101
|
FOXM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin resistance. Oncogene 2013; 33:4144-55. [PMID: 24141789 PMCID: PMC3969838 DOI: 10.1038/onc.2013.457] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 12/25/2022]
Abstract
FOXM1 is implicated in genotoxic drug resistance but its mechanism of action remains elusive. We show here that FOXM1-depletion can sensitize breast cancer cells and MEFs into entering epirubicin-induced senescence, with the loss of long-term cell proliferation ability, the accumulation of γH2AX foci, and the induction of senescence-associated β-galactosidase activity and cell morphology. Conversely, reconstitution of FOXM1 in FOXM1-deficient MEFs alleviates the accumulation of senescence-associated γH2AX foci. We also demonstrate that FOXM1 regulates NBS1 at the transcriptional level through an FHRE on its promoter. Like FOXM1, NBS1 is overexpressed in the epirubicin-resistant MCF-7EpiR cells and its expression level is low but inducible by epirubicin in MCF-7 cells. Consistently, overexpression of FOXM1 augmented and FOXM1 depletion reduced NBS1 expression and epirubicin-induced ATM phosphorylation in breast cancer cells. Together these findings suggest that FOXM1 increases NBS1 expression and ATM phosphorylation, possibly through increasing the levels of the MRN(MRE11/RAD50/NBS1) complex. Consistent with this idea, the loss of P-ATM induction by epirubicin in the NBS1-deficient NBS1-LBI fibroblasts can be rescued by NBS1 reconstitution. Resembling FOXM1, NBS1 depletion also rendered MCF-7 and MCF-7EpiR cells more sensitive to epirubicin-induced cellular senescence. In agreement, the DNA repair-defective and senescence phenotypes in FOXM1-deficent cells can be effectively rescued by overexpression of NBS1. Moreover, overexpression of NBS1 and FOXM1 similarly enhanced and their depletion downregulated HR DNA repair activity. Crucially, overexpression of FOXM1 failed to augment HR activity in the background of NBS1 depletion, demonstrating that NBS1 is indispensable for the HR function of FOXM1. The physiological relevance of the regulation of NBS1 expression by FOXM1 is further underscored by the strong and significant correlation between nuclear FOXM1 and total NBS1 expression in breast cancer patient samples, further suggesting that NBS1 as a key FOXM1 target gene involved in DNA damage response, genotoxic drug resistance and DNA damage-induced senescence.
Collapse
|
102
|
Shiou SR, Yu Y, Guo Y, Westerhoff M, Lu L, Petrof EO, Sun J, Claud EC. Oral administration of transforming growth factor-β1 (TGF-β1) protects the immature gut from injury via Smad protein-dependent suppression of epithelial nuclear factor κB (NF-κB) signaling and proinflammatory cytokine production. J Biol Chem 2013; 288:34757-66. [PMID: 24129565 DOI: 10.1074/jbc.m113.503946] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory immune responses play an important role in mucosal homeostasis and gut diseases. Nuclear factor κB (NF-κB), central to the proinflammatory cascade, is activated in necrotizing enterocolitis (NEC), a devastating condition of intestinal injury with extensive inflammation in premature infants. TGF-β is a strong immune suppressor and a factor in breast milk, which has been shown to be protective against NEC. In an NEC animal model, oral administration of the isoform TGF-β1 activated the downstream effector Smad2 in intestine and significantly reduced NEC incidence. In addition, TGF-β1 suppressed NF-κB activation, maintained levels of the NF-κB inhibitor IκBα in the intestinal epithelium, and systemically decreased serum levels of IL-6 and IFN-γ. The immature human fetal intestinal epithelial cell line H4 was used as a reductionistic model of the immature enterocyte to investigate mechanism. TGF-β1 pretreatment inhibited the TNF-α-induced IκBα phosphorylation that targets the IκBα protein for degradation and inhibited NF-κB activation. Chromatin immunoprecipitation (ChIP) assays demonstrated decreased NF-κB binding to the promoters of IL-6, IL-8, and IκBα in response to TNF-α with TGF-β1 pretreatment. These TGF-β1 effects appear to be mediated through the canonical Smad pathway as silencing of the TGF-β central mediator Smad4 resulted in loss of the TGF-β1 effects. Thus, TGF-β1 is capable of eliciting anti-inflammatory effects by inhibiting NF-κB specifically in the intestinal epithelium as well as by decreasing systemic IL-6 and IFN-γ levels. Oral administration of TGF-β1 therefore can potentially be used to protect against gastrointestinal diseases.
Collapse
Affiliation(s)
- Sheng-Ru Shiou
- From the Department of Pediatrics, Section of Neonatology, and
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Monteiro LJ, Khongkow P, Kongsema M, Morris JR, Man C, Weekes D, Koo CY, Gomes AR, Pinto PH, Varghese V, Kenny LM, Coombes RC, Freire R, Medema RH, Lam EWF. The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment. Oncogene 2013; 32:4634-45. [PMID: 23108394 PMCID: PMC3874579 DOI: 10.1038/onc.2012.491] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/29/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
Abstract
FOXM1 is implicated in genotoxic drug resistance but its role and mechanism of action remain unclear. Here, we establish that γH2AX foci, indicative of DNA double-strand breaks (DSBs), accumulate in a time-dependent manner in the drug-sensitive MCF-7 cells but not in the resistant counterparts in response to epirubicin. We find that FOXM1 expression is associated with epirubicin sensitivity and DSB repair. Ectopic expression of FOXM1 can increase cell viability and abrogate DSBs sustained by MCF-7 cells following epirubicin, owing to an enhancement in repair efficiency. Conversely, alkaline comet and γH2AX foci formation assays show that Foxm1-null cells are hypersensitive to DNA damage, epirubicin and γ-irradiation. Furthermore, we find that FOXM1 is required for DNA repair by homologous recombination (HR) but not non-homologous end joining (NHEJ), using HeLa cell lines harbouring an integrated direct repeat green fluorescent protein reporter for DSB repair. We also identify BRIP1 as a direct transcription target of FOXM1 by promoter analysis and chromatin-immunoprecipitation assay. In agreement, depletion of FOXM1 expression by small interfering RNA downregulates BRIP1 expression at the protein and mRNA levels in MCF-7 and the epirubicin-resistant MCF-7 Epi(R) cells. Remarkably, the requirement for FOXM1 for DSB repair can be circumvented by reintroduction of BRIP1, suggesting that BRIP1 is an important target of FOXM1 in DSB repair. Indeed, like FOXM1, BRIP1 is needed for HR. These data suggest that FOXM1 regulates BRIP1 expression to modulate epirubicin-induced DNA damage repair and drug resistance.
Collapse
Affiliation(s)
- Lara J. Monteiro
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Pasarat Khongkow
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Mesayamas Kongsema
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Joanna R. Morris
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cornelia Man
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Daniel Weekes
- Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London, UK
| | - Chuay-Yeng Koo
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Ana R. Gomes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Paola H. Pinto
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Vidhya Varghese
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Laura M. Kenny
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Laguna, Tenerife, Spain
| | - René H. Medema
- Division of Cell Biology, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
104
|
Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proc Natl Acad Sci U S A 2013; 110:16181-6. [PMID: 24043835 DOI: 10.1073/pnas.1315551110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Profound induction of immediate early genes (IEGs) by neural activation is a critical determinant for plasticity in the brain, but intervening molecular signals are not well characterized. We demonstrate that inositol polyphosphate multikinase (IPMK) acts noncatalytically as a transcriptional coactivator to mediate induction of numerous IEGs. IEG induction by electroconvulsive stimulation is virtually abolished in the brains of IPMK-deleted mice, which also display deficits in spatial memory. Neural activity stimulates binding of IPMK to the histone acetyltransferase CBP and enhances its recruitment to IEG promoters. Interestingly, IPMK regulation of CBP recruitment and IEG induction does not require its catalytic activities. Dominant-negative constructs, which prevent IPMK-CBP binding, substantially decrease IEG induction. As IPMK is ubiquitously expressed, its epigenetic regulation of IEGs may influence diverse nonneural and neural biologic processes.
Collapse
|
105
|
An CI, Hagiwara N. Genome-wide analysis of transcription factor-binding sites in skeletal muscle cells using ChIP-seq. Methods Mol Biol 2013; 1067:51-64. [PMID: 23975785 DOI: 10.1007/978-1-62703-607-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Transcriptional regulation of gene expression constitutes a fundamental mechanism of many developmental processes. Therefore, identification and characterization of binding sites of transcription factors are important for uncovering the mechanisms of a particular developmental process. Here, we describe detailed procedures for genome-wide analysis of binding sites of a transcription factor involved in the fiber-type differentiation of skeletal muscle. By conducting ChIP-seq followed by a series of downstream analyses, in-depth information on binding sites of transcription factors can be obtained in a genome-wide manner.
Collapse
Affiliation(s)
- Chung-Ii An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
106
|
Sp sites contribute to basal and inducible expression of the human TNIP1 (TNFα-inducible protein 3-interacting protein 1) promoter. Biochem J 2013; 452:519-29. [PMID: 23464785 DOI: 10.1042/bj20121666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
TNIP1 [TNFα (tumour necrosis factor α)-induced protein 3-interacting protein 1] is a co-repressor of RAR (retinoic acid receptor) and PPAR (peroxisome-proliferator-activated receptor). Additionally, it can reduce signalling stemming from cell membrane receptors such as those for TNFα and EGF (epidermal growth factor). Consequently, it influences a variety of receptor-mediated events as diverse as transcription, programmed cell death and cell cycling. Thus changes in TNIP1 expression levels are likely to affect multiple important biological end points. TNIP1 expression level changes have been linked to psoriasis and systemic sclerosis. As such, it is crucial to determine what controls its expression levels, starting with constitutive control of its promoter. Our analysis of the TNIP1 promoter revealed multiple transcription start sites in its GC-rich proximal regions along with two transcriptionally active Sp (specificity protein) sites, responsive to both Sp1 and Sp3. EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) demonstrated physical binding between Sp1 and Sp3 at these sites. A decrease in Sp1 protein levels via siRNA (short interfering RNA) or diminished Sp1 DNA binding by mithramycin decreased TNIP1 mRNA levels. This Sp-binding GC-rich region of the TNIP1 promoter also participates in transcriptional activation by ligand-bound RAR. Together, these results demonstrate newly identified regulators of TNIP1 expression and suggest possible transcription factor targets which in turn control TNIP1-related biological end points ranging from apoptosis to inflammatory diseases.
Collapse
|
107
|
Sengupta S, Mitra S, Bhakat KK. Dual regulatory roles of human AP-endonuclease (APE1/Ref-1) in CDKN1A/p21 expression. PLoS One 2013; 8:e68467. [PMID: 23874636 PMCID: PMC3713036 DOI: 10.1371/journal.pone.0068467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/29/2013] [Indexed: 01/02/2023] Open
Abstract
The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein involved in repair of oxidative DNA damage as well as in transcriptional regulation, is often overexpressed in tumor cells. APE1 was earlier shown to stimulate p53's DNA binding and its transactivation function in the expression of cyclin-dependent kinase inhibitor p21 (CDKN1A) gene. Here, we show APE1's stable binding to p53 cis elements which are required for p53-mediated activation of p21 in p53-expressing wild type HCT116 cells. However, surprisingly, we observed APE1-dependent repression of p21 in isogenic p53-null HCT116 cells. Ectopic expression of p53 in the p53-null cells abrogated this repression suggesting that APE1's negative regulatory role in p21 expression is dependent on the p53 status. We then identified APE1's another binding site in p21's proximal promoter region containing cis elements for AP4, a repressor of p21. Interestingly, APE1 and AP4 showed mutual dependence for p21 repression. Moreover, ectopic p53 in p53-null cells inhibited AP4's association with APE1, their binding to the promoter and p21 repression. These results together establish APE1's role as a co-activator or co-repressor of p21 gene, dependent on p53 status. It is thus likely that APE1 overexpression and inactivation of p53, often observed in tumor cells, promote tumor cell proliferation by constitutively downregulating p21 expression.
Collapse
Affiliation(s)
- Shiladitya Sengupta
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kishor K. Bhakat
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
108
|
SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci 2013; 16:1008-15. [PMID: 23852118 DOI: 10.1038/nn.3460] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022]
Abstract
Defects in DNA repair have been linked to cognitive decline with age and neurodegenerative disease, yet the mechanisms that protect neurons from genotoxic stress remain largely obscure. We sought to characterize the roles of the NAD(+)-dependent deacetylase SIRT1 in the neuronal response to DNA double-strand breaks (DSBs). We found that SIRT1 was rapidly recruited to DSBs in postmitotic neurons, where it showed a synergistic relationship with ataxia telangiectasia mutated (ATM). SIRT1 recruitment to breaks was ATM dependent; however, SIRT1 also stimulated ATM autophosphorylation and activity and stabilized ATM at DSB sites. After DSB induction, SIRT1 also bound the neuroprotective class I histone deacetylase HDAC1. We found that SIRT1 deacetylated HDAC1 and stimulated its enzymatic activity, which was necessary for DSB repair through the nonhomologous end-joining pathway. HDAC1 mutations that mimic a constitutively acetylated state rendered neurons more susceptible to DNA damage, whereas pharmacological SIRT1 activators that promoted HDAC1 deacetylation also reduced DNA damage in two mouse models of neurodegeneration. We propose that SIRT1 is an apical transducer of the DSB response and that SIRT1 activation offers an important therapeutic avenue in neurodegeneration.
Collapse
|
109
|
Yang J, Mitra A, Dojer N, Fu S, Rowicka M, Brasier AR. A probabilistic approach to learn chromatin architecture and accurate inference of the NF-κB/RelA regulatory network using ChIP-Seq. Nucleic Acids Res 2013; 41:7240-59. [PMID: 23771139 PMCID: PMC3753626 DOI: 10.1093/nar/gkt493] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Using nuclear factor-κB (NF-κB) ChIP-Seq data, we present a framework for iterative learning of regulatory networks. For every possible transcription factor-binding site (TFBS)-putatively regulated gene pair, the relative distance and orientation are calculated to learn which TFBSs are most likely to regulate a given gene. Weighted TFBS contributions to putative gene regulation are integrated to derive an NF-κB gene network. A de novo motif enrichment analysis uncovers secondary TFBSs (AP1, SP1) at characteristic distances from NF-κB/RelA TFBSs. Comparison with experimental ENCODE ChIP-Seq data indicates that experimental TFBSs highly correlate with predicted sites. We observe that RelA-SP1-enriched promoters have distinct expression profiles from that of RelA-AP1 and are enriched in introns, CpG islands and DNase accessible sites. Sixteen novel NF-κB/RelA-regulated genes and TFBSs were experimentally validated, including TANK, a negative feedback gene whose expression is NF-κB/RelA dependent and requires a functional interaction with the AP1 TFBSs. Our probabilistic method yields more accurate NF-κB/RelA-regulated networks than a traditional, distance-based approach, confirmed by both analysis of gene expression and increased informativity of Genome Ontology annotations. Our analysis provides new insights into how co-occurring TFBSs and local chromatin context orchestrate activation of NF-κB/RelA sub-pathways differing in biological function and temporal expression patterns.
Collapse
Affiliation(s)
- Jun Yang
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1060, USA, Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1060, USA, Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1060, USA, Institute of Informatics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland and Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1060, USA
| | | | | | | | | | | |
Collapse
|
110
|
Sadler T, Scarpa M, Rieder F, West G, Stylianou E. Cytokine-induced chromatin modifications of the type I collagen alpha 2 gene during intestinal endothelial-to-mesenchymal transition. Inflamm Bowel Dis 2013; 19:1354-64. [PMID: 23635716 PMCID: PMC3684204 DOI: 10.1097/mib.0b013e318281f37a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Fibrosis of the intestine is currently an irreversible complication of inflammatory bowel disease; yet, little is understood of the underlying pathogenesis and antifibrotic strategies remain elusive. To develop effective therapies, knowledge of the mechanism of transcription and excessive deposition of type I collagen, a hallmark of fibrosis, is needed. We have shown previously that endothelial-to-mesenchymal transition (EndoMT) contributes to the pool of intestinal fibrotic cells and that a cytokine cocktail (interleukin 1-β, tumor necrosis factor α, and transforming growth factor β) induces collagen I alpha 2 (COL1A2) mRNA and protein. METHODS Chromatin immunoprecipitation assays on pure cultures of human intestinal mucosal endothelial cells undergoing EndoMT were performed with antibodies to specific histone modifications and RNA polymerase II. Reverse transcriptase-PCR was used to quantify the levels of Col1A2 and endothelial-specific von Willebrand factor (vWF) mRNA. RESULTS We showed that cytokines induce selective chromatin modifications (histone 4 hyperacetylation, and hypermethylation of histone 3) and phosphorylated RNA polymerase II at the COL1A2 promoter. Hypoacetylated and hypomethylated histone 3 was detected on the repressed vWF gene. Prolonged exposure to cytokines (16 days) retained hyperacetylation of select lysines in H4 on the COL1A2 promoter. Removal of cytokines after 16 days and continued culture for 10 days showed persistent hyperacetylation at lysine 16 in histone H4. CONCLUSIONS This is the first study to show that COL1A2 gene expression is associated with cytokine-induced, temporally ordered, and persistent chromatin modifications and suggests that these are important determinants of gene expression in EndoMT and intestinal fibrosis.
Collapse
Affiliation(s)
- Tammy Sadler
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Melania Scarpa
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA,Melania Scarpa, current address: Istituto Oncologico Veneto, I.R.C.C.S., Padua, Italy
| | - Florian Rieder
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA,Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, 44195, USA
| | - Gail West
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Eleni Stylianou
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA,Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, 44195, USA,To who correspondence should be addressed: Dr. Eleni Stylianou, B.Sc. Ph.D., Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195. Tel: 216-445-7156; Fax: 216-636-0104,
| |
Collapse
|
111
|
Tian B, Zhao Y, Kalita M, Edeh CB, Paessler S, Casola A, Teng MN, Garofalo RP, Brasier AR. CDK9-dependent transcriptional elongation in the innate interferon-stimulated gene response to respiratory syncytial virus infection in airway epithelial cells. J Virol 2013; 87:7075-92. [PMID: 23596302 PMCID: PMC3676079 DOI: 10.1128/jvi.03399-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/08/2013] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3(-/-) MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser(2) carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-β) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease.
Collapse
Affiliation(s)
| | - Yingxin Zhao
- Department of Internal Medicine,
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
| | | | | | | | - Antonella Casola
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
- Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael N. Teng
- Joy McCann Culverhouse Airway Disease Research Center, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Roberto P. Garofalo
- Institute for Translational Sciences,
- Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Allan R. Brasier
- Department of Internal Medicine,
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
| |
Collapse
|
112
|
Pyko IV, Nakada M, Sabit H, Teng L, Furuyama N, Hayashi Y, Kawakami K, Minamoto T, Fedulau AS, Hamada JI. Glycogen synthase kinase 3β inhibition sensitizes human glioblastoma cells to temozolomide by affecting O6-methylguanine DNA methyltransferase promoter methylation via c-Myc signaling. Carcinogenesis 2013; 34:2206-17. [PMID: 23715499 DOI: 10.1093/carcin/bgt182] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) is a serine/threonine protein kinase involved in human cancers including glioblastoma. We have previously demonstrated that GSK3β inhibition enhances temozolomide effect in glioma cells. In this report, we investigated the molecular mechanisms of sensitization of glioblastoma cells to temozolomide by GSK3β inhibition, focusing on O(6)-methylguanine DNA methyltransferase (MGMT) gene silencing. Glioblastoma tissues from patients treated with the GSK3β-inhibiting drugs were subjected to immunohistochemistry and methylation-specific PCR assay. Human glioblastoma cell lines T98G, U138, U251 and U87 were treated with a small-molecule GSK3β inhibitor, AR-A014418 or GSK3β-specific small interfering RNA. The combined effect of temozolomide and AR-A014418 on cell proliferation was determined by AlamarBlue assay and an isobologram method. MGMT promoter methylation was estimated by methylation-specific PCR and MethyLight assay. MGMT gene expression was evaluated by real-time quantitative reverse transcriptase-PCR. c-Myc and DNA (cytosine-5)-methyltransferase 3A binding to the MGMT promoter was estimated by chromatin immunoprecipitation assay. GSK3β inhibition decreased phosphorylation of glycogen synthase and reduced MGMT expression and increased MGMT promoter methylation in clinical tumors. In glioblastoma cell lines, GSK3β inhibition decreased cell viability, enhanced temozolomide effect and downregulated MGMT expression with relevant changes in the methylation levels of the MGMT promoter. Here, we showed for the first time that c-Myc binds to the MGMT promoter with consequent recruitment of DNA (cytosine-5)-methyltransferase 3A, regulating the levels of MGMT promoter methylation. The results of this study suggest that GSK3β inhibition enhances temozolomide effect by silencing MGMT expression via c-Myc-mediated promoter methylation.
Collapse
Affiliation(s)
- Ilya V Pyko
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-Machi, 920-8641, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Xing Y, Yang Y, Zhou F, Wang J. Characterization of genome-wide binding of NF-κB in TNFα-stimulated HeLa cells. Gene 2013; 526:142-9. [PMID: 23688556 DOI: 10.1016/j.gene.2013.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 01/06/2023]
Abstract
This study characterized the genome-wide binding of NF-κB RelA with ChIP-Seq and explored its effects on the gene transcription with DNA microarray. It was found that NF-κB showed several significant binding characteristics, including the inter- and intra-chromosomal differential high-fold enrichment binding, the dominant intronic binding to vast majority of target genes through multiple ChIP-seq peaks and κB sites, extensively binding to large number of genes in the human genome, and binding its target genes more broadly through noncanonical κB sites than canonical κB sites. These in vivo genome-wide binding characteristics exerted effects on the transcription of its direct target genes in genome, reflecting some important traits of this protein which acts as a stimulatory transcription factor involving in many biological processes and responding to various internal and external stimuli.
Collapse
Affiliation(s)
- Yujun Xing
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | | | | | | |
Collapse
|
114
|
Potter JJ, Liu X, Koteish A, Mezey E. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human α1 (I) collagen expression and type I collagen formation. Liver Int 2013; 33:677-86. [PMID: 23413886 PMCID: PMC3707129 DOI: 10.1111/liv.12122] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/24/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vitamin D deficiency is common in chronic liver disease particularly in those with severe liver fibrosis. AIMS To determine the effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3 ) on the human α(1) (I) collagen promoter and collagen formation by human stellate LX-2 cells and the mechanism of the effect of the vitamin D receptor (VDR) on the promoter. METHODS Type I collagen was assessed by measurements of collagen mRNA and collagen protein and by transfection experiments. Binding of VDR to the α(1) (I) collagen promoter was determined by EMSA and ChIP assays. RESULTS 1,25-(OH)2 D3 decreased human α(1) (I) collagen mRNA and protein and the secretion of type I collagen by stellate cells after exposure to TGFβ1. Furthermore, 1,25-(OH)2 D3 inhibited TGFβ1-induced activation of the α(1) (I) collagen promoter in transfected LX-2 cells. The effect of 1,25-(OH)2 D3 is mediated by the VDR, which binds at a proximal Sp1 site and also at a newly identified distal site on the collagen promoter. A VDR expression vector reduced the activities of the collagen promoter in transfected LX-2 cells. CONCLUSIONS 1,25-(OH)2 D3 inhibits type I collagen formation in human stellate cells. The effect of 1,25-(OH)2 D3 is mediated by its receptor which binds at a proximal Sp1.1 site and at a newly identified distal site on the collagen promoter. Correction of vitamin D deficiency in patients with chronic liver disease is a potential therapy to inhibit progression of fibrosis.
Collapse
Affiliation(s)
- James J Potter
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
115
|
Zhang YJ, Caulfield T, Xu YF, Gendron TF, Hubbard J, Stetler C, Sasaguri H, Whitelaw EC, Cai S, Lee WC, Petrucelli L. The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet 2013; 22:3112-22. [PMID: 23575225 PMCID: PMC3699067 DOI: 10.1093/hmg/ddt166] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TAR DNA-binding protein-43 (TDP-43) is the principal component of ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and the most common pathological subtype of frontotemporal dementia—frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP). To date, the C-terminus of TDP-43, which is aggregation-prone and contains almost all ALS-associated mutations, has garnered much attention while the functions of the N-terminus of TDP-43 remain largely unknown. To bridge this gap in our knowledge, we utilized novel cell culture and computer-assisted models to evaluate which region(s) of TDP-43 regulate its folding, self-interaction, biological activity and aggregation. We determined that the extreme N-terminus of TDP-43, specifically the first 10 residues, regulates folding of TDP-43 monomers necessary for proper homodimerization and TDP-43-regulated splicing. Despite such beneficial functions, we discovered an interesting dichotomy: full-length TDP-43 aggregation, which is believed to be a pathogenic process, also requires the extreme N-terminus of TDP-43. As such, we provide new insight into the structural basis for TDP-43 function and aggregation, and we suggest that stabilization of TDP-43 homodimers, the physiologically active form of TDP-43, may be a promising therapeutic strategy for ALS and FTLD-TDP.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Xu R, Sen N, Paul BD, Snowman AM, Rao F, Vandiver MS, Xu J, Snyder SH. Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death. Sci Signal 2013; 6:ra22. [PMID: 23550211 DOI: 10.1126/scisignal.2003405] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tumor suppressor protein p53 is a critical stress response transcription factor that induces the expression of genes leading to cell cycle arrest, apoptosis, and tumor suppression. We found that mammalian inositol polyphosphate multikinase (IPMK) stimulated p53-mediated transcription by binding to p53 and enhancing its acetylation by the acetyltransferase p300 independently of its inositol phosphate and lipid kinase activities. Genetic or RNA interference (RNAi)-mediated knockdown of IPMK resulted in decreased activation of p53, decreased recruitment of p53 and p300 to target gene promoters, abrogated transcription of p53 target genes, and enhanced cell viability. Additionally, blocking the IPMK-p53 interaction decreased the extent of p53-mediated transcription. These results suggest that IPMK acts as a transcriptional coactivator for p53 and that it is an integral part of the p53 transcriptional complex facilitating cell death.
Collapse
Affiliation(s)
- Risheng Xu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Nickols NG, Szablowski JO, Hargrove AE, Li BC, Raskatov JA, Dervan PB. Activity of a Py-Im polyamide targeted to the estrogen response element. Mol Cancer Ther 2013; 12:675-84. [PMID: 23443804 DOI: 10.1158/1535-7163.mct-12-1040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pyrrole-imidazole (Py-Im) polyamides are a class of programmable DNA minor groove binders capable of modulating the activity of DNA-binding proteins and affecting changes in gene expression. Estrogen receptor alpha (ERα) is a ligand-activated hormone receptor that binds as a homodimer to estrogen response elements (ERE) and is a driving oncogene in a majority of breast cancers. We tested a selection of structurally similar Py-Im polyamides with differing DNA sequence specificity for activity against 17β-estadiol (E2)-induced transcription and cytotoxicity in ERα positive, E2-stimulated T47DKBluc cells, which express luciferase under ERα control. The most active polyamide targeted the sequence 5'-WGGWCW-3' (W = A or T), which is the canonical ERE half site. Whole transcriptome analysis using RNA-Seq revealed that treatment of E2-stimulated breast cancer cells with this polyamide reduced the effects of E2 on the majority of those most strongly affected by E2 but had much less effect on the majority of E2-induced transcripts. In vivo, this polyamide circulated at detectable levels following subcutaneous injection and reduced levels of ER-driven luciferase expression in xenografted tumors in mice after subcutaneous compound administration without significant host toxicity.
Collapse
Affiliation(s)
- Nicholas G Nickols
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
118
|
High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat Protoc 2013; 8:539-54. [PMID: 23429716 DOI: 10.1038/nprot.2013.023] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dynamic protein binding to DNA elements regulates genome function and cell fate. Although methods for mapping in vivo protein-DNA interactions are becoming crucial for every aspect of genomic research, they are laborious and costly, thereby limiting progress. Here we present a protocol for mapping in vivo protein-DNA interactions using a high-throughput chromatin immunoprecipitation (HT-ChIP) approach. By using paramagnetic beads, we streamline the entire ChIP and indexed library construction process: sample transfer and loss is minimized and the need for manually labor-intensive procedures such as washes, gel extraction and DNA precipitation is eliminated. All of this allows for fully automated, cost effective and highly sensitive 96-well ChIP sequencing (ChIP-seq). Sample preparation takes 3 d from cultured cells to pooled libraries. Compared with previous methods, HT-ChIP is more suitable for large-scale in vivo studies, specifically those measuring the dynamics of a large number of different chromatin modifications/transcription factors or multiple perturbations.
Collapse
|
119
|
Mascheretti I, Battaglia R, Mainieri D, Altana A, Lauria M, Rossi V. The WD40-repeat proteins NFC101 and NFC102 regulate different aspects of maize development through chromatin modification. THE PLANT CELL 2013; 25:404-20. [PMID: 23424244 PMCID: PMC3608768 DOI: 10.1105/tpc.112.107219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The maize (Zea mays) nucleosome remodeling factor complex component101 (nfc101) and nfc102 are putative paralogs encoding WD-repeat proteins with homology to plant and mammalian components of various chromatin modifying complexes. In this study, we generated transgenic lines with simultaneous nfc101 and nfc102 downregulation and analyzed phenotypic alterations, along with effects on RNA levels, the binding of NFC101/NFC102, and Rpd3-type histone deacetylases (HDACs), and histone modifications at selected targets. Direct NFC101/NFC102 binding and negative correlation with mRNA levels were observed for indeterminate1 (id1) and the florigen Zea mays CENTRORADIALIS8 (ZCN8), key activators of the floral transition. In addition, the abolition of NFC101/NFC102 association with repetitive sequences of different transposable elements (TEs) resulted in tissue-specific upregulation of nonpolyadenylated RNAs produced by these regions. All direct nfc101/nfc102 targets showed histone modification patterns linked to active chromatin in nfc101/nfc102 downregulation lines. However, different mechanisms may be involved because NFC101/NFC102 proteins mediate HDAC recruitment at id1 and TE repeats but not at ZCN8. These results, along with the pleiotropic effects observed in nfc101/nfc102 downregulation lines, suggest that NFC101 and NFC102 are components of distinct chromatin modifying complexes, which operate in different pathways and influence diverse aspects of maize development.
Collapse
|
120
|
Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci U S A 2013; 110:3333-8. [PMID: 23341587 DOI: 10.1073/pnas.1214266110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms govern a wide variety of physiological and metabolic functions in many organisms, from prokaryotes to humans. We previously reported that silent information regulator 1 (SIRT1), a NAD(+)-dependent deacetylase, contributes to circadian control. In addition, SIRT1 activity is regulated in a cyclic manner in virtue of the circadian oscillation of the coenzyme NAD(+). Here we used specific SIRT1 activator compounds both in vitro and in vivo. We tested a variety of compounds to show that the activation of SIRT1 alters CLOCK:BMAL1-driven transcription in different systems. Activation of SIRT1 induces repression of circadian gene expression and decreases H3 K9/K14 acetylation at corresponding promoters in a time-specific manner. Specific activation of SIRT1 was demonstrated in vivo using liver-specific SIRT1-deficient mice, where the effect of SIRT1 activator compounds was shown to be dependent on SIRT1. Our findings demonstrate that SIRT1 can fine-tune circadian rhythm and pave the way to the development of pharmacological strategies to address a broad range of therapeutic indications.
Collapse
|
121
|
Abstract
Many cancer therapeutics target DNA and exert cytotoxicity through the induction of DNA damage and inhibition of transcription. We report that a DNA minor groove binding hairpin pyrrole-imidazole (Py-Im) polyamide interferes with RNA polymerase II (RNAP2) activity in cell culture. Polyamide treatment activates p53 signaling in LNCaP prostate cancer cells without detectable DNA damage. Genome-wide mapping of RNAP2 binding shows reduction of occupancy, preferentially at transcription start sites, but occupancy at enhancer sites is unchanged. Polyamide treatment results in a time- and dose-dependent depletion of the RNAP2 large subunit RPB1 that is preventable with proteasome inhibition. This polyamide demonstrates antitumor activity in a prostate tumor xenograft model with limited host toxicity.
Collapse
|
122
|
Ray S, Ju X, Sun H, Finnerty CC, Herndon DN, Brasier AR. The IL-6 trans-signaling-STAT3 pathway mediates ECM and cellular proliferation in fibroblasts from hypertrophic scar. J Invest Dermatol 2013; 133:1212-20. [PMID: 23303450 PMCID: PMC3626764 DOI: 10.1038/jid.2012.499] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The molecular mechanisms behind the pathogenesis of post-burn hypertrophic scar (HS) remain unclear. Here, we investigate the role of interleukin-6 (IL-6) trans-signaling-STAT3 pathway in HS fibroblasts (HSF) derived from burned-induced HS skin. HSF showed increased Tyr 705 STAT3 phosphorylation over normal fibroblast (NF) after IL-6•IL-6Rα stimulation by immunoassays. The endogenous STAT3 target gene, SOCS3, was upregulated in HSF and showed increased STAT3 binding on its promoter relative to NF in Chromatin Immunoprecipitation assay. We observed that the cell surface signaling transducer glycoprotein 130 is upregulated in HSF using Q-RT-PCR and flow cytometry. The production of excessive extracellular matrix (ECM), including the expression of alpha2 (1) procollagen (Col1A2) and fibronectin 1 (FN) were seen in HSFs. A STAT3 peptide inhibitor abrogated FN and Col1A2 gene expression in HSF indicating involvement of STAT3 in ECM production. The cellular proliferation markers Cyclin D1, Bcl-Xl and c-Myc were also upregulated in HSF and knockdown of STAT3 by siRNA attenuated c-Myc expression indicating the essential role of STAT3 in fibroblast proliferation. Taken together, our results suggest that the IL-6-trans-signaling-STAT3 pathway may play an integral role in HS pathogenesis and disruption of this pathway could be a potential therapeutic strategy for the treatment of burn-induced HS.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Internal Medicine, Endocrinology Division, University of Texas Medical Branch, Galveston, Texas 77555-1060, USA.
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
Chromatin immunoprecipitation (ChIP) studies have been used extensively in recent years to study the functional role of histone marks, variant histones, and other chromatin factors in gene expression in the human malaria parasite, Plasmodium falciparum. In this chapter, we present a ChIP-sequencing protocol optimized for blood-stage forms of this parasite. The processing of the immunoprecipitated DNA prior to high-throughput sequencing is performed in a way to minimize amplification biases due to the high genomic AT-content of the parasite.
Collapse
|
124
|
Abstract
Recent studies have elucidated molecular mechanisms underlying the transcriptional control of metabolism in complex metabolic disorders such as metabolic syndrome and atherosclerosis. Chromatin immunoprecipitation (ChIP) is an important technique to study protein-DNA interactions in vivo. Chemical cross-linking of DNA and its associated proteins, followed by chromatin shearing, immunoprecipitation of a protein of interest, DNA isolation, and PCR interrogation, can identify specific interactions between protein and DNA or sites of histone epigenetic alteration. Transcription factors and epigenetic modifications are key determinants of transcription. Accordingly, ChIP experiments can provide powerful mechanistic insights to understand gene expression.
Collapse
Affiliation(s)
- Grant D Barish
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
125
|
Djuric Z, Kashif M, Fleming T, Muhammad S, Piel D, von Bauer R, Bea F, Herzig S, Zeier M, Pizzi M, Isermann B, Hecker M, Schwaninger M, Bierhaus A, Nawroth PP. Targeting activation of specific NF-κB subunits prevents stress-dependent atherothrombotic gene expression. Mol Med 2012; 18:1375-86. [PMID: 23114885 DOI: 10.2119/molmed.2012.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/23/2012] [Indexed: 11/06/2022] Open
Abstract
Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-κB (NF-κB) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-κB-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-κB-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein(-/-) (ApoE(-/-)) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease.
Collapse
Affiliation(s)
- Zdenka Djuric
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Xing Y, Zhou F, Wang J. Subset of genes targeted by transcription factor NF-κB in TNFα-stimulated human HeLa cells. Funct Integr Genomics 2012; 13:143-54. [DOI: 10.1007/s10142-012-0305-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 11/28/2022]
|
127
|
Aoki T, Sarkeshik A, Yates J, Schedl P. Elba, a novel developmentally regulated chromatin boundary factor is a hetero-tripartite DNA binding complex. eLife 2012; 1:e00171. [PMID: 23240086 PMCID: PMC3510454 DOI: 10.7554/elife.00171] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/12/2012] [Indexed: 11/24/2022] Open
Abstract
Chromatin boundaries subdivide eukaryotic chromosomes into functionally autonomous domains of genetic activity. This subdivision insulates genes and/or regulatory elements within a domain from promiscuous interactions with nearby domains. While it was previously assumed that the chromosomal domain landscape is fixed, there is now growing evidence that the landscape may be subject to tissue and stage specific regulation. Here we report the isolation and characterization of a novel developmentally restricted boundary factor, Elba. We show that Elba is an unusual hetero-tripartite protein complex that requires all three proteins for DNA binding and insulator activity. DOI:http://dx.doi.org/10.7554/eLife.00171.001 If all of the DNA in a human cell was stretched out, it would be about 2 m long. The nucleus of a human cell, on the other hand, has a diameter of just 6 μm, so the DNA molecules that carry all the genetic information in the cell need to be carefully folded to fit inside the nucleus. Cells meet this challenge by combining their DNA molecules with proteins to form a compact and highly organized structure called chromatin. Packaging DNA into chromatin also reduces damage to it. But what happens when the cell needs to express the genes carried by the DNA as proteins or other gene products? The answer is that the compact structure of chromatin relaxes and opens up, which allows the DNA to be transcribed into messenger RNA. Indeed, packing DNA into chromatin makes this process more reliable, thus ensuring that the cell only produces proteins and other gene products when it needs them. However, because cross-talk between neighboring genes could potentially disrupt or change gene expression patterns, cells evolved special elements called boundaries or insulators to stop this from happening. These elements subdivide eukaryotic chromosomes into functionally autonomous chromatin domains. Since the protein factors implicated in boundary function seemed to be active in all tissues and cell types, it was assumed for many years that these boundaries and the resulting chromatin domains were fixed. However, a number of recent studies have shown that boundary activity can be subject to regulation, and thus chromatin domains are dynamic structures that can be defined and redefined during development to alter patterns of gene expression. Aoki et al. report the isolation and characterization of a new fruit fly boundary factor that, unlike previously characterized factors, is active only during a specific stage of development. The Elba factor is also unusual in that it is made of three different proteins, known as Elba1, Elba2, and Elba3, and all three must be present for it to bind to DNA. While Elba2 is present during most stages of development, the other two Elba proteins are only present during early embryonic development, so the boundary factor is only active in early embryos. In addition to revealing a new mechanism for controlling boundary activity as an organism develops, the studies of Aoki et al. provide further evidence that chromatin domains can be dynamic. DOI:http://dx.doi.org/10.7554/eLife.00171.002
Collapse
Affiliation(s)
- Tsutomu Aoki
- Department of Molecular Biology , Princeton University , Princeton , United States
| | | | | | | |
Collapse
|
128
|
Gurevich I, Zhang C, Francis N, Struzynsky CP, Livings SE, Aneskievich BJ. Human TNFα-induced protein 3-interacting protein 1 (TNIP1) promoter activation is regulated by retinoic acid receptors. Gene 2012; 515:42-8. [PMID: 23228856 DOI: 10.1016/j.gene.2012.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/25/2012] [Accepted: 11/01/2012] [Indexed: 11/29/2022]
Abstract
Coregulator proteins play key roles in transcriptional control by members of the nuclear receptor superfamily. Previously, we demonstrated that tumor necrosis factor α (TNFα)-induced protein 3-interacting protein 1 (TNIP1) is a corepressor of agonist-bound retinoic acid receptors (RARs). Additionally, TNIP1 has been shown to repress peroxisome proliferator-activated receptors (PPAR) and NF-κB activity and interact with HIV proteins nef and matrix. TNIP1 transcriptional regulation, however, is under studied. Here we show that under permissive epigenetic conditions, TNIP1 expression is induced by all trans retinoic acid (ATRA). Within a 6000 bp region of the human TNIP1 promoter we cloned, both proximal and distal promoter regions are RAR responsive with the latter having RA response elements (RAREs) recognizable by their sequence and functionality in native promoter and synthetic RARE luciferase constructs, EMSA, and ChIP assays. These findings suggest a feedback loop whereby RARs activate expression of TNIP1, which then attenuates their activity. Together with anticipated constitutive transcription factors and the previously described NF-κB-responsiveness of the proximal TNIP1 promoter, the expected combinatorial control of TNIP1 expression could likely modulate TNIP1's impact in any of its target pathways. The degree of control by RARs or other transcription factors would in turn depend on their cell-specific level of expression and/or activation from signals in the environment such as ATRA and TNFα.
Collapse
Affiliation(s)
- Igor Gurevich
- Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA.
| | | | | | | | | | | |
Collapse
|
129
|
Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012; 338:349-54. [PMID: 22936566 PMCID: PMC3694775 DOI: 10.1126/science.1226339] [Citation(s) in RCA: 1042] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
Collapse
Affiliation(s)
- Nobuya Koike
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Seung-Hee Yoo
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Hung-Chung Huang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Vivek Kumar
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Choogon Lee
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Tae-Kyung Kim
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Joseph S. Takahashi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| |
Collapse
|
130
|
Stamm P, Ravindran P, Mohanty B, Tan EL, Yu H, Kumar PP. Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana. BMC PLANT BIOLOGY 2012; 12:179. [PMID: 23035751 PMCID: PMC3732085 DOI: 10.1186/1471-2229-12-179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/01/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Seed germination is of immense significance for agriculture and has been studied for centuries. Yet, our understanding of the molecular mechanisms underlying regulation of dormancy and germination is still in its infancy. Gibberellins are the key phytohormones that promote germination, and the DELLA protein RGL2 is the main signalling intermediate involved in this response. Germination is completely inhibited if functional RGL2 is overexpressed and/or stabilized; however, the molecular mechanisms of RGL2 function are still largely unknown. We therefore attempted to shed light onto some of the genetic events downstream of RGL2. RESULTS Gene ontology of the transcriptome differentially regulated by RGL2, as well as extensive cross-comparison with other available microarray data indicates that RGL2-mediated inhibition of germination causes seeds to enter a state of dormancy. RGL2 also appears to differentially regulate a number of transcription factors, many of which are known to be involved in light- or phytohormone-mediated aspects of germination. A promoter analysis of differentially expressed genes identified an enrichment of several motifs that can be bound by specific transcription factors, for example GAMYB, ARF1, or Dof-type zinc fingers. We show that Dof-binding motifs indeed play a role in RGL2-mediated transcription. Using Chromatin Immunoprecipitation (ChIP), we show that RGL2 directly downregulates at least one cell wall modifying enzyme, which is predicted to constrain cell growth thereby leading to inhibition of seed germination. CONCLUSIONS Our results reveal that RGL2 controls various aspects of germination. Through the repression of cell wall modifying enzymes, cell growth is directly constrained to inhibit germination. Furthermore, RGL2 likely interacts with various types of proteins to regulate transcription, and differentially regulates several transcription factors. Collectively, our data indicate that gibberellins, acting via RGL2, control several aspects of seed germination.
Collapse
Affiliation(s)
- Petra Stamm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Pratibha Ravindran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Bijayalaxmi Mohanty
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Ee Ling Tan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| |
Collapse
|
131
|
Bellet MM, Zocchi L, Sassone-Corsi P. The RelB subunit of NFκB acts as a negative regulator of circadian gene expression. Cell Cycle 2012; 11:3304-11. [PMID: 22894897 PMCID: PMC3467027 DOI: 10.4161/cc.21669] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The circadian system controls a large array of physiological and metabolic functions. The molecular organization of the circadian clock is complex, involving various elements organized in feedback regulatory loops. Here we demonstrate that the RelB subunit of NFκB acts as a repressor of circadian transcription. RelB physically interacts with the circadian activator BMAL1 in the presence of CLOCK to repress circadian gene expression at the promoter of the clock-controlled gene Dbp. The repression is independent of the circadian negative regulator CRY. Notably, RelB -/- fibroblasts have profound alterations of circadian genes expression. These findings reveal a previously unforeseen function for RelB as an important regulator of the mammalian circadian system in fibroblasts.
Collapse
Affiliation(s)
- Marina M. Bellet
- Center for Epigenetics and Metabolism; School of Medicine; University of California, Irvine; Irvine, CA USA
| | - Loredana Zocchi
- Center for Epigenetics and Metabolism; School of Medicine; University of California, Irvine; Irvine, CA USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism; School of Medicine; University of California, Irvine; Irvine, CA USA
| |
Collapse
|
132
|
Zhang J, Poh HM, Peh SQ, Sia YY, Li G, Mulawadi FH, Goh Y, Fullwood MJ, Sung WK, Ruan X, Ruan Y. ChIA-PET analysis of transcriptional chromatin interactions. Methods 2012; 58:289-99. [PMID: 22926262 DOI: 10.1016/j.ymeth.2012.08.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/16/2012] [Accepted: 08/16/2012] [Indexed: 11/19/2022] Open
Abstract
Long-range chromatin contacts between specific DNA regulatory elements play a pivotal role in gene expression regulation, and a global characterization of these interactions in the 3-dimensional (3D) chromatin structure is imperative in understanding signaling networks and cell states. Chromatin Interaction Analysis using Paired-End Tag sequencing (ChIA-PET) is a method which converts functional chromatin structure into millions of short tag sequences. Combining Chromatin Immunoprecipitation (ChIP), proximity ligation and high-throughput sequencing, ChIA-PET provides a global and unbiased interrogation of higher-order chromatin structures associated with specific protein factors. Here, we describe the detailed procedures of the ChIA-PET methodology, unraveling transcription-associated chromatin contacts in a model human cell line.
Collapse
Affiliation(s)
- Jingyao Zhang
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Shi X, Metges CC, Seyfert HM. Interaction of C/EBP-beta and NF-Y factors constrains activity levels of the nutritionally controlled promoter IA expressing the acetyl-CoA carboxylase-alpha gene in cattle. BMC Mol Biol 2012; 13:21. [PMID: 22738246 PMCID: PMC3441787 DOI: 10.1186/1471-2199-13-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022] Open
Abstract
Background The enzyme acetyl-CoA carboxylase-alpha (ACC-α) is rate limiting for de novo fatty acid synthesis. Among the four promoters expressing the bovine gene, promoter IA (PIA) is dominantly active in lipogenic tissues. This promoter is in principal repressed but activated under favorable nutritional conditions. Previous analyses already coarsely delineated the repressive elements on the distal promoter but did not resolve the molecular nature of the repressor. Knowledge about the molecular functioning of this repressor is fundamental to understanding the nutrition mediated regulation of PIA activity. We analyzed here the molecular mechanism calibrating PIA activity. Results We finely mapped the repressor binding sites in reporter gene assays and demonstrate together with Electrophoretic Mobility Shift Assays that nuclear factor-Y (NF-Y) and CCAAT/enhancer binding protein-β (C/EBPβ) each separately repress PIA activity by binding to their cognate low affinity sites, located on distal elements of the promoter. Simultaneous binding of both factors results in strongest repression. Paradoxically, over expression of NFY factors, but also - and even more so - of C/EBPβ significantly activated the promoter when bound to high affinity sites on the proximal promoter. However, co-transfection experiments revealed that NF-Y may eventually diminish the strong stimulatory effect of C/EBPβ at the proximal PIA in a dose dependent fashion. We validated by chromatin immunoprecipitation, that NF-Y and C/EBP factors may physically interact. Conclusion The proximal promoter segment of PIA appears to be principally in an active state, since even minute concentrations of both, NF-Y and C/EBPβ factors can saturate the high affinity activator sites. Higher factor concentrations will saturate the low affinity repressive sites on the distal promoter resulting in reduced and calibrated promoter activity. Based on measurements of the mRNA concentrations of those factors in different tissues we propose that the interplay of both factors may set tissue-specific limits for PIA activity.
Collapse
Affiliation(s)
- Xuanming Shi
- Research Unit for Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | | | | |
Collapse
|
134
|
Choi NM, Boss JM. Multiple histone methyl and acetyltransferase complex components bind the HLA-DRA gene. PLoS One 2012; 7:e37554. [PMID: 22701520 PMCID: PMC3365104 DOI: 10.1371/journal.pone.0037554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 04/25/2012] [Indexed: 01/17/2023] Open
Abstract
Major histocompatibility complex class II (MHC-II) genes are fundamental components that contribute to adaptive immune responses. While characterization of the chromatin features at the core promoter region of these genes has been studied, the scope of histone modifications and the modifying factors responsible for activation of these genes are less well defined. Using the MHC-II gene HLA-DRA as a model, the extent and distribution of major histone modifications associated with active expression were defined in interferon-γ induced epithelial cells, B cells, and B-cell mutants for MHC-II expression. With active transcription, nucleosome density around the proximal regulatory region was diminished and histone acetylation and methylation modifications were distributed throughout the gene in distinct patterns that were dependent on the modification examined. Irrespective of the location, the majority of these modifications were dependent on the binding of either the X-box binding factor RFX or the class II transactivator (CIITA) to the proximal regulatory region. Importantly, once established, the modifications were stable through multiple cell divisions after the activating stimulus was removed, suggesting that activation of this system resulted in an epigenetic state. A dual crosslinking chromatin immunoprecipitation method was used to detect histone modifying protein components that interacted across the gene. Components of the MLL methyltransferase and GCN5 acetyltransferase complexes were identified. Some MLL complex components were found to be CIITA independent, including MLL1, ASH2L and RbBP5. Likewise, GCN5 containing acetyltransferase complex components belonging to the ATAC and STAGA complexes were also identified. These results suggest that multiple complexes are either used or are assembled as the gene is activated for expression. Together the results define and illustrate a complex network of histone modifying proteins and multisubunit complexes participating in MHC-II transcription.
Collapse
Affiliation(s)
- Nancy M. Choi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
135
|
Goh Y, Fullwood MJ, Poh HM, Peh SQ, Ong CT, Zhang J, Ruan X, Ruan Y. Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for mapping chromatin interactions and understanding transcription regulation. J Vis Exp 2012:3770. [PMID: 22564980 PMCID: PMC3466657 DOI: 10.3791/3770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Genomes are organized into three-dimensional structures, adopting higher-order conformations inside the micron-sized nuclear spaces 7, 2, 12. Such architectures are not random and involve interactions between gene promoters and regulatory elements 13. The binding of transcription factors to specific regulatory sequences brings about a network of transcription regulation and coordination 1, 14. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) was developed to identify these higher-order chromatin structures 5,6. Cells are fixed and interacting loci are captured by covalent DNA-protein cross-links. To minimize non-specific noise and reduce complexity, as well as to increase the specificity of the chromatin interaction analysis, chromatin immunoprecipitation (ChIP) is used against specific protein factors to enrich chromatin fragments of interest before proximity ligation. Ligation involving half-linkers subsequently forms covalent links between pairs of DNA fragments tethered together within individual chromatin complexes. The flanking MmeI restriction enzyme sites in the half-linkers allow extraction of paired end tag-linker-tag constructs (PETs) upon MmeI digestion. As the half-linkers are biotinylated, these PET constructs are purified using streptavidin-magnetic beads. The purified PETs are ligated with next-generation sequencing adaptors and a catalog of interacting fragments is generated via next-generation sequencers such as the Illumina Genome Analyzer. Mapping and bioinformatics analysis is then performed to identify ChIP-enriched binding sites and ChIP-enriched chromatin interactions 8. We have produced a video to demonstrate critical aspects of the ChIA-PET protocol, especially the preparation of ChIP as the quality of ChIP plays a major role in the outcome of a ChIA-PET library. As the protocols are very long, only the critical steps are shown in the video.
Collapse
Affiliation(s)
- Yufen Goh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
136
|
He D, Zheng Y, Tam S. The anti-herpetic activity of trichosanthin via the nuclear factor-κB and p53 pathways. Life Sci 2012; 90:673-81. [PMID: 22498878 DOI: 10.1016/j.lfs.2012.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/24/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
AIMS Trichosanthin (TCS) is a type I ribosome-inactivating protein. We have previously shown that TCS induces a more potent apoptosis in infected cells over uninfected cells, but the mechanism underlying it is unclear. In this study, we explored the anti-HSV-1 mechanism of TCS through the nuclear factor-κB (NF-κB) and p53 pathways in human epithelial carcinoma (HEp-2) cells with wild type p53. MAIN METHODS The western blot, electrophoretic mobility shift assay, chromatin immunoprecipitation assay, enzyme-linked immunosorbent assay and cytokinesis-block micronucleus were applied in this study. KEY FINDINGS It was shown that TCS inhibited the HSV-1-induced NF-κB activation. Meanwhile, in HSV-1 infected cells, TCS treatment activated significantly more p53 and BAX, with no DNA damage and less S phase arrest compared with uninfected cells. The activation of BAX in infected cells correlated with the cell death signaling of p53. SIGNIFICANCE Taken together, these results suggest that the anti-HSV-1 effect of TCS is related to its suppression of NF-κB activation and regulation of p53-dependent cell death in infected cells.
Collapse
Affiliation(s)
- Dongxu He
- The Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | | |
Collapse
|
137
|
Miletti-González KE, Murphy K, Kumaran MN, Ravindranath AK, Wernyj RP, Kaur S, Miles GD, Lim E, Chan R, Chekmareva M, Heller DS, Foran D, Chen W, Reiss M, Bandera EV, Scotto K, Rodríguez-Rodríguez L. Identification of function for CD44 intracytoplasmic domain (CD44-ICD): modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. J Biol Chem 2012; 287:18995-9007. [PMID: 22433859 DOI: 10.1074/jbc.m111.318774] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CD44 is a multifunctional cell receptor that conveys a cancer phenotype, regulates macrophage inflammatory gene expression and vascular gene activation in proatherogenic environments, and is also a marker of many cancer stem cells. CD44 undergoes sequential proteolytic cleavages that produce an intracytoplasmic domain called CD44-ICD. However, the role of CD44-ICD in cell function is unknown. We take a major step toward the elucidation of the CD44-ICD function by using a CD44-ICD-specific antibody, a modification of a ChIP assay to detect small molecules, and extensive computational analysis. We show that CD44-ICD translocates into the nucleus, where it then binds to a novel DNA consensus sequence in the promoter region of the MMP-9 gene to regulate its expression. We also show that the expression of many other genes that contain this novel response element in their promoters is up- or down-regulated by CD44-ICD. Furthermore, hypoxia-inducible factor-1α (Hif1α)-responsive genes also have the CD44-ICD consensus sequence and respond to CD44-ICD induction under normoxic conditions and therefore independent of Hif1α expression. Additionally, CD44-ICD early responsive genes encode for critical enzymes in the glycolytic pathway, revealing how CD44 could be a gatekeeper of the Warburg effect (aerobic glycolysis) in cancer cells and possibly cancer stem cells. The link of CD44 to metabolism is novel and opens a new area of research not previously considered, particularly in the study of obesity and cancer. In summary, our results finally give a function to the CD44-ICD and will accelerate the study of the regulation of many CD44-dependent genes.
Collapse
Affiliation(s)
- Karl E Miletti-González
- Department of Obstetrics and Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Raskatov JA, Meier JL, Puckett JW, Yang F, Ramakrishnan P, Dervan PB. Modulation of NF-κB-dependent gene transcription using programmable DNA minor groove binders. Proc Natl Acad Sci U S A 2012; 109:1023-8. [PMID: 22203967 PMCID: PMC3268328 DOI: 10.1073/pnas.1118506109] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor κB (NF-κB) is a transcription factor that regulates various aspects of immune response, cell death, and differentiation as well as cancer. In this study we introduce the Py-Im polyamide 1 that binds preferentially to the sequences 5'-WGGWWW-3' and 5'GGGWWW-3'. The compound is capable of binding to κB sites and reducing the expression of various NF-κB-driven genes including IL6 and IL8 by qRT-PCR. Chromatin immunoprecipitation experiments demonstrate a reduction of p65 occupancy within the proximal promoters of those genes. Genome-wide expression analysis by RNA-seq compares the DNA-binding polyamide with the well-characterized NF-κB inhibitor PS1145, identifies overlaps and differences in affected gene groups, and shows that both affect comparable numbers of TNF-α-inducible genes. Inhibition of NF-κB DNA binding via direct displacement of the transcription factor is a potential alternative to the existing antagonists.
Collapse
Affiliation(s)
| | | | | | - Fei Yang
- Division of Chemistry and Chemical Engineering and
| | | | | |
Collapse
|
139
|
Hoeth M, Niederleithner H, Hofer-Warbinek R, Bilban M, Mayer H, Resch U, Lemberger C, Wagner O, Hofer E, Petzelbauer P, de Martin R. The transcription factor SOX18 regulates the expression of matrix metalloproteinase 7 and guidance molecules in human endothelial cells. PLoS One 2012; 7:e30982. [PMID: 22292085 PMCID: PMC3264645 DOI: 10.1371/journal.pone.0030982] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 12/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background Mutations in the transcription factor SOX18 are responsible for specific cardiovascular defects in humans and mice. In order to gain insight into the molecular basis of its action, we identified target genes of SOX18 and analyzed one, MMP7, in detail. Methodology/Principal Findings SOX18 was expressed in HUVEC using a recombinant adenoviral vector and the altered gene expression profile was analyzed using microarrays. Expression of several regulated candidate SOX18 target genes was verified by real-time PCR. Knock-down of SOX18 using RNA interference was then used to confirm the effect of the transcription factor on selected genes that included the guidance molecules ephrin B2 and semaphorin 3G. One gene, MMP7, was chosen for further analysis, including detailed promoter studies using reporter gene assays, electrophoretic mobility shift analysis and chromatin-immunoprecipitation, revealing that it responds directly to SOX18. Immunohistochemical analysis demonstrated the co-expression of SOX18 and MMP7 in blood vessels of human skin. Conclusions/Significance The identification of MMP7 as a direct SOX18 target gene as well as other potential candidates including guidance molecules provides a molecular basis for the proposed function of this transcription factor in the regulation of vessel formation.
Collapse
Affiliation(s)
- Martina Hoeth
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Renate Hofer-Warbinek
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Herbert Mayer
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christof Lemberger
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Oswald Wagner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Erhard Hofer
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
140
|
Tian B, Yang J, Brasier AR. Two-step cross-linking for analysis of protein-chromatin interactions. Methods Mol Biol 2012; 809:105-20. [PMID: 22113271 DOI: 10.1007/978-1-61779-376-9_7] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene regulation is controlled, in part, by inducible transcription factor-binding regulatory sequences in a tissue-specific and hormone-responsive manner. The development of methods for the analysis of transcription factor interaction within native chromatin has been a significant advance for the systematic analyses of the timing of gene regulation and studies on the effects of chromatin modifying enzymes on promoter accessibility. Chromatin immunoprecipitation (ChIP) is a specific method involving formaldehyde mediated protein-chromatin fixation to preserve the interaction for subsequent target identification. However, the conventional single-step cross-linking technique does not preserve all protein-DNA interactions, especially for transcription factors in hyper-dynamic equilibrium with chromatin or for coactivator interactions. Here, we describe a versatile, efficient "two-step" XChIP method that involves sequential protein-protein fixation followed by protein-DNA fixation. This method has been used successfully for analysis of chromatin binding for transcription factors (NF-κB, STAT3), polymerases (RNA Pol II), coactivators (CBP/p300, CDK9), and chromatin structural proteins (modified histones). Modifications of DNA extraction and sonication suitable for downstream target identification by quantitative genomic PCR and next generation sequencing are described.
Collapse
Affiliation(s)
- Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
141
|
Gade P, Kalvakolanu DV. Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity. Methods Mol Biol 2012; 809:85-104. [PMID: 22113270 DOI: 10.1007/978-1-61779-376-9_6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Differential gene expression is facilitated by transcriptional regulatory mechanisms and chromatin modifications through DNA-protein interactions. One of the widely used assays to study this is chromatin immunoprecipitation (ChIP) assay, which enables analysis of association of regulatory molecules to specific promoters and histone modifications in vivo. This is of immense value as ChIP assays can provide glimpse of the regulatory mechanisms involved in gene expression in vivo. This article outlines the general strategies and protocols to study ChIP assays in differential recruitment of transcriptional factors (TFs) and also global analysis of transcription factor recruitment is discussed. Further, the applications of ChIP assays for discovering novel genes that are dependent on specific transcription factors were addressed.
Collapse
Affiliation(s)
- Padmaja Gade
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
142
|
Gurevich I, Zhang C, Encarnacao PC, Struzynski CP, Livings SE, Aneskievich BJ. PPARγ and NF-κB regulate the gene promoter activity of their shared repressor, TNIP1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:1-15. [PMID: 22001530 PMCID: PMC3249470 DOI: 10.1016/j.bbagrm.2011.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 11/27/2022]
Abstract
Human TNFAIP3 interacting protein 1 (TNIP1) has diverse functions including support of HIV replication through its interaction with viral Nef and matrix proteins, reduction of TNFα-induced signaling through its interaction with NF-κB pathway proteins, and corepression of agonist-bound retinoic acid receptors and peroxisome proliferator-activated receptors (PPAR). The wide tissue distribution of TNIP1 provides the opportunity to influence numerous cellular responses in these roles and defining control of TNIP1 expression would be central to improved understanding of its impact on cell function. We cloned 6kb of the human TNIP1 promoter and performed predictive and functional analyses to identify regulatory elements. The promoter region proximal to the transcription start site is GC-rich without a recognizable TATA box. In contrast to this proximal ~500bp region, 6kb of the promoter increased reporter construct constitutive activity over five-fold. Throughout the 6kb length, in silico analysis identified several potential binding sites for both constitutive and inducible transcription factors; among the latter were candidate NF-κB binding sequences and peroxisome proliferator response elements (PPREs). We tested NF-κB and PPAR regulation of the endogenous TNIP1 gene and cloned promoter by expression studies, electrophoretic mobility shift assays, and chromatin immunoprecipitations. We validated NF-κB sites in the TNIP1 promoter proximal and distal regions as well as one PPRE in the distal region. The ultimate control of the TNIP1 promoter is likely to be a combination of constitutive transcription factors and those subject to activation such as NF-κB and PPAR.
Collapse
Affiliation(s)
- Igor Gurevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Carmen Zhang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Priscilla C. Encarnacao
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Charles P. Struzynski
- Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Sarah E. Livings
- Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092; USA
- Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269-3092; USA
| |
Collapse
|
143
|
Mora E, Guglielmotti A, Biondi G, Sassone-Corsi P. Bindarit: an anti-inflammatory small molecule that modulates the NFκB pathway. Cell Cycle 2012; 11:159-69. [PMID: 22189654 DOI: 10.4161/cc.11.1.18559] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The activation of nuclear factor (NF)κB pathway and its transducing signaling cascade has been associated with the pathogenesis of many inflammatory diseases. The central role that IκBα and p65 phosphorylation play in regulating NFκB signalling in response to inflammatory stimuli made these proteins attractive targets for therapeutic strategies. Although several chemical classes of NFκB inhibitors have been identified, it is only for a few of those that a safety assessment based on a comprehensive understanding of their pharmacologic mechanism of action has been reported. Here, we describe the specific anti-inflammatory effect of bindarit, an indazolic derivative that has been proven to have anti-inflammatory activity in a variety of models of inflammatory diseases (including lupus nephritis, arthritis and pancreatitis). The therapeutic effects of bindarit have been associated with its ability to selectively interfere with monocyte recruitment and the "early inflammatory response," although its specific molecular mechanisms have remained ill-defined. For this purpose, we investigated the effect of bindarit on the LPS-induced production of inflammatory cytokines (MCP-1 and MCPs, IL-12β/p40, IL-6 and IL-8/KC) in both a mouse leukaemic monocyte-macrophage cell line and bone marrow derived macrophages (BMDM). Bindarit inhibits the LPS-induced MCP-1 and IL-12β/p40 expression without affecting other analyzed cytokines. The effect of bindarit is mediated by the downregulation of the classical NFκB pathway, involving a reduction of IκBα and p65 phosphorylation, a reduced activation of NFκB dimers and a subsequently reduced nuclear translocation and DNA binding. Bindarit showed a specific inhibitory effect on the p65 and p65/p50 induced MCP-1 promoter activation, with no effect on other tested activated promoters. We conclude that bindarit acts on a specific subpopulation of NFκB isoforms and selects its targets wihtin the whole NFκB inflammatory pathway. These findings pave the way for future applications of bindarit as modulator of the inflammatory response.
Collapse
Affiliation(s)
- Eugenio Mora
- Center for Epigenetics and Metabolism, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | | | | | | |
Collapse
|
144
|
Abstract
Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we provide a comparison of high-throughput sequencing platforms and a survey of ChIP-seq analysis tools, discuss experimental design, and describe a detailed ChIP-seq method.Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we provide a comparison of high-throughput sequencing platforms and a survey of ChIP-seq analysis tools, discuss experimental design, and describe a detailed ChIP-seq method.
Collapse
Affiliation(s)
- Charles E Massie
- CRUK Cambridge Research Institute, Department of Haematology, Cambridge, UK
| | | |
Collapse
|
145
|
Mardaryev AN, Meier N, Poterlowicz K, Sharov AA, Sharova TY, Ahmed MI, Rapisarda V, Lewis C, Fessing MY, Ruenger TM, Bhawan J, Werner S, Paus R, Botchkarev VA. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development 2011; 138:4843-52. [PMID: 22028024 DOI: 10.1242/dev.070284] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Lhx2 transcription factor plays essential roles in morphogenesis and patterning of ectodermal derivatives as well as in controlling stem cell activity. Here, we show that during murine skin morphogenesis, Lhx2 is expressed in the hair follicle (HF) buds, whereas in postnatal telogen HFs Lhx2(+) cells reside in the stem cell-enriched epithelial compartments (bulge, secondary hair germ) and co-express selected stem cell markers (Sox9, Tcf4 and Lgr5). Remarkably, Lhx2(+) cells represent the vast majority of cells in the bulge and secondary hair germ that proliferate in response to skin injury. This is functionally important, as wound re-epithelization is significantly retarded in heterozygous Lhx2 knockout (+/-) mice, whereas anagen onset in the HFs located closely to the wound is accelerated compared with wild-type mice. Cell proliferation in the bulge and the number of Sox9(+) and Tcf4(+) cells in the HFs closely adjacent to the wound in Lhx2(+/-) mice are decreased in comparison with wild-type controls, whereas expression of Lgr5 and cell proliferation in the secondary hair germ are increased. Furthermore, acceleration of wound-induced anagen development in Lhx2(+/-) mice is inhibited by administration of Lgr5 siRNA. Finally, Chip-on-chip/ChIP-qPCR and reporter assay analyses identified Sox9, Tcf4 and Lgr5 as direct Lhx2 targets in keratinocytes. These data strongly suggest that Lhx2 positively regulates Sox9 and Tcf4 in the bulge cells, and promotes wound re-epithelization, whereas it simultaneously negatively regulates Lgr5 in the secondary hair germ and inhibits HF cycling. Thus, Lhx2 operates as an important regulator of epithelial stem cell activity in the skin response to injury.
Collapse
Affiliation(s)
- Andrei N Mardaryev
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Turner DP, Findlay VJ, Moussa O, Semenchenko VI, Watson PM, LaRue AC, Desouki MM, Fraig M, Watson DK. Mechanisms and functional consequences of PDEF protein expression loss during prostate cancer progression. Prostate 2011; 71:1723-35. [PMID: 21446014 PMCID: PMC3128180 DOI: 10.1002/pros.21389] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/01/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND Ets is a large family of transcriptional regulators with functions in most biological processes. While the Ets family gene, prostate-derived epithelial factor (PDEF), is expressed in epithelial tissues, PDEF protein expression has been found to be reduced or lost during cancer progression. The goal of this study was to examine the mechanism for and biologic impact of altered PDEF expression in prostate cancer. METHODS PDEF protein expression of prostate specimens was examined by immunohistochemistry. RNA and protein expression in cell lines were measured by q-PCR and Western blot, respectively. Cellular growth was determined by quantifying viable and apoptotic cells over time. Cell cycle was measured by flow cytometry. Migration and invasion were determined by transwell assays. PDEF promoter occupancy was determined by chromatin immunoprecipitation (ChIP). RESULTS While normal prostate epithelium expresses PDEF mRNA and protein, tumors show no or decreased PDEF protein expression. Re-expression of PDEF in prostate cancer cells inhibits cell growth. PDEF expression is inversely correlated with survivin, urokinase plasminogen activator (uPA) and slug expression and ChIP studies identify survivin and uPA as direct transcriptional targets of PDEF. This study also shows that PDEF expression is regulated via a functional microRNA-204 (miR-204) binding site within the 3'UTR. Furthermore, we demonstrate the biologic significance of miR-204 expression and that miR-204 is over-expressed in human prostate cancer specimens. CONCLUSIONS Collectively, the reported studies demonstrate that PDEF is a negative regulator of tumor progression and that the miR-204-PDEF regulatory axis contributes to PDEF protein loss and resultant cancer progression.
Collapse
Affiliation(s)
- David P Turner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Omar Moussa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Victor I. Semenchenko
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Patricia M. Watson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Amanda C. LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Mohamed M Desouki
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Mostafa Fraig
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Dennis K Watson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
- Corresponding author. Mailing address: Hollings Cancer Center, Room H0310, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA. Telephone 843-792-3962,
| |
Collapse
|
147
|
Neurotrophin-mediated degradation of histone methyltransferase by S-nitrosylation cascade regulates neuronal differentiation. Proc Natl Acad Sci U S A 2011; 108:20178-83. [PMID: 22123949 DOI: 10.1073/pnas.1117820108] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epigenetic regulation of histones mediates neurotrophin actions with histone acetylation enhancing cAMP response element-binding (CREB)-associated transcription elicited by brain-derived neurotrophic factor (BDNF) and nerve-growth factor (NGF). Roles for histone methylation in CREB's transcriptional activity have not been well characterized. We show that depletion of the histone methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39H1) selectively augments BDNF- and NGF-mediated neurite outgrowth. SUV39H1 is the principal enzyme responsible for trimethylation of histone H3 at lysine 9, a molecular mark associated with transcriptional silencing. BDNF and NGF act via a signaling cascade wherein degradation of SUV39H1 down-regulates trimethylation of H3K9 in a nitric oxide-dependent pathway. BDNF activates neuronal NOS with the nitrosylated GAPDH/seven in absentia (Siah) homolog complex translocating to the nucleus. Degradation of SUV39H1 by Siah facilitates histone H3 on lysine 9 acetylation, CREB binding to DNA, enhanced expression of CREB-regulated genes and neurite outgrowth.
Collapse
|
148
|
Brown S, Teo A, Pauklin S, Hannan N, Cho CHH, Lim B, Vardy L, Dunn NR, Trotter M, Pedersen R, Vallier L. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells 2011; 29:1176-85. [PMID: 21630377 DOI: 10.1002/stem.666] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activin/Nodal signaling is necessary to maintain pluripotency of human embryonic stem cells (hESCs) and to induce their differentiation toward endoderm. However, the mechanisms by which Activin/Nodal signaling achieves these opposite functions remain unclear. To unravel these mechanisms, we examined the transcriptional network controlled in hESCs by Smad2 and Smad3, which represent the direct effectors of Activin/Nodal signaling. These analyses reveal that Smad2/3 participate in the control of the core transcriptional network characterizing pluripotency, which includes Oct-4, Nanog, FoxD3, Dppa4, Tert, Myc, and UTF1. In addition, similar experiments performed on endoderm cells confirm that a broad part of the transcriptional network directing differentiation is downstream of Smad2/3. Therefore, Activin/Nodal signaling appears to control divergent transcriptional networks in hESCs and in endoderm. Importantly, we observed an overlap between the transcriptional network downstream of Nanog and Smad2/3 in hESCs; whereas, functional studies showed that both factors cooperate to control the expression of pluripotency genes. Therefore, the effect of Activin/Nodal signaling on pluripotency and differentiation could be dictated by tissue specific Smad2/3 partners such as Nanog, explaining the mechanisms by which signaling pathways can orchestrate divergent cell fate decisions.
Collapse
Affiliation(s)
- Stephanie Brown
- The Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Findlay VJ, Turner DP, Yordy JS, McCarragher B, Shriver MR, Szalai G, Watson PM, Larue AC, Moussa O, Watson DK. Prostate-Derived ETS Factor Regulates Epithelial-to-Mesenchymal Transition through Both SLUG-Dependent and Independent Mechanisms. Genes Cancer 2011; 2:120-9. [PMID: 21779485 DOI: 10.1177/1947601911410424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/20/2011] [Accepted: 04/23/2011] [Indexed: 01/01/2023] Open
Abstract
The 5-year survival rate is very low when breast cancer becomes metastatic. The metastatic process is governed by a network of molecules of which SLUG is known to play a major role as a regulator of epithelial-to-mesenchymal transition (EMT). Prostate-derived ETS factor (PDEF) has been proposed as a tumor suppressor, possibly through inhibition of invasion and metastasis; therefore, understanding the mechanism of PDEF regulation may help to better understand its role in breast cancer progression. This study shows for the first time that the transcription factor SLUG is a direct target of PDEF in breast cancer. We show that the expression of PDEF is able to suppress/dampen EMT through the negative regulation of SLUG. In addition, we show that PDEF is also able to regulate downstream targets of SLUG, namely E-cadherin, in both SLUG-dependent and -independent manners, suggesting a critical role for PDEF in regulating EMT.
Collapse
Affiliation(s)
- Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Brasier AR, Tian B, Jamaluddin M, Kalita MK, Garofalo RP, Lu M. RelA Ser276 phosphorylation-coupled Lys310 acetylation controls transcriptional elongation of inflammatory cytokines in respiratory syncytial virus infection. J Virol 2011; 85:11752-69. [PMID: 21900162 PMCID: PMC3209292 DOI: 10.1128/jvi.05360-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/22/2011] [Indexed: 02/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections (LRTIs) in humans. In experimental models of RSV LRTI, the actions of the nuclear factor κB (NF-κB) transcription factor mediate inflammation and pathology. We have shown that RSV replication induces a mitogen-and-stress-related kinase 1 (MSK-1) pathway that activates NF-κB RelA transcriptional activity by a process involving serine phosphorylation at serine (Ser) residue 276. In this study, we examined the mechanism by which phospho-Ser276 RelA mediates expression of the NF-κB-dependent gene network. RelA-deficient mouse embryonic fibroblasts (MEFs) complemented with the RelA Ser276Ala mutant are deficient in CXCL2/Groβ, KC, and interleukin-6 (IL-6) expression, but NFKBIA/IκBα is preserved. We show that RSV-induced RelA Ser276 phosphorylation is required for acetylation at Lys310, an event required for transcriptional activity and stable association of RelA with the activated positive transcriptional elongation factor (PTEF-b) complex proteins, bromodomain 4 (Brd4), and cyclin-dependent kinase 9 (CDK9). In contrast to gene loading pattern of PTEF-b proteins produced by tumor necrosis factor (TNF) stimulation, RSV induces their initial clearance followed by partial reaccumulation coincident with RelA recruitment. The RSV-induced binding patterns of the CDK9 substrate, phospho-Ser2 RNA polymerase (Pol) II, follows a similar pattern of clearance and downstream gene reaccumulation. The functional role of CDK9 was examined using CDK9 small interfering RNA (siRNA) and CDK inhibitors, where RSV-induced NF-κB-dependent gene expression was significantly inhibited. Finally, although RSV induces a transition from short transcripts to fully spliced mRNA in wild-type RelA (RelA WT)-expressing cells, this transition is not seen in cells expressing RelA Ser276Ala. We conclude that RelA Ser276 phosphorylation mediates RelA acetylation, Brd4/CDK9 association, and activation of downstream inflammatory genes by transcriptional elongation in RSV infection.
Collapse
Affiliation(s)
- Allan R Brasier
- MRB 8.126, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA.
| | | | | | | | | | | |
Collapse
|