101
|
Usman M, Priya K, Pandit S, Gupta P. Cancer risk and nullity of Glutathione-S-transferase mu and theta 1 in occupational pesticide workers. Curr Pharm Biotechnol 2021; 23:932-945. [PMID: 34375184 DOI: 10.2174/1389201022666210810092342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/08/2022]
Abstract
Occupational exposure to pesticides has been associated with adverse health conditions, including genotoxicity and cancer. Nullity of GSTT1/GSTM1 increases the susceptibility of pesticide workers to these adverse health effects due to lack of efficient detoxification process created by the absence of these key xenobiotic metabolizing enzymes. However, this assertion does not seem to maintain its stance at all the time; some pesticide workers with the null genotypes do not present the susceptibility. This suggests the modulatory role of other confounding factors, genetic and environmental conditions. Pesticides, aggravated by the null GSTT1/GSTM1, cause genotoxicity and cancer through oxidative stress and miRNA dysregulation. Thus, the absence of these adverse health effects together with the presence of null GSTT1/GSTM1 genotypes demands further explanation. Also, understanding the mechanism behind the protection of cells - that are devoid of GSTT1/GSTM1 - from oxidative stress constitutes a great challenge and potential research area. Therefore, this review article highlights the recent advancements in the presence and absence of cancer risk in occupational pesticide workers with GSTT1 and GSTM1 null genotypes.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Piyush Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| |
Collapse
|
102
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
103
|
Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y, Chang W. The Role of Non-coding RNAs in Alzheimer's Disease: From Regulated Mechanism to Therapeutic Targets and Diagnostic Biomarkers. Front Aging Neurosci 2021; 13:654978. [PMID: 34276336 PMCID: PMC8283767 DOI: 10.3389/fnagi.2021.654978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. AD is characterized by the production and aggregation of beta-amyloid (Aβ) peptides, hyperphosphorylated tau proteins that form neurofibrillary tangles (NFTs), and subsequent neuroinflammation, synaptic dysfunction, autophagy and oxidative stress. Non-coding RNAs (ncRNAs) can be used as potential therapeutic targets and biomarkers due to their vital regulatory roles in multiple biological processes involved in disease development. The involvement of ncRNAs in the pathogenesis of AD has been increasingly recognized. Here, we review the ncRNAs implicated in AD and elaborate on their main regulatory pathways, which might have contributions for discovering novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanfang Zhao
- Institute of Biomedical Research, School for Life Science, Shandong University of Technology, Zibo, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
104
|
Zhang JH, Zhang JF, Song J, Bai Y, Deng L, Feng CP, Xu XY, Guo HX, Wang Y, Gao X, Gu Y, Jin C, Zheng JF, Zhen Z, Su H. Effects of Berberine on Diabetes and Cognitive Impairment in an Animal Model: The Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1399-1415. [PMID: 34137676 DOI: 10.1142/s0192415x21500658] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes is a group of metabolic disorders with an increased risk of developing cognitive impairment and dementia. The hippocampus in the forebrain contains an abundance of insulin receptors related to cognitive function and plays an important role in the pathophysiology of neurodegenerative disorders. Berberine from traditional Chinese medicine has been used to treat diabetes and diabetic cognitive impairment, although its related mechanisms are largely unknown. In this study, a STZ diabetes rat model feeding with a high-fat diet was used to test the effects of berberine compared with metformin. Oral glucose tolerance and hyperinsulinemic-euglycemic clamp were used for glucose metabolism and insulin resistance. The Morris water maze was used to observe the compound effects on cognitive impairment. Serum and hippocampal [Formula: see text]-amyloid peptide (A[Formula: see text], Tau and phosphorylated Tau protein deposition in the hippocampi were measured. The TUNEL assay was used to detect the neuronal apoptosis, supported by histomorphological changes and transmissional electron microscopy (TEM) image. Our data showed that the diabetic rats had a significantly cognitive impairment. In addition to improving glucose metabolism and reducing insulin resistance, berberine significantly improved the cognitive function in the rat. Berberine also effectively decreased the expression of hippocampal tau protein, phosphorylated Tau, and increased insulin receptor antibodies. Moreover, berberine downregulated the abnormal phosphorylation of A[Formula: see text] and Tau protein and improved hippocampal insulin signaling. The TUNEL assay confirmed that berberine reduced hippocampal neuronal apoptosis supported by TEM. Thus, berberine significantly improved the cognitive function in diabetic rats by changing the peripheral and central insulin resistance. The reduction of neuronal injury, A[Formula: see text] deposition, abnormal phosphorylation of Tau protein, and neuronal apoptosis in the hippocampus were observed as the related mechanisms of action.
Collapse
Affiliation(s)
| | - Jin-Feng Zhang
- Jingmen Hospital of Traditional Chinese Medicine, Jingmen 448000, P. R. China
| | - Jun Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yu Bai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Lan Deng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Chun-Peng Feng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xin-Yao Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Hong-Xia Guo
- Langfang Normal University, Langfang 065000, P. R. China
| | - Yi Wang
- Tianjin Anding Hospital, Tianjin 300222, P. R. China
| | - Xin Gao
- Tianjin Anding Hospital, Tianjin 300222, P. R. China
| | - Yan Gu
- Tianjin Third Central Hospital, Tianjin 300170, P. R. China
| | - Chuan Jin
- Tianjin Binhai New Area Dagang Hospital, Tianjin 300270, P. R. China
| | - Jun-Fu Zheng
- Tianjin Binhai New Area TCM Hospital, Tianjin 300451, P. R. China
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Hao Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
105
|
Epple R, Krüger D, Berulava T, Brehm G, Ninov M, Islam R, Köster S, Fischer A. The Coding and Small Non-coding Hippocampal Synaptic RNAome. Mol Neurobiol 2021; 58:2940-2953. [PMID: 33569760 PMCID: PMC8128755 DOI: 10.1007/s12035-021-02296-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Neurons are highly compartmentalized cells that depend on local protein synthesis. Messenger RNAs (mRNAs) have thus been detected in neuronal dendrites, and more recently in the pre- and postsynaptic compartments as well. Other RNA species such as microRNAs have also been described at synapses where they are believed to control mRNA availability for local translation. A combined dataset analyzing the synaptic coding and non-coding RNAome via next-generation sequencing approaches is, however, still lacking. Here, we isolate synaptosomes from the hippocampus of young wild-type mice and provide the coding and non-coding synaptic RNAome. These data are complemented by a novel approach for analyzing the synaptic RNAome from primary hippocampal neurons grown in microfluidic chambers. Our data show that synaptic microRNAs control almost the entire synaptic mRNAome, and we identified several hub microRNAs. By combining the in vivo synaptosomal data with our novel microfluidic chamber system, our findings also support the hypothesis that part of the synaptic microRNAome may be supplied to neurons via astrocytes. Moreover, the microfluidic system is suitable for studying the dynamics of the synaptic RNAome in response to stimulation. In conclusion, our data provide a valuable resource and point to several important targets for further research.
Collapse
Affiliation(s)
- Robert Epple
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Dennis Krüger
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Tea Berulava
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Gerrit Brehm
- Institute for X-Ray Physics, University of Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Momchil Ninov
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Rezaul Islam
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Andre Fischer
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
106
|
Nogami M, Ishikawa M, Doi A, Sano O, Sone T, Akiyama T, Aoki M, Nakanishi A, Ogi K, Yano M, Okano H. Identification of hub molecules of FUS-ALS by Bayesian gene regulatory network analysis of iPSC model: iBRN. Neurobiol Dis 2021; 155:105364. [PMID: 33857636 DOI: 10.1016/j.nbd.2021.105364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma/translated in liposarcoma (FUS) is a causative gene of amyotrophic lateral sclerosis (ALS). Mutated FUS causes accumulation of DNA damage and cytosolic stress granule (SG) formation, thereby motor neuron (MN) death. However, key molecular aetiology remains unclear. Here, we applied a novel platform technology, iBRN, "Non- biased" Bayesian gene regulatory network analysis based on induced pluripotent stem cell (iPSC)-derived cell model, to elucidate the molecular aetiology using transcriptome of iPSC-derived MNs harboring FUSH517D. iBRN revealed "hub molecules", which strongly influenced transcriptome network, such as miR-125b-5p-TIMELESS axis and PRKDC for the molecular aetiology. Next, we confirmed miR-125b-5p-TIMELESS axis in FUSH517D MNs such that miR-125b-5p regulated several DNA repair-related genes including TIMELESS. In addition, we validated both introduction of miR-125b-5p and knocking down of TIMELESS caused DNA damage in the cell culture model. Furthermore, PRKDC was strongly associated with FUS mis-localization into SGs by DNA damage under impaired DNA-PK activity. Collectively, our iBRN strategy provides the first compelling evidence to elucidate molecular aetiology in neurodegenerative diseases.
Collapse
Affiliation(s)
- Masahiro Nogami
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan; Shonan Incubation Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan.
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Osamu Sano
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Nakanishi
- Shonan Incubation Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan
| | - Kazuhiro Ogi
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan; Shonan Incubation Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan
| | - Masato Yano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
107
|
Differential miRNA Expression Profiling Reveals Correlation of miR125b-5p with Persistent Infection of Japanese Encephalitis Virus. Int J Mol Sci 2021; 22:ijms22084218. [PMID: 33921710 PMCID: PMC8073291 DOI: 10.3390/ijms22084218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play versatile roles in multiple biological processes. However, little is known about miRNA’s involvement in flavivirus persistent infection. Here, we used an miRNA array analysis of Japanese encephalitis virus (JEV)-infected cells to search for persistent infection-associated miRNAs in comparison to acute infection. Among all differentially expressed miRNAs, the miR-125b-5p is the most significantly increased one. The high level of miR-125b-5p in persistently JEV-infected cells was confirmed by Northern analysis and real-time quantitative polymerase chain reaction. As soon as the cells established a persistent infection, a significantly high expression of miR-125b-5p was readily observed. Transfecting excess quantities of a miR-125b-5p mimic into acutely infected cells reduced genome replication and virus titers. Host targets of miR125b-5p were analyzed by target prediction algorithms, and six candidates were confirmed by a dual-luciferase reporter assay. These genes were upregulated in the acutely infected cells and sharply declined in the persistently infected cells. The transfection of the miR125b-5p mimic reduced the expression levels of Stat3, Map2k7, and Triap1. Our studies indicated that miR-125b-5p targets both viral and host sequences, suggesting its role in coordinating viral replication and host antiviral responses. This is the first report to characterize the potential roles of miR-125b-5p in persistent JEV infections.
Collapse
|
108
|
Benameur T, Soleti R, Porro C. The Potential Neuroprotective Role of Free and Encapsulated Quercetin Mediated by miRNA against Neurological Diseases. Nutrients 2021; 13:1318. [PMID: 33923599 PMCID: PMC8073422 DOI: 10.3390/nu13041318] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic neuroinflammation is a pathological condition of numerous central nervous system (CNS) diseases such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis and many others. Neuroinflammation is characterized by the microglia activation and concomitant production of pro-inflammatory cytokines leading to an increasing neuronal cell death. The decreased neuroinflammation could be obtained by using natural compounds, including flavonoids known to modulate the inflammatory responses. Among flavonoids, quercetin possess multiple pharmacological applications including anti-inflammatory, antitumoral, antiapoptotic and anti-thrombotic activities, widely demonstrated in both in vitro and in vivo studies. In this review, we describe the recent findings about the neuroprotective action of quercetin by acting with different mechanisms on the microglial cells of CNS. The ability of quercetin to influence microRNA expression represents an interesting skill in the regulation of inflammation, differentiation, proliferation, apoptosis and immune responses. Moreover, in order to enhance quercetin bioavailability and capacity to target the brain, we discuss an innovative drug delivery system. In summary, this review highlighted an important application of quercetin in the modulation of neuroinflammation and prevention of neurological disorders.
Collapse
Affiliation(s)
- Tarek Benameur
- College of Medicine, Department of Biomedical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Raffaella Soleti
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49800 Angers, France;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| |
Collapse
|
109
|
Zheng K, Hu F, Zhou Y, Zhang J, Zheng J, Lai C, Xiong W, Cui K, Hu YZ, Han ZT, Zhang HH, Chen JG, Man HY, Liu D, Lu Y, Zhu LQ. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer's disease. Nat Commun 2021; 12:1903. [PMID: 33771994 PMCID: PMC7998005 DOI: 10.1038/s41467-021-22196-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant regulation of microRNAs (miRNAs) has been implicated in the pathogenesis of Alzheimer's disease (AD), but most abnormally expressed miRNAs found in AD are not regulated by synaptic activity. Here we report that dysfunction of miR-135a-5p/Rock2/Add1 results in memory/synaptic disorder in a mouse model of AD. miR-135a-5p levels are significantly reduced in excitatory hippocampal neurons of AD model mice. This decrease is tau dependent and mediated by Foxd3. Inhibition of miR-135a-5p leads to synaptic disorder and memory impairments. Furthermore, excess Rock2 levels caused by loss of miR-135a-5p plays an important role in the synaptic disorder of AD via phosphorylation of Ser726 on adducin 1 (Add1). Blocking the phosphorylation of Ser726 on Add1 with a membrane-permeable peptide effectively rescues the memory impairments in AD mice. Taken together, these findings demonstrate that synaptic-related miR-135a-5p mediates synaptic/memory deficits in AD via the Rock2/Add1 signaling pathway, illuminating a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yang Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Juan Zhang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jie Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wan Xiong
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ke Cui
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ya-Zhuo Hu
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, P. R. China
| | - Zhi-Tao Han
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, P. R. China
| | - Hong-Hong Zhang
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, P. R. China
| | - Jian-Guo Chen
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Dan Liu
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Youming Lu
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
110
|
Moraghebi M, Maleki R, Ahmadi M, Negahi AA, Abbasi H, Mousavi P. In silico Analysis of Polymorphisms in microRNAs Deregulated in Alzheimer Disease. Front Neurosci 2021; 15:631852. [PMID: 33841080 PMCID: PMC8024493 DOI: 10.3389/fnins.2021.631852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative condition characterized by progressive cognitive impairment and dementia. Findings have revolutionized current knowledge of miRNA in the neurological conditions. Two regulatory mechanisms determine the level of mature miRNA expression; one is miRNA precursor processing, and the other is gene expression regulation by transcription factors. This study is allocated to the in-silico investigation of miRNA's SNPs and their effect on other cell mechanisms. METHODS We used databases which annotate the functional effect of SNPs on mRNA-miRNA and miRNA-RBP interaction. Also, we investigated SNPs which are located on the promoter or UTR region. RESULTS miRNA SNP3.0 database indicated several SNPs in miR-339 and miR-34a in the upstream and downstream of pre-miRNA and mature miRNAs. While, for some miRNAs miR-124, and miR-125, no polymorphism was observed, and also miR-101 with ΔG -3.1 and mir-328 with ΔG 5.8 had the highest and lowest potencies to produce mature microRNA. SNP2TFBS web-server presented several SNPs which altered the Transcription Factor Binding Sites (TFBS) or generated novel TFBS in the promoter regions of related miRNA. At last, RBP-Var database provided a list of SNPs which alter miRNA-RBP interaction pattern and can also influence other miRNAs' expression. DISCUSSION The results indicated that SNPs microRNA affects both miRNA function and miRNA expression. Our study expands molecular insight into how SNPs in different parts of miRNA, including the regulatory (promoter), the precursor (pre-miRNA), functional regions (seed region of mature miRNA), and RBP-binding motifs, which theoretically may be correlated to the Alzheimer's disease.
Collapse
Affiliation(s)
- Mahta Moraghebi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Maleki
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Ahmadi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Agha Negahi
- Department of Internal Medicine, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Abbasi
- Student Research Committee, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
111
|
Samadian M, Gholipour M, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. The Eminent Role of microRNAs in the Pathogenesis of Alzheimer's Disease. Front Aging Neurosci 2021; 13:641080. [PMID: 33790780 PMCID: PMC8005705 DOI: 10.3389/fnagi.2021.641080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is an irrevocable neurodegenerative condition characterized by the presence of senile plaques comprising amassed β-amyloid peptides (Aβ) and neurofibrillary tangles mainly comprising extremely phosphorylated Tau proteins. Recent studies have emphasized the role of microRNAs (miRNAs) in the development of AD. A number of miRNAs, namely, miR-200a-3p, miR-195, miR-338-5p, miR-34a-5p, miR-125b-5p, miR-132, miR-384, miR-339-5p, miR-135b, miR-425-5p, and miR-339-5p, have been shown to participate in the development of AD through interacting with BACE1. Other miRNAs might affect the inflammatory responses in the course of AD. Aberrant expression of several miRNAs in the plasma samples of AD subjects has been shown to have the aptitude for differentiation of AD subjects from healthy subjects. Finally, a number of AD-modifying agents affect miRNA profile in cell cultures or animal models. We have performed a comprehensive search and summarized the obtained data about the function of miRNAs in AD in the current review article.
Collapse
Affiliation(s)
- Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
112
|
MicroRNAs as Candidate Biomarkers for Alzheimer's Disease. Noncoding RNA 2021; 7:ncrna7010008. [PMID: 33535543 PMCID: PMC7930943 DOI: 10.3390/ncrna7010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
The neurological damage of Alzheimer’s disease (AD) is thought to be irreversible upon onset of dementia-like symptoms, as it takes years to decades for occult pathologic changes to become symptomatic. It is thus necessary to identify individuals at risk for the development of the disease before symptoms manifest in order to provide early intervention. Surrogate markers are critical for early disease detection, stratification of patients in clinical trials, prediction of disease progression, evaluation of response to treatment, and also insight into pathomechanisms. Here, we review the evidence for a number of microRNAs that may serve as biomarkers with possible mechanistic insights into the AD pathophysiologic processes, years before the clinical manifestation of the disease.
Collapse
|
113
|
Nikolac Perkovic M, Videtic Paska A, Konjevod M, Kouter K, Svob Strac D, Nedic Erjavec G, Pivac N. Epigenetics of Alzheimer's Disease. Biomolecules 2021; 11:biom11020195. [PMID: 33573255 PMCID: PMC7911414 DOI: 10.3390/biom11020195] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
There are currently no validated biomarkers which can be used to accurately diagnose Alzheimer’s disease (AD) or to distinguish it from other dementia-causing neuropathologies. Moreover, to date, only symptomatic treatments exist for this progressive neurodegenerative disorder. In the search for new, more reliable biomarkers and potential therapeutic options, epigenetic modifications have emerged as important players in the pathogenesis of AD. The aim of the article was to provide a brief overview of the current knowledge regarding the role of epigenetics (including mitoepigenetics) in AD, and the possibility of applying these advances for future AD therapy. Extensive research has suggested an important role of DNA methylation and hydroxymethylation, histone posttranslational modifications, and non-coding RNA regulation (with the emphasis on microRNAs) in the course and development of AD. Recent studies also indicated mitochondrial DNA (mtDNA) as an interesting biomarker of AD, since dysfunctions in the mitochondria and lower mtDNA copy number have been associated with AD pathophysiology. The current evidence suggests that epigenetic changes can be successfully detected, not only in the central nervous system, but also in the cerebrospinal fluid and on the periphery, contributing further to their potential as both biomarkers and therapeutic targets in AD.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.N.P.); (M.K.); (D.S.S.); (G.N.E.)
| | - Alja Videtic Paska
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.V.P.); (K.K.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.N.P.); (M.K.); (D.S.S.); (G.N.E.)
| | - Katarina Kouter
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.V.P.); (K.K.)
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.N.P.); (M.K.); (D.S.S.); (G.N.E.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.N.P.); (M.K.); (D.S.S.); (G.N.E.)
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.N.P.); (M.K.); (D.S.S.); (G.N.E.)
- Correspondence: ; Tel.: +38-514-571-207
| |
Collapse
|
114
|
Vergallo A, Lista S, Zhao Y, Lemercier P, Teipel SJ, Potier MC, Habert MO, Dubois B, Lukiw WJ, Hampel H. MiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaints. Transl Psychiatry 2021; 11:78. [PMID: 33504764 PMCID: PMC7840941 DOI: 10.1038/s41398-020-01184-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
There is substantial experimental evidence for dysregulation of several microRNA (miRNA) expression levels in Alzheimer's disease (AD). MiRNAs modulate critical brain intracellular signaling pathways and are associated with AD core pathophysiological mechanisms. First, we conducted a real-time quantitative PCR-based pilot study to identify a set of brain-enriched miRNAs in a monocentric cohort of cognitively normal individuals with subjective memory complaints, a condition associated with increased risk of AD. Second, we investigated the impact of age, sex, and the Apolipoprotein E ε4 (APOE ε4) allele, on the identified miRNA plasma concentrations. In addition, we explored the cross-sectional and longitudinal association of the miRNAs plasma concentrations with regional brain metabolic uptake using amyloid-β (Aβ)-positron emission tomography (Aβ-PET) and 18F-fluorodeoxyglucose-PET (18F-FDG-PET). We identified a set of six brain-enriched miRNAs-miRNA-125b, miRNA-146a, miRNA-15b, miRNA-148a, miRNA-26b, and miRNA-100. Age, sex, and APOE ε4 allele were not associated with individual miRNA abundance. MiRNA-15b concentrations were significantly lower in the Aβ-PET-positive compared to Aβ-PET-negative individuals. Furthermore, we found a positive effect of the miRNA-15b*time interaction on regional metabolic 18F-FDG-PET uptake in the left hippocampus. Plasma miRNA-125b concentrations, as well as the miRNA-125b*time interaction (over a 2-year follow-up), were negatively associated with regional Aβ-PET standard uptake value ratio in the right anterior cingulate cortex. At baseline, we found a significantly negative association between plasma miRNA-125b concentrations and 18F-FDG-PET uptake in specific brain regions. In an asymptomatic at-risk population for AD, we show significant associations between plasma concentrations of miRNA-125b and miRNA-15b with core neuroimaging biomarkers of AD pathophysiology. Our results, coupled with existing experimental evidence, suggest a potential protective anti-Aβ effect of miRNA-15b and a biological link between miRNA-125b and Aβ-independent neurotoxic pathways.
Collapse
Affiliation(s)
- Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013 Paris, France ,grid.411439.a0000 0001 2150 9058Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013 Paris, France ,grid.411439.a0000 0001 2150 9058Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, F-75013 Paris, France
| | - Yuhai Zhao
- grid.279863.10000 0000 8954 1233LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112 USA ,grid.279863.10000 0000 8954 1233Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, LA 70112 USA
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013 Paris, France ,grid.411439.a0000 0001 2150 9058Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013 Paris, France ,grid.411439.a0000 0001 2150 9058Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, F-75013 Paris, France
| | - Stefan J. Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ,grid.10493.3f0000000121858338Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Marie-Claude Potier
- grid.411439.a0000 0001 2150 9058ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, F-75013 Paris, France
| | - Marie-Odile Habert
- grid.503298.50000 0004 0370 0969Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, F-75013 Paris, France ,Centre pour l’Acquisition et le Traitement des Images (www.cati-neuroimaging.com), Paris, France ,grid.411439.a0000 0001 2150 9058AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, F-75013 Paris, France
| | - Bruno Dubois
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013 Paris, France ,grid.411439.a0000 0001 2150 9058Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013 Paris, France ,grid.411439.a0000 0001 2150 9058Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, F-75013 Paris, France
| | - Walter J. Lukiw
- Alchem Biotech Research, Toronto, ON M5S 1A8 Canada ,grid.279863.10000 0000 8954 1233Department of Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112 USA ,grid.279863.10000 0000 8954 1233Department Neurology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, LA 70112 USA
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013 Paris, France
| | | | | |
Collapse
|
115
|
Li P, Mao WW, Zhang S, Zhang L, Chen ZR, Lu ZD. Sodium hydrosulfide alleviates dexamethasone-induced cell senescence and dysfunction through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells. Exp Ther Med 2021; 21:238. [PMID: 33603846 PMCID: PMC7851607 DOI: 10.3892/etm.2021.9669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/15/2020] [Indexed: 01/30/2023] Open
Abstract
Glucocorticoid-induced osteoporosis is characterized by osteoblastic cell and microarchitecture dysfunction, as well as a loss of bone mass. Cell senescence contributes to the pathological process of osteoporosis and sodium hydrosulfide (NaHS) regulates the potent protective effects through delaying cell senescence. The aim of the present study was to investigate whether senescence could contribute to dexamethasone (Dex)-induced osteoblast impairment and to examine the effect of NaHS on Dex-induced cell senescence and damage. It was found that the levels of the senescence-associated markers, p53 and p21, were markedly increased in osteoblasts exposed to Dex. A p53 inhibitor reversed Dex-induced osteoblast injury, a process that was mitigated by NaHS administration through alleviating osteoblastic cell senescence. MicroRNA (miR)-22 blocked the impact of NaHS on Dex-induced osteoblast damage and senescence through targeting the regulation of Sirtuin 1 (sirt1) expression, as shown by the decreased cell viability and alkaline phosphatase activity, as well as an increased expression of p53 and p21. It was revealed that the sirt1 gene was the target of miR-22 in osteoblastic MC3T3-E1 cells through combining the results of dual luciferase reporter assays and reverse transcription-quantitative PCR, as well as western blot analyses. Silencing of sirt1 abolished the protective effect of NaHS against Dex-associated osteoblast senescence and injury. Taken together, the present study showed that NaHS prevents Dex-induced cell senescence and damage through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Wei-Wei Mao
- Clinical Skill Center of Yinchuan First People's Hospital, Yinchuan, Ningxia 750001, P.R. China
| | - Shuai Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Liang Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Rong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Dong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
116
|
Gu JL, Liu F. Tau in Alzheimer's Disease: Pathological Alterations and an Attractive Therapeutic Target. Curr Med Sci 2021; 40:1009-1021. [PMID: 33428128 DOI: 10.1007/s11596-020-2282-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with two major hallmarks: extracellular amyloid plaques made of amyloid-β (Aβ) and intracellular neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau. The number of NFTs correlates positively with the severity of dementia in AD patients. However, there is still no efficient therapy available for AD treatment and prevention so far. A deeper understanding of AD pathogenesis has identified novel strategies for the generation of specific therapies over the past few decades. Several studies have suggested that the prion-like seeding and spreading of tau pathology in the brain may be a key driver of AD. Tau protein is considered as a promising candidate target for the development of therapeutic interventions due to its considerable pathological role in a variety of neurodegenerative disorders. Abnormal tau hyperphosphorylation plays a detrimental pathological role, eventually leading to neurodegeneration. In the present review, we describe the recent research progresses in the pathological mechanisms of tau protein in AD and briefly discuss tau-based therapeutic strategies.
Collapse
Affiliation(s)
- Jian-Lan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, 226001, China. .,Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Nantong, 226001, China.
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| |
Collapse
|
117
|
Siedlecki-Wullich D, Miñano-Molina AJ, Rodríguez-Álvarez J. microRNAs as Early Biomarkers of Alzheimer's Disease: A Synaptic Perspective. Cells 2021; 10:113. [PMID: 33435363 PMCID: PMC7827653 DOI: 10.3390/cells10010113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Pathogenic processes underlying Alzheimer's disease (AD) affect synaptic function from initial asymptomatic stages, long time before the onset of cognitive decline and neurodegeneration. Therefore, reliable biomarkers enabling early AD diagnosis and prognosis are needed to maximize the time window for therapeutic interventions. MicroRNAs (miRNAs) have recently emerged as promising cost-effective and non-invasive biomarkers for AD, since they can be readily detected in different biofluids, including cerebrospinal fluid (CSF) and blood. Moreover, a growing body of evidence indicates that miRNAs regulate synaptic homeostasis and plasticity processes, suggesting that they may be involved in early synaptic dysfunction during AD. Here, we review the current literature supporting a role of miRNAs during early synaptic deficits in AD, including recent studies evaluating their potential as AD biomarkers. Besides targeting genes related to Aβ and tau metabolism, several miRNAs also regulate synaptic-related proteins and transcription factors implicated in early synaptic deficits during AD. Furthermore, individual miRNAs and molecular signatures have been found to distinguish between prodromal AD and healthy controls. Overall, these studies highlight the relevance of considering synaptic-related miRNAs as potential biomarkers of early AD stages. However, further validation studies in large cohorts, including longitudinal studies, as well as implementation of standardized protocols, are needed to establish miRNA-based biomarkers as reliable diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Dolores Siedlecki-Wullich
- Department Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.J.M.-M.); (J.R.-Á.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
| | - Alfredo J. Miñano-Molina
- Department Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.J.M.-M.); (J.R.-Á.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
| | - José Rodríguez-Álvarez
- Department Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.J.M.-M.); (J.R.-Á.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
118
|
Zhuang J, Chen Z, Cai P, Wang R, Yang Q, Li L, Yang H, Zhu R. Targeting MicroRNA-125b Promotes Neurite Outgrowth but Represses Cell Apoptosis and Inflammation via Blocking PTGS2 and CDK5 in a FOXQ1-Dependent Way in Alzheimer Disease. Front Cell Neurosci 2021; 14:587747. [PMID: 33408612 PMCID: PMC7779636 DOI: 10.3389/fncel.2020.587747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the molecular regulatory network among microRNA-125b (miR-125b), forkhead box Q1 (FOXQ1), prostaglandin-endoperoxide synthase 2 (PTGS2), and cyclin-dependent kinase 5 (CDK5), as well as their effects on cell apoptosis, neurite outgrowth, and inflammation in Alzheimer disease (AD). Rat embryo cerebral cortex neurons and nerve growth factor-stimulated PC12 cells were insulted by Aβ1-42 to construct two AD cellular models. Negative control (NC) inhibitor, miR-125b inhibitor, NC siRNA, FOXQ1 siRNA, PTGS2 siRNA, and CDK5 siRNA were transferred into the two AD cellular models alone or combined. Then, cell apoptosis, neurite outgrowth, proinflammatory cytokines, miR-125b, FOXQ1, PTGS2, and CDK5 expressions were detected. MiR-125b inhibition facilitated neurite outgrowth but suppressed cell apoptosis and proinflammatory cytokines (tumor necrosis factor-α, interleukin 1β, and interleukin 6); meanwhile, it upregulated FOXQ1 but downregulated PTGS2 and CDK5. Furthermore, FOXQ1 inhibition promoted cell apoptosis and proinflammatory cytokines but repressed neurite outgrowth; PTGS2 inhibition achieved the opposite effects; CDK5 inhibition attenuated cell apoptosis, whereas it less affected neurite outgrowth and inflammation. Notably, FOXQ1 inhibition attenuated, whereas PTGS2 inhibition elevated the effect of miR-125b inhibition on regulating neurite outgrowth, cell apoptosis, and proinflammatory cytokines. As for CDK5 inhibition, it enhanced the effect of miR-125b inhibition on regulating cell apoptosis, but less impacted the neurite outgrowth and proinflammatory cytokines. Additionally, PTGS2 inhibition and CDK5 inhibition both reversed the effect of FOXQ1 inhibition on regulating cell apoptosis, neurite outgrowth, and proinflammatory cytokines. In conclusion, targeting miR-125b alleviates AD progression via blocking PTGS2 and CDK5 in a FOXQ1-dependent way.
Collapse
Affiliation(s)
- Jingcong Zhuang
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Zhongjie Chen
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Pingping Cai
- Department of Neurology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Rong Wang
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Qingwei Yang
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Longling Li
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Huili Yang
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Renjing Zhu
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
119
|
The Tetramethylpyrazine Analogue T-006 Alleviates Cognitive Deficits by Inhibition of Tau Expression and Phosphorylation in Transgenic Mice Modeling Alzheimer's Disease. J Mol Neurosci 2021; 71:1456-1466. [PMID: 33403592 DOI: 10.1007/s12031-020-01762-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
T-006, a small-molecule compound derived from tetramethylpyrazine (TMP), has potential for the treatment of neurological diseases. In order to investigate the effect of T-006 prophylactic treatment on an Alzheimer's disease (AD) model and identify the target of T-006, we intragastrically administered T-006 (3 mg/kg) to Alzheimer's disease (AD) transgenic mice (APP/PS1-2xTg and APP/PS1/Tau-3xTg) for 6 and 8 months, respectively. T-006 improved cognitive ability after long-term administration in two AD mouse models and targeted mitochondrial-related protein alpha-F1-ATP synthase (ATP5A). T-006 significantly reduced the expression of phosphorylated-tau, total tau, and APP while increasing the expression of synapse-associated proteins in 3xTg mice. In addition, T-006 modulated the JNK and mTOR-ULK1 pathways to reduce both p-tau and total tau levels. Our data suggested that T-006 mitigated cognitive decline primarily by reducing the p-tau and total tau levels in 3xTg mice, supporting further investigation into its development as a candidate drug for AD treatment.
Collapse
|
120
|
Cenini G, Hebisch M, Iefremova V, Flitsch LJ, Breitkreuz Y, Tanzi RE, Kim DY, Peitz M, Brüstle O. Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Mol Cell Neurosci 2021; 110:103568. [DOI: 10.1016/j.mcn.2020.103568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
|
121
|
Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Curr Neuropharmacol 2020; 19:3-23. [PMID: 32359338 PMCID: PMC7903498 DOI: 10.2174/1570159x18666200503024700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
122
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
123
|
Mahernia S, Sarvari S, Fatahi Y, Amanlou M. The Role of HSA21 Encoded Mirna in Down Syndrome Pathophysiology:Opportunities in miRNA-Targeted Pharmacotherapy and Diagnosis of the Down Syndrome. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Trisomy 21 is the most prevalent aneuploidy disorder among live-born children worldwide. Itresults from the presence of an extra copy of chromosome 21 which leads to a wide spectrum ofpathophysiological abnormalities and intellectual disabilities. Nevertheless human chromosome21 (HSA21) possess protein non-coding regions where HAS-21 derived-microRNA genes aretranscribed from. In turn, these HSA21-derived miRNAs curb protein translation of severalgenes which are essential to meet memory and cognitive abilities. From the genetics andmolecular biology standpoints, dissecting the mechanistic relationship between DS pathology/symptoms and five chromosome 21-encoded miRNAs including miR-99a, let-7c, miR-125b-2,miR-155 and miR-802 seems pivotal for unraveling novel therapeutic targets. Recently,several studies have successfully carried out small molecule inhibition of miRNAs function,maturation, and biogenesis. One might assume in the case of DS trisomy, the pharmacologicalinhibition of these five overexpressed miRNAs might open new avenues for amelioration of theDS symptoms and complications. In this review, we primarily elucidated the role of HSA21-encoded miRNAs in the DS pathology which in turn introduced and addressed importanttherapeutic targets. Moreover, we reviewed relevant pharmaceutical efforts that based theirgoals on inhibition of these pathological miRNAs at their different biogenesis steps. We havealso discussed the challenges that undermine and question the reliability of miRNAs as noneinvasivebiomarkers in prenatal diagnosis.
Collapse
Affiliation(s)
- Shabnam Mahernia
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sarvari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences,Tehran, Iran
| |
Collapse
|
124
|
Pathak GA, Silzer TK, Sun J, Zhou Z, Daniel AA, Johnson L, O'Bryant S, Phillips NR, Barber RC. Genome-Wide Methylation of Mild Cognitive Impairment in Mexican Americans Highlights Genes Involved in Synaptic Transport, Alzheimer's Disease-Precursor Phenotypes, and Metabolic Morbidities. J Alzheimers Dis 2020; 72:733-749. [PMID: 31640099 DOI: 10.3233/jad-190634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Mexican American population is among the fastest growing aging population and has a younger onset of cognitive decline. This group is also heavily burdened with metabolic conditions such as hypertension, diabetes, and obesity. Unfortunately, limited research has been conducted in this group. Understanding methylation alterations, which are influenced by both genetic and lifestyle factors, is key to identifying and addressing the root cause for mild cognitive impairment, a clinical precursor for dementia. We conducted an epigenome-wide association study on a community-based Mexican American population using the Illumina EPIC array. Following rigorous quality control measures, we identified 10 CpG sites to be differentially methylated between normal controls and individuals with mild cognitive impairment annotated to PKIB, KLHL29, SEPT9, OR2C3, CPLX3, BCL2L2-PABPN1, and CCNY. We found four regions to be differentially methylated in TMEM232, SLC17A8, ALOX12, and SEPT8. Functional gene-set analysis identified four gene-sets, RIN3, SPEG, CTSG, and UBE2L3, as significant. The gene ontology and pathway analyses point to neuronal cell death, metabolic dysfunction, and inflammatory processes. We found 1,450 processes to be enriched using empirical Bayes gene-set enrichment. In conclusion, the functional overlap of differentially methylated genes associated with cognitive impairment in Mexican Americans implies cross-talk between metabolically-instigated systemic inflammation and disruption of synaptic vesicular transport.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Talisa K Silzer
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jie Sun
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ann A Daniel
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Leigh Johnson
- Institute of Translational Medicine, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sid O'Bryant
- Institute of Translational Medicine, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Robert C Barber
- Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
125
|
Gullett JM, Chen Z, O'Shea A, Akbar M, Bian J, Rani A, Porges EC, Foster TC, Woods AJ, Modave F, Cohen RA. MicroRNA predicts cognitive performance in healthy older adults. Neurobiol Aging 2020; 95:186-194. [PMID: 32846274 PMCID: PMC7606424 DOI: 10.1016/j.neurobiolaging.2020.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
The expression of microRNA (miRNA) is influenced by ongoing biological processes, including aging, and has begun to play a role in the measurement of neurodegenerative processes in central nervous system. The purpose of this study is to utilize machine learning approaches to determine whether miRNA can be utilized as a blood-based biomarker of cognitive aging. A random forest regression combining miRNA with biological (brain volume), clinical (comorbid conditions), and demographic variables in 115 typically aging older adults explained the greatest level of variance in cognitive performance compared to the other machine learning models explored. Three miRNA (miR-140-5p, miR-197-3p, and miR-501-3p) were top-ranked predictors of multiple cognitive outcomes (Fluid, Crystallized, and Overall Cognition) and past studies of these miRNA link them to cellular senescence, inflammatory signals for atherosclerotic formation, and potential development of neurodegenerative disorders (e.g., Alzheimer's disease). Several novel miRNAs were also linked to age and multiple cognitive functions, findings which together warrant further exploration linking these miRNAs to brain-derived metrics of neurodegeneration in typically aging older adults.
Collapse
Affiliation(s)
- Joseph M Gullett
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Zhaoyi Chen
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Maisha Akbar
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Francois Modave
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
126
|
The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3232869. [PMID: 33193999 PMCID: PMC7641266 DOI: 10.1155/2020/3232869] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases including Alzheimer's disease and Parkinson's disease are aging-associated diseases with irreversible damage of brain tissue. Oxidative stress is commonly detected in neurodegenerative diseases and related to neuronal injury and pathological progress. Exosome, one of the extracellular vesicles, is demonstrated to carry microRNAs (miRNAs) and build up a cell-cell communication in neurons. Recent research has found that exosomal miRNAs regulate the activity of multiple physiological pathways, including the oxidative stress response, in neurodegenerative diseases. Here, we review the role of exosomal miRNAs and oxidative stress in neurodegenerative diseases. Firstly, we explore the relationship between oxidative stress and neurodegenerative diseases. Secondly, we introduce the characteristics of exosomes and roles of exosome-related miRNAs. Thirdly, we summarized the crosstalk between exosomal miRNAs and oxidative stress in neurodegenerative diseases. Fourthly, we discuss the potential of exosomes to be a biomarker in neurodegenerative diseases. Finally, we summarize the advantages of exosome-based delivery and present situation of research on exosome-based delivery of therapeutic miRNA. Our work is aimed at probing and reinforcing the recognition of the pathomechanism of neurodegenerative diseases and providing the basis for novel strategies of clinical diagnosis and treatment.
Collapse
|
127
|
Xiao X, Liu X, Jiao B. Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer's Disease. Front Neurol 2020; 11:538301. [PMID: 33178099 PMCID: PMC7594522 DOI: 10.3389/fneur.2020.538301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: This review summarizes recent findings on the epigenetics of Alzheimer's disease (AD) and provides therapeutic strategies for AD. Methods: We searched the following keywords: “genetics,” “epigenetics,” “Alzheimer's disease,” “DNA methylation,” “DNA hydroxymethylation,” “histone modifications,” “non-coding RNAs,” and “therapeutic strategies” in PubMed. Results: In this review, we summarizes recent studies of epigenetics in AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs. There are no consistent results of global DNA methylation/hydroxymethylation in AD. Epigenetic genome-wide association studies show that many differentially methylated sites exist in AD. Several studies investigate the role of histone modifications in AD; for example, histone acetylation decreases, whereas H3 phosphorylation increases significantly in AD. In addition, non-coding RNAs, such as microRNA-16 and BACE1-antisense transcript (BACE1-AS), are associated with the pathology of AD. These epigenetic changes provide us with novel insights into the pathogenesis of AD and may be potential therapeutic strategies for AD. Conclusion: Epigenetics is associated with the pathogenesis of AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs, which provide potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
128
|
The Functional Role of microRNAs in the Pathogenesis of Tauopathy. Cells 2020; 9:cells9102262. [PMID: 33050194 PMCID: PMC7600742 DOI: 10.3390/cells9102262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are neurodegenerative disorders which include Alzheimer's disease, Pick's disease, corticobasal degeneration, and progressive supranuclear palsy among others. Pathologically, they are characterized by the accumulation of highly phosphorylated and aggregated tau protein in different brain regions. Currently, the mechanisms responsible for their pathogenesis are not known, and for this reason, there is no cure. MicroRNAs (miRNAs) are abundantly present in the central nervous system where they act as master regulators of pathways considered important for tau post-translational modifications, metabolism, and clearance. Although in recent years, several miRNAs have been reported to be altered in tauopathy, we still do not know whether these changes contribute to the onset and progression of the disorder, or are secondary events following the development of tau neuropathology. Additionally, since miRNAs are relatively stable in biological fluids and their measurement is easy and non-invasive, these small molecules hold the potential to function as biomarkers for tauopathy. Herein, we showcase recent findings on the biological link between miRNAs and the pathogenesis of tauopathy, and present emerging evidence supporting their role as biomarkers and targets for novel therapies against them.
Collapse
|
129
|
Henriques AD, Machado-Silva W, Leite RE, Suemoto CK, Leite KR, Srougi M, Pereira AC, Jacob-Filho W, Nóbrega OT. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease. Mech Ageing Dev 2020; 191:111352. [DOI: 10.1016/j.mad.2020.111352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
|
130
|
Xiong J, Wang H, Mu F, Liu Z, Bao Y, Sun Y. MiR-125b-5p Inhibitor Might Protect Against Sevoflurane-induced Cognitive Impairments by Targeting LIMK1. Curr Neurovasc Res 2020; 16:382-391. [PMID: 31490755 DOI: 10.2174/1567202616666190906145936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE Research has shown that exposure to anesthesia might increase the risks of cognitive impairments and learning difficulties. MiR-125b-5p contributed to anesthesia-induced hippocampal apoptosis. However, the role of miR-125b-5p in sevoflurane-induced cognitive impairments remains unclear. METHODS Firstly, sevoflurane was used to establish a rat model and cognitive impairment was detected by the Morris water maze (MWM) test. The hippocampus was observed by HE staining. The lentivirus-miR-125b-5p antagomiR was transfected into rats to decrease miR-125b-5p. The interaction between miR-125b-5p and LIM domain kinase 1 (LIMK1) was confirmed by the luciferase reporter assay. The mRNA and expression levels of related genes and mRNA were examined by the Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot. RESULTS Sevoflurane induced the cognitive dysfunction presenting with longer latency time and few platform crossings in rats. Moreover, miR-125b-5p was observed to be up-regulated in both sevoflurane-anesthesia rats and sevoflurane-treated SH-SY5Y cells. More importantly, a decrease in miR-125b-5p could prevent sevoflurane-induced hippocampal apoptosis and inflammation in rats. Moreover, LIMK1 was the target gene of miR-125b-5p. Interestingly, si-LIMK1 could restore the sevoflurane-induced cell apoptosis in SH-SY5Y cells, which was alleviated by miR-125b-5p inhibitor. Finally, the miR-125b-5p inhibitor shortened the time to find the platform and increased the number of platform crossings compared to sevoflurane-anesthesia rats in the Morris water maze test. At the same time, the expression of LIMK1 was dramatically increased. CONCLUSION Altogether, these findings suggested that miR-125b-5p inhibitor could protect against the sevoflurane-induced cognitive impairments by targeting LIMK1.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing City, 100093, China
| | - Huijun Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing City, 100730, China
| | - Feng Mu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing City, 100093, China
| | - Zhanxue Liu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing City, 100093, China
| | - Yin Bao
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing City, 100730, China
| | - Yongxing Sun
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing City, 100093, China
| |
Collapse
|
131
|
Boscher E, Hernandez-Rapp J, Petry S, Keraudren R, Rainone S, Loiselle A, Goupil C, Turgeon A, St-Amour I, Planel E, Hébert SS. Advances and Challenges in Understanding MicroRNA Function in Tauopathies: A Case Study of miR-132/212. Front Neurol 2020; 11:578720. [PMID: 33117266 PMCID: PMC7553085 DOI: 10.3389/fneur.2020.578720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
In the past decade, several groups have reported that microRNAs (miRNAs) can participate in the regulation of tau protein at different levels, including its expression, alternative splicing, phosphorylation, and aggregation. These observations are significant, since the abnormal regulation and deposition of tau is associated with nearly 30 neurodegenerative disorders. Interestingly, miRNA profiles go awry in tauopathies such as Alzheimer's disease, progressive supranuclear palsy, and frontotemporal dementia. Understanding the role and impact of miRNAs on tau biology could therefore provide important insights into disease risk, diagnostics, and perhaps therapeutics. In this Perspective article, we discuss recent advances in miRNA research related to tau. While proof-of-principle studies hold promise, physiological validation remains limited. To help fill this gap, we describe herein a pure tauopathy mouse model deficient for the miR-132/212 cluster. This miRNA family is strongly downregulated in human tauopathies and shown to regulate tau in vitro and in vivo. No significant differences in survival, motor deficits or body weight were observed in PS19 mice lacking miR-132/212. Age-specific effects were seen on tau expression and phosphorylation but not aggregation. Moreover, various miR-132/212 targets previously implicated in tau modulation were unaffected (GSK-3β, Foxo3a, Mapk1, p300) or, unexpectedly, reduced (Mapk3, Foxo1, p300, Calpain 2) in miR-132/212-deficient PS19 mice. These observations highlight the challenges of miRNA research in living models, and current limitations of transgenic tau mouse models lacking functional miRNA binding sites. Based on these findings, we finally recommend different strategies to better understand the role of miRNAs in tau physiology and pathology.
Collapse
Affiliation(s)
- Emmanuelle Boscher
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Julia Hernandez-Rapp
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Serena Petry
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Remi Keraudren
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Sara Rainone
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Andréanne Loiselle
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Andréanne Turgeon
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
132
|
An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease. Nat Genet 2020; 52:1024-1035. [PMID: 32989324 PMCID: PMC8098004 DOI: 10.1038/s41588-020-0696-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Protein aggregation is the hallmark of neurodegeneration but the molecular mechanisms underlying late-onset Alzheimer’s disease (AD) remain unclear. Here we integrated transcriptomic, proteomic and epigenomic analyses of post-mortem human brains to identify molecular pathways involved in AD. RNA-seq analysis revealed upregulation of transcription- and chromatin-related genes, including the histone acetyltransferases for H3K27ac and H3K9ac. An unbiased proteomic screening singled out H3K27ac and H3K9ac as main enrichments specific to AD. In turn, epigenomic profiling revealed gains of H3K27ac and H3K9ac linked to transcription, chromatin, and disease pathways in AD. Increasing genome-wide H3K27ac and H3K9ac in a fly model of AD exacerbated amyloid-β42-driven neurodegeneration. Together, these findings suggest that AD involves a reconfiguration of the epigenome, where H3K27ac and H3K9ac impact disease pathways by dysregulating transcription- and chromatin-gene feedback loops. The identification of this process highlights potential epigenetic strategies for early-stage disease treatment.
Collapse
|
133
|
Ma P, Li Y, Zhang W, Fang F, Sun J, Liu M, Li K, Dong L. Long Non-coding RNA MALAT1 Inhibits Neuron Apoptosis and Neuroinflammation While Stimulates Neurite Outgrowth and Its Correlation With MiR-125b Mediates PTGS2, CDK5 and FOXQ1 in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:596-612. [PMID: 31345147 DOI: 10.2174/1567205016666190725130134] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND This study aimed to investigate the effect of long noncoding ribonucleic acids (RNAs) metastasis-associated lung adenocarcinoma transcript 1 (lnc-MALAT1) on regulating neuron apoptosis, neurite outgrowth and inflammation, and further explore its molecule mechanism in Alzheimer's disease (AD). METHODS Control overexpression, lnc-MALAT1 overexpression, control shRNA, and lnc-MALAT1 shRNA were transfected into NGF-stimulated PC12 cellular AD model and cellular AD model from primary cerebral cortex neurons of rat embryo, which were established by Aβ1-42 insult. Rescue experiments were performed by transferring lnc-MALAT1 overexpression and lnc-MALAT1 overexpression & miR-125b overexpression plasmids. Neuron apoptosis, neurite outgrowth and inflammation were detected by Hoechst-PI/apoptosis marker expressions, and observations were made using microscope and RT-qPCR/Western blot assays. PTGS2, CDK5 and FOXQ1 expressions in rescue experiments were also determined. RESULTS In two AD models, lnc-MALAT1 overexpression inhibited neuron apoptosis, promoted neurite outgrowth, reduced IL-6 and TNF-α levels, and increased IL-10 level compared to control overexpression, while lnc-MALAT1 knockdown promoted neuron apoptosis, repressed neurite outgrowth, elevated IL-6 and TNF-α levels, but reduced IL-10 level compared to control shRNA. Additionally, lnc- MALAT1 reversely regulated miR-125b expression, while miR-125b did not influence the lnc- MALAT1 expression. Subsequently, rescue experiments revealed that miR-125b induced neuron apoptosis, inhibited neurite outgrowth and promoted inflammation, also increased PTGS2 and CDK5 expressions but decreased FOXQ1 expression in lnc-MALAT1 overexpression treated AD models. CONCLUSION Lnc-MALAT1 might interact with miR-125b to inhibit neuron apoptosis and inflammation while promote neurite outgrowth in AD.
Collapse
Affiliation(s)
- Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Yuanlong Li
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Wei Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Fengqin Fang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Mingzhou Liu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Kun Li
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Lingfang Dong
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
134
|
Wang H. Anti-NMDA Receptor Encephalitis, Vaccination and Virus. Curr Pharm Des 2020; 25:4579-4588. [PMID: 31820697 DOI: 10.2174/1381612825666191210155059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune disorder. The symptoms range from psychiatric symptoms, movement disorders, cognitive impairment, and autonomic dysfunction. Previous studies revealed that vaccination might induce this disease. A few cases were reported to be related to H1N1 vaccine, tetanus/diphtheria/pertussis and polio vaccine, and Japanese encephalitis vaccine. Although vaccination is a useful strategy to prevent infectious diseases, in a low risk, it may trigger serious neurological symptoms. In addition to anti-NMDA receptor encephalitis, other neurological diseases were reported to be associated with a number of vaccines. In this paper, the anti-NMDA receptor encephalitis cases related to a number of vaccines and other neurological symptoms that might be induced by these vaccines were reviewed. In addition, anti-NMDA receptor encephalitis cases that were induced by virus infection were also reviewed.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
135
|
Zhuang J, Cai P, Chen Z, Yang Q, Chen X, Wang X, Zhuang X. Long noncoding RNA MALAT1 and its target microRNA-125b are potential biomarkers for Alzheimer's disease management via interactions with FOXQ1, PTGS2 and CDK5. Am J Transl Res 2020; 12:5940-5954. [PMID: 33042470 PMCID: PMC7540111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the intercorrelation among long noncoding RNA MALAT1 (lnc-MALAT1), microRNA-125b (miR-125b), FOXQ1, PTGS2 and CDK5, as well as their correlations with disease risk, severity and progression of Alzheimer's disease (AD). In total, 120 AD patients, 120 Parkinson's disease (PD) patients and 120 controls were enrolled. Cerebrospinal fluid (CSF) samples were collected from 50 AD patients, 50 PD patients and 50 controls; plasma samples were obtained from all participants. Lnc-MALAT1, miR-125b, FOXQ1, PTGS2 and CDK5 were detected by RT-qPCR. CSF lnc-MALAT1/FOXQ1 and plasma lnc-MALAT1 were downregulated, while CSF miR-125b/PTGS2/CDK5 and plasma miR-125b/PTGS2 were upregulated in AD patients compared to PD patients and controls, which differentiated AD patients from PD patients and controls, as demonstrated by ROC curve analyses. In AD patients, CSF/plasma lnc-MALAT1 negatively correlated with miR-125b and PTGS2 but positively correlated with FOXQ1; CSF/plasma miR-125b negatively correlated with FOXQ1 but positively correlated with PTGS2/CDK5. In addition, CSF/plasma lnc-MALAT1 and FOXQ1 correlated with alleviated disease severity, while miR-125b, PTGS2 and CDK5 correlated with exacerbated disease severity, which were manifested by their correlations with MMSE score, Aβ42, t-tau and p-tau in AD patients. However, their correlations with MMSE score, Aβ42, t-tau and p-tau were weak in PD patients and controls. Notably, CSF but not plasma lnc-MALAT1 and miR-125b could predict the MMSE score decline at 1 year, 2 years and 3 years in AD patients. In conclusion, lnc-MALAT1 and its target miR-125b are potential biomarkers for AD management via their intercorrelation with FOXQ1, PTGS2 and CDK5.
Collapse
Affiliation(s)
- Jingcong Zhuang
- Department of Neurology, Zhongshan Hospital Xiamen UniversityXiamen, China
- School of Medicine, Xiamen UniversityXiamen, China
| | - Pingping Cai
- Department of Neurology, Fujian Medical University Xiamen Humanity HospitalXiamen, China
| | - Zhongjie Chen
- Department of Neurology, Zhongshan Hospital Xiamen UniversityXiamen, China
| | - Qingwei Yang
- Department of Neurology, Zhongshan Hospital Xiamen UniversityXiamen, China
- School of Medicine, Xiamen UniversityXiamen, China
| | - Xingyu Chen
- Department of Neurology, Zhongshan Hospital Xiamen UniversityXiamen, China
| | - Xianjian Wang
- Department of Neurology, Zhongshan Hospital Xiamen UniversityXiamen, China
| | - Xiaorong Zhuang
- Department of Neurology, Zhongshan Hospital Xiamen UniversityXiamen, China
- School of Medicine, Xiamen UniversityXiamen, China
| |
Collapse
|
136
|
Bouter Y, Kacprowski T, Rößler F, Jensen LR, Kuss AW, Bayer TA. miRNA Alterations Elicit Pathways Involved in Memory Decline and Synaptic Function in the Hippocampus of Aged Tg4-42 Mice. Front Neurosci 2020; 14:580524. [PMID: 33013313 PMCID: PMC7511553 DOI: 10.3389/fnins.2020.580524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
The transcriptome of non-coding RNA (ncRNA) species is increasingly focused in Alzheimer’s disease (AD) research. NcRNAs comprise, among others, transfer RNAs, long non-coding RNAs and microRNAs (miRs), each with their own specific biological function. We used smallRNASeq to assess miR expression in the hippocampus of young (3 month old) and aged (8 month old) Tg4-42 mice, a model system for sporadic AD, as well as age-matched wildtype controls. Tg4-42 mice express N-truncated Aβ4–42, develop age-related neuron loss, reduced neurogenesis and behavioral deficits. Our results do not only confirm known miR-AD associations in Tg4-42 mice, but more importantly pinpoint 22 additional miRs associated to the disease. Twenty-five miRs were differentially expressed in both aged Tg4-42 and aged wildtype mice while eight miRs were differentially expressed only in aged wildtype mice, and 33 only in aged Tg4-42 mice. No significant alteration in the miRNome was detected in young mice, which indicates that the changes observed in aged mice are down-stream effects of Aβ-induced pathology in the Tg4-42 mouse model for AD. Targets of those miRs were predicted using miRWalk. For miRs that were differentially expressed only in the Tg4-42 model, 128 targets could be identified, whereas 18 genes were targeted by miRs only differentially expressed in wildtype mice and 85 genes were targeted by miRs differentially expressed in both mouse models. Genes targeted by differentially expressed miRs in the Tg4-42 model were enriched for negative regulation of long-term synaptic potentiation, learning or memory, regulation of trans-synaptic signaling and modulation of chemical synaptic transmission obtained. This untargeted miR sequencing approach supports previous reports on the Tg4-42 mice as a valuable model for AD. Furthermore, it revealed miRs involved in AD, which can serve as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Tim Kacprowski
- Research Group Computational Systems Medicine, Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan (WZW), Technical University of Munich (TUM), Weihenstephan, Germany
| | - Fanny Rößler
- Research Group Computational Systems Medicine, Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan (WZW), Technical University of Munich (TUM), Weihenstephan, Germany
| | - Lars R Jensen
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Andreas W Kuss
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
137
|
MicroRNAs Modulate the Pathogenesis of Alzheimer's Disease: An In Silico Analysis in the Human Brain. Genes (Basel) 2020; 11:genes11090983. [PMID: 32846925 PMCID: PMC7564652 DOI: 10.3390/genes11090983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs involved in the post-transcriptional regulation of their target genes, causing a decrease in protein translation from the mRNA. Different miRNAs are found in the nervous system, where they are involved in its physiological functions, but altered miRNAs expression was also reported in neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by memory loss, cognitive function abnormalities, and various neuropsychiatric disturbances. AD hallmarks are amyloid β (Aβ) aggregates, called senile plaques, and neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein. In this study, we performed an in silico analysis to evaluate altered patterns of miRNAs expression in the brains of AD patients compared to healthy subjects. We found 12 miRNAs that were differentially expressed in AD compared to healthy individuals. These miRNAs have target genes involved in AD pathogenesis. In particular, some miRNAs influence Aβ production, having as target secretase and amyloid precursor protein (APP). Some miRNAs were reported to be involved in nervous system functions, and their alteration can cause neuronal dysfunction.
Collapse
|
138
|
Wei W, Wang ZY, Ma LN, Zhang TT, Cao Y, Li H. MicroRNAs in Alzheimer's Disease: Function and Potential Applications as Diagnostic Biomarkers. Front Mol Neurosci 2020; 13:160. [PMID: 32973449 PMCID: PMC7471745 DOI: 10.3389/fnmol.2020.00160] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. Although the incidence of AD is high, the rates of diagnosis and treatment are relatively low. Moreover, effective means for the diagnosis and treatment of AD are still lacking. MicroRNAs (miRNAs, miRs) are non-coding RNAs that play regulatory roles by targeting mRNAs. The expression of miRNAs is conserved, temporal, and tissue-specific. Impairment of microRNA function is closely related to AD pathogenesis, including the beta-amyloid and tau hallmarks of AD, and there is evidence that the expression of some microRNAs differs significantly between healthy people and AD patients. These properties of miRNAs endow them with potential diagnostic and therapeutic value in the treatment of this debilitating disease. This review provides comprehensive information about the regulatory function of miRNAs in AD, as well as potential applications as diagnostic biomarkers.
Collapse
Affiliation(s)
- Wei Wei
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi-Yong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Na Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting-Ting Zhang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
139
|
Hsu HW, Rodriguez-Ortiz CJ, Lim SL, Zumkehr J, Kilian JG, Vidal J, Kitazawa M. Copper-Induced Upregulation of MicroRNAs Directs the Suppression of Endothelial LRP1 in Alzheimer's Disease Model. Toxicol Sci 2020; 170:144-156. [PMID: 30923833 DOI: 10.1093/toxsci/kfz084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic exposure to copper and its dyshomeostasis have been linked to accelerated cognitive decline and potentially increasing risk for Alzheimer's disease (AD). We and others have previously demonstrated that exposure to copper through drinking water significantly increased parenchymal amyloid-beta (Aβ) plaques and decreased endothelial low-density lipoprotein receptor-related protein 1 (LRP1) in mouse models of AD. In this study, we determined the underlying mechanisms that microRNA critically mediated the copper-induced loss of endothelial LRP1. In human primary microvascular endothelial cells (MVECs), microRNA-200b-3p, -200c-3p, and -205-5p were significantly elevated within the 24-h exposure to copper and returned to baseline after 48-h postexposure, which corresponded with the temporal change of LRP1 expression in these cells. Transient expression of synthetic microRNA-200b-3p, -200c-3p, or -205-5p on MVECs significantly decreased endothelial LRP1, and cotreatment of synthetic antagomirs effectively prevented the loss of LRP1 during copper exposure, collectively supporting the key regulatory role of these microRNAs in copper-induced loss of LRP1. In mice, a significant reduction of LRP1 in cortical vasculature was evident following 9 months exposure to 1.3 ppm copper in drinking water, although the levels of cortical microRNA-205-5p, -200b-3p, and -200c-3p were only marginally elevated. This, however, correlated with increased vascular accumulation of Aβ and impairment of spatial memory, indicating that copper exposure has the pivotal role in the vascular damage and development of cognitive decline.
Collapse
Affiliation(s)
- Heng-Wei Hsu
- Center for Occupational and Environmental Health (COEH), Department of Medicine, University of California, Irvine, California 92617-1830
| | - Carlos J Rodriguez-Ortiz
- Center for Occupational and Environmental Health (COEH), Department of Medicine, University of California, Irvine, California 92617-1830
| | - Siok Lam Lim
- Center for Occupational and Environmental Health (COEH), Department of Medicine, University of California, Irvine, California 92617-1830
| | - Joannee Zumkehr
- Center for Occupational and Environmental Health (COEH), Department of Medicine, University of California, Irvine, California 92617-1830
| | - Jason G Kilian
- Center for Occupational and Environmental Health (COEH), Department of Medicine, University of California, Irvine, California 92617-1830
| | - Janielle Vidal
- Center for Occupational and Environmental Health (COEH), Department of Medicine, University of California, Irvine, California 92617-1830
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health (COEH), Department of Medicine, University of California, Irvine, California 92617-1830
| |
Collapse
|
140
|
Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSDF. Modulation of MicroRNAs as a Potential Molecular Mechanism Involved in the Beneficial Actions of Physical Exercise in Alzheimer Disease. Int J Mol Sci 2020; 21:E4977. [PMID: 32674523 PMCID: PMC7403962 DOI: 10.3390/ijms21144977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease (AD) is one of the most common neurodegenerative diseases, affecting middle-aged and elderly individuals worldwide. AD pathophysiology involves the accumulation of beta-amyloid plaques and neurofibrillary tangles in the brain, along with chronic neuroinflammation and neurodegeneration. Physical exercise (PE) is a beneficial non-pharmacological strategy and has been described as an ally to combat cognitive decline in individuals with AD. However, the molecular mechanisms that govern the beneficial adaptations induced by PE in AD are not fully elucidated. MicroRNAs are small non-coding RNAs involved in the post-transcriptional regulation of gene expression, inhibiting or degrading their target mRNAs. MicroRNAs are involved in physiological processes that govern normal brain function and deregulated microRNA profiles are associated with the development and progression of AD. It is also known that PE changes microRNA expression profile in the circulation and in target tissues and organs. Thus, this review aimed to identify the role of deregulated microRNAs in the pathophysiology of AD and explore the possible role of the modulation of microRNAs as a molecular mechanism involved in the beneficial actions of PE in AD.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleys´ Jequitinhonha and Mucuri, Minas Gerais 30000-000, Brazil;
| | - Roque Aras Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| |
Collapse
|
141
|
Pomeshchik Y, Klementieva O, Gil J, Martinsson I, Hansen MG, de Vries T, Sancho-Balsells A, Russ K, Savchenko E, Collin A, Vaz AR, Bagnoli S, Nacmias B, Rampon C, Sorbi S, Brites D, Marko-Varga G, Kokaia Z, Rezeli M, Gouras GK, Roybon L. Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Reports 2020; 15:256-273. [PMID: 32589876 PMCID: PMC7363942 DOI: 10.1016/j.stemcr.2020.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is important for memory formation and is severely affected in the brain with Alzheimer disease (AD). Our understanding of early pathogenic processes occurring in hippocampi in AD is limited due to tissue unavailability. Here, we report a chemical approach to rapidly generate free-floating hippocampal spheroids (HSs), from human induced pluripotent stem cells. When used to model AD, both APP and atypical PS1 variant HSs displayed increased Aβ42/Aβ40 peptide ratios and decreased synaptic protein levels, which are common features of AD. However, the two variants differed in tau hyperphosphorylation, protein aggregation, and protein network alterations. NeuroD1-mediated gene therapy in HSs-derived progenitors resulted in modulation of expression of numerous genes, including those involved in synaptic transmission. Thus, HSs can be harnessed to unravel the mechanisms underlying early pathogenic changes in the hippocampi of AD patients, and provide a robust platform for the development of therapeutic strategies targeting early stage AD.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Oxana Klementieva
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Medical Microspectroscopy, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Jeovanis Gil
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Isak Martinsson
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Marita Grønning Hansen
- Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund SE-221 84, Sweden
| | - Tessa de Vries
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Anna Sancho-Balsells
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Kaspar Russ
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Ekaterina Savchenko
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Anna Collin
- Department of Clinical Genetics and Pathology, Office for Medical Services, Lund SE-221 85, Sweden
| | - Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Silvia Bagnoli
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Sandro Sorbi
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - György Marko-Varga
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund SE-221 84, Sweden
| | - Melinda Rezeli
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Gunnar K Gouras
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| |
Collapse
|
142
|
Vaz AR, Falcão AS, Scarpa E, Semproni C, Brites D. Microglia Susceptibility to Free Bilirubin Is Age-Dependent. Front Pharmacol 2020; 11:1012. [PMID: 32765258 PMCID: PMC7381152 DOI: 10.3389/fphar.2020.01012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Increased concentrations of unconjugated bilirubin (UCB), namely its free fraction (Bf), in neonatal life may cause transient or definitive injury to neurons and glial cells. We demonstrated that UCB damages neurons and glial cells by compromising oligodendrocyte maturation and myelination, and by activating astrocytes and microglia. Immature neurons and astrocytes showed to be especially vulnerable. However, whether microglia susceptibility to UCB is also age-related was never investigated. We developed a microglia culture model in which cells at 2 days in vitro (2DIV) revealed to behave as the neonatal microglia (amoeboid/reactive cells), in contrast with those at 16DIV microglia that performed as aged cells (irresponsive/dormant cells). Here, we aimed to unveil whether UCB-induced toxicity diverged from the young to the long-cultured microglia. Cells were isolated from the cortical brain of 1- to 2-day-old CD1 mice and incubated for 24 h with 50/100 nM Bf levels, which were associated to moderate and severe neonatal hyperbilirubinemia, respectively. These concentrations of Bf induced early apoptosis and amoeboid shape in 2DIV microglia, while caused late apoptosis in 16DIV cells, without altering their morphology. CD11b staining increased in both, but more markedly in 2DIV cells. Likewise, the gene expression of HMGB1, a well-known alarmin, as well as HMGB1 and GLT-1–positive cells, were enhanced as compared to long-maturated microglia. The CX3CR1 reduction in 2DIV microglia was opposed to the 16DIV cells and suggests a preferential Bf-induced sickness response in younger cells. In conformity, increased mitochondrial mass and NO were enhanced in 2DIV cells, but unchanged or reduced, respectively, in the 16DIV microglia. However, 100 nM Bf caused iNOS gene overexpression in 2DIV and 16DIV cells. While only arginase 1/IL-1β gene expression levels increased upon 50/100 nM Bf treatment in long-maturated microglia, MHCII/arginase 1/TNF-α/IL-1β/IL-6 (>10-fold) were upregulated in the 2DIV microglia. Remarkably, enhanced inflammatory-associated microRNAs (miR-155/miR-125b/miR-21/miR-146a) and reduced anti-inflammatory miR-124 were found in young microglia by both Bf concentrations, while remained unchanged (miR/21/miR-125b) or decreased (miR-155/miR-146a/miR-124) in aged cells. Altogether, these findings support the neurodevelopmental susceptibilities to UCB-induced neurotoxicity, the most severe disabilities in premature babies, and the involvement of immune-inflammation neonatal microglia processes in poorer outcomes.
Collapse
Affiliation(s)
- Ana Rita Vaz
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Sofia Falcão
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Chronic Diseases Research Centre (CEDOC), Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Eleonora Scarpa
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Carlotta Semproni
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
143
|
Costa C, Teodoro M, Rugolo CA, Alibrando C, Giambò F, Briguglio G, Fenga C. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol Rep 2020; 7:759-767. [PMID: 32612936 PMCID: PMC7322123 DOI: 10.1016/j.toxrep.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Current knowledge linking pesticide exposure, cancer and neuro-degenerative diseases to dysregulation of microRNA network was summarized. Literature indicates differential miRNA expression targeting biomolecules and pathways involved in cancer and neurodegenerative diseases. Evaluation of miRNA expression may be used to develop new non-invasive strategies for the prediction and prognosis of diseases including cancer. The application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
This review summarizes the current knowledge linking cancer and neuro-degenerative diseases to dysregulation of microRNA network following pesticide exposure. Most findings revealed differential miRNA expression targeting biomolecules and pathways involved in various neoplastic localizations and neurodegenerative diseases. A growing body of evidence in recent literature indicates that alteration of specific miRNAs can represent an early biomarker of disease following exposure to chemical agents, including pesticides. Different miRNAs seem to regulate cell proliferation, apoptosis, migration, invasion, and metastasis via many biological pathways through modulation of the expression of target mRNAs. The evaluation of miRNA expression levels may be used to develop new non-invasive strategies for the prediction and prognosis of many diseases, including cancer. However, the application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
Collapse
Affiliation(s)
- Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina 98125, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alessandra Rugolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alibrando
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
- Corresponding author at: Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section, University of Messina, Policlinico Universitario “G. Martino” – pad. H, Via Consolare Valeria 1, 98125, Messina, Italy.
| |
Collapse
|
144
|
Reza-Zaldivar EE, Hernández-Sápiens MA, Minjarez B, Gómez-Pinedo U, Sánchez-González VJ, Márquez-Aguirre AL, Canales-Aguirre AA. Dendritic Spine and Synaptic Plasticity in Alzheimer's Disease: A Focus on MicroRNA. Front Cell Dev Biol 2020; 8:255. [PMID: 32432108 PMCID: PMC7214692 DOI: 10.3389/fcell.2020.00255] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
Dendrites and dendritic spines are dynamic structures with pivotal roles in brain connectivity and have been recognized as the locus of long-term synaptic plasticity related to cognitive processes such as learning and memory. In neurodegenerative diseases, the spine dynamic morphology alteration, such as shape and spine density, affects functional characteristics leading to synaptic dysfunction and cognitive impairment. Recent evidence implicates dendritic spine dysfunction as a critical feature in the pathogenesis of dementia, particularly Alzheimer’s disease. The alteration of spine morphology and their loss is correlated with the cognitive decline in Alzheimer’s disease patients even in the absence of neuronal loss, however, the underlying mechanisms are poorly understood. Currently, the microRNAs have emerged as essential regulators of synaptic plasticity. The changes in neuronal microRNA expression that contribute to the modification of synaptic function through the modulation of dendritic spine morphology or by regulating the local protein translation to synaptic transmission are determinant for synapse formation and synaptic plasticity. Focusing on microRNA and its targets may provide insight into new therapeutic opportunities. In this review we summarize the experimental evidence of the role that the microRNA plays in dendritic spine remodeling and synaptic plasticity and its potential therapeutic approach in Alzheimer’s disease. Targeting synaptic deficits through the structural alteration of dendritic spines could form part of therapeutic strategies to improve synaptic plasticity and to ameliorate cognitive impairments in Alzheimer’s disease and other neurological diseases.
Collapse
Affiliation(s)
| | | | - Benito Minjarez
- University Center of Biological and Agricultural Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ulises Gómez-Pinedo
- Institute of Neurosciences, IdISSC, San Carlos Clinical Hospital, Madrid, Spain
| | | | - Ana Laura Márquez-Aguirre
- Medical and Pharmaceutical Biotechnology Unit, CIATEJ, Guadalajara, Mexico.,Preclinical Evaluation Unit, CIATEJ, Guadalajara, Mexico
| | - Alejandro Arturo Canales-Aguirre
- Medical and Pharmaceutical Biotechnology Unit, CIATEJ, Guadalajara, Mexico.,Preclinical Evaluation Unit, CIATEJ, Guadalajara, Mexico
| |
Collapse
|
145
|
Brain microRNAs dysregulation: Implication for missplicing and abnormal post-translational modifications of tau protein in Alzheimer’s disease and related tauopathies. Pharmacol Res 2020; 155:104729. [DOI: 10.1016/j.phrs.2020.104729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/01/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
|
146
|
BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 2020; 11:260. [PMID: 32317622 PMCID: PMC7174325 DOI: 10.1038/s41419-020-2417-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
The BCL-2 family of proteins integrates signals that trigger either cell survival or apoptosis. The balance between pro-survival and pro-apoptotic proteins is important for tissue development and homeostasis, while impaired apoptosis contributes to several pathologies and can be a barrier against effective treatment. BCL-w is an anti-apoptotic protein that shares a sequence similarity with BCL-XL, and exhibits a high conformational flexibility. BCL-w level is controlled by a number of signaling pathways, and the repertoire of transcriptional regulators largely depends on the cellular and developmental context. As only a few disease-relevant genetic alterations of BCL2L2 have been identified, increased levels of BCL-w might be a consequence of abnormal activation of signaling cascades involved in the regulation of BCL-w expression. In addition, BCL-w transcript is a target of a plethora of miRNAs. Besides its originally recognized pro-survival function during spermatogenesis, BCL-w has been envisaged in different types of normal and diseased cells as an anti-apoptotic protein. BCL-w contributes to survival of senescent and drug-resistant cells. Its non-apoptotic role in the promotion of cell migration and invasion has also been elucidated. Growing evidence indicates that a high BCL-w level can be therapeutically relevant in neurodegenerative disorders, neuron dysfunctions and after small intestinal resection, whereas BCL-w inhibition can be beneficial for cancer patients. Although several drugs and natural compounds can bi-directionally affect BCL-w level, agents that selectively target BCL-w are not yet available. This review discusses current knowledge on the role of BCL-w in health, non-cancerous diseases and cancer.
Collapse
|
147
|
Kou X, Chen D, Chen N. The Regulation of microRNAs in Alzheimer's Disease. Front Neurol 2020; 11:288. [PMID: 32362867 PMCID: PMC7180504 DOI: 10.3389/fneur.2020.00288] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are small non-coding nucleic acids that are responsible for regulating the gene expression by binding to the coding region and 3' and 5' un-translated region of target messenger RNA. Approximately 70% of known microRNAs are expressed in the brain and increasing evidences demonstrate the possible involvement of microRNAs in Alzheimer's disease (AD) according to the statistics. The characteristic symptoms of AD are the progressive loss of memory and cognitive functions due to the deposition of amyloid β (Aβ) peptide, intracellular aggregation of hyperphosphorylated Tau protein, the loss of synapses, and neuroinflammation, as well as dysfunctional autophagy. Therefore, microRNA-mediated regulation for above-mentioned changes may be the potential therapeutic strategies for AD. In this review, the role of specific microRNAs involved in AD and corresponding applications are systematically discussed, including positive effects associated with the reduction of Aβ or Tau protein, the protection of synapses, the inhibition of neuroinflammation, the mitigation of aging, and the induction of autophagy in AD. It will be beneficial to develop effective targets for establishing a cross link between pharmacological intervention and AD in the near future.
Collapse
Affiliation(s)
- Xianjuan Kou
- Hubei Key Laboratory of Exercise Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Dandan Chen
- Hubei Key Laboratory of Exercise Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Ning Chen
- Hubei Key Laboratory of Exercise Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
148
|
Klein HU, Schäfer M, Bennett DA, Schwender H, De Jager PL. Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks. PLoS Comput Biol 2020; 16:e1007771. [PMID: 32255787 PMCID: PMC7138305 DOI: 10.1371/journal.pcbi.1007771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
Biomedical research studies have generated large multi-omic datasets to study complex diseases like Alzheimer’s disease (AD). An important aim of these studies is the identification of candidate genes that demonstrate congruent disease-related alterations across the different data types measured by the study. We developed a new method to detect such candidate genes in large multi-omic case-control studies that measure multiple data types in the same set of samples. The method is based on a gene-centric integrative coefficient quantifying to what degree consistent differences are observed in the different data types. For statistical inference, a Bayesian hierarchical model is used to study the distribution of the integrative coefficient. The model employs a conditional autoregressive prior to integrate a functional gene network and to share information between genes known to be functionally related. We applied the method to an AD dataset consisting of histone acetylation, DNA methylation, and RNA transcription data from human cortical tissue samples of 233 subjects, and we detected 816 genes with consistent differences between persons with AD and controls. The findings were validated in protein data and in RNA transcription data from two independent AD studies. Finally, we found three subnetworks of jointly dysregulated genes within the functional gene network which capture three distinct biological processes: myeloid cell differentiation, protein phosphorylation and synaptic signaling. Further investigation of the myeloid network indicated an upregulation of this network in early stages of AD prior to accumulation of hyperphosphorylated tau and suggested that increased CSF1 transcription in astrocytes may contribute to microglial activation in AD. Thus, we developed a method that integrates multiple data types and external knowledge of gene function to detect candidate genes, applied the method to an AD dataset, and identified several disease-related genes and processes demonstrating the usefulness of the integrative approach. Recent technological advances have led to a new generation of studies that interrogate multiple molecular levels in the same target tissue of a set of subjects, generating complex multi-omic datasets with which to study disease mechanism. These datasets of genetic, epigenomic, transcriptomic, and other data have the potential to reveal novel biological insights; however, integrative analyses remain challenging and require new computational methods. We developed an integrative Bayesian approach to detect genes with consistent differences between case and control samples across multiple data types. The method further integrates prior knowledge about gene function in the form of a gene functional similarity network to improve statistical inference by sharing information between related genes. We applied our method to an Alzheimer’s disease dataset of epigenomic and transcriptomic data and detected and then validated several novel and known candidate genes as well as three major disease-related biological processes. One of these processes reflected microglial activation and included the cytokine CSF1. Single-nucleus data revealed that CSF1 was primarily upregulated in astrocytes, implicating the involvement of this cell type in microglial activation. Hence, we demonstrated that integrative analysis approaches to multi-omic datasets can improve candidate gene detection and thereby generate new insights into complex diseases.
Collapse
Affiliation(s)
- Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
- * E-mail:
| | - Martin Schäfer
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
149
|
Baig MS, Roy A, Rajpoot S, Liu D, Savai R, Banerjee S, Kawada M, Faisal SM, Saluja R, Saqib U, Ohishi T, Wary KK. Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res 2020; 69:435-451. [DOI: 10.1007/s00011-020-01318-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
|
150
|
Su Z, Sheng L, Yu P, Ren N, Li Y, Qin Z. Regulation of microRNAs by IRE1α in apoptosis: implications for the pathomechanism of neurodegenerative diseases. Int J Neurosci 2020; 130:1230-1236. [PMID: 32070174 DOI: 10.1080/00207454.2020.1730833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although there are large differences in clinical and pathological features, age-related neurodegenerative diseases (NDs) share common pathogenetic mechanisms involving aggregation and deposition of misfolded proteins, which leads to progressive dysfunction and death of neurons. Up to now, it seems that apoptosis is one major form of neuronal cell death. This review provides an overview of recent progress in unfolded protein response (UPR) during apoptosis induced by abnormal protein aggregation and emphasizes on the potential role of inositol requiring enzyme 1 alpha (IRE1α)-microRNAs (miRNAs) mediated apoptosis in NDs, which will provide new insights in the pathogenesis of neurodegenerative diseases and novel therapeutic targets for the treatment of NDs.
Collapse
Affiliation(s)
- Zhonghao Su
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lanyue Sheng
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Ren
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yajuan Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenxia Qin
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|