, with "conflict" network-affiliated regions specifically sensitive to cue strength, but not to response confidence, and "retrieval" network-affiliated regions showing the opposite pattern. BOLD time course analyses corroborated the segregation of memory control regions into "early" conflict detection and "late" retrieval analysis, with both processes underlying the allocation of memory control. Response specificity and time course findings were generalized beyond task-recruited ROIs to clusters within the large-scale fcMRI networks, suggesting that this connectivity architecture could underlie efficient processing of distinct processes within cognitive tasks. The findings raise important parallels between prevailing theories of memory and cognitive control.
Collapse
Affiliation(s)
| | - Ian Cavin
- Ninewells Hospital and Medical School, Dundee, UK
| | | |
Collapse
|
126
|
Buchy L, Lepage M. Modeling the Neuroanatomical and Neurocognitive Mechanisms of Cognitive Insight in Non-clinical Subjects. COGNITIVE THERAPY AND RESEARCH 2015. [DOI: 10.1007/s10608-015-9674-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
127
|
Mitchell AS. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev 2015; 54:76-88. [PMID: 25757689 DOI: 10.1016/j.neubiorev.2015.03.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 02/21/2015] [Accepted: 03/01/2015] [Indexed: 02/08/2023]
Abstract
Recent evidence from monkey models of cognition shows that the magnocellular subdivision of the mediodorsal thalamus (MDmc) is more critical for learning new information than for retention of previously acquired information. Further, consistent evidence in animal models shows the mediodorsal thalamus (MD) contributes to adaptive decision-making. It is assumed that prefrontal cortex (PFC) and medial temporal lobes govern these cognitive processes so this evidence suggests that MD contributes a role in these cognitive processes too. Anatomically, the MD has extensive excitatory cortico-thalamo-cortical connections, especially with the PFC. MD also receives modulatory inputs from forebrain, midbrain and brainstem regions. It is suggested that the MD is a higher order thalamic relay of the PFC due to the dual cortico-thalamic inputs from layer V ('driver' inputs capable of transmitting a message) and layer VI ('modulator' inputs) of the PFC. Thus, the MD thalamic relay may support the transfer of information across the PFC via this indirect thalamic route. This review summarizes the current knowledge about the anatomy of MD as a higher order thalamic relay. It also reviews behavioral and electrophysiological studies in animals to consider how MD might support the transfer of information across the cortex during learning and decision-making. Current evidence suggests the MD is particularly important during rapid trial-by-trial associative learning and decision-making paradigms that involve multiple cognitive processes. Further studies need to consider the influence of the MD higher order relay to advance our knowledge about how the cortex processes higher order cognition.
Collapse
Affiliation(s)
- Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, United Kingdom.
| |
Collapse
|
128
|
Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insausti R, Ding SL, Dickerson BC. Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex 2015; 25:680-702. [PMID: 24068551 PMCID: PMC4318532 DOI: 10.1093/cercor/bht260] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The most rostral portion of the human temporal cortex, the temporal pole (TP), has been described as "enigmatic" because its functional neuroanatomy remains unclear. Comparative anatomy studies are only partially helpful, because the human TP is larger and cytoarchitectonically more complex than in nonhuman primates. Considered by Brodmann as a single area (BA 38), the human TP has been recently parceled into an array of cytoarchitectonic subfields. In order to clarify the functional connectivity of subregions of the TP, we undertook a study of 172 healthy adults using resting-state functional connectivity MRI. Remarkably, a hierarchical cluster analysis performed to group the seeds into distinct subsystems according to their large-scale functional connectivity grouped 87.5% of the seeds according to the recently described cytoarchitectonic subregions of the TP. Based on large-scale functional connectivity, there appear to be 4 major subregions of the TP: (1) dorsal, with predominant connectivity to auditory/somatosensory and language networks; (2) ventromedial, predominantly connected to visual networks; (3) medial, connected to paralimbic structures; and (4) anterolateral, connected to the default-semantic network. The functional connectivity of the human TP, far more complex than its known anatomic connectivity in monkey, is concordant with its hypothesized role as a cortical convergence zone.
Collapse
Affiliation(s)
- Belen Pascual
- MGH Frontotemporal Dementia Unit, Alzheimer's Disease Research Center, Department of Neurology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Joseph C. Masdeu
- Section on Integrative Neuroimaging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Hollenbeck
- MGH Frontotemporal Dementia Unit, Alzheimer's Disease Research Center, Department of Neurology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nikos Makris
- Center for Morphometric Analysis, Departments of Psychiatry, Neurology, and Radiology Services
- Center for Neural Systems Investigation, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ricardo Insausti
- Center for Human Neuroanatomy Laboratory, Department of Health Sciences, School of Medicine, University of Castilla-La Mancha, Albacete 02071, Spain
| | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Bradford C. Dickerson
- MGH Frontotemporal Dementia Unit, Alzheimer's Disease Research Center, Department of Neurology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Center for Neural Systems Investigation, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
129
|
Abstract
Brodmann's area 10 is one of the largest cytoarchitecturally defined regions in the human cerebral cortex, occupying the most anterior part of the prefrontal cortex [frontopolar cortex (FPC)], and is believed to sit atop a prefrontal hierarchy. The crucial contributions that the FPC makes to cognition are unknown. Rodents do not possess such [corrected] a FPC, but primates do, and we report here the behavioral effects of circumscribed FPC lesions in nonhuman primates. FPC lesions selectively impaired rapid one-trial learning about unfamiliar objects and unfamiliar objects-in-scenes, and also impaired rapid learning about novel abstract rules. Object recognition memory, shifting between established abstract behavioral rules, and the simultaneous application of two distinct rules were unaffected by the FPC lesion. The distinctive pattern of impaired and spared performance across these seven behavioral tasks reveals that the FPC mediates exploration and rapid learning about the relative value of novel behavioral options, and shows that the crucial contributions made by the FPC to cognition differ markedly from the contributions of other primate prefrontal regions.
Collapse
|
130
|
Vendetti MS, Bunge SA. Evolutionary and developmental changes in the lateral frontoparietal network: a little goes a long way for higher-level cognition. Neuron 2015; 84:906-17. [PMID: 25475185 DOI: 10.1016/j.neuron.2014.09.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Relational thinking, or the ability to represent the relations between items, is widespread in the animal kingdom. However, humans are unparalleled in their ability to engage in the higher-order relational thinking required for reasoning and other forms of abstract thought. Here we propose that the versatile reasoning skills observed in humans can be traced back to developmental and evolutionary changes in the lateral frontoparietal network (LFPN). We first identify the regions within the LFPN that are most strongly linked to relational thinking, and show that stronger communication between these regions over the course of development supports improvements in relational reasoning. We then explore differences in the LFPN between humans and other primate species that could explain species differences in the capacity for relational reasoning. We conclude that fairly small neuroanatomical changes in specific regions of the LFPN and their connections have led to big ontogenetic and phylogenetic changes in cognition.
Collapse
Affiliation(s)
- Michael S Vendetti
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California 94720, USA.
| | - Silvia A Bunge
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California 94720, USA; Department of Psychology, University of California at Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
131
|
Joensson M, Thomsen KR, Andersen LM, Gross J, Mouridsen K, Sandberg K, Østergaard L, Lou HC. Making sense: Dopamine activates conscious self-monitoring through medial prefrontal cortex. Hum Brain Mapp 2015; 36:1866-77. [PMID: 25627861 PMCID: PMC4737196 DOI: 10.1002/hbm.22742] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/12/2015] [Indexed: 11/06/2022] Open
Abstract
When experiences become meaningful to the self, they are linked to synchronous activity in a paralimbic network of self-awareness and dopaminergic activity. This network includes medial prefrontal and medial parietal/posterior cingulate cortices, where transcranial magnetic stimulation may transiently impair self-awareness. Conversely, we hypothesize that dopaminergic stimulation may improve self-awareness and metacognition (i.e., the ability of the brain to consciously monitor its own cognitive processes). Here, we demonstrate improved noetic (conscious) metacognition by oral administration of 100 mg dopamine in minimal self-awareness. In a separate experiment with extended self-awareness dopamine improved the retrieval accuracy of memories of self-judgment (autonoetic, i.e., explicitly self-conscious) metacognition. Concomitantly, magnetoencephalography (MEG) showed increased amplitudes of oscillations (power) preferentially in the medial prefrontal cortex. Given that electromagnetic activity in this region is instrumental in self-awareness, this explains the specific effect of dopamine on explicit self-awareness and autonoetic metacognition.
Collapse
Affiliation(s)
- Morten Joensson
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000, Aarhus, Denmark; Department of Psychiatry, University of Oxford, OX37JX Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
The auditory cortex is a network of areas in the part of the brain that receives inputs from the subcortical auditory pathways in the brainstem and thalamus. Through an elaborate network of intrinsic and extrinsic connections, the auditory cortex is thought to bring about the conscious perception of sound and provide a basis for the comprehension and production of meaningful utterances. In this chapter, the organization of auditory cortex is described with an emphasis on its anatomic features and the flow of information within the network. These features are then used to introduce key neurophysiologic concepts that are being intensively studied in humans and animal models. The discussion is presented in the context of our working model of the primate auditory cortex and extensions to humans. The material is presented in the context of six underlying principles, which reflect distinct, but related, aspects of anatomic and physiologic organization: (1) the division of auditory cortex into regions; (2) the subdivision of regions into areas; (3) tonotopic organization of areas; (4) thalamocortical connections; (5) serial and parallel organization of connections; and (6) topographic relationships between auditory and auditory-related areas. Although the functional roles of the various components of this network remain poorly defined, a more complete understanding is emerging from ongoing studies that link auditory behavior to its anatomic and physiologic substrates.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine and Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
133
|
A deficit in face-voice integration in developing vervet monkeys exposed to ethanol during gestation. PLoS One 2014; 9:e114100. [PMID: 25470725 PMCID: PMC4254919 DOI: 10.1371/journal.pone.0114100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 11/03/2014] [Indexed: 11/19/2022] Open
Abstract
Children with fetal alcohol spectrum disorders display behavioural and intellectual impairments that strongly implicate dysfunction within the frontal cortex. Deficits in social behaviour and cognition are amongst the most pervasive outcomes of prenatal ethanol exposure. Our naturalistic vervet monkey model of fetal alcohol exposure (FAE) provides an unparalleled opportunity to study the neurobehavioral outcomes of prenatal ethanol exposure in a controlled experimental setting. Recent work has revealed a significant reduction of the neuronal population in the frontal lobes of these monkeys. We used an intersensory matching procedure to investigate audiovisual perception of socially relevant stimuli in young FAE vervet monkeys. Here we show a domain-specific deficit in audiovisual integration of socially relevant stimuli. When FAE monkeys were shown a pair of side-by-side videos of a monkey concurrently presenting two different calls along with a single audio track matching the content of one of the calls, they were not able to match the correct video to the single audio track. This was manifest by their average looking time being equally spent towards both the matching and non-matching videos. However, a group of normally developing monkeys exhibited a significant preference for the non-matching video. This inability to integrate and thereby discriminate audiovisual stimuli was confined to the integration of faces and voices as revealed by the monkeys' ability to match a dynamic face to a complex tone or a black-and-white checkerboard to a pure tone, presumably based on duration and/or onset-offset synchrony. Together, these results suggest that prenatal ethanol exposure negatively affects a specific domain of audiovisual integration. This deficit is confined to the integration of information that is presented by the face and the voice and does not affect more elementary aspects of sensory integration.
Collapse
|
134
|
Geddes MR, Tsuchida A, Ashley V, Swick D, Fellows LK. Material-specific interference control is dissociable and lateralized in human prefrontal cortex. Neuropsychologia 2014; 64:310-9. [DOI: 10.1016/j.neuropsychologia.2014.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/30/2022]
|
135
|
Neural correlates of the Simon effect modulated by practice with spatial mapping. Neuropsychologia 2014; 63:72-84. [DOI: 10.1016/j.neuropsychologia.2014.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022]
|
136
|
Frontal cortical and subcortical projections provide a basis for segmenting the cingulum bundle: implications for neuroimaging and psychiatric disorders. J Neurosci 2014; 34:10041-54. [PMID: 25057206 DOI: 10.1523/jneurosci.5459-13.2014] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cingulum bundle (CB) is one of the brain's major white matter pathways, linking regions associated with executive function, decision-making, and emotion. Neuroimaging has revealed that abnormalities in particular locations within the CB are associated with specific psychiatric disorders, including depression and bipolar disorder. However, the fibers using each portion of the CB remain unknown. In this study, we used anatomical tract-tracing in nonhuman primates (Macaca nemestrina, Macaca fascicularis, Macaca mulatta) to examine the organization of specific cingulate, noncingulate frontal, and subcortical pathways through the CB. The goals were as follows: (1) to determine connections that use the CB, (2) to establish through which parts of the CB these fibers travel, and (3) to relate the CB fiber pathways to the portions of the CB identified in humans as neurosurgical targets for amelioration of psychiatric disorders. Results indicate that cingulate, noncingulate frontal, and subcortical fibers all travel through the CB to reach both cingulate and noncingulate targets. However, many brain regions send projections through only part, not all, of the CB. For example, amygdala fibers are not present in the caudal portion of the dorsal CB. These results allow segmentation of the CB into four unique zones. We identify the specific connections that are abnormal in psychiatric disorders and affected by neurosurgical interventions, such as deep brain stimulation and cingulotomy.
Collapse
|
137
|
Yuen GS, Gunning FM, Woods E, Klimstra SA, Hoptman MJ, Alexopoulos GS. Neuroanatomical correlates of apathy in late-life depression and antidepressant treatment response. J Affect Disord 2014; 166:179-86. [PMID: 25012429 PMCID: PMC4096713 DOI: 10.1016/j.jad.2014.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Apathy is a prominent feature of geriatric depression that predicts poor clinical outcomes and hinders depression treatment. Yet little is known about the neurobiology and treatment of apathy in late-life depression. This study examined apathy prevalence in a clinical sample of depressed elderly, response of apathy to selective serotonin reuptake inhibitor (SSRI) treatment, and neuroanatomical correlates that distinguished responders from non-responders and healthy controls. METHODS Participants included 45 non-demented, elderly with major depression and 43 elderly comparison individuals. After a 2-week single-blind placebo period, depressed participants received escitalopram 10mg daily for 12 weeks. The Apathy Evaluation Scale (AES) and 24-item Hamilton Depression Rating Scale (HDRS) were administered at baseline and 12 weeks. MRI scans were acquired at baseline for concurrent structural and diffusion tensor imaging of anterior cingulate gray matter and associated white matter tracts. RESULTS 35.5% of depressed patients suffered from apathy. This declined to 15.6% (p<0.1) following treatment, but 43% of initial sufferers continued to report significant apathy. Improvement of apathy with SSRI was independent of change in depression but correlated with larger left posterior subgenual cingulate volumes and greater fractional anisotropy of left uncinate fasciculi. LIMITATIONS Modest sample size, no placebo control, post-hoc secondary analysis, use of 1.5T MRI scanner CONCLUSIONS While prevalent in geriatric depression, apathy is separable from depression with regards to medication response. Structural abnormalities of the posterior subgenual cingulate and uncinate fasciculus may perpetuate apathetic states by interfering with prefrontal cortical recruitment of limbic activity essential to motivated behavior.
Collapse
Affiliation(s)
- Genevieve S. Yuen
- Weill Medical College of Cornell University, Weill Cornell Institute of Geriatric Psychiatry, NY
| | - Faith M. Gunning
- Weill Medical College of Cornell University, Weill Cornell Institute of Geriatric Psychiatry, NY
| | - Eric Woods
- Weill Medical College of Cornell University, Weill Cornell Institute of Geriatric Psychiatry, NY
| | - Sibel A. Klimstra
- Weill Medical College of Cornell University, Weill Cornell Institute of Geriatric Psychiatry, NY
| | - Matthew J. Hoptman
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY,New York University School of Medicine, New York, NY
| | - George S. Alexopoulos
- Weill Medical College of Cornell University, Weill Cornell Institute of Geriatric Psychiatry, NY
| |
Collapse
|
138
|
Goldin PR, Ziv M, Jazaieri H, Weeks J, Heimberg RG, Gross JJ. Impact of cognitive-behavioral therapy for social anxiety disorder on the neural bases of emotional reactivity to and regulation of social evaluation. Behav Res Ther 2014; 62:97-106. [PMID: 25193002 DOI: 10.1016/j.brat.2014.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED We examined whether Cognitive-Behavioral Therapy (CBT) for social anxiety disorder (SAD) would modify self-reported negative emotion and functional magnetic resonance imaging brain responses when reacting to and reappraising social evaluation, and tested whether changes would predict treatment outcome in 59 patients with SAD who completed CBT or waitlist groups. For reactivity, compared to waitlist, CBT resulted in (a) increased brain responses in right superior frontal gyrus (SFG), inferior parietal lobule (IPL), and middle occipital gyrus (MOG) when reacting to social praise, and (b) increases in right SFG and IPL and decreases in left posterior superior temporal gyrus (pSTG) when reacting to social criticism. For reappraisal, compared to waitlist, CBT resulted in greater (c) reductions in self-reported negative emotion, and (d) increases in brain responses in right SFG and MOG, and decreases in left pSTG. A linear regression found that after controlling for CBT-induced changes in reactivity and reappraisal negative emotion ratings and brain changes in reactivity to praise and criticism, reappraisal of criticism brain response changes predicted 24% of the unique variance in CBT-related reductions in social anxiety. Thus, one mechanism underlying CBT for SAD may be changes in reappraisal-related brain responses to social criticism. CLINICALTRIALSGOV IDENTIFIER NCT00380731. http://www.clinicaltrials.gov/ct2/show/NCT00380731?term=social+anxiety+cognitive+behavioral+therapy+Stanford&rank=1.
Collapse
Affiliation(s)
- Philippe R Goldin
- Stanford University, Department of Psychology, Jordan Hall, Stanford, CA 94305, USA.
| | - Michal Ziv
- Stanford University, Department of Psychology, Jordan Hall, Stanford, CA 94305, USA
| | - Hooria Jazaieri
- Stanford University, Department of Psychology, Jordan Hall, Stanford, CA 94305, USA
| | - Justin Weeks
- Ohio University, Department of Psychology, 249 Porter Hall, Athens, OH 45701, USA
| | - Richard G Heimberg
- Temple University, Department of Psychology, Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122, USA
| | - James J Gross
- Stanford University, Department of Psychology, Jordan Hall, Stanford, CA 94305, USA
| |
Collapse
|
139
|
Choi K, Torres EB. Intentional signal in prefrontal cortex generalizes across different sensory modalities. J Neurophysiol 2014; 112:61-80. [PMID: 24259543 DOI: 10.1152/jn.00505.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biofeedback-EEG training to learn the mental control of an external device (e.g., a cursor on the screen) has been an important paradigm to attempt to understand the involvements of various areas of the brain in the volitional control and the modulation of intentional thought processes. Often the areas to adapt and to monitor progress are selected a priori. Less explored, however, has been the notion of automatically emerging activation in a particular area or subregions within that area recruited above and beyond the rest of the brain. Likewise, the notion of evoking such a signal as an amodal, abstract one remaining robust across different sensory modalities could afford some exploration. Here we develop a simple binary control task in the context of brain-computer interface (BCI) and use a Bayesian sparse probit classification algorithm to automatically uncover brain regional activity that maximizes task performance. We trained and tested 19 participants using the visual modality for instructions and feedback. Across training blocks we quantified coupling of the frontoparietal nodes and selective involvement of visual and auditory regions as a function of the real-time sensory feedback. The testing phase under both forms of sensory feedback revealed automatic recruitment of the prefrontal cortex with a parcellation of higher strength levels in Brodmann's areas 9, 10, and 11 significantly above those in other brain areas. We propose that the prefrontal signal may be a neural correlate of externally driven intended direction and discuss our results in the context of various aspects involved in the cognitive control of our thoughts.
Collapse
Affiliation(s)
- Kyuwan Choi
- Psychology Department, Rutgers University, Piscataway, New Jersey; Center for Computational Biomedicine Imaging and Modeling, Computer Science Department, Rutgers University, Piscataway, New Jersey; and Rutgers Center for Cognitive Science, Rutgers University, Piscataway, New Jersey
| | - Elizabeth B Torres
- Psychology Department, Rutgers University, Piscataway, New Jersey; Center for Computational Biomedicine Imaging and Modeling, Computer Science Department, Rutgers University, Piscataway, New Jersey; and
| |
Collapse
|
140
|
Abstract
Evaluating the costs and benefits of our own choices is central to most forms of decision-making and its mechanisms in the brain are becoming increasingly well understood. To interact successfully in social environments, it is also essential to monitor the rewards that others receive. Previous studies in nonhuman primates have found neurons in the anterior cingulate cortex (ACC) that signal the net value (benefit minus cost) of rewards that will be received oneself and also neurons that signal when a reward will be received by someone else. However, little is understood about the way in which the human brain engages in cost-benefit analyses during social interactions. Does the ACC signal the net value (the benefits minus the costs) of rewards that others will receive? Here, using fMRI, we examined activity time locked to cues that signaled the anticipated reward magnitude (benefit) to be gained and the level of effort (cost) to be incurred either by a subject themselves or by a social confederate. We investigated whether activity in the ACC covaries with the net value of rewards that someone else will receive when that person is required to exert effort for the reward. We show that, although activation in the sulcus of the ACC signaled the costs on all trials, gyral ACC (ACC(g)) activity varied parametrically only with the net value of rewards gained by others. These results suggest that the ACC(g) plays an important role in signaling cost-benefit information by signaling the value of others' rewards during social interactions.
Collapse
|
141
|
Connectivity-based parcellation of the human frontal polar cortex. Brain Struct Funct 2014; 220:2603-16. [PMID: 24927720 PMCID: PMC4549383 DOI: 10.1007/s00429-014-0809-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/22/2014] [Indexed: 11/04/2022]
Abstract
The frontal pole corresponds to Brodmann area (BA) 10, the largest single architectonic area in the human frontal lobe. Generally, BA10 is thought to contain two or three subregions that subserve broad functions such as multitasking, social cognition, attention, and episodic memory. However, there is a substantial debate about the functional and structural heterogeneity of this large frontal region. Previous connectivity-based parcellation studies have identified two or three subregions in the human frontal pole. Here, we used diffusion tensor imaging to assess structural connectivity of BA10 in 35 healthy subjects and delineated subregions based on this connectivity. This allowed us to determine the correspondence of structurally based subregions with the scheme previously defined functionally. Three subregions could be defined in each subject. However, these three subregions were not spatially consistent between subjects. Therefore, we accepted a solution with two subregions that encompassed the lateral and medial frontal pole. We then examined resting-state functional connectivity of the two subregions and found significant differences between their connectivities. The medial cluster was connected to nodes of the default-mode network, which is implicated in internally focused, self-related thought, and social cognition. The lateral cluster was connected to nodes of the executive control network, associated with directed attention and working memory. These findings support the concept that there are two major anatomical subregions of the frontal pole related to differences in functional connectivity.
Collapse
|
142
|
Omigie D, Dellacherie D, Hasboun D, George N, Clement S, Baulac M, Adam C, Samson S. An Intracranial EEG Study of the Neural Dynamics of Musical Valence Processing. Cereb Cortex 2014; 25:4038-47. [PMID: 24904066 DOI: 10.1093/cercor/bhu118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The processing of valence is known to recruit the amygdala, orbitofrontal cortex, and relevant sensory areas. However, how these regions interact remains unclear. We recorded cortical electrical activity from 7 epileptic patients implanted with depth electrodes for presurgical evaluation while they listened to positively and negatively valenced musical chords. Time-frequency analysis suggested a specific role of the orbitofrontal cortex in the processing of positively valenced stimuli while, most importantly, Granger causality analysis revealed that the amygdala tends to drive both the orbitofrontal cortex and the auditory cortex in theta and alpha frequency bands, during the processing of valenced stimuli. Results from the current study show the amygdala to be a critical hub in the emotion processing network: specifically one that influences not only the higher order areas involved in the evaluation of a stimulus's emotional value but also the sensory cortical areas involved in the processing of its low-level acoustic features.
Collapse
Affiliation(s)
- Diana Omigie
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, EA4559, Université Lille-Nord de France, Villeneuve D'Ascq, France Institut du Cerveau et de la Moelle Epinière, Social and Affective Neuroscience Team and Centre MEG-EEG - CENIR, Paris, France Université Pierre et Marie Curie-Paris 6, UMR_S 1127 and Centre MEG-EEG, Paris, France CNRS, UMR 7225 and Centre MEG-EEG, Paris, France
| | - Delphine Dellacherie
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, EA4559, Université Lille-Nord de France, Villeneuve D'Ascq, France Centre National de Référence des Anomalies du Cervelet, CHRU Lille, France
| | - Dominique Hasboun
- Service de Neuroradiologie, Hôpital de la Pitié Salpêtrière, Paris, France Institut du Cerveau et de la Moelle Epinière, Social and Affective Neuroscience Team and Centre MEG-EEG - CENIR, Paris, France Université Pierre et Marie Curie-Paris 6, UMR_S 1127 and Centre MEG-EEG, Paris, France CNRS, UMR 7225 and Centre MEG-EEG, Paris, France
| | - Nathalie George
- Institut du Cerveau et de la Moelle Epinière, Social and Affective Neuroscience Team and Centre MEG-EEG - CENIR, Paris, France Université Pierre et Marie Curie-Paris 6, UMR_S 1127 and Centre MEG-EEG, Paris, France CNRS, UMR 7225 and Centre MEG-EEG, Paris, France Inserm, U 1127 and Centre MEG-EEG, Paris, France ENS, Centre MEG-EEG, Paris, France
| | - Sylvain Clement
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, EA4559, Université Lille-Nord de France, Villeneuve D'Ascq, France
| | - Michel Baulac
- Unité D'Epilepsie, Hôpital de la Pitié Salpêtrière, Paris, France Service de Neuroradiologie, Hôpital de la Pitié Salpêtrière, Paris, France Institut du Cerveau et de la Moelle Epinière, Social and Affective Neuroscience Team and Centre MEG-EEG - CENIR, Paris, France
| | - Claude Adam
- Unité D'Epilepsie, Hôpital de la Pitié Salpêtrière, Paris, France Institut du Cerveau et de la Moelle Epinière, Social and Affective Neuroscience Team and Centre MEG-EEG - CENIR, Paris, France Université Pierre et Marie Curie-Paris 6, UMR_S 1127 and Centre MEG-EEG, Paris, France CNRS, UMR 7225 and Centre MEG-EEG, Paris, France
| | - Severine Samson
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, EA4559, Université Lille-Nord de France, Villeneuve D'Ascq, France Unité D'Epilepsie, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
143
|
Hilgenstock R, Weiss T, Witte OW. You'd better think twice: post-decision perceptual confidence. Neuroimage 2014; 99:323-31. [PMID: 24862076 DOI: 10.1016/j.neuroimage.2014.05.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 11/19/2022] Open
Abstract
Current findings suggest that confidence emerges only after decision making. However, the temporal and neural dynamics of the emergence of post-decision confidence--a metacognitive judgement--are not fully explored. To gain insight into the dynamics of post-decision confidence processing and to disentangle the processes underlying confidence judgements and decision making, we applied a tactile discrimination task during functional magnetic resonance imaging (fMRI). Our results revealed that reaction times to post-decision confidence depend on the level of confidence, suggesting that post-decision confidence in a perceptual choice is not processed in parallel to perceptual decision making. Moreover, we demonstrated by the parametric analysis of fMRI data that post-decisionally modelled confidence processing can be distinguished from processes related to decision making through anatomical location and through the pattern of neural activity. In contrast to perceptual decision making, post-decision confidence appears to be strictly allocated to a prefrontal network of brain regions, primarily the anterior and dorsolateral prefrontal cortex, areas that have been related to metacognition. Moreover, the processes underlying decision making and post-decision confidence may share recruitment of the dorsolateral prefrontal cortex, although the former probably has distinct functions with regard to processing of perceptual choices and post-decision confidence. Thus, this is the first fMRI study to disentangle the processes underlying post-decision confidence and decision making on behavioural, neuroanatomical, and neurofunctional levels. With regard to the temporal evolution of post-decision confidence, results of the present study provide strong support for the most recent theoretical models of human perceptual decision making, and thus provide implications for investigating confidence in perceptual paradigms.
Collapse
Affiliation(s)
- Raphael Hilgenstock
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany; Department of Pediatrics, HELIOS Children's Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany.
| | - Thomas Weiss
- Department of Biological and Clinical Psychology, Friedrich Schiller University, 07743 Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
144
|
Radaelli D, Sferrazza Papa G, Vai B, Poletti S, Smeraldi E, Colombo C, Benedetti F. Fronto-limbic disconnection in bipolar disorder. Eur Psychiatry 2014; 30:82-8. [PMID: 24853295 DOI: 10.1016/j.eurpsy.2014.04.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a severe, disabling and life-threatening illness. Disturbances in emotion and affective processing are core features of the disorder with affective instability being paralleled by mood-congruent biases in information processing that influence evaluative processes and social judgment. Several lines of evidence, coming from neuropsychological and imaging studies, suggest that disrupted neural connectivity could play a role in the mechanistic explanation of these cognitive and emotional symptoms. The aim of the present study is to investigate the effective connectivity in a sample of bipolar patients. METHODS Dynamic causal modeling (DCM) technique was used to study 52 inpatients affected by bipolar disorders consecutively admitted to San Raffaele hospital in Milano and forty healthy subjects. A face-matching task was used as activation paradigm. RESULTS Patients with BD showed a significantly reduced endogenous connectivity in the DLPFC to Amy connection. There was no significant group effect upon the endogenous connection from Amy to ACC, from ACC to Amy and from DLPFC to ACC. CONCLUSIONS Both DLPFC and ACC are part of a network implicated in emotion regulation and share strong reciprocal connections with the amygdale. The pattern of abnormal or reduced connectivity between DLPFC and amygdala may reflect abnormal modulation of mood and emotion typical of bipolar patients.
Collapse
Affiliation(s)
- D Radaelli
- Department of Clinical Neurosciences, Istituto Scientifico Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (CERMAC), Milano, Italy.
| | - G Sferrazza Papa
- Department of Clinical Neurosciences, Istituto Scientifico Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - B Vai
- Department of Clinical Neurosciences, Istituto Scientifico Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - S Poletti
- Department of Clinical Neurosciences, Istituto Scientifico Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (CERMAC), Milano, Italy
| | - E Smeraldi
- Department of Clinical Neurosciences, Istituto Scientifico Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (CERMAC), Milano, Italy
| | - C Colombo
- Department of Clinical Neurosciences, Istituto Scientifico Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (CERMAC), Milano, Italy
| | - F Benedetti
- Department of Clinical Neurosciences, Istituto Scientifico Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (CERMAC), Milano, Italy
| |
Collapse
|
145
|
Ford JH, Kensinger EA. The relation between structural and functional connectivity depends on age and on task goals. Front Hum Neurosci 2014; 8:307. [PMID: 24904351 PMCID: PMC4032890 DOI: 10.3389/fnhum.2014.00307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023] Open
Abstract
The last decade has seen an increase in neuroimaging studies examining structural (i.e., structural integrity of white matter tracts) and functional connectivity (e.g., correlations in neural activity throughout the brain). Although structural and functional connectivity changes have often been measured independently, examining the relation between these two measures is critical to understanding the specific function of neural networks and the ways they may differ across tasks and individuals. The current study addressed this question by examining the effect of age (treated as a continuous variable) and emotional valence on the relation between functional and structural connectivity. As prior studies have suggested that prefrontal regions may guide and regulate emotional memory search via functional connections with the amygdala, the current analysis focused on functional connectivity between the left amygdala and the left prefrontal cortex, and structural integrity of the uncinate fasciculus, a white matter tract connecting prefrontal and temporal regions. Participants took part in a scanned retrieval task in which they recalled positive, negative, and neutral images associated with neutral titles. Aging was associated with a significant increase in the relation between measures of structural integrity (specifically, fractional anisotropy, or FA) along the uncinate fasciculus and functional connectivity between the left ventral prefrontal cortex and amygdala during positive event retrieval, but not negative or neutral retrieval. Notably, during negative event retrieval, age was linked to stronger structure-function relations between the amygdala and the dorsal anterior cingulate cortex, such that increased structural integrity predicted stronger negative functional connectivity in older adults only. These findings suggest that young and older adults may utilize a structural pathway to engage different retrieval and regulatory strategies, even when structural integrity along that pathway does not differ.
Collapse
Affiliation(s)
- Jaclyn H Ford
- Department of Psychology, Boston College Chestnut Hill, MA, USA
| | | |
Collapse
|
146
|
Ishikuro K, Urakawa S, Takamoto K, Ishikawa A, Ono T, Nishijo H. Cerebral functional imaging using near-infrared spectroscopy during repeated performances of motor rehabilitation tasks tested on healthy subjects. Front Hum Neurosci 2014; 8:292. [PMID: 24860474 PMCID: PMC4026732 DOI: 10.3389/fnhum.2014.00292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
To investigate the relationship between the frontal and sensorimotor cortices and motor learning, hemodynamic responses were recorded from the frontal and sensorimotor cortices using functional near infrared spectroscopy (NIRS) while healthy subjects performed motor learning tasks used in rehabilitation medicine. Whole-head NIRS recordings indicated that response latencies in the anterior dorsomedial prefrontal cortex (aDMPFC) were shorter than in other frontal and parietal areas. Furthermore, the increment rate of the hemodynamic responses in the aDMPFC across the eight repeated trials significantly correlated with those in the other areas, as well as with the improvement rate of task performance across the 8 repeated trials. In the second experiment, to dissociate scalp- and brain-derived hemodynamic responses, hemodynamic responses were recorded from the head over the aDMPFC using a multi-distance probe arrangement. Six probes (a single source probe and 5 detectors) were linearly placed 6 mm apart from each of the neighboring probes. Using independent component analyses of hemodynamic signals from the 5 source-detector pairs, we dissociated scalp- and brain-derived components of the hemodynamic responses. Hemodynamic responses corrected for scalp-derived responses over the aDMPFC significantly increased across the 8 trials and correlated with task performance. In the third experiment, subjects were required to perform the same task with and without transcranial direct current stimulation (tDCS) of the aDMPFC before the task. The tDCS significantly improved task performance. These results indicate that the aDMPFC is crucial for improved performance in repetitive motor learning.
Collapse
Affiliation(s)
- Koji Ishikuro
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Susumu Urakawa
- Department of Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Kouich Takamoto
- Department of Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Akihiro Ishikawa
- Medical Systems Division, R & D Department, Shimadzu, Co. Ltd. Kyoto, Japan
| | - Taketoshi Ono
- Department of Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| |
Collapse
|
147
|
Kolling N, Wittmann M, Rushworth MFS. Multiple neural mechanisms of decision making and their competition under changing risk pressure. Neuron 2014; 81:1190-1202. [PMID: 24607236 PMCID: PMC3988955 DOI: 10.1016/j.neuron.2014.01.033] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2014] [Indexed: 11/30/2022]
Abstract
Sometimes when a choice is made, the outcome is not guaranteed and there is only a probability of its occurrence. Each individual’s attitude to probability, sometimes called risk proneness or aversion, has been assumed to be static. Behavioral ecological studies, however, suggest such attitudes are dynamically modulated by the context an organism finds itself in; in some cases, it may be optimal to pursue actions with a low probability of success but which are associated with potentially large gains. We show that human subjects rapidly adapt their use of probability as a function of current resources, goals, and opportunities for further foraging. We demonstrate that dorsal anterior cingulate cortex (dACC) carries signals indexing the pressure to pursue unlikely choices and signals related to the taking of such choices. We show that dACC exerts this control over behavior when it, rather than ventromedial prefrontal cortex, interacts with posterior cingulate cortex. Against common belief, risk preference is not fixed but is dynamically updated Environments exert varying “risk pressure” tracked by ACC Risk-related values and behavior are then regulated by ACC Two mechanisms regulate competition for control of behavior between ACC and vmPFC
Collapse
Affiliation(s)
- Nils Kolling
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK.
| | - Marco Wittmann
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK; Centre for Functional MRI of the Brain, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
148
|
The lateral prefrontal cortex and complex value-based learning and decision making. Neurosci Biobehav Rev 2014; 45:9-18. [PMID: 24792234 DOI: 10.1016/j.neubiorev.2014.04.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 11/21/2022]
Abstract
Tremendous progress has been made in discerning the neurocognitive basis of value-based decision making and learning. Although the majority of studies to date have employed simple task paradigms, recent work has started to examine more complex aspects of value processing including: the value of engaging rule-based cognitive control; the integration of multiple pieces of information (e.g., reward magnitude and delay) to discern the best course of action; pursuing future rewards; valuation of abstract concepts (e.g., fairness); and comparing the value of executed versus imagined alternative actions. We provide a comprehensive review of functional neuroimaging, electrophysiological, and lesion evidence suggesting that the lateral prefrontal cortex (LPFC) plays a critical role in these complex aspects of value processing. In particular, we focus on the specific information that the LPFC represents, and argue that it includes both cognitive and value-based information. We also discuss how the role of the LPFC is distinct from other value-related regions. Finally, we articulate a framework for understanding the contribution of subregions along the rostro-caudal axis of the LPFC, and thereby bridge the cognitive control and decision making literatures.
Collapse
|
149
|
Medial prefrontal and anterior cingulate cortical thickness predicts shared individual differences in self-generated thought and temporal discounting. Neuroimage 2014; 90:290-7. [DOI: 10.1016/j.neuroimage.2013.12.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/17/2013] [Accepted: 12/22/2013] [Indexed: 11/24/2022] Open
|
150
|
Matsunaga M, Isowa T, Yamakawa K, Fukuyama S, Shinoda J, Yamada J, Ohira H. Genetic variations in the human cannabinoid receptor gene are associated with happiness. PLoS One 2014; 9:e93771. [PMID: 24690898 PMCID: PMC3972248 DOI: 10.1371/journal.pone.0093771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/07/2014] [Indexed: 01/15/2023] Open
Abstract
Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude positive emotions when they experienced positive events and had a higher subjective happiness level.
Collapse
Affiliation(s)
- Masahiro Matsunaga
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Aichi, Japan
- * E-mail:
| | - Tokiko Isowa
- Department of Gerontological Nursing, Mie University Faculty of Medicine, Mie, Japan
| | - Kaori Yamakawa
- Department of Psychology, Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
| | - Seisuke Fukuyama
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Gifu, Japan
| | - Jun Shinoda
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Gifu, Japan
| | - Jitsuhiro Yamada
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Gifu, Japan
| | - Hideki Ohira
- Department of Psychology, Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
| |
Collapse
|