101
|
Feldman F, Koudoufio M, El-Jalbout R, Sauvé MF, Ahmarani L, Sané AT, Ould-Chikh NEH, N’Timbane T, Patey N, Desjardins Y, Stintzi A, Spahis S, Levy E. Cranberry Proanthocyanidins as a Therapeutic Strategy to Curb Metabolic Syndrome and Fatty Liver-Associated Disorders. Antioxidants (Basel) 2022; 12:antiox12010090. [PMID: 36670951 PMCID: PMC9854780 DOI: 10.3390/antiox12010090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
While the prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, no optimal pharmacotherapy is readily available to address its multifaceted risk factors and halt its complications. This growing challenge mandates the development of other future curative directions. The purpose of the present study is to investigate the efficacy of cranberry proanthocyanidins (PACs) in improving MetS pathological conditions and liver complications; C57BL/6J mice were fed either a standard chow or a high fat/high sucrose (HFHS) diet with and without PACs (200 mg/kg), delivered by daily gavage for 12 weeks. Our results show that PACs lowered HFHS-induced obesity, insulin resistance, and hyperlipidemia. In conjunction, PACs lessened circulatory markers of oxidative stress (OxS) and inflammation. Similarly, the anti-oxidative and anti-inflammatory capacities of PACs were noted in the liver in association with improved hepatic steatosis. Inhibition of lipogenesis and stimulation of beta-oxidation could account for PACs-mediated decline of fatty liver as evidenced not only by the expression of rate-limiting enzymes but also by the status of AMPKα (the key sensor of cellular energy) and the powerful transcription factors (PPARα, PGC1α, SREBP1c, ChREBP). Likewise, treatment with PACs resulted in the downregulation of critical enzymes of liver gluconeogenesis, a process contributing to increased rates of glucose production in type 2 diabetes. Our findings demonstrate that PACs prevented obesity and improved insulin resistance likely via suppression of OxS and inflammation while diminishing hyperlipidemia and fatty liver disease, as clear evidence for their strength of fighting the cluster of MetS abnormalities.
Collapse
Affiliation(s)
- Francis Feldman
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Mireille Koudoufio
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Ramy El-Jalbout
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Radiology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Mathilde Foisy Sauvé
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Lena Ahmarani
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
| | - Alain Théophile Sané
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
| | | | - Thierry N’Timbane
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
| | - Natalie Patey
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Pathology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 4L3, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-(514)-345-7783
| |
Collapse
|
102
|
Antidiabetic Properties of Chitosan and Its Derivatives. Mar Drugs 2022; 20:md20120784. [PMID: 36547931 PMCID: PMC9782916 DOI: 10.3390/md20120784] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder. In addition to taking medication, adjusting the composition of the diet is also considered one of the effective methods to control the levels of blood glucose. Chitosan and its derivatives are natural and versatile biomaterials with health benefits. Chitosan has the potential to alleviate diabetic hyperglycemia by reducing hepatic gluconeogenesis and increasing skeletal muscle glucose uptake and utility. Scientists also focus on the glucose-lowering effect of chitosan oligosaccharide (COS). COS supplementation has the potential to alleviate abnormal glucose metabolism in diabetic rats by inhibiting gluconeogenesis and lipid peroxidation in the liver. Both high and low molecular weight chitosan feeding reduced insulin resistance by inhibiting lipid accumulation in the liver and adipose tissue and ameliorating chronic inflammation in diabetic rats. COS can reduce insulin resistance but has less ability to reduce hepatic lipids in diabetic rats. A clinical trial showed that a 3-month administration of chitosan increased insulin sensitivity and decreased body weight and triglycerides in obese patients. Chitosan and COS are considered Generally Recognized as Safe; however, they are still considered to be of safety concerns. This review highlights recent advances of chitosan and its derivatives in the glucose-lowering/antidiabetic effects and the safety.
Collapse
|
103
|
Kotzé-Hörstmann LM, Bedada DT, Johnson R, Mabasa L, Sadie-Van Gijsen H. The effects of a green Rooibos ( Aspalathus linearis) extract on metabolic parameters and adipose tissue biology in rats fed different obesogenic diets. Food Funct 2022; 13:12648-12663. [PMID: 36441182 DOI: 10.1039/d2fo02440c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current pharmaceutical treatments addressing obesity are plagued by high costs, low efficacy and adverse side effects. Natural extracts are popular alternatives, but evidence for their anti-obesity properties is scant. We assessed the efficacy of a green (minimally-oxidized) Rooibos (Aspalathus linearis) extract (GRT) to ameliorate the effects of obesogenic feeding in rats, by examining body weight, metabolic measures, adipose tissue cellularity and tissue-resident adipose stem cells (ASCs). Furthermore, we performed statistical correlations to explore the relationships and interactions between metabolic and adipose tissue measures. Using an in vivo/ex vivo study design, male Wistar rats were maintained for 17 weeks on one of 3 diets: CON (laboratory chow), OB1 (high-sugar, medium fat) or OB2 (high-fat, high-cholesterol) (n = 24 each). From weeks 11-17, half of the animals in each group received oral GRT supplementation (60 mg per kg body weight daily). Blood and tissue samples were collected, and ASCs from each animal were cultured. Diets OB1 and OB2 induced divergent metabolic profiles compared to CON, but metabolic measures within dietary groups were mostly unaffected by GRT supplementation. Notably, diets OB1 and OB2 uncoupled the positive association between visceral adiposity and insulin resistance, while GRT uncoupled the positive association between elevated serum cholesterol and liver damage. Obesogenic feeding and GRT supplementation induced adipocyte enlargement in vivo, but lipid accumulation in cultured ASCs did not differ between dietary groups. Larger adipocyte size in subcutaneous fat was associated with favourable glucose metabolism measures in all GRT groups. In conclusion, GRT affected the associations between systemic, adipose tissue-level and cellular measures against the background of obesogenic diet-induced metabolic dysregulation.
Collapse
Affiliation(s)
- L M Kotzé-Hörstmann
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa. .,Institute for Sport and Exercise Medicine (ISEM), Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa
| | - D T Bedada
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa
| | - R Johnson
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa. .,Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), PO Box 19070, Parow 7505, South Africa
| | - L Mabasa
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa. .,Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), PO Box 19070, Parow 7505, South Africa
| | - H Sadie-Van Gijsen
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
104
|
Youxiang C, Lin Z, Zekai C, Weijun X. Resting and exercise metabolic characteristics in obese children with insulin resistance. Front Physiol 2022; 13:1049560. [DOI: 10.3389/fphys.2022.1049560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose: This study aimed to explore the characteristics of resting energy expenditure (REE) and lipid metabolism during incremental load exercise in obese children and adolescents with insulin resistance (IR) to provide evidence for exercise intervention in obese children and adolescents with IR.Method: From July 2019 to August 2021, 195 obese children and adolescents aged 13–17 were recruited through a summer camp. The participants were divided into IR (n = 67) and no-IR (without insulin resistance, n = 128) groups and underwent morphology, blood indicators, body composition, and resting energy consumption gas metabolism tests. Thirty participants each were randomly selected from the IR and no-IR groups to carry out the incremental treadmill test.Results: Significant metabolic differences in resting and exercise duration were found between the IR and no-IR groups. In the resting state, the resting metabolic equivalents (4.33 ± 0.94 ml/min/kg vs. 3.91 ± 0.73 ml/min/kg, p = 0.001) and REE (2464.03 ± 462.29 kcal/d vs. 2143.88 ± 380.07 kcal/d, p < 0.001) in the IR group were significantly higher than in the no-IR group. During exercise, the absolute maximal fat oxidation (0.33 ± 0.07 g/min vs. 0.36 ± 0.09 g/min, p = 0.002) in the IR group was significantly lower than in the no-IR group; maximal fat oxidation intensity (130.9 ± 8.9 bpm vs. 139.9 ± 7.4 bpm, p = 0.040) was significantly lower in the IR group.Conclusion: Significant resting and exercise metabolic differences were found between obese IR and no-IR children and adolescents. Obese IR children and adolescents have higher REE and lower maximal fat oxidation intensity than obese no-IR children and adolescents.
Collapse
|
105
|
Mandl M, Viertler HP, Hatzmann FM, Brucker C, Großmann S, Waldegger P, Rauchenwald T, Mattesich M, Zwierzina M, Pierer G, Zwerschke W. An organoid model derived from human adipose stem/progenitor cells to study adipose tissue physiology. Adipocyte 2022; 11:164-174. [PMID: 35297273 PMCID: PMC8932919 DOI: 10.1080/21623945.2022.2044601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We established a functional adipose organoid model system for human adipose stem/progenitor cells (ASCs) isolated from white adipose tissue (WAT). ASCs were forced to self-aggregate by a hanging-drop technique. Afterwards, spheroids were transferred into agar-coated cell culture dishes to avoid plastic-adherence and dis-aggregation. Adipocyte differentiation was induced by an adipogenic hormone cocktail. Morphometric analysis revealed a significant increase in organoid size in the course of adipogenesis until d 18. Whole mount staining of organoids using specific lipophilic dyes showed large multi- and unilocular fat deposits in differentiated cells indicating highly efficient differentiation of ASCs into mature adipocytes. Moreover, we found a strong induction of the expression of key adipogenesis and adipocyte markers (CCAAT/enhancer-binding protein (C/EBP) β, peroxisome proliferator-activated receptor (PPAR) γ, fatty acid-binding protein 4 (FABP4), adiponectin) during adipose organoid formation. Secreted adiponectin was detected in the cell culture supernatant, underscoring the physiological relevance of mature adipocytes in the organoid model. Moreover, colony formation assays of collagenase-digested organoids revealed the maintenance of a significant fraction of ASCs within newly formed organoids. In conclusion, we provide a reliable and highly efficient WAT organoid model, which enables accurate analysis of cellular and molecular markers of adipogenic differentiation and adipocyte physiology.
Collapse
Affiliation(s)
- Markus Mandl
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Hans P. Viertler
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Florian M. Hatzmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Camille Brucker
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Sonja Großmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Petra Waldegger
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Marit Zwierzina
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| |
Collapse
|
106
|
Jovandaric MZ, Dokic M, Babovic IR, Milicevic S, Dotlic J, Milosevic B, Culjic M, Andric L, Dimic N, Mitrovic O, Beleslin A, Nikolic J, Jestrovic Z, Babic S. The Significance of COVID-19 Diseases in Lipid Metabolism Pregnancy Women and Newborns. Int J Mol Sci 2022; 23:ijms232315098. [PMID: 36499427 PMCID: PMC9736562 DOI: 10.3390/ijms232315098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by SARS-CoV-2. Elderly people, people with immunodeficiency, autoimmune and malignant diseases, as well as people with chronic diseases have a higher risk of developing more severe forms of the disease. Pregnant women and children can becomesick, although more often they are only the carriers of the virus. Recent studies have indicated that infants can also be infected by SARS-CoV-2 and develop a severe form of the disease with a fatal outcome. Acute Respiratory Distress Syndrome (ARDS) ina pregnant woman can affect the supply of oxygen to the fetus and initiate the mechanism of metabolic disorders of the fetus and newborn caused by asphyxia. The initial metabolic response of the newborn to the lack of oxygen in the tissues is the activation of anaerobic glycolysis in the tissues and an increase in the concentration of lactate and ketones. Lipid peroxidation, especially in nerve cells, is catalyzed by iron released from hemoglobin, transferrin and ferritin, whose release is induced by tissue acidosis and free oxygen radicals. Ferroptosis-inducing factors can directly or indirectly affect glutathione peroxidase through various pathways, resulting in a decrease in the antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in the cells, ultimately leading to oxidative cell stress, and finally, death. Conclusion: damage to the mitochondria as a result of lipid peroxidation caused by the COVID-19 disease can cause the death of a newborn and pregnant women as well as short time and long-time sequelae.
Collapse
Affiliation(s)
- Miljana Z. Jovandaric
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-366-35-86
| | - Milan Dokic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivana R. Babovic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Srboljub Milicevic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Dotlic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Branislav Milosevic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Miljan Culjic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Luka Andric
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Nemanja Dimic
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
- Clinic for Anesthesiology and Intensive Care, University Clinical Hospital Center “Dr Dragisa Misovic - DEDINJE”, 11000 Belgrade, Serbia
| | - Olga Mitrovic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Aleksandra Beleslin
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Jovana Nikolic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Zorica Jestrovic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Sandra Babic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| |
Collapse
|
107
|
Bashir S, Morgan WA. Inhibition of mitochondrial function: An alternative explanation for the antipyretic and hypothermic actions of acetaminophen. Life Sci 2022; 312:121194. [PMID: 36379307 DOI: 10.1016/j.lfs.2022.121194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
AIMS Acetaminophen is the medication of choice when treating fever because of its limited anti-inflammatory effects. However at overdose it can cause mitochondrial dysfunction and damage, often associated with metabolism to N-acetyl-p-benzoquinone imine (NAPQI). What has never been investigated is whether the inhibition of mitochondrial function, particularly fatty acid uptake and oxidation could be the key to its antipyretic and hypothermic properties. METHODS Mitochondrial function and fatty acid oxidation (FAO) was determined by measuring oxygen consumption rate (OCR) in isolated mitochondria and in 3T3-L1 adipocytes using the XFp Analyser. Basal fatty acids and adrenergic stimulated OCR of mitochondria and 3T3-L1 adipocytes were assessed with acetaminophen and compared to NAPQI, etomoxir, and various mitochondrial stress compounds. KEY FINDINGS Using the XFp Analyser, acetaminophen (10 mM) decreased FAO by 31 % and 29 % in basal and palmitate stimulated adipocytes. NAPQI (50 μM) caused a 63 % decrease in both basal and palmitate stimulated FAO. Acetaminophen (10 mM) caused a 34 % reduction in basal and adrenergic stimulated OCR. In addition acetaminophen also inhibited complex I and II activity at 5 mM. NAPQI was far more potent at reducing mitochondrial respiratory capacity, maximum respiratory rates and ATP production than acetaminophen. SIGNIFICANCE These studies demonstrate the direct inhibition of mitochondrial function by acetaminophen at concentrations which have been shown to reduce fever and hypothermia in mammals. Understanding how antipyretics directly affect mitochondrial function and heat generation could lead to the development of new antipyretics which are not compromised by the anti-inflammatory and toxicity of the current medications.
Collapse
Affiliation(s)
- Shazma Bashir
- The Medicines Research Group, School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, London E15 4LZ, UK
| | - Winston A Morgan
- The Medicines Research Group, School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, London E15 4LZ, UK.
| |
Collapse
|
108
|
Gómez-Martínez DG, Ramos F, Ramos M, Robles F. A bioinspired model for the generation of a motivational state from energy homeostasis. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
109
|
Matrone A, Basolo A, Santini F, Elisei R. Understanding the effect of obesity on papillary thyroid cancer: is there a need for tailored diagnostic and therapeutic management? Expert Rev Endocrinol Metab 2022; 17:475-484. [PMID: 36203362 DOI: 10.1080/17446651.2022.2131529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/29/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Several studies have focused on the relationship between obesity and differentiated thyroid carcinoma (DTC), particularly papillary histotype (PTC). However, the association of obesity with both incidence and aggressiveness of PTC is still incompletely understood. AREAS COVERED We reviewed the mechanisms underlying the cross talk between obesity and thyroid carcinomas and described the most recent evidence evaluating the effect of obesity on the development of PTC, as well as the impact of excessive body weight on the clinicopathologic features and outcome of this type of cancer. EXPERT OPINION Available evidence suggests that excessive body weight is linked with a higher risk of getting PTC, while its impact on the aggressiveness of the disease, if present, is still not clear. Therefore, while attention should be paid to discover thyroid cancer in patients with obesity earlier, once diagnosed it should be managed following a conventional workup as in normal weight patients, based on the clinical presentation of the disease and including active surveillance if appropriate, as recommended by referral guidelines.
Collapse
Affiliation(s)
- Antonio Matrone
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa - via Paradisa 2, Pisa, Italy
| | - Alessio Basolo
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa - via Paradisa 2, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa - via Paradisa 2, Pisa, Italy
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa - via Paradisa 2, Pisa, Italy
| |
Collapse
|
110
|
Yehuda GA, Somekh J. A methodology for classifying tissue-specific metabolic and inflammatory receptor functions applied to subcutaneous and visceral adipose. PLoS One 2022; 17:e0276699. [PMID: 36282842 PMCID: PMC9595531 DOI: 10.1371/journal.pone.0276699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
To achieve homeostasis, the human biological system relies on the interaction between organs through the binding of ligands secreted from source organs to receptors located on destination organs. Currently, the changing roles that receptors perform in tissues are only partially understood. Recently, a methodology based on receptor co-expression patterns to classify their tissue-specific metabolic functions was suggested. Here we present an advanced framework to predict an additional class of inflammatory receptors that use a feature space of biological pathway enrichment analysis scores of co-expression networks and their eigengene correlations. These are fed into three machine learning classifiers-eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and K-Nearest Neighbors (k-NN). We applied our methodology to subcutaneous and visceral adipose gene expression datasets derived from the GTEx (Genotype-Tissue Expression) project and compared the predictions. The XGBoost model demonstrated the best performance in predicting the pre-labeled receptors, with an accuracy of 0.89/0.8 in subcutaneous/visceral adipose. We analyzed ~700 receptors to predict eight new metabolic and 15 new inflammatory functions of receptors and four new metabolic functions for known inflammatory receptors in both adipose tissues. We cross-referenced multiple predictions using the published literature. Our results establish a picture of the changing functions of receptors for two adipose tissues that can be beneficial for drug development.
Collapse
Affiliation(s)
| | - Judith Somekh
- Information Systems, University of Haifa, Haifa, Israel
| |
Collapse
|
111
|
Abudujilile D, Wang W, Aimaier A, Chang L, Dong Y, Wang Y, Fan X, Ma Y, Wang Y, Ziyayiding D, Ma Y, Lv J, Li J. Cistanche tubulosa phenylethanoid glycosides suppressed adipogenesis in 3T3-L1 adipocytes and improved obesity and insulin resistance in high-fat diet induced obese mice. BMC Complement Med Ther 2022; 22:270. [PMID: 36229811 PMCID: PMC9564091 DOI: 10.1186/s12906-022-03743-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cistanche tubulosa is an editable and medicinal traditional Chinese herb and phenylethanoid glycosides are its major components, which have shown various beneficial effects such as anti-tumor, anti-oxidant and neuroprotective activities. However, the anti-obesity effect of C. tubulosa phenylethanoid glycosides (CTPG) and their regulatory effect on gut microbiota are still unclear. In the present study, we investigated its anti-obesity effect and regulatory effect on gut microbiota by 3T3-L1 cell model and obesity mouse model. Methods 3T3-L1 adipocytes were used to evaluate CTPG effects on adipogenesis and lipids accumulation. Insulin resistant 3T3-L1 cells were induced and used to measure CTPG effects on glucose consumption and insulin sensitivity. High-fat diet (HFD)-induced C57BL/6 obese mice were used to investigate CTPG effects on fat deposition, glucose and lipid metabolism, insulin resistance and intestinal microorganism. Results In vitro data showed that CTPG significantly decreased the triglyceride (TG) and non-esterified fatty acid (NEFA) contents of the differentiated 3T3-L1 adipocytes in a concentration-dependent manner without cytotoxicity, and high concentration (100 µg/ml) of CTPG treatment dramatically suppressed the level of monocyte chemoattractant protein-1 (MCP-1) in 3T3-L1 mature adipocytes. Meanwhile, CTPG increased glucose consumption and decreased NEFA level in insulin resistant 3T3-L1 cells. We further found that CTPG protected mice from the development of obesity by inhibiting the expansion of adipose tissue and adipocyte hypertrophy, and improved hepatic steatosis by activating AMPKα to reduce hepatic fat accumulation. CTPG ameliorated HFD-induced hyperinsulinemia, hyperglycemia, inflammation and insulin resistance by activating IRS1/Akt/GLUT4 insulin signaling pathway in white adipose tissue. Moreover, gut microbiota structure and metabolic functions in HFD-induced obese mice was changed by CTPG, especially short chain fatty acids-producing bacteria including Blautia, Roseburia, Butyrivibrio and Bacteriodes were significantly increased by CTPG treatment. Conclusions CTPG effectively suppressed adipogenesis and lipid accumulation in 3T3-L1 adipocytes and ameliorated HFD-induced obesity and insulin resistance through activating AMPKα and IRS1/AKT/GLUT4 signaling pathway and regulating the composition and metabolic functions of gut microbiota. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03743-6.
Collapse
Affiliation(s)
- Dilinazi Abudujilile
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Weilan Wang
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Alimu Aimaier
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Lili Chang
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yuliang Dong
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yiye Wang
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Xu Fan
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yu Ma
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yongli Wang
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Dilinigeer Ziyayiding
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yuan Ma
- grid.413254.50000 0000 9544 7024College of Resource and Environment Sciences, Xinjiang University, Urumqi, 830017 China
| | - Jie Lv
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Jinyao Li
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| |
Collapse
|
112
|
Cechin L, Norcross C, Oliveira A, Hopkins D, McGowan B, Post FA. Obesity and diabetes in people of African ancestry with HIV. HIV Med 2022; 24:380-388. [PMID: 36196017 DOI: 10.1111/hiv.13413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Obesity is a chronic disease with multiple adverse effects on health. The prevalence of obesity is increasing worldwide, and people of African ancestry are disproportionally affected. Several widely used antiretrovirals have been associated with weight gain and contribute to the rising burden of obesity in people with HIV. Obesity and weight gain on antiretroviral therapy are risk factors for the development of type 2 diabetes mellitus, a condition which also disproportionally affects black populations. In this review, we discuss recent data on weight gain in relation to initiating or switching antiretroviral therapy and advances in the management of obesity. Availability of highly effective treatments for obesity have the potential to address, and potentially reverse, the epidemics of obesity and diabetes mellitus in people with HIV.
Collapse
Affiliation(s)
- Laura Cechin
- King's College Hospital NHS Foundation Trust, London, UK
| | - Claire Norcross
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | | | - David Hopkins
- King's College Hospital NHS Foundation Trust, London, UK.,Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, UK
| | - Barbara McGowan
- Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, UK.,Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Frank A Post
- King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
113
|
The Effects of BMI and Genetic Variation of Adipokines on Serum Concentrations of Hormones in Untreated Individuals with Breast Cancer; a Pilot Study. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: Numerous studies have shown an association between hormones secreted by adipose tissues and cancer development. Objectives: This study aimed at investigating the effect of body mass index (BMI) and genetic variation of leptin and adiponectin on serum concentrations of leptin, adiponectin, and estradiol among untreated breast cancer. Methods: This case-control study was performed on 350 women (175 women with breast cancer and 175 healthy controls), who had not taken any medications. Serum levels of estradiol (17-beta estradiol), leptin, and adiponectin were measured, using the ELISA technique. Single-nucleotide polymorphisms of leptin gene (LepG2548A), leptin receptor (Q223, K109R, and K656N), and adiponectin gene (T45G, G276T, C11377G, and 11391A) in blood-isolated DNA were evaluated, using RFLP-PCR technique. Results: Body mass index can affect serum concentrations of hormones and is associated with breast cancer. Also, except for adiponectin C11377G polymorphism, other all genetic variations showed significant relationships with breast cancer. In both groups, BMI was significantly correlated with the mean serum concentrations of hormones, and the risk of breast cancer increased in G2548A, Q223R, K656N, and G276T polymorphisms. The effect of risk allele genotypes on serum concentration of hormones showed that changes in serum concentration of estrogen and leptin in all studied polymorphisms were associated with breast cancer in postmenopausal women. But adiponectin level was only affected by polymorphisms K109R, K656N, and G276 and G11391A. Conclusions: High BMI and genetic variation can affect cancer development by changing the serum concentrations of hormones in different genotypes. Studying various populations’ genetics and lifestyle can help definitive conclusions about genetics and obesity.
Collapse
|
114
|
Tsui L. Adipocyte-based high throughput screening for anti-obesity drug discovery: Current status and future perspectives. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:375-383. [PMID: 35948270 DOI: 10.1016/j.slasd.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Drug discovery for obesity treatment, particularly bodily slimming, is a topic of timely importance that requires continued investigation, as the current therapies have limited efficacy with many adverse effects. Obesity is associated with adipose tissue expansion, where the size and number of adipocytes increase. Over the past few decades, high-throughput/content screening (HTS/HCS) has been carried out on morphological changes in adipose tissues and adipocytes for the development of anti-obesity therapies. Increased understating of current adipocyte-based HTS/HCS technology will facilitate drug screening for obesity and weight control.
Collapse
Affiliation(s)
- Leo Tsui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
115
|
Ling HZ, Jara PG, Nicolaides KH, Kametas NA. Impact of maternal height, weight at presentation and gestational weight gain on cardiac adaptation in pregnancy. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:523-531. [PMID: 35020246 DOI: 10.1002/uog.24858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To compare longitudinal maternal hemodynamic changes throughout gestation between different groups stratified according to weight at presentation and assess the relative influence of height, weight at presentation and gestational weight gain on cardiac adaptation. METHODS This was a prospective, longitudinal study assessing maternal hemodynamics using bioreactance technology at 11 + 0 to 13 + 6, 19 + 0 to 24 + 0, 30 + 0 to 34 + 0 and 35 + 0 to 37 + 0 weeks' gestation. Women were divided into three groups according to maternal weight at presentation at the first visit at 11 + 0 to 13 + 6 weeks: Group 1, < 60.0 kg (n = 421); Group 2, 60.0-79.7 kg (n = 904); Group 3, > 79.7 kg (n = 427). A multilevel linear mixed-effects model was used to compare the repeated measures of hemodynamic variables, correcting for demographics, medical and obstetric history, pregnancy complications, maternal weight and time of evaluation. The linear mixed-effects model was then repeated using maternal height, weight at presentation and gestational weight gain Z-scores, and the standardized coefficients were used to evaluate the relative impact of each of these demographic parameters on longitudinal changes of maternal hemodynamics. RESULTS Compared with Group 1, women in Group 3 demonstrated higher cardiac output (CO), heart rate (HR) and mean arterial pressure (MAP) throughout pregnancy. Groups 2 and 3 had higher stroke volume (SV) than Group 1 at the first visit, but their SV plateaued between the first and second visits and demonstrated an earlier significant decrease from the second visit to the third visit when compared with Group 1. Compared with Groups 1 and 2, there was a higher prevalence of pre-eclampsia, gestational hypertension and gestational diabetes in Group 3. Maternal height was the most important contributor to CO, peripheral vascular resistance (PVR), SV and HR, while weight at presentation was the most important contributor to MAP. Gestational weight gain was the second most important characteristic influencing the longitudinal changes of PVR and SV. CONCLUSIONS Women with greater weight at presentation have a pathological hemodynamic profile, with higher CO, HR and MAP compared to women with lower weight at presentation. Height is the main determinant of CO, SV, HR and PVR, weight is the main determinant of MAP, and gestational weight gain is the second most important determinant of SV and PVR. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- H Z Ling
- Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - P Garcia Jara
- Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - K H Nicolaides
- Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - N A Kametas
- Fetal Medicine Research Institute, King's College Hospital, London, UK
| |
Collapse
|
116
|
Pomilio AB, Szewczuk NA, Duchowicz PR. Dietary anthocyanins balance immune signs in osteoarthritis and obesity - update of human in vitro studies and clinical trials. Crit Rev Food Sci Nutr 2022; 64:2634-2672. [PMID: 36148839 DOI: 10.1080/10408398.2022.2124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are known to change ligand-receptor bindings, cell membrane permeability, and intracellular signaling pathways. The beneficial effects of dietary anthocyanins have been chronologically demonstrated in interventional and observational studies, including fourteen human chondrocyte studies and related cell culture assays, nineteen human clinical trials in osteoarthritis patients, seven in vivo obesity assays, nineteen in vitro assays in preadipocytes and related cells, and twenty-two clinical trials in overweight/obese subjects, which are critically discussed in this update. Strawberries, cherries, berries, pomegranate, tropical fruits, rosehip, purple rice, purple corn, red beans, and black soybean, together with cyanidin, delphinidin, malvidin, peonidin, some 3-O-glycosides, metabolites, and acylated anthocyanins from a potato cultivar have shown the best outcomes. The set of these five key tests and clinical trials, taken together, contributes to the understanding of the underlying mechanisms and pathways involved. Furthermore, this set shows the value of anthocyanins in counteracting the progression of osteoarthritis/obesity. The interplay between the inflammation of osteoarthritis and obesity, and the subsequent regulation/immunomodulation was performed through isolated and food anthocyanins. The antioxidant, anti-inflammatory, and immunomodulatory properties of anthocyanins explain the findings of the studies analyzed. However, further interventional studies should be conducted to finally establish the appropriate doses for anthocyanin supplementation, dose-response, and length of consumption, to include dietary recommendations for osteoarthritis/obese patients for preventive and management purposes.
Collapse
Affiliation(s)
- Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, CONICET, Área Hematología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas A Szewczuk
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| | - Pablo R Duchowicz
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| |
Collapse
|
117
|
Chou CL, Li CH, Fang TC. Benefits of Valsartan and Amlodipine in Lipolysis through PU.1 Inhibition in Fructose-Induced Adiposity. Nutrients 2022; 14:nu14183759. [PMID: 36145135 PMCID: PMC9502698 DOI: 10.3390/nu14183759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
High fructose intake has been implicated in obesity and metabolic syndrome, which are related to increased cardiovascular mortality. However, few studies have experimentally examined the role of renin–angiotensin system blockers and calcium channel blockers (CCB) in obesity. We investigated the effects of valsartan (an angiotensin II receptor blocker) and amlodipine (a CCB) on lipolysis through the potential mechanism of PU.1 inhibition. We observed that high fructose concentrations significantly increased adipose size and triglyceride, monoacylglycerol lipase, adipose triglyceride lipase, and stearoyl-CoA desaturase-1 (SCD1), activating transcription factor 3 and PU.1 levels in adipocytes in vitro. Subsequently, PU.1 inhibitor treatment was able to reduce triglyceride, SCD1, and PU.1 levels. In addition, elevated levels of triglyceride and PU.1, stimulated by a high fructose concentration, decreased with valsartan and amlodipine treatment. Overall, these findings suggest that high fructose concentrations cause triacylglycerol storage in adipocytes through PU.1-mediated activation. Furthermore, valsartan and amlodipine treatment reduced triacylglycerol storage in adipocytes by inhibiting PU.1 activation in high fructose concentrations in vitro. Thus, the benefits of valsartan and amlodipine in lipolysis may be through PU.1 inhibition in fructose-induced adiposity, and PU.1 inhibition might have a potential therapeutic role in lipolysis in fructose-induced obesity.
Collapse
Affiliation(s)
- Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City 320, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-2737-2181
| |
Collapse
|
118
|
Metabolic Syndrome Ameliorated by 4-Methylesculetin by Reducing Hepatic Lipid Accumulation. Int J Mol Sci 2022; 23:ijms231810465. [PMID: 36142378 PMCID: PMC9499566 DOI: 10.3390/ijms231810465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Obesity is a chronic metabolic disease caused by an imbalance between energy intake and expenditure during a long period and is characterized by adipose tissue disfunction and hepatic steatosis. The aim of this study was to investigate the effect of 4-methylesculetin (4-ME), a coumarin derivative, upon adipose microenvironment and hepatic steatosis in mice induced by a high-fat diet (HFD), and to explore potential mechanisms of its beneficial effect on metabolic disorders. HFD-fed mice displayed visceral obesity, insulin resistance, and hepatic lipid accumulation, which was remarkably ameliorated by 4-ME treatment. Meanwhile, 4-ME ameliorated adipocyte hypertrophy, macrophage infiltration, hypoxia, and fibrosis in epididymal adipose tissue, thus improving the adipose tissue microenvironment. Furthermore, 4-ME reversed the increase in CD36, PPAR-γ, SREBP-1, and FASN, and the decrease in CPT-1A, PPAR-α, and Nrf2 translocation into the nucleus in livers of HFD mice and in FFA-incubated hepatocytes. Moreover, the beneficial effects of 4-ME upon lipid deposition and the expression of proteins related to lipid metabolism in FFA-induced LO2 cells were abolished by ML385, a specific Nrf2 inhibitor, indicating that Nrf2 is necessary for 4-ME to reduce hepatic lipid deposition. These findings suggested that 4-ME might be a potential lead compound candidate for preventing obesity and MAFLD.
Collapse
|
119
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
120
|
Maurya S, Krishna A, Lal B, Singh A. Asprosin promotes steroidogenesis and spermatogenesis with improved glucose metabolism in adult mice testis. Andrologia 2022; 54:e14579. [PMID: 36056803 DOI: 10.1111/and.14579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Asprosin is an orexigenic adipokine that regulates appetite and glucose homeostasis in mammals. To date, only fragmentary findings are reported regarding its role in testicular activities. In the current investigation, immunolocalization and direct action of asprosin in adult mice testis was evaluated. Immunohistochemical and immunoblot studies were performed to analyse the testicular expression of asprosin. Intratesticular treatment of asprosin (0.1 μg and 1.0 μg per testis) was given to evaluate its direct action on testicular functions. Sertoli and Leydig cells were found to be immuno-positive for asprosin. Intratesticular administration of asprosin resulted into a significant increase in glucose and lactate levels along with enhanced expression of asprosin receptor OLFR734, insulin receptor (IR), glucose transporter 8 (GLUT 8), lactate dehydrogenase (LDH) activity and monocorboxylate transporters (MCT2 and 4). In addition, asprosin administration increased the testicular expression of cell proliferation (proliferating cell nuclear antigen: PCNA), cell survival (B cell lymphoma 2: Bcl2) and decreased germ cell apoptosis (Cysteine aspartic acid protease 3: Caspase 3) leading to increased sperm counts. Further, asprosin treatment resulted into increased level of total cholesterol, testosterone and steroidogenic markers (steroidogenic acute regulatory protein: StAR; 3beta-hydroxysteroid dehydrogenases: 3β HSD and 17beta-hydroxysteroid dehydrogenases: 17β HSD). Asprosin treatment promotes testicular glucose uptake and lactate synthesis to provide energy for steroidogenesis and spermatogenesis. The significant correlation between the asprosin-induced increased IR expression and increased testosterone, glucose and lactate levels suggests its role in increased survival and proliferation but decrease in germ cell apoptosis. This study proposed asprosin's role as an autocrine/paracrine regulator of testicular functions in adult mice.
Collapse
Affiliation(s)
- Sangeeta Maurya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Amitabh Krishna
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bechan Lal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajit Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
121
|
Decreased Epicardial CTRP3 mRNA Levels in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease Undergoing Elective Cardiac Surgery: A Possible Association with Coronary Atherosclerosis. Int J Mol Sci 2022; 23:ijms23179988. [PMID: 36077376 PMCID: PMC9456433 DOI: 10.3390/ijms23179988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: C1q TNF-related protein 3 (CTRP3) is an adipokine with anti-inflammatory and cardioprotective properties. In our study, we explored changes in serum CTRP3 and its gene expression in epicardial (EAT) and subcutaneous (SAT) adipose tissue in patients with and without coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) undergoing elective cardiac surgery. (2) Methods: SAT, EAT, and blood samples were collected at the start and end of surgery from 34 patients: (i) 11 without CAD or T2DM, (ii) 14 with CAD and without T2DM, and (iii) 9 with both CAD and T2DM. mRNA levels of CTRP3 were assessed by quantitative reverse transcription PCR. Circulating levels of CTRP3 and other factors were measured using ELISA and Luminex Multiplex commercial kits. (3) Results: Baseline plasma levels of TNF-α and IL6 did not differ among the groups and increased at the end of surgery. Baseline circulating levels of CTRP3 did not differ among the groups and decreased after surgery. In contrast, baseline CTRP3 mRNA levels in EAT were significantly decreased in CAD/T2DM group, while no differences were found for TNF-α and IL6 gene expression. (4) Conclusions: Our data suggest that decreased EAT mRNA levels of CTRP3 could contribute to higher risk of atherosclerosis in patients with CAD and T2DM.
Collapse
|
122
|
Yousuf S, Li A, Feng H, Lui T, Huang W, Zhang X, Xie L, Miao X. Genome-Wide Expression Profiling and Networking Reveals an Imperative Role of IMF-Associated Novel CircRNAs as ceRNA in Pigs. Cells 2022; 11:2638. [PMID: 36078046 PMCID: PMC9454643 DOI: 10.3390/cells11172638] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Intramuscular fat (IMF) deposition is a biological process that has a strong impact on the nutritional and sensorial properties of meat, with relevant consequences on human health. Pork loins determine the effects of marbling on the sensory attributes and meat quality properties, which differ among various pig breeds. This study explores the crosstalk of non-coding RNAs with mRNAs and analyzes the potential pathogenic role of IMF-associated competing endogenous RNA (ceRNA) in IMF tissues, which offer a framework for the functional validation of key/potential genes. A high-throughput whole-genome transcriptome analysis of IMF tissues from longissimus dorsi muscles of Large White (D_JN) and Laiwu (L_JN) pigs resulted in the identification of 283 differentially expressed circRNAs (DECs), including two key circRNAs (circRNA-23437, circRNA-08840) with potential binding sites for multiple miRNAs regulating the whole network. The potential ceRNA mechanism identified the DEC target miRNAs-mRNAs involved in lipid metabolism, fat deposition, meat quality, and metabolic syndrome via the circRNA-miRNA-mRNA network, concluding that ssc-mir-370 is the most important target miRNA shared by both key circRNAs. TGM2, SLC5A6, ECI1, FASN, PER1, SLC25A34, SOD1, and COL5A3 were identified as hub genes through an intensive protein-protein interaction (PPI) network analysis of target genes acquired from the ceRNA regulatory network. Functional enrichments, pathway examinations, and qRT-PCR analyses infer their implications in fat/cholesterol metabolism, insulin secretion, and fatty acid biosynthesis. Here, circRNAs and miRNA sequencing accompanied by computational techniques were performed to analyze their expressions in IMF tissues from the longissimus dorsi muscles of two pig breeds. Their target gene evolutionary trajectories, expression profiling, functional enrichments, subcellular localizations, and structural advances with high-throughput protein modeling, following genomic organizations, will provide new insights into the underlying molecular mechanisms of adipocyte differentiation and IMF deposition and a much-needed qualitative framework for future research to improve meat quality and its role as a biomarker to treat lipid metabolic syndromes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiangyang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
123
|
Pagano Zottola AC, Severi I, Cannich A, Ciofi P, Cota D, Marsicano G, Giordano A, Bellocchio L. Expression of Functional Cannabinoid Type-1 (CB 1) Receptor in Mitochondria of White Adipocytes. Cells 2022; 11:cells11162582. [PMID: 36010658 PMCID: PMC9406404 DOI: 10.3390/cells11162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids' effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism.
Collapse
Affiliation(s)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Astrid Cannich
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Philippe Ciofi
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Daniela Cota
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luigi Bellocchio
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
- Correspondence: ; Tel.: +33-557-573-754
| |
Collapse
|
124
|
Luo L, Liu M. Adiponectin: friend or foe in obesity and inflammation. MEDICAL REVIEW (2021) 2022; 2:349-362. [PMID: 37724325 PMCID: PMC10388816 DOI: 10.1515/mr-2022-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 09/20/2023]
Abstract
Adiponectin is an adipokine predominantly produced by fat cells, circulates and exerts insulin-sensitizing, cardioprotective and anti-inflammatory effects. Dysregulation of adiponectin and/or adiponectin signaling is implicated in a number of metabolic diseases such as obesity, insulin resistance, diabetes, and cardiovascular diseases. However, while the insulin-sensitizing and cardioprotective effects of adiponectin have been widely appreciated in the field, the obesogenic and anti-inflammatory effects of adiponectin are still of much debate. Understanding the physiological function of adiponectin is critical for adiponectin-based therapeutics for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
125
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
126
|
Mularczyk M, Bourebaba N, Marycz K, Bourebaba L. Astaxanthin Carotenoid Modulates Oxidative Stress in Adipose-Derived Stromal Cells Isolated from Equine Metabolic Syndrome Affected Horses by Targeting Mitochondrial Biogenesis. Biomolecules 2022; 12:biom12081039. [PMID: 36008933 PMCID: PMC9405637 DOI: 10.3390/biom12081039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin is gaining recognition as a natural bioactive component. This study aimed to test whether astaxanthin could protect adipose-derived stromal stem cells (ASCs) from apoptosis, mitochondrial dysfunction and oxidative stress. Phaffia rhodozyma was used to extract astaxanthin, whose biocompatibility was tested after 24, 48 and 72 h of incubation with the cells; no harmful impact was found. ASCs were treated with optimal concentrations of astaxanthin. Several parameters were examined: cell viability, apoptosis, reactive oxygen levels, mitochondrial dynamics and metabolism, superoxide dismutase activity, and astaxanthin’s antioxidant capacity. A RT PCR analysis was performed after each test. The astaxanthin treatment significantly reduced apoptosis by modifying the normalized caspase activity of pro-apoptotic pathways (p21, p53, and Bax). Furthermore, by regulating the expression of related master factors SOD1, SOD2, PARKIN, PINK 1, and MFN 1, astaxanthin alleviated the oxidative stress and mitochondrial dynamics failure caused by EMS. Astaxanthin restored mitochondrial oxidative phosphorylation by stimulating markers associated with the OXPHOS machinery: COX4I1, COX4I2, UQCRC2, NDUFA9, and TFAM. Our results suggest that astaxanthin has the potential to open new possibilities for potential bio-drugs to control and suppress oxidative stress, thereby improving the overall metabolic status of equine ASCs suffering from metabolic syndrome.
Collapse
Affiliation(s)
- Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (N.B.); (K.M.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
- Correspondence: (M.M.); (L.B.); Tel.: +48-71-320-5248 (L.B.)
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (N.B.); (K.M.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (N.B.); (K.M.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (N.B.); (K.M.)
- Correspondence: (M.M.); (L.B.); Tel.: +48-71-320-5248 (L.B.)
| |
Collapse
|
127
|
The Extent of Lifestyle-Induced Weight Loss Determines the Risk of Prediabetes and Metabolic Syndrome Recurrence during a 5-Year Follow-Up. Nutrients 2022; 14:nu14153060. [PMID: 35893913 PMCID: PMC9331424 DOI: 10.3390/nu14153060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
It is controversial whether lifestyle-induced weight loss (LIWL) intervention provides long-term benefit. Here, we investigated whether the degree of weight loss (WL) in a controlled LIWL intervention study determined the risk of prediabetes and recurrence of metabolic syndrome (MetS) during a 5-year follow-up. Following LIWL, 58 male participants (age 45−55 years) were divided into four quartiles based on initial WL: Q1 (WL 0−8.1%, n = 15), Q2 (WL 8.1−12.8%, n = 14), Q3 (WL 12.8−16.0%, n = 14), and Q4 (WL 16.0−27.5%, n = 15). We analyzed changes in BMI, HDL cholesterol, triglycerides (TGs), blood pressure, and fasting plasma glucose (FPG) at annual follow-up visits. With a weight gain after LIWL between 1.2 (Q2) and 2.5 kg/year (Q4), the reduction in BMI was maintained for 4 (Q2, p = 0.03) or 5 (Q3, p = 0.03; Q4, p < 0.01) years, respectively, and an increase in FPG levels above baseline values was prevented in Q2−Q4. Accordingly, there was no increase in prediabetes incidence after LIWL in participants in Q2 (up to 2 years), Q3 and Q4 (up to 5 years). A sustained reduction in MetS was maintained in Q4 during the 5-year follow-up. The present data indicate that a greater initial LIWL reduces the risk of prediabetes and recurrence of MetS for up to 5 years.
Collapse
|
128
|
Wang D, Kuang Y, Zhang G, Xiao K, Liu Y. Lysine-Specific Demethylase 1 in Energy Metabolism: A Novel Target for Obesity. J Nutr 2022; 152:1611-1620. [PMID: 35380692 DOI: 10.1093/jn/nxac080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
Obesity develops from an imbalance of energy homeostasis and is associated with the development of metabolic disorders, including insulin resistance and type 2 diabetes. Identification of the underlying molecular mechanisms and effective therapeutic approaches is highly needed. Lysine-specific demethylase 1 (LSD1), an flavin adenine dinucletide-dependent amine oxidase, is implicated in a wide variety of biological processes, including tumorigenesis, stem cell fate decisions, and embryonic development. Recent studies have suggested a vital role of LSD1 in regulating adaptive thermogenesis, mitochondrial biogenesis, glucose, and lipid metabolism. More recently, LSD1 activity was found to be regulated by nutrients, energy status, and hormonal signals, suggesting that it may act as a novel sensor for nutritional regulation of metabolic health. Here, we first discuss the effects of LSD1 on physiological phenotypes, including body weight, fat mass, body temperature, and glucose homeostasis. We also summarize recent understanding of the physiological roles and underlying mechanisms of LSD1 in controlling metabolic functions of adipose and other tissues. Hopefully, a better understanding of the roles of LSD1 in metabolic regulation may provide new perspectives for the nutritional prevention and treatment of obesity.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Guolong Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China.,Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| |
Collapse
|
129
|
Fallati A, Di Marzo N, D’Amico G, Dander E. Mesenchymal Stromal Cells (MSCs): An Ally of B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells in Disease Maintenance and Progression within the Bone Marrow Hematopoietic Niche. Cancers (Basel) 2022; 14:cancers14143303. [PMID: 35884364 PMCID: PMC9323332 DOI: 10.3390/cancers14143303] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer. Even though the cure rate actually exceeds 85%, the prognosis of relapsed/refractory patients is dismal. Recent literature data indicate that the bone marrow (BM) microenvironment could play a crucial role in the onset, maintenance and progression of the disease. In particular, mesenchymal stromal cells (MSCs), which are key components of the BM niche, actively crosstalk with leukemic cells providing crucial signals for their survival and resistance to therapy. We hereby review the main mechanisms exploited by MSCs to nurture and protect B-ALL cells that could become appealing targets for innovative microenvironment remodeling therapies to be coupled with classical leukemia-directed strategies. Abstract Mesenchymal stromal cells (MSCs) are structural components of the bone marrow (BM) niche, where they functionally interact with hematopoietic stem cells and more differentiated progenitors, contributing to hematopoiesis regulation. A growing body of evidence is nowadays pointing to a further crucial contribution of MSCs to malignant hematopoiesis. In the context of B-cell acute lymphoblastic leukemia (B-ALL), MSCs can play a pivotal role in the definition of a leukemia-supportive microenvironment, impacting on disease pathogenesis at different steps including onset, maintenance and progression. B-ALL cells hijack the BM microenvironment, including MSCs residing in the BM niche, which in turn shelter leukemic cells and protect them from chemotherapeutic agents through different mechanisms. Evidence is now arising that altered MSCs can become precious allies to leukemic cells by providing nutrients, cytokines, pro-survivals signals and exchanging organelles, as hereafter reviewed. The study of the mechanisms exploited by MSCs to nurture and protect B-ALL blasts can be instrumental in finding new druggable candidates to target the leukemic BM microenvironment. Some of these microenvironment-targeting strategies are already in preclinical or clinical experimentation, and if coupled with leukemia-directed therapies, could represent a valuable option to improve the prognosis of relapsed/refractory patients, whose management represents an unmet medical need.
Collapse
|
130
|
Czamara K, Majka Z, Stanek E, Hachlica N, Kaczor A. Raman studies of the adipose tissue: Current state-of-art and future perspectives in diagnostics. Prog Lipid Res 2022; 87:101183. [PMID: 35961483 DOI: 10.1016/j.plipres.2022.101183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
The last decades revealed that the adipose tissue shows an unexplored therapeutic potential. In particular, targeting the perivascular adipose tissue (PVAT), that surrounds blood vessels, can prevent cardiovascular pathologies and browning of the adipose tissue can become an effective strategy against obesity. Therefore, new analytical tools are necessary to analyze this tissue. This review reports on the recent developments of various Raman-based techniques for the identification and quantification of the adipose tissue compared to conventional analytical methods. In particular, the emphasis is on analysis of PVAT, investigation of pathological changes of the adipose tissue in model systems and possibilities for its characterization in the clinical context. Overall, the review critically discusses the potential and limitations of Raman techniques in adipose tissue-targeted diagnostics and possible future anti-obesity therapies.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Zuzanna Majka
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Natalia Hachlica
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
131
|
Cho HH, Jang SH, Won C, Kim CH, Kim HD, Kim TH, Cho JH. Derhamnosylmaysin Inhibits Adipogenesis via Inhibiting Expression of PPARγ and C/EBPα in 3T3-L1 Cells. Molecules 2022; 27:molecules27134232. [PMID: 35807476 PMCID: PMC9268393 DOI: 10.3390/molecules27134232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
We investigated the effects of derhamnosylmaysin (DM) on adipogenesis and lipid accumulation in 3T3-L1 adipocytes. Our data showed that DM inhibited lipid accumulation and adipocyte differentiation in 3T3-L1 cells. Treatment of 3T3-L1 adipocytes with DM decreased the expression of major transcription factors, such as sterol regulatory element-binding protein-1c (SREBP-1c), the CCAAT-enhancer-binding protein (CEBP) family, and peroxisome proliferator-activated receptor gamma (PPARγ), in the regulation of adipocyte differentiation. Moreover, the expression of their downstream target genes related to adipogenesis and lipogenesis, including adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), stearyl-CoA-desaturase-1 (SCD-1), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS), was also decreased by treatment with DM during adipogenesis. Additionally, DM attenuated insulin-stimulated phosphorylation of Akt. These results first demonstrated that DM inhibited adipogenesis and lipogenesis through downregulation of the key adipogenic transcription factors SREBP-1c, the CEBP family, and PPARγ and inactivation of the major adipogenesis signaling factor Akt, which is intermediated in insulin. These studies demonstrated that DM is a new bioactive compound for antiadipogenic reagents for controlling overweight and obesity.
Collapse
Affiliation(s)
- Hang-Hee Cho
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (H.-H.C.); (S.-H.J.); (C.W.); (C.-H.K.)
| | - Sun-Hee Jang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (H.-H.C.); (S.-H.J.); (C.W.); (C.-H.K.)
| | - Chungkil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (H.-H.C.); (S.-H.J.); (C.W.); (C.-H.K.)
| | - Chung-Hui Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (H.-H.C.); (S.-H.J.); (C.W.); (C.-H.K.)
| | - Hong-Duck Kim
- Department of Public Health, Division of Environmental Health Science, New York Medical College, Valhalla, NY 10595, USA;
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyungsan 38453, Korea
- Correspondence: (T.H.K.); (J.-H.C.); Tel.: +82-53-850-6533 (T.H.K.); +82-55-772-2358 (J.-H.C.)
| | - Jae-Hyeon Cho
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (H.-H.C.); (S.-H.J.); (C.W.); (C.-H.K.)
- Correspondence: (T.H.K.); (J.-H.C.); Tel.: +82-53-850-6533 (T.H.K.); +82-55-772-2358 (J.-H.C.)
| |
Collapse
|
132
|
Yoon H. The Relationship between Lipid Accumulation Product, Insulin Resistance and Obesity in Korean Adults. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2022. [DOI: 10.15324/kjcls.2022.54.2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hyun Yoon
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, Korea
| |
Collapse
|
133
|
Delgadillo-Velázquez J, Mendivil-Alvarado H, Coronado-Alvarado CD, Astiazaran-Garcia H. Extracellular Vesicles from Adipose Tissue Could Promote Metabolic Adaptation through PI3K/Akt/mTOR. Cells 2022; 11:cells11111831. [PMID: 35681526 PMCID: PMC9180692 DOI: 10.3390/cells11111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by cells under physiological and pathological conditions, such as metabolic diseases. In this context, EVs are considered potential key mediators in the physiopathology of obesity. It has been reported that EVs derived from adipose tissue (ADEVs) contribute to the development of a local inflammatory response that leads to adipose tissue dysfunction. In addition, it has been proposed that EVs are associated with the onset and progression of several obesity-related metabolic diseases such as insulin resistance. In particular, characterizing the molecular fingerprint of obesity-related ADEVs can provide a bigger picture that better reflects metabolic adaptation though PI3K/Akt/mTOR. Hence, in this review we describe the possible crosstalk communication of ADEVs with metabolically active organs and the intracellular response in the insulin signaling pathway.
Collapse
Affiliation(s)
- Jaime Delgadillo-Velázquez
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Herminia Mendivil-Alvarado
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Carlos Daniel Coronado-Alvarado
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Humberto Astiazaran-Garcia
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico
- Correspondence: ; Tel.: +52-662-1029-701
| |
Collapse
|
134
|
Wang C, Zhang X, Luo L, Luo Y, Wu D, Spilca D, Le Q, Yang X, Alvarez K, Hines WC, Yang XO, Liu M. COX-2 Deficiency Promotes White Adipogenesis via PGE2-Mediated Paracrine Mechanism and Exacerbates Diet-Induced Obesity. Cells 2022; 11:1819. [PMID: 35681514 PMCID: PMC9180646 DOI: 10.3390/cells11111819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) plays a critical role in regulating innate immunity and metabolism by producing prostaglandins (PGs) and other lipid mediators. However, the implication of adipose COX-2 in obesity remains largely unknown. Using adipocyte-specific COX-2 knockout (KO) mice, we showed that depleting COX-2 in adipocytes promoted white adipose tissue development accompanied with increased size and number of adipocytes and predisposed diet-induced adiposity, obesity, and insulin resistance. The increased size and number of adipocytes by COX-2 KO were reversed by the treatment of prostaglandin E2 (PGE2) but not PGI2 and PGD2 during adipocyte differentiation. PGE2 suppresses PPARγ expression through the PKA pathway at the early phase of adipogenesis, and treatment of PGE2 or PKA activator isoproterenol diminished the increased lipid droplets in size and number in COX-2 KO primary adipocytes. Administration of PGE2 attenuated increased fat mass and fat percentage in COX-2 deficient mice. Taken together, our study demonstrated the suppressing effect of adipocyte COX-2 on adipogenesis and reveals that COX-2 restrains adipose tissue expansion via the PGE2-mediated paracrine mechanism and prevents the development of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (D.W.); (X.O.Y.)
| | - Dianna Spilca
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Que Le
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Katelyn Alvarez
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (D.W.); (X.O.Y.)
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
135
|
Olaniyi KS, Atuma CL, Sabinari IW, Mahmud H, Saidi AO, Fafure AA, Olatunji LA. Acetate-mediated-obestatin modulation attenuates adipose-hepatic dysmetabolism in high fat diet-induced obese rat model. Endocrine 2022; 76:558-569. [PMID: 35229234 DOI: 10.1007/s12020-022-03023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Approximately 650 million of world adult population is affected by obesity, which is characterized by adipose and hepatic metabolic dysfunction. Short chain fatty acids (SCFAs) have been linked to improved metabolic profile. However, the effect of SCFAs, particularly acetate on adipose-hepatic dysfunction is unclear. Therefore, the present study investigated the role of acetate on adipose-hepatic metabolic dysfunction and the possible involvement of obestatin in high fat diet-induced obese Wistar rats. METHODS Adult male Wistar rats (160-190 g) were allotted into groups (n = 6/group): Control, acetate-treated, obese and obese + acetate-treated groups received vehicle (distilled water), sodium acetate (200 mg/kg), 40% HFD and 40% HFD plus sodium acetate respectively. The administration lasted for 12 weeks. RESULTS HFD caused increased body weight gain and visceral adiposity, insulin resistance, hyperinsulinemia and increased pancreatic-β cell function and plasma/hepatic triglyceride and total cholesterol as well as decreased adipose triglyceride and total cholesterol, increased plasma, adipose, and hepatic malondialdehyde, TNF-α, uric acid, lactate production and plasma/adipose but not gamma-glutamyl transferase and decreased plasma, adipose, and hepatic nitric oxide, glucose-6-phosphate dehydrogenase (G6PD), glutathione (GSH) and obestatin concentration compared to the control group. Notwithstanding, treatment with acetate attenuated the alterations. CONCLUSIONS The results demonstrate that high fat diet-induced obesity is characterized with adipose and hepatic lipid dysmetabolism, which is associated with obestatin suppression. Findings also suggest that acetate provide protection against adipose and hepatic metabolic perturbations by restoring obestatin as well as G6PD/GSH-dependent antioxidant system.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.
| | - Chukwubueze L Atuma
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Isaiah W Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Hadiza Mahmud
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Azeezat O Saidi
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Adedamola A Fafure
- Neuroscience Unit, Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Lawrence A Olatunji
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
136
|
Schmitz K, Turnwald EM, Kretschmer T, Janoschek R, Bae-Gartz I, Voßbrecher K, Kammerer MD, Köninger A, Gellhaus A, Handwerk M, Wohlfarth M, Gründemann D, Hucklenbruch-Rother E, Dötsch J, Appel S. Metformin Prevents Key Mechanisms of Obesity-Related Complications in Visceral White Adipose Tissue of Obese Pregnant Mice. Nutrients 2022; 14:nu14112288. [PMID: 35684088 PMCID: PMC9182976 DOI: 10.3390/nu14112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
With the gaining prevalence of obesity, related risks during pregnancy are rising. Inflammation and oxidative stress are considered key mechanisms arising in white adipose tissue (WAT) sparking obesity-associated complications and diseases. The established anti-diabetic drug metformin reduces both on a systemic level, but only little is known about such effects on WAT. Because inhibiting these mechanisms in WAT might prevent obesity-related adverse effects, we investigated metformin treatment during pregnancy using a mouse model of diet-induced maternal obesity. After mating, obese mice were randomised to metformin administration. On gestational day G15.5, phenotypic data were collected and perigonadal WAT (pgWAT) morphology and proteome were examined. Metformin treatment reduced weight gain and visceral fat accumulation. We detected downregulation of perilipin-1 as a correlate and observed indications of recovering respiratory capacity and adipocyte metabolism under metformin treatment. By regulating four newly discovered potential adipokines (alpha-1 antitrypsin, Apoa4, Lrg1 and Selenbp1), metformin could mediate anti-diabetic, anti-inflammatory and oxidative stress-modulating effects on local and systemic levels. Our study provides an insight into obesity-specific proteome alterations and shows novel modulating effects of metformin in pgWAT of obese dams. Accordingly, metformin therapy appears suitable to prevent some of obesity’s key mechanisms in WAT.
Collapse
Affiliation(s)
- Katrin Schmitz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Eva-Maria Turnwald
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Tobias Kretschmer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- UFZ-Helmholtz Centre for Environmental Research, Department Environmental Immunology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ruth Janoschek
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Inga Bae-Gartz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Kathrin Voßbrecher
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Merlin D. Kammerer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Angela Köninger
- Department of Obstetrics and Gynecology, University of Regensburg, St. Hedwigs Clinic of the Order of St. John, Steinmetzstrasse 1-3, 93049 Regensburg, Germany;
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany;
| | - Marion Handwerk
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Maria Wohlfarth
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Dirk Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany;
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Sarah Appel
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- Correspondence: ; Tel.: +49-221-478-96890
| |
Collapse
|
137
|
The Mixture of Bisphenol-A and Its Substitutes Bisphenol-S and Bisphenol-F Exerts Obesogenic Activity on Human Adipose-Derived Stem Cells. TOXICS 2022; 10:toxics10060287. [PMID: 35736896 PMCID: PMC9229358 DOI: 10.3390/toxics10060287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022]
Abstract
Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and S (BPS), have previously shown in vitro obesogenic activity. This study was designed to investigate their combined effect on the adipogenic differentiation of human adipose-derived stem cells (hASCs). Cells were exposed for 14 days to an equimolar mixture of bisphenols (MIX) (range 10 nM–10 µM). Oil Red staining was used to measure intracellular lipid accumulation, quantitative real-time polymerase chain reaction (qRT-PCR) to study gene expression of adipogenic markers (PPARγ, C/EBPα, LPL, and FABP4), and Western Blot to determine their corresponding proteins. The MIX promoted intracellular lipid accumulation in a dose-dependent manner with a maximal response at 10 µM. Co-incubation with pure antiestrogen (ICI 182,780) inhibited lipid accumulation, suggesting that the effect was mediated by the estrogen receptor. The MIX also significantly altered the expression of PPARγ, C/EBPα, LPL, and FABP4 markers, observing a non-monotonic (U-shaped) dose-response, with maximal gene expression at 10 nM and 10 µM and lesser expression at 1 µM. This pattern was not observed when bisphenols were tested individually. Exposure to MIX (1–10 µM) also increased all encoded proteins except for FABP4, which showed no changes. Evaluation of the combined effect of relevant chemical mixtures is needed rather than single chemical testing.
Collapse
|
138
|
Erukainure OL, Matsabisa MG, Salau VF, Olofinsan KA, Oyedemi SO, Chukwuma CI, Nde AL, Islam MS. Cannabidiol improves glucose utilization and modulates glucose-induced dysmetabolic activities in isolated rats' peripheral adipose tissues. Biomed Pharmacother 2022; 149:112863. [PMID: 35358799 DOI: 10.1016/j.biopha.2022.112863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Reduced glucose uptake and utilization, with concomitant lipolysis in adipose tissues has been linked to the pathogenesis of obesity and its complications. The present study investigated the effect of cannabinoid-stimulated glucose uptake on redox imbalance, glucose and lipid metabolisms, as well as cholinergic and purinergic dysfunctions in isolated rats' adipose tissues. Freshly Isolated rats' adipose tissues were incubated with glucose and different concentrations of cannabidiol for 2 h at 37 °C. The negative control consisted of incubation without cannabidiol, while normal control consisted of incubations without glucose and/or cannabidiol and Metformin served as the standard drug. Cannabidiol caused an increase in adipose-glucose uptake, with concomitant elevation of glutathione, triglyceride level, superoxide dismutase, catalase and 5'nucleoidase activities. It also caused suppression in malondialdehyde and cholesterol levels, acetylcholinesterase, ENTPDase, fructose-1,6-biphosphatase, glucose 6-phosphatase, glycogen phosphorylase, and lipase activities. In silico studies revealed a strong molecular interaction of cannabidiol with adipose triglyceride lipase, hormone-sensitive lipase, and monoglyceride lipase. These results indicate that cannabidiol-enhanced glucose uptake in adipose tissues is associated with enhanced antioxidative activities, concomitant modulation of cholinergic and purinergic dysfunctions, and improved glucose - lipid homeostasis.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Veronica F Salau
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Kolawole A Olofinsan
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban 4000, South Africa
| | - Sunday O Oyedemi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; Department of Pharmacology, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| | - Adeline Lum Nde
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban 4000, South Africa
| |
Collapse
|
139
|
Cheng L, Shi L, He C, Wang C, Lv Y, Li H, An Y, Dai H, Duan Y, Zhang H, Huang Y, Fu W, Meng Y, Zhao B. Rutin-activated adipose tissue thermogenesis is correlated with increased intestinal short-chain fatty acid levels. Phytother Res 2022; 36:2495-2510. [PMID: 35445769 DOI: 10.1002/ptr.7462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The activation of thermogenic programs in brown adipose tissue (BAT) and white adipose tissue (WAT) provides a promising approach to increasing energy expenditure during obesity and diabetes treatment. Although evidence has been found that rutin activates BAT against obesity and type 2 diabetes mellitus (T2DM), its potential mechanism is not completely understood. In this study, we focused on the potential modulating effect of rutin on short-chain fatty acids (SCFAs) and the thermogenesis of BAT and WAT, aiming to elucidate the molecular mechanism of rutin in the treatment of obesity and T2DM. The results showed that rutin could significantly reduce the body weight and fasting blood glucose, inhibit fat accumulation, relieve hepatic steatosis and ameliorate the disorder of glycolipid metabolism in db/db mice. Moreover, rutin also increased the expression of uncoupling protein 1 (Ucp1) and other thermogenic genes and proteins in BAT and inguinal WAT (IWAT), indicating that rutin activated BAT and induced browning of IWAT. Importantly, rutin markedly enhanced the concentration of SCFAs (acetate, propionate and butyrate) and SCFA-producing enzymes (acetate kinase (ACK), methylmalonyl-CoA decarboxylase (MMD) and butyryl-CoA (BUT)) in feces of db/db mice. In addition, rutin significantly increased the mRNA expression of monocarboxylate transporter 1 (Mct1), catabolic enzyme acyl-CoA medium-chain synthetase 3 (Acsm3), carnitine palmitoyl transferase 1α (Cpt-1α) and Cpt-1β genes in BAT and IWAT of db/db mice, which is conducive to inducing adipocyte thermogenesis. In summary, our findings revealed that rutin played a variety of regulatory roles in improving glucose and lipid metabolism disorders, reducing hepatic steatosis, inducing browning of IWAT and activating BAT, which has potential therapeutic significance for the treatment of obesity and T2DM. Mechanistically, rutin activates the thermogenesis of BAT and IWAT, which may be associated with increasing the concentration of SCFAs.
Collapse
Affiliation(s)
- Long Cheng
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Changhao He
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yinglan Lv
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hongyu Dai
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhui Duan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huilin Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Meng
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
140
|
Divella R, Gadaleta Caldarola G, Mazzocca A. Chronic Inflammation in Obesity and Cancer Cachexia. J Clin Med 2022; 11:2191. [PMID: 35456284 PMCID: PMC9027625 DOI: 10.3390/jcm11082191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation has long been linked to obesity and related conditions such as type 2 diabetes and metabolic syndrome. According to current research, the increased risk of cancer in people with certain metabolic diseases may be due to chronic inflammation. Adipocytokines, which are pro-inflammatory cytokines secreted in excess, are elevated in many chronic metabolic diseases. Cytokines and inflammatory mediators, which are not directly linked to DNA, are important in tumorigenesis. Cachexia, a type of metabolic syndrome linked to the disease, is associated with a dysregulation of metabolic pathways. Obesity and cachexia have distinct metabolic characteristics, such as insulin resistance, increased lipolysis, elevated free fatty acids (FFA), and ceramide levels, which are discussed in this section. The goal of this research project is to create a framework for bringing together our knowledge of inflammation-mediated insulin resistance.
Collapse
Affiliation(s)
- Rosa Divella
- ASD Nordic Walking Apulia Lifestyle, Corso Giuseppe Di Vittorio 14, 70024 Gravina in Puglia, Italy
| | | | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
141
|
Vacurova E, Trnovska J, Svoboda P, Skop V, Novosadova V, Reguera DP, Petrezselyová S, Piavaux B, Endaya B, Spoutil F, Zudova D, Stursa J, Melcova M, Bielcikova Z, Werner L, Prochazka J, Sedlacek R, Huttl M, Hubackova SS, Haluzik M, Neuzil J. Mitochondrially targeted tamoxifen alleviates markers of obesity and type 2 diabetes mellitus in mice. Nat Commun 2022; 13:1866. [PMID: 35387987 PMCID: PMC8987092 DOI: 10.1038/s41467-022-29486-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus represents a major health problem with increasing prevalence worldwide. Limited efficacy of current therapies has prompted a search for novel therapeutic options. Here we show that treatment of pre-diabetic mice with mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, improves glucose tolerance and reduces body weight with most pronounced reduction of visceral adipose tissue due to reduced food intake, suppressed adipogenesis and elimination of senescent cells. Glucose-lowering effect of mitochondrially targeted tamoxifen is linked to improvement of type 2 diabetes mellitus-related hormones profile and is accompanied by reduced lipid accumulation in liver. Lower senescent cell burden in various tissues, as well as its inhibitory effect on pre-adipocyte differentiation, results in lower level of circulating inflammatory mediators that typically enhance metabolic dysfunction. Targeting senescence with mitochodrially targeted tamoxifen thus represents an approach to the treatment of type 2 diabetes mellitus and its related comorbidities, promising a complex impact on senescence-related pathologies in aging population of patients with type 2 diabetes mellitus with potential translation into the clinic.
Collapse
Affiliation(s)
- Eliska Vacurova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jaroslava Trnovska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Svoboda
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Vojtech Skop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Vendula Novosadova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - David Pajuelo Reguera
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Silvia Petrezselyová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Benoit Piavaux
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Berwini Endaya
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Frantisek Spoutil
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Dagmar Zudova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jan Stursa
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | | | - Lukas Werner
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Martina Huttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
142
|
Merabet N, Lucassen PJ, Crielaard L, Stronks K, Quax R, Sloot PMA, la Fleur SE, Nicolaou M. How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Front Neuroendocrinol 2022; 65:100972. [PMID: 34929260 DOI: 10.1016/j.yfrne.2021.100972] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Chronic stress contributes to the onset of type 2 diabetes (T2D), yet the underlying etiological mechanisms are not fully understood. Responses to stress are influenced by earlier experiences, sex, emotions and cognition, and involve a complex network of neurotransmitters and hormones, that affect multiple biological systems. In addition, the systems activated by stress can be altered by behavioral, metabolic and environmental factors. The impact of stress on metabolic health can thus be considered an emergent process, involving different types of interactions between multiple variables, that are driven by non-linear dynamics at different spatiotemporal scales. To obtain a more comprehensive picture of the links between chronic stress and T2D, we followed a complexity science approach to build a causal loop diagram (CLD) connecting the various mediators and processes involved in stress responses relevant for T2D pathogenesis. This CLD could help develop novel computational models and formulate new hypotheses regarding disease etiology.
Collapse
Affiliation(s)
- Nadège Merabet
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Paul J Lucassen
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Loes Crielaard
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Karien Stronks
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Rick Quax
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Peter M A Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands; National Centre of Cognitive Research, ITMO University, St. Petersburg, Russian Federation
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, the Netherlands.
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands.
| |
Collapse
|
143
|
Szkudelski T, Cieślewicz A, Szkudelska K. Methylglyoxal impairs β-adrenergic signalling in primary rat adipocytes. Arch Physiol Biochem 2022; 128:394-401. [PMID: 31711314 DOI: 10.1080/13813455.2019.1684953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methylglyoxal (MG) is dicarbonyl aldehyde generated intracellularly from glucose and from some other compounds. Its increased formation is associated with several harmful consequences. In the present study, short-term effects of MG on metabolism of isolated rat adipocytes were determined. Insulin-induced lipogenesis was unchanged by MG. However, epinephrine-stimulated lipolysis was shown to be significantly reduced in adipocytes exposed to 200 µM MG. This inhibitory effect was similar in the presence of low and high concentrations of glucose, and also in the presence of alanine. However, MG failed to affect lipolysis induced by forskolin (activator of adenylate cyclase), dibutyryl-cAMP (activator of PKA) and DPCPX (adenosine A1 receptor antagonist). It was also revealed that lipolysis was unchanged by MG in fat cells pre-incubated with this compound, and then stimulated with epinephrine alone. Our results suggest that MG may impair β-adrenergic signalling in rat adipocytes due to interaction with epinephrine, and thereby disturbs lipolysis.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Aleksandra Cieślewicz
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
144
|
Niu X, Lai Z, Chen X, Lu F, Gao J, Yuan Y. A Short-Term High-Fat Diet Improved the Survival of Fat Grafts in Mice by Promoting Macrophage Infiltration and Angiogenesis. Front Cell Dev Biol 2022; 10:856839. [PMID: 35372358 PMCID: PMC8968084 DOI: 10.3389/fcell.2022.856839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Adipose tissue is an ideal filler material that is widely used for soft tissue defects. But the low survival rate and complications associated with such grafts pose a serious challenge, which limits their clinical application. Adipose tissue is a metabolic diet-responsive tissue; however, the influence of diets on fat grafting remains ambiguous. Methods: We extracted inguinal fat pads from C57/BL6 male mice, and transplanted them into the dorsal region of recipient mice (0.3 ml). Post-fat-grafting, mice (n = 54) were randomized into three groups, namely normal diet (ND), high carbohydrate diet (HC), and high-fat diet (HF). Structural changes were assessed by histological staining. Lipolysis activity and vascular regeneration of grafts on day 30 were analyzed using real-time polymerase chain reaction, immunofluorescence, and western blotting. Results: The grafts of mice on HC and HF diets exhibited significantly fewer oil cysts and larger volume retention (0.18 ± 0.01, 0.21 ± 0.01, and 0.25 ± 0.01 ml, for ND, HC, and HF group, respectively, p < 0.05) on day 90. In comparison, grafts for the mice belonging to the HF groups exhibited higher expression of lipolysis-related genes, including adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and carnitine palmitoyltransferase 1 (CPT1), on day 30. Furthermore, increased infiltration of macrophages (F4/80+) and the higher expression of angiogenesis genes were reported in the HF groups. Conclusion: Altogether, the administration of short-term HF diet remarkably enhanced angiogenesis and improved the quality of fat grafts, which was characterized by fewer oil cysts and higher long-term volume retention. The possible mechanisms may be due to the increased macrophage infiltration, and the promoted angiogenesis in HF grafts.
Collapse
Affiliation(s)
| | | | | | - Feng Lu
- *Correspondence: Yi Yuan, ; Jianhua Gao, ; Feng Lu,
| | - Jianhua Gao
- *Correspondence: Yi Yuan, ; Jianhua Gao, ; Feng Lu,
| | - Yi Yuan
- *Correspondence: Yi Yuan, ; Jianhua Gao, ; Feng Lu,
| |
Collapse
|
145
|
Wang C, Zhang X, Luo L, Luo Y, Yang X, Ding X, Wang L, Le H, Feldman LER, Men X, Yan C, Huang W, Feng Y, Liu F, Yang XO, Liu M. Adipocyte-derived PGE2 is required for intermittent fasting-induced Treg proliferation and improvement of insulin sensitivity. JCI Insight 2022; 7:153755. [PMID: 35260536 PMCID: PMC8983131 DOI: 10.1172/jci.insight.153755] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
The intermittent fasting (IF) diet has profound benefits for diabetes prevention. However, the precise mechanisms underlying IF's beneficial effects remain poorly defined. Here, we show that the expression levels of cyclooxygenase-2 (COX-2), an enzyme that produces prostaglandins, are suppressed in white adipose tissue (WAT) of obese humans. In addition, the expression of COX-2 in WAT is markedly upregulated by IF in obese mice. Adipocyte-specific depletion of COX-2 led to reduced fractions of CD4+Foxp3+ Tregs and a substantial decrease in the frequency of CD206+ macrophages, an increase in the abundance of γδT cells in WAT under normal chow diet conditions, and attenuation of IF-induced antiinflammatory and insulin-sensitizing effects, despite a similar antiobesity effect in obese mice. Mechanistically, adipocyte-derived prostaglandin E2 (PGE2) promoted Treg proliferation through the CaMKII pathway in vitro and rescued Treg populations in adipose tissue in COX-2-deficient mice. Ultimately, inactivation of Tregs by neutralizing anti-CD25 diminished IF-elicited antiinflammatory and insulin-sensitizing effects, and PGE2 restored the beneficial effects of IF in COX-2-KO mice. Collectively, our study reveals that adipocyte COX-2 is a key regulator of Treg proliferation and that adipocyte-derived PGE2 is essential for IF-elicited type 2 immune response and metabolic benefits.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Huyen Le
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lily Elizabeth R. Feldman
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xuebo Men
- Baodi Clinical College of Tian Jin Medical University, Tianjin, China
| | - Cen Yan
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wendong Huang
- Department of Diabetes Complications & Metabolism Research, City of Hope, Duarte, California, USA
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feng Liu
- Metabolic Syndrome Research Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology and,Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
146
|
Ojeda ML, Carreras O, Nogales F. The Role of Selenoprotein Tissue Homeostasis in MetS Programming: Energy Balance and Cardiometabolic Implications. Antioxidants (Basel) 2022; 11:antiox11020394. [PMID: 35204276 PMCID: PMC8869711 DOI: 10.3390/antiox11020394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different selenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS) generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated protein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder, can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in their offspring that, according to the metabolic programming theory, will produce cardiovascular and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and selenoproteins’ implications in MetS generation, which is even greater during MetS programming. This narrative review also provides an overview of the existing evidence, based on experimental research from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue deposits and antioxidant selenoproteins’ expression in their offspring. These changes contribute to alterations in tissues’ oxidative damage, inflammation, energy balance, and tissue function, mainly in the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups’ growth and development. MetS pups present a profile similar to that of diabetes type 1, which also appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart reprogramming. However, more studies are necessary.
Collapse
|
147
|
Lendeckel F, Zylla S, Markus MRP, Ewert R, Gläser S, Völzke H, Albrecht D, Friedrich N, Nauck M, Felix SB, Dörr M, Bahls M. Association of Cardiopulmonary Exercise Capacity and Adipokines in the General Population. Int J Sports Med 2022; 43:616-624. [PMID: 35114706 DOI: 10.1055/a-1699-2380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adipokines and cardiorespiratory fitness (CRF) are associated with the (patho)physiology of cardiometabolic diseases. Whether CRF and adipokines are related is unclear. We investigated associations of CRF with leptin, adiponectin, chemerin, resistin and vaspin. Data from the population-based Study of Health in Pomerania was used (n=1,479; median age 49 years; 51% women). Cardiopulmonary exercise testing was used to measure CRF. Circulating adipokine concentrations were measured by enzyme-linked immunosorbent assay. The association between CRF and adipokines was assessed using multivariable sex-specific quantile regression models. Higher maximum oxygen uptake was significantly associated with lower leptin (men:-0.11 ng/ml; 95%-confidence interval [CI]:-0.18 to-0.03 ng/ml; p<0.005; women:-0.17 ng/ml; 95%-CI:-0.33 to-0.02 ng/ml; p<0.05) and chemerin (men:-0.26 ng/ml; 95%-CI:-0.52 to-0.01 ng/ml; p<0.05; women:-0.41 ng/ml; 95%-CI:-0.82 to-0.01 ng/ml; p<0.05) as well as higher adiponectin concentrations (men: 0.06 µg/ml; 95%-CI: 0.02 to 0.11 µg/ml; p<0.05; women: 0.03 µg/ml; 95%-CI:-0.05 to 0.10 µg/ml; p=0.48). We found that CRF was inversely associated with leptin and chemerin in both sexes and positively associated with adiponectin only in men.
Collapse
Affiliation(s)
- Frederik Lendeckel
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany
| | - Stephanie Zylla
- Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany.,Institute of Community Medicine, Universitatsmedizin Greifswald, Greifswald, Germany
| | - Ralf Ewert
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Sven Gläser
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Clinic for Internal Medicine, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Henry Völzke
- Institute of Community Medicine, Universitatsmedizin Greifswald, Greifswald, Germany.,Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Berlin, Germany
| | - Diana Albrecht
- Institute of Community Medicine, Universitatsmedizin Greifswald, Greifswald, Germany.,Leibniz Institute Greifswald, Leibniz Institute for Plasma Science and Technology eV, Greifswald, Germany
| | - Nele Friedrich
- Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Stephan B Felix
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany
| | - Marcus Dörr
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany
| | - Martin Bahls
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany
| |
Collapse
|
148
|
Sarcopenic obesity: what about in cancer setting? Nutrition 2022; 98:111624. [DOI: 10.1016/j.nut.2022.111624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/20/2022]
|
149
|
Pereira MJ, Andersson‐Assarsson JC, Jacobson P, Kamble P, Taube M, Sjöholm K, Carlsson LMS, Svensson P. Human adipose tissue gene expression of solute carrier family 19 member 3 ( SLC19A3); relation to obesity and weight-loss. Obes Sci Pract 2022; 8:21-31. [PMID: 35127120 PMCID: PMC8804923 DOI: 10.1002/osp4.541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Adipose tissue is a specialized endocrine organ that is involved in modulating whole-body energy homeostasis and expresses a specific subset of genes, which may play a role in adipose tissue metabolism. The aim of this study was to search for novel adipose tissue-specific genes using a tissue panel of RNAseq expression profiles. METHODS RNAseq expression profiles from 53 human tissues were downloaded from the GTex database. SLC19A3 expression was analyzed by microarray or real-time PCR in two sets of paired subcutaneous and omental adipose tissue samples, in two studies with adipose tissue from persons with high or low body mass index (BMI), in adipose tissue from patients who underwent weight loss with a very-low caloric diet and during preadipocyte-adipocyte differentiation. RESULTS The RNAseq-based tissue distribution expression screen identified SLC19A3 (encoding the thiamine transporter 2) as adipose tissue-specific. SLC19A3 expression was higher in subcutaneous compared with omental adipose tissue in both sample sets (p = 0.043 and p < 0.001). Preadipocyte differentiation towards adipocytes resulted in increased SLC19A3 gene expression (p = 0.018 or less at all-time points). Subcutaneous adipose tissue expression of SLC19A3 was lower in persons with high BMI in both cohorts (p = 0.008, and p < 0.001) and increased during a weight-loss intervention (p = 0.006). CONCLUSION The specific adipose tissue expression pattern of SLC19A3, together with its regulation in obesity and during weight loss, indicate that it plays a key role in adipocyte metabolism.
Collapse
Affiliation(s)
- Maria J. Pereira
- Department of Medical SciencesClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
| | - Johanna C. Andersson‐Assarsson
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Peter Jacobson
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Prasad Kamble
- Department of Medical SciencesClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
| | - Magdalena Taube
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kajsa Sjöholm
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Lena M. S. Carlsson
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Per‐Arne Svensson
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Health and Care Sciences at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
150
|
Zapata J, Gallardo A, Romero C, Valenzuela R, Garcia-Diaz DF, Duarte L, Bustamante A, Gasaly N, Gotteland M, Echeverria F. n-3 polyunsaturated fatty acids in the regulation of adipose tissue browning and thermogenesis in obesity: Potential relationship with gut microbiota. Prostaglandins Leukot Essent Fatty Acids 2022; 177:102388. [PMID: 34995899 DOI: 10.1016/j.plefa.2021.102388] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/03/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity is a worldwide public health problem characterized by fat tissue accumulation, favouring adipose tissue and metabolic alterations. Increasing energy expenditure (EE) through brown adipose tissue activation and white adipose tissue (WAT) browning has gained relevance as a therapeutic approach. Different bioactive compounds, such as n-3 polyunsaturated fatty acids (PUFA), have been shown to induce those thermogenic effects. This process is regulated by the gut microbiota as well. Nevertheless, obesity is characterized by gut microbiota dysbiosis, which can be restored by weight loss and n-3 PUFA intake, among other factors. Knowledge gap: However, the role of the gut microbiota on the n-3 PUFA effect in inducing thermogenesis in obesity has not been fully elucidated. OBJECTIVE This review aims to elucidate the potential implications of this interrelation on WAT browning adiposw sittue (BAT), BAT activity, and EE regulation in obesity models.
Collapse
Affiliation(s)
- J Zapata
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - A Gallardo
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Romero
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - R Valenzuela
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Nutritional Sciences Department, Faculty of Medicine, University of Toronto, Toronto ON, Canada
| | - D F Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - L Duarte
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - A Bustamante
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - N Gasaly
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile; ICBM: Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Chile
| | - M Gotteland
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - F Echeverria
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Carrera de Nutricion y Dietetica, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|