101
|
Hu J, Ni J, Zheng J, Guo Y, Yang Y, Ye C, Sun X, Xia H, Liu Y, Liu H. Tripterygium hypoglaucum extract ameliorates adjuvant-induced arthritis in mice through the gut microbiota. Chin J Nat Med 2023; 21:730-744. [PMID: 37879792 DOI: 10.1016/s1875-5364(23)60466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 10/27/2023]
Abstract
Traditionally, Tripterygium hypoglaucum (Levl.) Hutch (THH) are widely used in Chinese folk to treat rheumatoid arthritis (RA). This study aimed to investigate whether the anti-RA effect of THH is related with the gut microbiota. The main components of prepared THH extract were identified by HPLC-MS. C57BL/6 mice with adjuvant-induced arthritis (AIA) were treated with THH extract by gavage for one month. THH extract significantly alleviated swollen ankle, joint cavity exudation, and articular cartilage destruction in AIA mice. The mRNA and protein levels of inflammatory mediators in muscles and plasma indicated that THH extract attenuated inflammatory responses in the joint by blocking TLR4/MyD88/MAPK signaling pathways. THH extract remarkably restored the dysbiosis of the gut microbiota in AIA mice, featuring the increases of Bifidobacterium, Akkermansia, and Lactobacillus and the decreases of Butyricimonas, Parabacteroides, and Anaeroplasma. Furthermore, the altered bacteria were closely correlated with physiological indices and drove metabolic changes of the intestinal microbiota. In addition, antibiotic-induced pseudo germ-free mice were employed to verify the role of the intestinal flora. Strikingly, THH treatment failed to ameliorate the arthritis symptoms and signaling pathways in pseudo germ-free mice, which validates the indispensable role of the intestinal flora. For the first time, we demonstrated that THH extract protects joint inflammation by manipulating the intestinal flora and regulating the TLR4/MyD88/MAPK signaling pathway. Therefore, THH extract may serve as a microbial modulator to recover RA in clincial practice.ver RA in clincial practice.
Collapse
Affiliation(s)
- Jianghui Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jimin Ni
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Cheng Ye
- Wuhan Customs Technology Center, Wuhan 430050, China
| | - Xiongjie Sun
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hui Xia
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yanju Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
| |
Collapse
|
102
|
Choi SI, Kim N, Nam RH, Jang JY, Kim EH, Ha S, Kang K, Lee W, Choi H, Kim YR, Seok YJ, Shin CM, Lee DH. The Protective Effect of Roseburia faecis Against Repeated Water Avoidance Stress-induced Irritable Bowel Syndrome in a Wister Rat Model. J Cancer Prev 2023; 28:93-105. [PMID: 37830115 PMCID: PMC10564633 DOI: 10.15430/jcp.2023.28.3.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Roseburia faecis, a butyrate-producing, gram-positive anaerobic bacterium, was evaluated for its usefulness against repeated water avoidance stress (WAS)-induced irritable bowel syndrome (IBS) in a rat model, and the underlying mechanism was explored. We divided the subjects into three groups: one without stress exposure, another subjected to daily 1-hour WAS for 10 days, and a third exposed to the same WAS regimen while also receiving two different R. faecis strains (BBH024 or R22-12-24) via oral gavage for the same 10-day duration. Fecal pellet output (FPO), a toluidine blue assay for mast cell infiltration, and fecal microbiota analyses were conducted using 16S rRNA metagenomic sequencing. Predictive functional profiling of microbial communities in metabolism was also conducted. FPO and colonic mucosal mast cell counts were significantly higher in the WAS group than in the control group (male, P = 0.004; female, P = 0.027). The administration of both BBH024 (male, P = 0.015; female, P = 0.022) and R22-12-24 (male, P = 0.003; female, P = 0.040) significantly reduced FPO. Submucosal mast cell infiltration in the colon showed a similar pattern in males. In case of fecal microbiota, the WAS with R. faecis group showed increased abundance of the Roseburia genus compared to WAS alone. Moreover, the expression of a gene encoding a D-methionine transport system substrate-binding protein was significantly elevated in the WAS with R. faecis group compared to that in the WAS (male, P = 0.028; female, P = 0.025) group. These results indicate that R. faecis is a useful probiotic for treating IBS and colonic microinflammation.
Collapse
Affiliation(s)
- Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Young Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Hye Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - SungChan Ha
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | | | - HyeLim Choi
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Yeon-Ran Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
103
|
Shukla S, Srivastava A, Verma D, Gangopadhyay S, Chauhan A, Srivastava V, Budhwar S, Tyagi D, Sharma DC. Analysis of gut bacteriome of in utero arsenic-exposed mice using 16S rRNA-based metagenomic approach. Front Microbiol 2023; 14:1147505. [PMID: 37840722 PMCID: PMC10570621 DOI: 10.3389/fmicb.2023.1147505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/31/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Approximately 200 million people worldwide are affected by arsenic toxicity emanating from the consumption of drinking water containing inorganic arsenic above the prescribed maximum contaminant level. The current investigation deals with the role of prenatal arsenic exposure in modulating the gut microbial community and functional pathways of the host. Method 16S rRNA-based next-generation sequencing was carried out to understand the effects of in utero 0.04 mg/kg (LD) and 0.4 mg/kg (HD) of arsenic exposure. This was carried out from gestational day 15 (GD-15) until the birth of pups to understand the alterations in bacterial diversity. Results The study focused on gestational exposure to arsenic and the altered gut microbial community at phyla and genus levels, along with diversity indices. A significant decrease in firmicutes was observed in the gut microbiome of mice treated with arsenic. Functional analysis revealed that a shift in genes involved in crucial pathways such as insulin signaling and non-alcoholic fatty liver disease pathways may lead to metabolic diseases in the host. Discussion The present investigation may hypothesize that in utero arsenic exposure can perturb the gut bacterial composition significantly as well as the functional pathways of the gestationally treated pups. This research paves the way to further investigate the probable mechanistic insights in the field of maternal exposure environments, which may play a key role in epigenetic modulations in developing various disease endpoints in the progeny.
Collapse
Affiliation(s)
- Shagun Shukla
- Department of Microbiology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh, India
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India
| | - Anchal Chauhan
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Savita Budhwar
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Dushyant Tyagi
- Department of Mathematics and Statistics, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh, India
| | - Deepak Chand Sharma
- Department of Microbiology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
104
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
105
|
Peng Y, Zhang L, Mok CKP, Ching JYL, Zhao S, Wong MKL, Zhu J, Chen C, Wang S, Yan S, Qin B, Liu Y, Zhang X, Cheung CP, Cheong PK, Ip KL, Fung ACH, Wong KKY, Hui DSC, Chan FKL, Ng SC, Tun HM. Baseline gut microbiota and metabolome predict durable immunogenicity to SARS-CoV-2 vaccines. Signal Transduct Target Ther 2023; 8:373. [PMID: 37743379 PMCID: PMC10518331 DOI: 10.1038/s41392-023-01629-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
The role of gut microbiota in modulating the durability of COVID-19 vaccine immunity is yet to be characterised. In this cohort study, we collected blood and stool samples of 121 BNT162b2 and 40 CoronaVac vaccinees at baseline, 1 month, and 6 months post vaccination (p.v.). Neutralisation antibody, plasma cytokine and chemokines were measured and associated with the gut microbiota and metabolome composition. A significantly higher level of neutralising antibody (at 6 months p.v.) was found in BNT162b2 vaccinees who had higher relative abundances of Bifidobacterium adolescentis, Bifidobacterium bifidum, and Roseburia faecis as well as higher concentrations of nicotinic acid (Vitamin B) and γ-Aminobutyric acid (P < 0.05) at baseline. CoronaVac vaccinees with high neutralising antibodies at 6 months p.v. had an increased relative abundance of Phocaeicola dorei, a lower relative abundance of Faecalibacterium prausnitzii, and a higher concentration of L-tryptophan (P < 0.05) at baseline. A higher antibody level at 6 months p.v. was also associated with a higher relative abundance of Dorea formicigenerans at 1 month p.v. among CoronaVac vaccinees (Rho = 0.62, p = 0.001, FDR = 0.123). Of the species altered following vaccination, 79.4% and 42.0% in the CoronaVac and BNT162b2 groups, respectively, recovered at 6 months. Specific to CoronaVac vaccinees, both bacteriome and virome diversity depleted following vaccination and did not recover to baseline at 6 months p.v. (FDR < 0.1). In conclusion, this study identified potential microbiota-based adjuvants that may extend the durability of immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Ye Peng
- Microbiota I-Center (MagIC), Hong Kong, China
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris K P Mok
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessica Y L Ching
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Shilin Zhao
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew K L Wong
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Zhu
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chunke Chen
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuai Yan
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Biyan Qin
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zhang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pun Cheung
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Pui Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Long Ip
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrian C H Fung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth K Y Wong
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - David S C Hui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong, China.
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
106
|
Liu S, Men X, Guo Y, Cai W, Wu R, Gao R, Zhong W, Guo H, Ruan H, Chou S, Mai J, Ping S, Jiang C, Zhou H, Mou X, Zhao W, Lu Z. Gut microbes exacerbate systemic inflammation and behavior disorders in neurologic disease CADASIL. MICROBIOME 2023; 11:202. [PMID: 37684694 PMCID: PMC10486110 DOI: 10.1186/s40168-023-01638-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that carries mutations in NOTCH3. The clinical manifestations are influenced by genetic and environmental factors that may include gut microbiome. RESULTS We investigated the fecal metagenome, fecal metabolome, serum metabolome, neurotransmitters, and cytokines in a cohort of 24 CADASIL patients with 28 healthy household controls. The integrated-omics study showed CADASIL patients harbored an altered microbiota composition and functions. The abundance of bacterial coenzyme A, thiamin, and flavin-synthesizing pathways was depleted in patients. Neurotransmitter balance, represented by the glutamate/GABA (4-aminobutanoate) ratio, was disrupted in patients, which was consistent with the increased abundance of two major GABA-consuming bacteria, Megasphaera elsdenii and Eubacterium siraeum. Essential inflammatory cytokines were significantly elevated in patients, accompanied by an increased abundance of bacterial virulence gene homologs. The abundance of patient-enriched Fusobacterium varium positively correlated with the levels of IL-1β and IL-6. Random forest classification based on gut microbial species, serum cytokines, and neurotransmitters showed high predictivity for CADASIL with AUC = 0.89. Targeted culturomics and mechanisms study further showed that patient-derived F. varium infection caused systemic inflammation and behavior disorder in Notch3R170C/+ mice potentially via induction of caspase-8-dependent noncanonical inflammasome activation in macrophages. CONCLUSION These findings suggested the potential linkage among the brain-gut-microbe axis in CADASIL. Video Abstract.
Collapse
Affiliation(s)
- Sheng Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuejiao Men
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Yang Guo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Wei Cai
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Ruizhen Wu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Rongsui Gao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Weicong Zhong
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Huating Guo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hengfang Ruan
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Shuli Chou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Junrui Mai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Suning Ping
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310012, Zhejiang, China
| | - Hongwei Zhou
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Wenjing Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Zhengqi Lu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
107
|
Shoer S, Shilo S, Godneva A, Ben-Yacov O, Rein M, Wolf BC, Lotan-Pompan M, Bar N, Weiss EI, Houri-Haddad Y, Pilpel Y, Weinberger A, Segal E. Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines. Nat Commun 2023; 14:5384. [PMID: 37666816 PMCID: PMC10477304 DOI: 10.1038/s41467-023-41042-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Diabetes and associated comorbidities are a global health threat on the rise. We conducted a six-month dietary intervention in pre-diabetic individuals (NCT03222791), to mitigate the hyperglycemia and enhance metabolic health. The current work explores early diabetes markers in the 200 individuals who completed the trial. We find 166 of 2,803 measured features, including oral and gut microbial species and pathways, serum metabolites and cytokines, show significant change in response to a personalized postprandial glucose-targeting diet or the standard of care Mediterranean diet. These changes include established markers of hyperglycemia as well as novel features that can now be investigated as potential therapeutic targets. Our results indicate the microbiome mediates the effect of diet on glycemic, metabolic and immune measurements, with gut microbiome compositional change explaining 12.25% of serum metabolites variance. Although the gut microbiome displays greater compositional changes compared to the oral microbiome, the oral microbiome demonstrates more changes at the genetic level, with trends dependent on environmental richness and species prevalence in the population. In conclusion, our study shows dietary interventions can affect the microbiome, cardiometabolic profile and immune response of the host, and that these factors are well associated with each other, and can be harnessed for new therapeutic modalities.
Collapse
Affiliation(s)
- Saar Shoer
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Shilo
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Orly Ben-Yacov
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Michal Rein
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Bat Chen Wolf
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Noam Bar
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ervin I Weiss
- Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
108
|
Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics Progress Shifts in the Intestinal Microbiome That Benefits Patients with Type 2 Diabetes Mellitus. Biomolecules 2023; 13:1307. [PMID: 37759707 PMCID: PMC10526165 DOI: 10.3390/biom13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoglycemic medications that could be co-administered with prebiotics and functional foods can potentially reduce the burden of metabolic diseases such as Type 2 Diabetes Mellitus (T2DM). The efficacy of drugs such as metformin and sulfonylureas can be enhanced by the activity of the intestinal microbiome elaborated metabolites. Functional foods such as prebiotics (e.g., oligofructose) and dietary fibers can treat a dysbiotic gut microbiome by enhancing the diversity of microbial niches in the gut. These beneficial shifts in intestinal microbiome profiles include an increased abundance of bacteria such as Faecalibacterium prauznitzii, Akkermancia muciniphila, Roseburia species, and Bifidobacterium species. An important net effect is an increase in the levels of luminal SCFAs (e.g., butyrate) that provide energy carbon sources for the intestinal microbiome in cross-feeding activities, with concomitant improvement in intestinal dysbiosis with attenuation of inflammatory sequalae and improved intestinal gut barrier integrity, which alleviates the morbidity of T2DM. Oligosaccharides administered adjunctively with pharmacotherapy to ameliorate T2DM represent current plausible treatment modalities.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick N. Gorgani
- OzStar Therapeutics Pty Ltd., Pennant Hills, NSW 2120, Australia
| | - Gemma Vitetta
- Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Jeremy D. Henson
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
109
|
Jean Wilson E, Sirpu Natesh N, Ghadermazi P, Pothuraju R, Shanmugam M, Prajapati DR, Pandey S, Kaifi JT, Dodam JR, Bryan J, Lorson CL, Watrelot AA, Foster JM, Mansel TJ, Joshua Chan SH, Batra SK, Subbiah J, Rachagani S. Red cabbage juice-mediated gut microbiota modulation improves intestinal epithelial homeostasis and ameliorates colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554560. [PMID: 37662255 PMCID: PMC10473712 DOI: 10.1101/2023.08.23.554560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gut microbiota plays a crucial role in inflammatory bowel disease (IBD) and has therapeutic benefits. Thus, targeting the gut microbiota is a promising therapeutic approach for IBD treatment. We recently found that red cabbage juice (RCJ) ameliorates dextran sulfate sodium (DSS)-induced colitis in mice. However, the underlying mechanisms remain unknown. The current study investigated the modulation of gut microbiota in response to treatment with RCJ to ameliorate the DSS colitis. The initial results demonstrated that mice treated with DSS + RCJ showed increased body weight and decreased diarrhea and blood in feces compared to the DSS alone group. RCJ ameliorated colitis by regulating the intestinal barrier function by reducing the number of apoptotic cells, improving colonic protective mucin, and increasing tight junction protein in RCJ + DSS groups compared to the DSS group. Short-gun metagenomic analysis revealed significant enrichment of short-chain fatty acid (SCFAs)-producing bacteria (Butyrivibrio, Ruminococcaceae, Acetatifactor muris, Rosburia Sp. CAG:303 , Dorea Sp. 5-2) increased PPAR-© activation, leading to repression of the nuclear factor κB (NFκB) signaling pathway, thus decreasing the production of crucial inflammatory cytokines and chemokines in the RCJ + DSS groups compared to the DSS group. Pathway abundance analysis showed an increased abundance of the SCFA pathway, reduced histidine degradation ( Bacteroides sartorii, and Bacteroides caecimuris ), and LCFA production in the RCJ+DSS treated group, suggesting the promotion of good colonic health. Furthermore, increased T-reg (FOXP3+) cells in the colon were due to SCFAs produced by the gut microbiota, which was corroborated by an increase in IL-10, a vital anti-inflammatory cytokine. Thus, our study provides the first evidence that RCJ ameliorates colonic inflammation by modulating the gut microbiota.
Collapse
|
110
|
Li H, Li C. Causal relationship between gut microbiota and type 2 diabetes: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1184734. [PMID: 37692402 PMCID: PMC10483233 DOI: 10.3389/fmicb.2023.1184734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Background Studies showed that development of gut microbial dysbiosis has a close association with type 2 diabetes (T2D). It is not yet clear if there is a causal relationship between gut microbiota and T2D. Methods The data collected from the published genome-wide association studies (GWASs) on gut microbiota and T2D were analyzed. Two-sample Mendelian randomization (MR) analyses were performed to identify causal relationship between bacterial taxa and T2D. Significant bacterial taxa were further analyzed. To confirm the findings' robustness, we performed sensitivity, heterogeneity, and pleiotropy analyses. A reverse MR analysis was also performed to check for potential reverse causation. Results By combining the findings of all the MR steps, we identified six causal bacterial taxa, namely, Lachnoclostridium, Oscillospira, Roseburia, Ruminococcaceae UCG003, Ruminococcaceae UCG010 and Streptococcus. The risk of T2D might be positively associated with a high relative abundance of Lachnoclostridium, Roseburia and Streptococcus but negatively associated with Oscillospira, Ruminococcaceae UCG003 and Ruminococcaceae UCG010. The results of MR analyses revealed that there were causal relationships between the six different genera and T2D. And the reverse MR analysis did not reveal any evidence of a reverse causality. Conclusion This study implied that Lachnoclostridium, Roseburia and Streptococcus might have anti-protective effect on T2D, whereas Oscillospira, Ruminococcaceae UCG003 and Ruminococcaceae UCG010 genera might have protective effect on T2D. Our study revealed that there was a causal relationship between specific gut microbiota genera and T2D.
Collapse
Affiliation(s)
- Hanjing Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Candong Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, Fujian, China
| |
Collapse
|
111
|
Evans L, Price T, Hubert N, Moore J, Shen Y, Athukorala M, Frese S, Martinez-Guryn K, Ferguson BS. Emodin Inhibited Pathological Cardiac Hypertrophy in Response to Angiotensin-Induced Hypertension and Altered the Gut Microbiome. Biomolecules 2023; 13:1274. [PMID: 37759673 PMCID: PMC10526847 DOI: 10.3390/biom13091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Evidence suggests that food bioactives affect the epigenome to prevent pathological cardiac hypertrophy. Recently, we showed that emodin, an anthraquinone, attenuated pathological cardiac hypertrophy and histone deacetylase (HDAC) activity. However, we only examined the cardioprotective effects of emodin's parent compound and not those of emodin metabolites or of emodin-gut microbiome interactions. The microbiome has emerged as a key player in chronic diseases such as metabolic and cardiac disease. Thus, we hypothesized that emodin could reverse hypertension-induced changes in microbial communities. METHODS Normo- and hypertensive (angiotensin II) C57/BL6 female mice were randomly assigned to receive a vehicle (Veh; DMSO:PEG 1:1) or emodin (Emod; 30 mg/kg) for 14 days. Body weights were collected pre- and post-treatment, and blood pressure was assessed via tail cuff. At the study's end, the mice were euthanized and assessed for their heart weights. In addition, stool samples and cecal contents were collected to elucidate changes in the microbial populations using 16S rRNA sequencing. Lastly, the tissue was lysed, and RNA was isolated for qPCR. One-way ANOVA with Tukey's post hoc test was performed unless otherwise specified, and p < 0.05 was considered significant. RESULTS Emodin significantly attenuated cardiac hypertrophy in the female mice. No significant changes were observed in body weight or systolic blood pressure in response to hypertension or emodin. Lastly, analysis suggests that hypertension altered the microbiome in the cecum and cecal content, with additional evidence to support that emodin affects gut microbiota in the feces and colon. CONCLUSIONS Our data demonstrate that emodin attenuates pathological hypertrophy in female mice. Future research is needed to dissect if changes in the microbiome contributes to emodin-mediated attenuation in cardiac remodeling.
Collapse
Affiliation(s)
- Levi Evans
- Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA (S.F.)
- Environmental Sciences Program, University of Nevada, Reno, Reno, NV 89557, USA
| | - Tori Price
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL 60515, USA
| | - Nathaniel Hubert
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL 60515, USA
| | - Julia Moore
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL 60515, USA
| | - Yiqui Shen
- Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA (S.F.)
| | - Maheshi Athukorala
- Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA (S.F.)
| | - Steven Frese
- Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA (S.F.)
| | | | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA (S.F.)
- Environmental Sciences Program, University of Nevada, Reno, Reno, NV 89557, USA
- Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
112
|
Gravdal K, Kirste KH, Grzelak K, Kirubakaran GT, Leissner P, Saliou A, Casèn C. Exploring the gut microbiota in patients with pre-diabetes and treatment naïve diabetes type 2 - a pilot study. BMC Endocr Disord 2023; 23:179. [PMID: 37605183 PMCID: PMC10440924 DOI: 10.1186/s12902-023-01432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Compared to their healthy counterparts, patients with type 2 diabetes (T2D) can exhibit an altered gut microbiota composition, correlated with detrimental outcomes, including reduced insulin sensitivity, dyslipidemia, and increased markers of inflammation. However, a typical T2D microbiota profile is not established. The aim of this pilot study was to explore the gut microbiota and bacteria associated with prediabetes (pre-T2D) patients, and treatment naïve T2D patients, compared to healthy subjects. METHODS Fecal samples were collected from patients and healthy subjects (from Norway). The bacterial genomic DNA was extracted, and the microbiota analyzed utilizing the bacterial 16S rRNA gene. To secure a broad coverage of potential T2D associated bacteria, two technologies were used: The GA-map® 131-plex, utilizing 131 DNA probes complementary to pre-selected bacterial targets (covering the 16S regions V3-V9), and the LUMI-Seq™ platform, a full-length 16S sequencing technology (V1-V9). Variations in the gut microbiota between groups were explored using multivariate methods, differential bacterial abundance was estimated, and microbiota signatures discriminating the groups were assessed using classification models. RESULTS In total, 24 pre-T2D patients, 18 T2D patients, and 52 healthy subjects were recruited. From the LUMI-Seq™ analysis, 10 and 9 bacterial taxa were differentially abundant between pre-T2D and healthy, and T2D and healthy, respectively. From the GA-map® 131-plex analysis, 10 bacterial markers were differentially abundant when comparing pre-T2D and healthy. Several of the bacteria were short-chain fatty acid (SCFA) producers or typical opportunistic bacteria. Bacteria with similar function or associated properties also contributed to the separation of pre-T2D and T2D from healthy as found by classification models. However, limited overlap was found for specific bacterial genera and species. CONCLUSIONS This pilot study revealed that differences in the abundance of SCFA producing bacteria, and an increase in typical opportunistic bacteria, may contribute to the variations in the microbiota separating the pre-T2D and T2D patients from healthy subjects. However, further efforts in investigating the relationship between gut microbiota, diabetes, and associated factors such as BMI, are needed for developing specific diabetes microbiota signatures.
Collapse
Affiliation(s)
| | | | | | | | - Philippe Leissner
- BIOASTER Microbiology Technology Institute, 40 Avenue Tony Garnier, 69007, Lyon, France
| | - Adrien Saliou
- BIOASTER Microbiology Technology Institute, 40 Avenue Tony Garnier, 69007, Lyon, France
| | | |
Collapse
|
113
|
Sinisterra-Loaiza L, Alonso-Lovera P, Cardelle-Cobas A, Miranda JM, Vázquez BI, Cepeda A. Compliance with Nutritional Recommendations and Gut Microbiota Profile in Galician Overweight/Obese and Normal-Weight Individuals. Nutrients 2023; 15:3418. [PMID: 37571355 PMCID: PMC10420825 DOI: 10.3390/nu15153418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Different research studies have identified specific groups or certain dietary compounds as the onset and progression of obesity and suggested that gut microbiota is a mediator between these compounds and the inflammation associated with pathology. In this study, the objective was to evaluate the dietary intake of 108 overweight (OW), obese (OB), and normal-weight (NW) individuals and to analyze their gut microbiota profile to determine changes and associations with Body Mass Index (BMI) and diet. When individuals were compared by BMI, significant differences in fiber and monounsaturated fatty acids (MUFAs) intake were observed, showing higher adequacy for the NW group. The analysis of gut microbiota showed statistical differences for 18 ASVs; Anaerostipes and Faecalibacterium decreased in the OW/OB group, whereas the genus Oscillospira increased; the genus was also found in the LEFSe analysis as a biomarker for OW/OB. Roseburia faecis was found in a significantly higher proportion of NW individuals and identified as a biomarker for the NW group. Correlation analysis showed that adequation to nutritional recommendation for fiber indicated a higher abundance of Prevotella copri, linearly correlated with F. prausnitzii, Bacteroides caccae, and R. faecis. The same correlation was found for the adequation for MUFAs, with these bacteria being more abundant when the intake was adjusted to or below the recommendations.
Collapse
Affiliation(s)
| | | | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain; (L.S.-L.); (P.A.-L.); (J.M.M.); (B.I.V.); (A.C.)
| | | | | | | |
Collapse
|
114
|
Zhang P, Zhou X, Tan H, Jian F, Jing Z, Wu H, Zhang Y, Luo J, Zhang J, Sun X. Microbial signature of intestine in children with allergic rhinitis. Front Microbiol 2023; 14:1208816. [PMID: 37560527 PMCID: PMC10408450 DOI: 10.3389/fmicb.2023.1208816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Previous studies have found that unique patterns of gut microbial colonization in infancy associated with the development of allergic diseases. However, there is no research on the gut microbiota characteristics of AR children in Chinese Mainland. OBJECTIVE To investigate the changes of gut microbial of AR children in Chinese Mainland and evaluate the correlation between gut microbial and clinical indexes. METHODS In this clinical study, fecal samples from 24 AR children and 25 healthy control children (HCs) were comparative via next generation sequencing of the V3-V4 regions of the 16S rRNA gene. Analyzed the relationship between clinical features and gut microbial using Spearman correlation. RESULTS Compared to HCs, AR children showed significant decreases in Shannon index and significant increases in Simpson index at both the family and genera levels (all p < 0.05). In terms of bacterial composition, at the phylum level, AR children had higher abundance of Bacteroidetes than that in the HCs group (p < 0.05) and were significantly positively correlated with TNSS (p < 0.05). At the family level, AR children had higher abundance of Prevotellaceae and Enterobacteriaceae higher than that in the HCs group (all p < 0.05) and had a significantly positive correlation with TNSS, eosinophils (EOS) and total immunoglobulin E (tIgE) (all p < 0.05). At the genus level, reduced abundance of Agathobacter, Parasutterella, Roseburia and Subdoligranulum were also observed in the AR cohorts compared to HCs (all p < 0.05) and significantly negatively associated with TNSS, EOS, tIgE, QOL, and FeNO (all p < 0.05). CONCLUSION AR children in Chinese Mainland were characterized by reduced microbial diversity and distinguished microbial characteristics in comparison with HCs. The observations of this study offer proof that distinctive gut microbiota profiles were present in AR children and necessitate further investigation in the form of mechanistic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
115
|
Éliás AJ, Barna V, Patoni C, Demeter D, Veres DS, Bunduc S, Erőss B, Hegyi P, Földvári-Nagy L, Lenti K. Probiotic supplementation during antibiotic treatment is unjustified in maintaining the gut microbiome diversity: a systematic review and meta-analysis. BMC Med 2023; 21:262. [PMID: 37468916 DOI: 10.1186/s12916-023-02961-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Probiotics are often used to prevent antibiotic-induced low-diversity dysbiosis, however their effect is not yet sufficiently summarized in this regard. We aimed to investigate the effects of concurrent probiotic supplementation on gut microbiome composition during antibiotic therapy. METHODS We performed a systematic review and meta-analysis of randomized controlled trials reporting the differences in gut microbiome diversity between patients on antibiotic therapy with and without concomitant probiotic supplementation. The systematic search was performed in three databases (MEDLINE (via PubMed), Embase, and Cochrane Central Register of Controlled Trials (CENTRAL)) without filters on 15 October 2021. A random-effects model was used to estimate pooled mean differences (MD) with 95% confidence intervals (CI). This review was registered on PROSPERO (CRD42021282983). RESULTS Of 11,769 identified articles, 15 were eligible in the systematic review and 5 in the meta-analyses. Quantitative data synthesis for Shannon (MD = 0.23, 95% CI: [(-)0.06-0.51]), Chao1 (MD = 11.59 [(-)18.42-41.60]) and observed OTUs (operational taxonomic unit) (MD = 17.15 [(-)9.43-43.73]) diversity indices revealed no significant difference between probiotic supplemented and control groups. Lacking data prevented meta-analyzing other diversity indices; however, most of the included studies reported no difference in the other reported α- and ß-diversity indices between the groups. Changes in the taxonomic composition varied across the eligible studies but tended to be similar in both groups. However, they showed a potential tendency to restore baseline levels in both groups after 3-8 weeks. This is the first meta-analysis and the most comprehensive review of the topic to date using high quality methods. The limited number of studies and low sample sizes are the main limitations of our study. Moreover, there was high variability across the studies regarding the indication of antibiotic therapy and the type, dose, and duration of antimicrobials and probiotics. CONCLUSIONS Our results showed that probiotic supplementation during antibiotic therapy was not found to be influential on gut microbiome diversity indices. Defining appropriate microbiome diversity indices, their standard ranges, and their clinical relevance would be crucial.
Collapse
Affiliation(s)
- Anna Júlia Éliás
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Doctoral School of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Viktória Barna
- Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Cristina Patoni
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dóra Demeter
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Military Hospital Medical Centre, Hungarian Defense Forces, Budapest, Hungary
| | - Dániel Sándor Veres
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Stefania Bunduc
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Bálint Erőss
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - László Földvári-Nagy
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.
| | - Katalin Lenti
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
116
|
Biscarini F, Masetti G, Muller I, Verhasselt HL, Covelli D, Colucci G, Zhang L, Draman MS, Okosieme O, Taylor P, Daumerie C, Burlacu MC, Marinò M, Ezra DG, Perros P, Plummer S, Eckstein A, Salvi M, Marchesi JR, Ludgate M. Gut Microbiome Associated With Graves Disease and Graves Orbitopathy: The INDIGO Multicenter European Study. J Clin Endocrinol Metab 2023; 108:2065-2077. [PMID: 36683389 PMCID: PMC10807910 DOI: 10.1210/clinem/dgad030] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
CONTEXT Gut bacteria can influence host immune responses but little is known about their role in tolerance-loss mechanisms in Graves disease (GD; hyperthyroidism caused by autoantibodies, TRAb, to the thyrotropin receptor, TSHR) and its progression to Graves orbitopathy (GO). OBJECTIVE This work aimed to compare the fecal microbiota in GD patients, with GO of varying severity, and healthy controls (HCs). METHODS Patients were recruited from 4 European countries (105 GD patients, 41 HCs) for an observational study with cross-sectional and longitudinal components. RESULTS At recruitment, when patients were hyperthyroid and TRAb positive, Actinobacteria were significantly increased and Bacteroidetes significantly decreased in GD/GO compared with HCs. The Firmicutes to Bacteroidetes (F:B) ratio was significantly higher in GD/GO than in HCs. Differential abundance of 15 genera was observed in patients, being most skewed in mild GO. Bacteroides displayed positive and negative correlations with TSH and free thyroxine, respectively, and was also significantly associated with smoking in GO; smoking is a risk factor for GO but not GD. Longitudinal analyses revealed that the presence of certain bacteria (Clostridiales) at diagnosis correlated with the persistence of TRAb more than 200 days after commencing antithyroid drug treatment. CONCLUSION The increased F:B ratio observed in GD/GO mirrors our finding in a murine model comparing TSHR-immunized with control mice. We defined a microbiome signature and identified changes associated with autoimmunity as distinct from those due to hyperthyroidism. Persistence of TRAb is predictive of relapse; identification of these patients at diagnosis, via their microbiome, could improve management with potential to eradicate Clostridiales.
Collapse
Affiliation(s)
- Filippo Biscarini
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Department of Bioinformatics, Parco Tecnologico Padano Srl (PTP), Lodi, 26900, Italy
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council (CNR), Milan, 20133, Italy
| | - Giulia Masetti
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Department of Bioinformatics, Parco Tecnologico Padano Srl (PTP), Lodi, 26900, Italy
| | - Ilaria Muller
- Department of Clinical Sciences and Community Health, University of Milan, Milan, 35-I-20122, Italy
- Graves' Orbitopathy Center, Endocrinology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, 35-I-20122, Italy
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, 45147, Germany
- Cultech Ltd., Baglan, Port Talbot, SA12 7BZ, UK
| | - Danila Covelli
- Department of Bioinformatics, Parco Tecnologico Padano Srl (PTP), Lodi, 26900, Italy
- Graves' Orbitopathy Center, Endocrinology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, 35-I-20122, Italy
- Cultech Ltd., Baglan, Port Talbot, SA12 7BZ, UK
| | - Giuseppe Colucci
- Graves' Orbitopathy Center, Endocrinology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, 35-I-20122, Italy
| | - Lei Zhang
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mohd Shazli Draman
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- KPJ Healthcare University College, Kota Seriemas, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Onyebuchi Okosieme
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Pete Taylor
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Chantal Daumerie
- Department of Endocrinology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, B-1200, Belgium
| | - Maria-Cristina Burlacu
- Department of Endocrinology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, B-1200, Belgium
| | - Michele Marinò
- Department of Endocrinology, University Hospital of Pisa, Pisa, 56124, Italy
- Department of Clinical and Experimental Medicine, Endocrinology Unit I, University of Pisa, Pisa, 56124, Italy
| | - Daniel George Ezra
- Moorfields Eye Hospital NIHR Biomedical Research Centre for Ophthalmology, London and UCL Institute of Ophthalmology, London, EC4 9EL, UK
| | - Petros Perros
- Department of Endocrinology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Sue Plummer
- Cultech Ltd., Baglan, Port Talbot, SA12 7BZ, UK
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, 45147, Germany
| | - Mario Salvi
- Graves' Orbitopathy Center, Endocrinology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, 35-I-20122, Italy
| | - Julian R Marchesi
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Marian Ludgate
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| |
Collapse
|
117
|
Schupfer E, Ooi SL, Jeffries TC, Wang S, Micalos PS, Pak SC. Changes in the Human Gut Microbiome during Dietary Supplementation with Modified Rice Bran Arabinoxylan Compound. Molecules 2023; 28:5400. [PMID: 37513272 PMCID: PMC10385627 DOI: 10.3390/molecules28145400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of a modified rice bran arabinoxylan compound (RBAC) as a dietary supplement on the gut microbiota of healthy adults. Ten volunteers supplemented their diet with 1 g of RBAC for six weeks and 3 g of RBAC for another six weeks, with a three-week washout period. Faecal samples were collected every 3 weeks over 21 weeks. Microbiota from faecal samples were profiled using 16S rRNA sequencing. Assessment of alpha and beta microbiota diversity was performed using the QIIME2 platform. The results revealed that alpha and beta diversity were not associated with the experimental phase, interventional period, RBAC dosage, or time. However, the statistical significance of the participant was detected in alpha (p < 0.002) and beta (weighted unifrac, p = 0.001) diversity. Explanatory factors, including diet and lifestyle, were significantly associated with alpha (p < 0.05) and beta (p < 0.01) diversity. The individual beta diversity of six participants significantly changed (p < 0.05) during the interventional period. Seven participants showed statistically significant taxonomic changes (ANCOM W ≥ 5). These results classified four participants as responders to RBAC supplementation, with a further two participants as likely responders. In conclusion, the gut microbiome is highly individualised and modulated by RBAC as a dietary supplement, dependent on lifestyle and dietary intake.
Collapse
Affiliation(s)
- Emily Schupfer
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Thomas C Jeffries
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Shaoyu Wang
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
- Ageing Well Research Group, Charles Sturt University, Orange, NSW 2800, Australia
| | - Peter S Micalos
- School of Dentistry and Medical Sciences, Charles Sturt University, Port Macquarie, NSW 2444, Australia
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| |
Collapse
|
118
|
Jiang F, Song P, Liu D, Zhang J, Qin W, Wang H, Liang C, Gao H, Zhang T. Marked variations in gut microbial diversity, functions, and disease risk between wild and captive alpine musk deer. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12675-1. [PMID: 37421471 PMCID: PMC10390370 DOI: 10.1007/s00253-023-12675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Maintaining a healthy status is crucial for the successful captive breeding of endangered alpine musk deer (Moschus chrysogaster, AMD), and captive breeding programs are beneficial to the ex-situ conservation and wild population recovery of this species. Meanwhile, the gut microbiota is essential for host health, survival, and environmental adaptation. However, changes in feeding environment and food can affect the composition and function of gut microbiota in musk deer, ultimately impacting their health and adaptation. Therefore, regulating the health status of wild and captive AMD through a non-invasive method that targets gut microbiota is a promising approach. Here, 16S rRNA gene sequencing was employed to reveal the composition and functional variations between wild (N = 23) and captive (N = 25) AMD populations. The results indicated that the gut microbiota of wild AMD exhibited significantly higher alpha diversity (P < 0.001) and greater abundance of the phylum Firmicutes, as well as several dominant genera, including UCG-005, Christensenellaceae R7 group, Monoglobus, Ruminococcus, and Roseburia (P < 0.05), compared to captive AMD. These findings suggest that the wild AMD may possess more effective nutrient absorption and utilization, a more stable intestinal microecology, and better adaption to the complex natural environment. The captive individuals displayed higher metabolic functions with an increased abundance of the phylum Bacteroidetes and certain dominant genera, including Bacteroides, Rikenellaceae RC9 gut group, NK4A214 group, and Alistipes (P < 0.05), which contributed to the metabolic activities of various nutrients. Furthermore, captive AMD showed a higher level of 11 potential opportunistic pathogens and a greater enrichment of disease-related functions compared to wild AMD, indicating that wild musk deer have a lower risk of intestinal diseases and more stable intestinal structure in comparison to captive populations. These findings can serve as a valuable theoretical foundation for promoting the healthy breeding of musk deer and as a guide for evaluating the health of wild-released and reintroduced musk deer in the future. KEY POINTS: • Wild and captive AMD exhibit contrasting gut microbial diversity and certain functions. • With higher diversity, certain bacteria aid wild AMD's adaptation to complex habitats. • Higher potential pathogens and functions increase disease risk in captive AMD.
Collapse
Affiliation(s)
- Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjie Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengbo Liang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China.
| |
Collapse
|
119
|
Vasquez R, Kim SH, Oh JK, Song JH, Hwang IC, Kim IH, Kang DK. Multispecies probiotic supplementation in diet with reduced crude protein levels altered the composition and function of gut microbiome and restored microbiome-derived metabolites in growing pigs. Front Microbiol 2023; 14:1192249. [PMID: 37485501 PMCID: PMC10360209 DOI: 10.3389/fmicb.2023.1192249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Both crude protein (CP) and probiotics can modulate the gut microbiome of the host, thus conferring beneficial effects. However, the benefits of low CP diet supplemented with multispecies probiotics on gut microbiome and its metabolites have not been investigated in pigs. Thus, we investigated the combinatory effects of low CP diet supplemented with multispecies probiotics on gut microbiome composition, function, and microbial metabolites in growing pigs. In total, 140 6 week-old piglets (Landrace × Yorkshire × Duroc) were used in this study. The pigs were divided into four groups with a 2 × 2 factorial design based on their diets: normal-level protein diet (16% CP; NP), low-level protein diet (14% CP; LP), NP with multispecies probiotics (NP-P), and LP with multispecies probiotics (LP-P). After the feeding trial, the fecal samples of the pigs were analyzed. The fecal scores were improved by the probiotic supplementation, especially in LP-P group. We also observed a probiotic-mediated alteration in the gut microbiome of pigs. In addition, LP-P group showed higher species richness and diversity compared with other groups. The addition of multispecies probiotics in low CP diet also enhanced gut microbiota metabolites production, such as short-chain fatty acids (SCFAs) and polyamines. Correlation analysis revealed that Oscillospiraceae UCG-002, Eubacterium coprostanoligenes, Lachnospiraceae NK4A136 group, and Muribaculaceae were positively associated with SCFAs; and Prevotella, Eubacterium ruminantium, Catenibacterium, Alloprevotella, Prevotellaceae NK3B31 group, Roseburia, Butyrivibrio, and Dialister were positively correlated with polyamines. Supplementation with multispecies probiotics modulated the function of the gut microbiome by upregulating the pathways for protein digestion and utilization, potentially contributing to enriched metabolite production in the gut. The results of this study demonstrate that supplementation with multispecies probiotics may complement the beneficial effects of low CP levels in pig feed. These findings may help formulate sustainable feeding strategies for swine production.
Collapse
|
120
|
Nordin E, Hellström PM, Dicksved J, Pelve E, Landberg R, Brunius C. Effects of FODMAPs and Gluten on Gut Microbiota and Their Association with the Metabolome in Irritable Bowel Syndrome: A Double-Blind, Randomized, Cross-Over Intervention Study. Nutrients 2023; 15:3045. [PMID: 37447371 DOI: 10.3390/nu15133045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND A mechanistic understanding of the effects of dietary treatment in irritable bowel syndrome (IBS) is lacking. Our aim was therefore to investigate how fermentable oligo- di-, monosaccharides, and polyols (FODMAPs) and gluten affected gut microbiota and circulating metabolite profiles, as well as to investigate potential links between gut microbiota, metabolites, and IBS symptoms. METHODS We used data from a double-blind, randomized, crossover study with week-long provocations of FODMAPs, gluten, and placebo in participants with IBS. To study the effects of the provocations on fecal microbiota, fecal and plasma short-chain fatty acids, the untargeted plasma metabolome, and IBS symptoms, we used Random Forest, linear mixed model and Spearman correlation analysis. RESULTS FODMAPs increased fecal saccharolytic bacteria, plasma phenolic-derived metabolites, 3-indolepropionate, and decreased isobutyrate and bile acids. Gluten decreased fecal isovalerate and altered carnitine derivatives, CoA, and fatty acids in plasma. For FODMAPs, modest correlations were observed between microbiota and phenolic-derived metabolites and 3-indolepropionate, previously associated with improved metabolic health, and reduced inflammation. Correlations between molecular data and IBS symptoms were weak. CONCLUSIONS FODMAPs, but not gluten, altered microbiota composition and correlated with phenolic-derived metabolites and 3-indolepropionate, with only weak associations with IBS symptoms. Thus, the minor effect of FODMAPs on IBS symptoms must be weighed against the effect on microbiota and metabolites related to positive health factors.
Collapse
Affiliation(s)
- Elise Nordin
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Erik Pelve
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Carl Brunius
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
121
|
Teixeira RA, Silva C, Ferreira AC, Martins D, Leite-Moreira A, Miranda IM, Barros AS. The Association between Gestational Diabetes and the Microbiome: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:1749. [PMID: 37512921 PMCID: PMC10385443 DOI: 10.3390/microorganisms11071749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Gestational diabetes, affecting about 10% of pregnancies, is characterized by impaired glucose regulation and can lead to complications for health of pregnant women and their offspring. The microbiota, the resident microbes within the body, have been linked to the development of several metabolic conditions. This systematic review with meta-analysis aims to summarize the evidence on the differences in microbiota composition in pregnant women with gestational diabetes and their offspring compared to healthy pregnancies. A thorough search was conducted in the PubMed, Scopus, and Web of Science databases, and data from 21 studies were analyzed utilizing 41 meta-analyses. In the gut microbiota, Bifidobacterium and Alistipes were found to be more abundant in healthy pregnancies, while Roseburia appears to be more abundant in gestational diabetes. The heterogeneity among study findings regarding the microbiota in the meconium is considerable. The placental microbiota exhibited almost no heterogeneity, with an increased abundance of Firmicutes in the gestational diabetes group and a higher abundance of Proteobacteria in the control. The role of the microbiota in gestational diabetes is reinforced by these findings, which additionally point to the potential of microbiome-targeted therapies. To completely comprehend the interactions between gestational diabetes and the microbiome, standardizing methodologies and further research is necessary.
Collapse
Affiliation(s)
- Rita Almeida Teixeira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Cláudia Silva
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - António Carlos Ferreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Diana Martins
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Isabel M Miranda
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - António S Barros
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
122
|
Kindgren E, Ahrens AP, Triplett EW, Ludvigsson J. Infant gut microbiota and environment associate with juvenile idiopathic arthritis many years prior to disease onset, especially in genetically vulnerable children. EBioMedicine 2023; 93:104654. [PMID: 37329576 PMCID: PMC10279551 DOI: 10.1016/j.ebiom.2023.104654] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/13/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND The etiology of juvenile idiopathic arthritis (JIA) is poorly understood. This study investigated genetic and environmental factors and infant gut microbiota in a prospective birth cohort to assess disease risk. METHODS Data was collected from the All Babies in Southeast Sweden (ABIS) population-based cohort (n = 17,055), 111 of whom later acquired JIA (ABISJIA). Stool samples were collected at one year of age for 10.4%. To determine disease association, 16S rRNA gene sequences were analyzed, with and without confound adjustment. Genetic and environmental risks were assessed. FINDINGS ABISJIA had higher abundance of Acidaminococcales, Prevotella 9, and Veillonella parvula and lower abundance of Coprococcus, Subdoligranulum, Phascolarctobacterium, Dialister spp., Bifidobacterium breve, Fusicatenibacter saccharivorans, Roseburia intestinalis, and Akkermansia muciniphila (q's < 0.05). Parabacteroides distasonis greatly increased the odds of later contracting JIA (OR = 6.7; 1.81-24.84, p = 0.0045). Shorter breastfeeding duration and increased antibiotic exposure compounded risk in a dose-dependent manner, especially in those with genetic predisposition. INTERPRETATION Microbial dysregulation in infancy may trigger or accelerate JIA development. Environmental risk factors have a stronger impact on genetically predisposed children. This study is the first to implicate microbial dysregulation in JIA at such an early age, with many bacterial taxa associated with risk factors. These findings provide opportunities for intervention or early screening and offer new insights into JIA pathogenesis. FUNDING Barndiabetesfonden; Swedish Council for Working Life and Social Research; Swedish Research Council; Östgöta Brandstodsbolag; Medical Research Council of Southeast Sweden; JDRF-Wallenberg Foundation; Linköping.
Collapse
Affiliation(s)
- Erik Kindgren
- Department of Pediatrics, Region Västra Götaland, Skaraborg Hospital, Skövde, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Angelica P Ahrens
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA.
| | - Johnny Ludvigsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Crown Princess Victoria's Children's Hospital, Region Östergötland, Linköping, SE 58185, Sweden
| |
Collapse
|
123
|
Fatani AMN, Suh JH, Auger J, Alabasi KM, Wang Y, Segal MS, Dahl WJ. Pea hull fiber supplementation does not modulate uremic metabolites in adults receiving hemodialysis: a randomized, double-blind, controlled trial. Front Nutr 2023; 10:1179295. [PMID: 37457968 PMCID: PMC10349378 DOI: 10.3389/fnut.2023.1179295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Background Fiber is a potential therapeutic to suppress microbiota-generated uremic molecules. This study aimed to determine if fiber supplementation decreased serum levels of uremic molecules through the modulation of gut microbiota in adults undergoing hemodialysis. Methods A randomized, double-blinded, controlled crossover study was conducted. Following a 1-week baseline, participants consumed muffins with added pea hull fiber (PHF) (15 g/d) and control muffins daily, each for 4 weeks, separated by a 4-week washout. Blood and stool samples were collected per period. Serum p-cresyl sulfate (PCS), indoxyl sulfate (IS), phenylacetylglutamine (PAG), and trimethylamine N-oxide (TMAO) were quantified by LC-MS/MS, and fecal microbiota profiled by 16S rRNA gene amplicon sequencing and specific taxa of interest by qPCR. QIIME 2 sample-classifier was used to discover unique microbiota profiles due to the consumption of PHF. Results Intake of PHF contributed an additional 9 g/d of dietary fiber to the subjects' diet due to compliance. No significant changes from baseline were observed in serum PCS, IS, PAG, or TMAO, or for the relative quantification of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bifidobacterium, or Roseburia, taxa considered health-enhancing. Dietary protein intake and IS (r = -0.5, p = 0.05) and slow transit stool form and PCS (r = 0.7, p < 0.01) were significantly correlated at baseline. PHF and control periods were not differentiated; however, using machine learning, taxa most distinguishing the microbiota composition during the PHF periods compared to usual diet alone were enriched Gemmiger, Collinsella, and depleted Lactobacillus, Ruminococcus, Coprococcus, and Mogibacteriaceae. Conclusion PHF supplementation did not mitigate serum levels of targeted microbial-generated uremic molecules. Given the high cellulose content, which may be resistant to fermentation, PHF may not exert sufficient effects on microbiota composition to modulate its activity at the dose consumed.
Collapse
Affiliation(s)
- Asmaa M. N. Fatani
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
- Food and Nutrition Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joon Hyuk Suh
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Jérémie Auger
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montréal, QC, Canada
| | - Karima M. Alabasi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
- Foods and Nutrition Department, School of Health Science and Wellness, Northwest Missouri State University, Maryville, MO, United States
| | - Yu Wang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Mark S. Segal
- Department of Nephrology, Hypertension and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL, United States
- North Florida South Georgia VHS, Gainesville, FL, United States
| | - Wendy J. Dahl
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| |
Collapse
|
124
|
Stefura T, Rusinek J, Zając M, Zapała B, Gosiewski T, Sroka-Oleksiak A, Salamon D, Pędziwiatr M, Major P. Duodenal microbiota and weight-loss following sleeve gastrectomy and Roux-en-Y gastric bypass - a pilot study. BMC Surg 2023; 23:173. [PMID: 37365522 PMCID: PMC10291748 DOI: 10.1186/s12893-023-02076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Bariatric surgery is the most effective method of morbid obesity treatment. Microbiota has many functions in human body and many of them remain to be unknown. The aim of this study was to establish if the composition of duodenal microbiota influences success rate of bariatric surgery. METHODS It was a prospective cohort study. The data concerning demographics and comorbidities was collected perioperatively. The duodenal biopsies were collected prior to surgery with the gastroscope. Then DNA analysis was conducted. The data connected to the operation outcomes was gathered after 6 and 12 months after surgery. RESULTS Overall, 32 patients were included and divided into two groups (successful - group 1 and unsuccessful - group 0) based on percentage excess weight loss after 6 months were created. The Total Actual Abundance was higher in group 0. In group 0 there was a significantly higher amount of Roseburia and Arthrobacter (p = 0.024, p = 0.027, respectively). Genus LDA effect size analysis showed Prevotella, Megasphaera and Pseudorhodobacter in group 1 to be significant. Whereas abundance of Roseburia and Arthrobacter were significant in group 0. CONCLUSIONS Duodenal microbiota composition may be a prognostic factor for the success of the bariatric surgery but further research on the larger group is needed.
Collapse
Affiliation(s)
- Tomasz Stefura
- Department of Medical Education, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Rusinek
- Students' Scientific Group at 2nd Department of General Surgery, Jagiellonian University, Medical College, Krakow, Poland
| | - Maciej Zając
- Students' Scientific Group at 2nd Department of General Surgery, Jagiellonian University, Medical College, Krakow, Poland
| | - Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Gosiewski
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Dominika Salamon
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Pędziwiatr
- 2nd Department of General Surgery, Jagiellonian University Medical College, Kopernika 21 St, 31-501, Kraków, Poland
| | - Piotr Major
- 2nd Department of General Surgery, Jagiellonian University Medical College, Kopernika 21 St, 31-501, Kraków, Poland.
| |
Collapse
|
125
|
Hatayama K, Ebara A, Okuma K, Tokuno H, Hasuko K, Masuyama H, Ashikari I, Shirasawa T. Characteristics of Intestinal Microbiota in Japanese Patients with Mild Cognitive Impairment and a Risk-Estimating Method for the Disorder. Biomedicines 2023; 11:1789. [PMID: 37509429 PMCID: PMC10376419 DOI: 10.3390/biomedicines11071789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Intestinal microbiota may play a significant role in the development and progression of mild cognitive impairment (MCI). In addition, sex differences in the prevalence of MCI and intestinal microbiota are likely to exist. Therefore, this study investigated the association between MCI and intestinal microbiota by comparing Japanese patients in their 70s with MCI (11 males and 18 females) and disease-free controls (17 males and 23 females), taking sex into account. In both sexes, Clostridium_XVIII, Eggerthella, Erysipelatoclostridium, Flavonifractor, and Ruminococcus 2 were the more abundant taxa in the MCI group, whereas Megasphaera, Oscillibacter, Prevotella, Roseburia, and Victivallis were less abundant. Based on these characteristics, it was hypothesized that the composition of the intestinal microbiota in the MCI group leads to dysregulation of the intestinal microbiota, increased intestinal and blood-brain barrier permeability, and increased chronic neuroinflammation, with the long-term persistence of these abnormalities ultimately leading to cognitive decline. Furthermore, risk estimation models for MCI based on intestinal microbiota data were developed using structural equation modeling. These tests discriminated between the MCI and control groups. Incorporating these factors into intestinal microbiota testing using stool samples may be an efficient method to screen individuals with MCI.
Collapse
Affiliation(s)
| | - Aya Ebara
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
| | - Kana Okuma
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
| | | | | | | | | | | |
Collapse
|
126
|
Li J, Li D, Chen Y, Chen W, Xu J, Gao L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin Interv Aging 2023; 18:963-986. [PMID: 37351381 PMCID: PMC10284159 DOI: 10.2147/cia.s414714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
The changing composition of gut microbiota, much like aging, accompanies people throughout their lives, and the inextricable relationship between both has recently attracted extensive attention as well. Modern medical research has revealed that a series of changes in gut microbiota are involved in the aging process of organisms, which may be because gut microbiota modulates aging-related changes related to innate immunity and cognitive function. At present, there is no definite and effective method to delay aging. However, Nobel laureate Tu Youyou's research on artemisinin has inspired researchers to study the importance of Traditional Chinese Medicine (TCM). TCM, as an ancient alternative medicine, has unique advantages in preventive health care and in treating diseases as it already has formed an independent understanding of the aging system. TCM practitioners believe that the mechanism of aging is mainly deficiency, and pathological states such as blood stasis, qi stagnation and phlegm coagulation can exacerbate the process of aging, which involves a series of organs, including the brain, kidney, heart, liver and spleen. Our current understanding of aging has led us to realise that TCM can indeed make some beneficial changes, such as the improvement of cognitive impairment. However, due to the multi-component and multi-target nature of TCM, the exploration of its mechanism of action has become extremely complex. While analysing the relationship between gut microbiota and aging, this review explores the similarities and differences in treatment methods and mechanisms between TCM and Modern Medicine, in order to explore a new approach that combines TCM and Modern Medicine to regulate gut microbiota, improve immunity and delay aging.
Collapse
Affiliation(s)
- Jinfan Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dong Li
- Department of Diabetes, Licheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250100, People’s Republic of China
| | - Yajie Chen
- Department of Rehabilitation and Health Care, Jinan Vocational College of Nursing, Jinan, Shandong, 250100, People’s Republic of China
| | - Wenbin Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
127
|
Hidalgo-Villeda F, Million M, Defoort C, Vannier T, Svilar L, Lagier M, Wagner C, Arroyo-Portilla C, Chasson L, Luciani C, Bossi V, Gorvel JP, Lelouard H, Tomas J. Prolonged dysbiosis and altered immunity under nutritional intervention in a physiological mouse model of severe acute malnutrition. iScience 2023; 26:106910. [PMID: 37378323 PMCID: PMC10291336 DOI: 10.1016/j.isci.2023.106910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute malnutrition (SAM) is a multifactorial disease affecting millions of children worldwide. It is associated with changes in intestinal physiology, microbiota, and mucosal immunity, emphasizing the need for multidisciplinary studies to unravel its full pathogenesis. We established an experimental model in which weanling mice fed a high-deficiency diet mimic key anthropometric and physiological features of SAM in children. This diet alters the intestinal microbiota (less segmented filamentous bacteria, spatial proximity to epithelium), metabolism (decreased butyrate), and immune cell populations (depletion of LysoDC in Peyer's patches and intestinal Th17 cells). A nutritional intervention leads to a fast zoometric and intestinal physiology recovery but to an incomplete restoration of the intestinal microbiota, metabolism, and immune system. Altogether, we provide a preclinical model of SAM and have identified key markers to target with future interventions during the education of the immune system to improve SAM whole defects.
Collapse
Affiliation(s)
- Fanny Hidalgo-Villeda
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
- Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
- IHU-Méditerranée Infection, Marseille, France
| | - Matthieu Million
- IHU-Méditerranée Infection, Marseille, France
- Ap-HM, Marseille, France
| | - Catherine Defoort
- C2VN, INRA, INSERM, Aix Marseille University, CriBioM, Marseille, France
| | - Thomas Vannier
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Ljubica Svilar
- C2VN, INRA, INSERM, Aix Marseille University, CriBioM, Marseille, France
| | - Margaux Lagier
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Camille Wagner
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Cynthia Arroyo-Portilla
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
- Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Lionel Chasson
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Cécilia Luciani
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Jean-Pierre Gorvel
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Hugues Lelouard
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Julie Tomas
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
128
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
129
|
Yu H, Wang Q, Tang J, Dong L, Dai G, Zhang T, Zhang G, Xie K, Wang H, Zhao Z. Comprehensive analysis of gut microbiome and host transcriptome in chickens after Eimeria tenella infection. Front Cell Infect Microbiol 2023; 13:1191939. [PMID: 37346030 PMCID: PMC10279956 DOI: 10.3389/fcimb.2023.1191939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Background Coccidiosis is an intestinal parasitic disease caused by Eimeria protozoa, which endangers the health and growth of animals, and causes huge economic losses to the poultry industry worldwide every year. Studies have shown that poultry gut microbiota plays an important role in preventing the colonization of pathogens and maintaining the health of the host. Coccidia infection also affects host gene expression. However, the underlying potential relationship between gut microbiome and host transcriptome during E. tenella infection in chickens remain unclear. Methods In this study, metagenomic and transcriptome sequencing were applied to identify microbiota and genes in cecal contents and cecal tissues of infected (JS) and control (JC) chickens on day 4.5 postinfection (pi), respectively. Results First, microbial sequencing results of cecal contents showed that the abundance of Lactobacillus, Roseburia sp. and Faecalibacterium sp decreased significantly after E. tenella infection (P < 0.05), while the abundance of Alistipes and Prevotella pectinovora increased significantly (P < 0.05). Second, transcriptome sequencing results showed that a total of 434 differentially expressed mRNAs were identified, including 196 up-regulated and 238 down-regulated genes. These differentially expressed genes related to inflammation and immunity, such as GAMA, FABP1, F2RL1 and RSAD2, may play an important role in the process of host resistance to coccidia infection. Functional studies showed that the enriched pathways of differentially expressed genes included the TGF-beta signaling pathway and the ErbB signaling pathways. Finally, the integrated analysis of gut microbiome and host transcriptome suggested that Prevotella pectinovora associated with FABP1, Butyricicoccus porcorum and Colidextribacter sp. associated with RSAD2 were involved in the immune response upon E. tenella infection. Conclusion In conclusion, this study provides valuable information on the microbiota and key immune genes after chicken E. tenella infection, with the aim of providing reference for the impact of coccidia infection on cecal microbiome and host.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongsheng Wang
- Technical Research Department, Jiangsu Jinghai Poultry Group Co., Ltd., Haimen, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| |
Collapse
|
130
|
Satoh T. New prebiotics by ketone donation. Trends Endocrinol Metab 2023:S1043-2760(23)00091-7. [PMID: 37271711 DOI: 10.1016/j.tem.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Integrity of the microbiome is an essential element for human gut health. 3-Hydroxybutyrate (3HB) secreted into the gut lumen has gained attention as a regulator of gut physiology, including stem cell expansion. In this opinion, I propose new prebiotics leading to gut health by use of a ketone (3HB) donor. When exogenous 3HB is supplied through ketone donation, it has the potential to markedly improve gut health by altering the gut microbiome and systemic metabolic status. Poly-hydroxybutyrate (PHB) donates 3HB and primarily influences microbiota, making it an effective prebiotic for improving the gut environment. Thus, exogenous 3HB donation to the lumen of the gut may aid gut health by maintaining the integrity of microbiome.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Antiaging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Japan.
| |
Collapse
|
131
|
Gao B, Chen L, Xu W, Shan J, Shen W, Gao N. Effects of Perfluorooctanoic Acid on Gut Microbiota and Microbial Metabolites in C57BL/6J Mice. Metabolites 2023; 13:707. [PMID: 37367865 DOI: 10.3390/metabo13060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) represents an increasing public health concern due to its persistence in the environment and its toxic effects. The gut microbiota is known to produce various metabolites that assist the host to maintain metabolic homeostasis. However, few studies have explored the effects of PFOA on gut-microbiota-related metabolites. In the present study, male C57BL/6J mice were exposed to 1 ppm of PFOA in drinking water for four weeks and integrative analysis of the gut microbiome and metabolome was performed to reveal the health effects of PFOA. Our results showed that PFOA disturbed both the gut microbiota composition and the metabolic profiles of the feces, serum, and liver in mice. A correlation was found between Lachnospiraceae UCG004, Turicibacter, Ruminococcaceae, and different fecal metabolites. Significant alterations of gut-microbiota-related metabolites were induced by PFOA exposure, including bile acids and tryptophan metabolites such as 3-indoleacrylic acid and 3-indoleacetic acid. The findings of this study are helpful to improve the understanding of the health effects of PFOA, which might be mediated through the gut microbiota and its related metabolites.
Collapse
Affiliation(s)
- Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lixia Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Weichen Xu
- Medical Metabolomics Center, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weishou Shen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative In-novation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
- Institute of Soil Health and Climate-Smart Agriculture, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Nan Gao
- School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
132
|
Ko YS, Tark D, Moon SH, Kim DM, Lee TG, Bae DY, Sunwoo SY, Oh Y, Cho HS. Alteration of the Gut Microbiota in Pigs Infected with African Swine Fever Virus. Vet Sci 2023; 10:vetsci10050360. [PMID: 37235443 DOI: 10.3390/vetsci10050360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The factors that influence the pathogenicity of African swine fever (ASF) are still poorly understood, and the host's immune response has been indicated as crucial. Although an increasing number of studies have shown that gut microbiota can control the progression of diseases caused by viral infections, it has not been characterized how the ASF virus (ASFV) changes a pig's gut microbiome. This study analyzed the dynamic changes in the intestinal microbiome of pigs experimentally infected with the high-virulence ASFV genotype II strain (N = 4) or mock strain (N = 3). Daily fecal samples were collected from the pigs and distributed into the four phases (before infection, primary phase, clinical phase, and terminal phase) of ASF based on the individual clinical features of the pigs. The total DNA was extracted and the V4 region of the 16 s rRNA gene was amplified and sequenced on the Illumina platform. Richness indices (ACE and Chao1) were significantly decreased in the terminal phase of ASF infection. The relative abundances of short-chain-fatty-acids-producing bacteria, such as Ruminococcaceae, Roseburia, and Blautia, were decreased during ASFV infection. On the other hand, the abundance of Proteobacteria and Spirochaetes increased. Furthermore, predicted functional analysis using PICRUSt resulted in a significantly reduced abundance of 15 immune-related pathways in the ASFV-infected pigs. This study provides evidence for further understanding the ASFV-pig interaction and suggests that changes in gut microbiome composition during ASFV infection may be associated with the status of immunosuppression.
Collapse
Affiliation(s)
- Young-Seung Ko
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Sung-Hyun Moon
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Dae-Min Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Taek Geun Lee
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Da-Yun Bae
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - Yeonsu Oh
- Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho-Seong Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
133
|
Heng D, Zhang M, Yuan Y, Qiu X. Alteration of Colonic Bacterial and Fungal Composition and Their Inter- and Intra-Kingdom Interaction in Patients with Adenomas with Low-Grade Dysplasia. Microorganisms 2023; 11:1327. [PMID: 37317301 DOI: 10.3390/microorganisms11051327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Colorectal cancer (CRC) develops from pre-cancerous cellular lesions in the gut epithelium and mainly originates from specific types of colonic adenomas with dysplasia. However, gut microbiota signatures among sampling sites in patients with colorectal adenomas with low-grade dysplasia (ALGD) and normal control (NC) remain uncharacterized. To characterize gut microbial and fungal profiles in ALGD and normal colorectal mucosa tissues. We used 16S and ITS1-2 rRNA gene sequencing and bioinformatics analysis on the microbiota of ALGD and normal colorectal mucosa from 40 subjects. Bacterial sequences in the ALGD group showed an increase in Rhodobacterales, Thermales, Thermaceae, Rhodobacteraceae, and several genera, including Thermus, Paracoccus, Sphingobium, and Pseudomonas, compared to the NC group. Fungal sequences in the ALGD group showed an increase in Helotiales, Leotiomycetes, and Basidiomycota, while several orders, families, and genera, including Verrucariales, Russulales, and Trichosporonales, were decreased. The study found various interactions between intestinal bacteria and fungi. The bacterial functional analysis showed increased glycogen and vanillin degradation pathways in the ALGD group. Meanwhile, the fungal functional analysis showed a decrease in pathways related to the biosynthesis of gondoate and stearate, as well as degradation of glucose, starch, glycogen, sucrose, L-tryptophan, and pantothenate, and an increase in the octane oxidation pathway in the ALGD group. The mucosal microbiota in ALGD exhibits altered fungal and microbial composition compared to the NC mucosa, potentially contributing to the development of intestinal cancer by regulating specific metabolic pathways. Therefore, these changes in microbiota and metabolic pathways may be potential markers for diagnosing and treating colorectal adenoma and carcinoma.
Collapse
Affiliation(s)
- Ding Heng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China
| | - Min Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China
| | - Yuhan Yuan
- Department of Endoscopic Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China
| | - Xinyun Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
134
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
135
|
Myers KS, Ingle AT, Walters KA, Fortney NW, Scarborough MJ, Donohue TJ, Noguera DR. Comparison of metagenomes from fermentation of various agroindustrial residues suggests a common model of community organization. Front Bioeng Biotechnol 2023; 11:1197175. [PMID: 37260833 PMCID: PMC10228549 DOI: 10.3389/fbioe.2023.1197175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
The liquid residue resulting from various agroindustrial processes is both rich in organic material and an attractive source to produce a variety of chemicals. Using microbial communities to produce chemicals from these liquid residues is an active area of research, but it is unclear how to deploy microbial communities to produce specific products from the different agroindustrial residues. To address this, we fed anaerobic bioreactors one of several agroindustrial residues (carbohydrate-rich lignocellulosic fermentation conversion residue, xylose, dairy manure hydrolysate, ultra-filtered milk permeate, and thin stillage from a starch bioethanol plant) and inoculated them with a microbial community from an acid-phase digester operated at the wastewater treatment plant in Madison, WI, United States. The bioreactors were monitored over a period of months and sampled to assess microbial community composition and extracellular fermentation products. We obtained metagenome assembled genomes (MAGs) from the microbial communities in each bioreactor and performed comparative genomic analyses to identify common microorganisms, as well as any community members that were unique to each reactor. Collectively, we obtained a dataset of 217 non-redundant MAGs from these bioreactors. This metagenome assembled genome dataset was used to evaluate whether a specific microbial ecology model in which medium chain fatty acids (MCFAs) are simultaneously produced from intermediate products (e.g., lactic acid) and carbohydrates could be applicable to all fermentation systems, regardless of the feedstock. MAGs were classified using a multiclass classification machine learning algorithm into three groups, organisms fermenting the carbohydrates to intermediate products, organisms utilizing the intermediate products to produce MCFAs, and organisms producing MCFAs directly from carbohydrates. This analysis revealed common biological functions among the microbial communities in different bioreactors, and although different microorganisms were enriched depending on the agroindustrial residue tested, the results supported the conclusion that the microbial ecology model tested was appropriate to explain the MCFA production potential from all agricultural residues.
Collapse
Affiliation(s)
- Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Abel T. Ingle
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin A. Walters
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Nathaniel W. Fortney
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Matthew J. Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Timothy J. Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel R. Noguera
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
136
|
Li Y, Zheng J, Wang Y, Yang H, Cao L, Gan S, Ma J, Liu H. Immuno-stimulatory activity of Astragalus polysaccharides in cyclophosphamide-induced immunosuppressed mice by regulating gut microbiota. Int J Biol Macromol 2023; 242:124789. [PMID: 37164141 DOI: 10.1016/j.ijbiomac.2023.124789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Evidence has indicated the immune-stimulatory effect of Astragalus polysaccharides (APS), yet it remains unknown whether the potential mechanism is associated with gut microbiota. In this study, we aimed to investigate the role of gut microbiota in APS-initiated immune-enhancing activity in mice. BALB/c mice were injected with cyclophosphamide to establish a mouse immunosuppression model. We found that APS significantly ameliorated the immunosuppression in mice, indicative of the increased immune organ indices, the promoted proliferation of immune cells, and the up-regulated intestinal inflammation. Western blot analysis demonstrated that APS treatment significantly activated Toll-like receptor 4 (TLR4) and mitogen-activated protein kinase (MAPK) pathways in the intestine. By 16S rDNA sequencing, APS treatment reversed the gut microbiota dysbiosis in immunocompromised mice. At the genus level, APS increased the abundance of bacteria (like Lactobacillus, Bifidobacteria, Roseburia, and Desulfovibrio) and decreased the content of several bacteria (like Oscillibacter, Tyzzerella, and Lachnoclostridium). However, APS had no immune-enhancing effect on immunocompromised mice with gut microbiota depletion. In conclusion, APS can enhance immune responses in immunocompromised mice by modulating gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yanan Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yao Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Lu Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Shuiyong Gan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jun Ma
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
137
|
Seong H, Choi BK, Han YH, Kim JH, Gim JA, Lim S, Noh JY, Cheong HJ, Kim WJ, Song JY. Gut microbiota as a potential key to modulating humoral immunogenicity of new platform COVID-19 vaccines. Signal Transduct Target Ther 2023; 8:178. [PMID: 37137906 PMCID: PMC10154741 DOI: 10.1038/s41392-023-01445-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Affiliation(s)
- Hye Seong
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bo Kyu Choi
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Hee Han
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Jun Hyoung Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Jeong-An Gim
- Medical Science Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sooyeon Lim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea.
- Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
138
|
Szala-Rycaj J, Szewczyk A, Zagaja M, Kaczmarczyk-Ziemba A, Maj M, Andres-Mach M. The Influence of Topinambur and Inulin Preventive Supplementation on Microbiota, Anxious Behavior, Cognitive Functions and Neurogenesis in Mice Exposed to the Chronic Unpredictable Mild Stress. Nutrients 2023; 15:2041. [PMID: 37432210 DOI: 10.3390/nu15092041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
Daily living and functioning under stress can lead to mental health problems such as anxiety or depression. Over the past decades, a number of studies have been conducted to determine the relationship between the central nervous system (CNS), intestinal flora and bidirectional communication along the gut brain axis (GBA) in the maintaining of homeostasis. One of the most important factors regulating GBA functioning in exposure to stress may be a proper diet enriched in the supplementation with pre-, pro-and synbiotics. In the present study, we examined whether a 10-week oral preventive supplementation with natural prebiotics: topinambur powder (TPB) and chicory root inulin (INU) influenced an anxiety, depressive behavior and cognition in mice exposed to the chronic unpredictable mild stress (CUMS). Additionally, a fluoxetine (FLU) has been used as a reference antidepressive drug. Furthermore, we assessed the effect of TPB, INU and FLU administration on neurogenesis in mice exposed to CUMS and finally analyzed fecal microbiota for possible changes after TPB and INU supplementation in CUMS induced mice. Results obtained from the behavioral studies (elevated plaze maze, forced swim and Morris water maze test) indicated, that 10 week supplementation with TPB (250 mg/kg) and INU (66 mg/kg), similarly to FLU (12 mg/kg), significantly mitigated an anxiety and stress as well as protected learning and memory functions in the CUMS induced mice compared to the control stressed group. Additionally, TPB and INU CUMS mice showed significantly higher level of neurogenesis in comparison to control CUMS group. Interestingly, results obtained from the fecal microbiota analysis showed a beneficial effect of TPB and INU supplementation against CUMS-induced intestinal dysbiosis in mice. In conclusion, the obtained results showed that a long-term, preventive supplementation with TPB or INU alleviates the negative effects such as anxiety, cognitive disorders or dysbiosis in mice exposed to chronic unpredictable stress.
Collapse
Affiliation(s)
- Joanna Szala-Rycaj
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Aleksandra Szewczyk
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Agnieszka Kaczmarczyk-Ziemba
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, WitaStwosza 59, 80-308 Gdansk, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
139
|
Seel W, Reiners S, Kipp K, Simon MC, Dawczynski C. Role of Dietary Fiber and Energy Intake on Gut Microbiome in Vegans, Vegetarians, and Flexitarians in Comparison to Omnivores-Insights from the Nutritional Evaluation (NuEva) Study. Nutrients 2023; 15:1914. [PMID: 37111133 PMCID: PMC10146654 DOI: 10.3390/nu15081914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, there has been a global trend towards a plant-based lifestyle. In the NuEva study, dietary self-reports of 258 participants following one of four diets (Western diet (WD), flexitarians (Flex), vegetarians (VG), and vegans (VN)) were related to fecal microbiome composition. Reduced consumption of animal products (VN < VG < Flex < WD) was associated with a decreased intake of energy (p < 0.05), and an increased intake of soluble and non-soluble dietary fibers (p < 0.05). We observed the lowest average microbiome diversity in vegans and the highest in WD. Compared to WD, VG (p < 0.05) and VN (p < 0.01) differed significantly in their bacterial composition. These data were related to dietary fiber intake. Furthermore, we identified 14 diet-specific biomarkers at the genus level by using LefSe analysis. Of these, 11 showed minimum or maximum counts in WD or VN. While the VN-specific species were inversely associated with cardiovascular risk factors, a positive association was detected for the WD-specific species. Identifying biomarkers for the diets on extreme ends of the spectrum (WD and VN) and their association with cardiovascular risk factors provides a solid evidence base highlighting the potential and the need for the development of personalized recommendations dependent on dietary patterns. Even so, the mechanisms underlying these diet-specific differences in microbiome composition cannot yet be clearly assessed. The elucidation of these associations will provide the basis for personalized nutritional recommendations based on the microbiome.
Collapse
Affiliation(s)
- Waldemar Seel
- Nutrition and Microbiota, Institute of Nutrition and Food Sciences, University of Bonn, 53012 Bonn, Germany
| | - Sarah Reiners
- Junior Research Group Nutritional Concepts, Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kristin Kipp
- Department of Pediatrics and Adolescent Medicine, Sophien- and Hufeland Hospital, Henry-van-de-Velde-Str. 1, 99425 Weimar, Germany
| | - Marie-Christin Simon
- Nutrition and Microbiota, Institute of Nutrition and Food Sciences, University of Bonn, 53012 Bonn, Germany
| | - Christine Dawczynski
- Junior Research Group Nutritional Concepts, Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
140
|
Cai M, Zhu H, Xu L, Wang J, Xu J, Li Z, Yang K, Wu J, Sun P. Structure, anti-fatigue activity and regulation on gut microflora in vivo of ethanol-fractional polysaccharides from Dendrobium officinale. Int J Biol Macromol 2023; 234:123572. [PMID: 36754265 DOI: 10.1016/j.ijbiomac.2023.123572] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
This study was to investigate the antifatigue, prebiotic effects and their relationships to the structure properties of three ethanol precipitated polysaccharides from Dendrobium officinale (EPDO), as EPDO-40, EPDO-60 and EPDO-80. EPDOs with anti-fatigue activity were screened out by forced swimming test, and blood lactic acid (BLA), blood urea nitrogen (BUN), superoxide dismutase (SOD), liver glycogen, muscle glycogen, and intestinal microflora were investigated. Results showed that purified EPDO-60, 277.3 kDa, with a backbone consisted of 4-Manp and 4-Glcp. EPDO-60 had the best anti-fatigue activity, because it could significantly prolong the forced swimming time, as well as down-regulating the levels of BLA and BUN, increasing SOD. Proportions of Bacteroidetes and Firmicutes and abundance of Lactobacillus and Bifidobacterium in gut microflora increased after treated with EPDO-60. Accordingly, EPDO-60 could affect the community structure of gut microflora, leading to promote the balance of oxidation and antioxidation, and accelerated the fatigue metabolism in vivo.
Collapse
Affiliation(s)
- Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| | - Hua Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Lei Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jian Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jing Xu
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jianyong Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| |
Collapse
|
141
|
Shi H, Li X, Hou C, Chen L, Zhang Y, Li J. Effects of Pomegranate Peel Polyphenols Combined with Inulin on Gut Microbiota and Serum Metabolites of High-Fat-Induced Obesity Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5733-5744. [PMID: 36996454 DOI: 10.1021/acs.jafc.3c01014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pomegranate peel polyphenols (PPPs) and inulin have been reported to have lipid-lowering effects. Here, the effects of PPPs combined with inulin on obesity traits and the change of the gut microbiota, short-chain fatty acids (SCFAs), and serum metabolomics profiles in rats with a high-fat diet (HFD) were investigated. According to the experimental results, PPPs were most effective in reducing the body weight and serum and liver lipid levels. Besides, PPPs ameliorated the disorder of gut microbiota, in particular, the enrichment of SCFA producers, such as Lactobacillus, Roseburia, Christensenellaceae_R-7_group, Ruminococcaceae_UCG-005, Bacteroides, and Allobaculum, and the depletion of the Blautia and unclassified Lachnospiraceae population. PPPs also regulated the levels of metabolites changed by HFD feeding via tryptophan metabolism, valine, leucine, and isoleucine biosynthesis, and arachidonic acid metabolism pathways. The correlation analysis showed that PPPs remitted HFD-induced elevation in triglycerides (TGs), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) levels and lowered high-density lipoprotein (HDL) levels through regulating the gut microbiota, SCFAs, and related metabolites. These findings elucidated that PPPs have a good anti-obesity effect. This study extends the understanding of PPP effects on high-fat-induced obesity, which includes the relationship among gut microbiota, SCFAs, serum metabolites, and TG-, IL-6- and TNF-α- lowering and HDL-elevating functions.
Collapse
Affiliation(s)
- Haidan Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Xuezhi Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Li Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Yuhuan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
142
|
Yntema T, Koonen DPY, Kuipers F. Emerging Roles of Gut Microbial Modulation of Bile Acid Composition in the Etiology of Cardiovascular Diseases. Nutrients 2023; 15:nu15081850. [PMID: 37111068 PMCID: PMC10141989 DOI: 10.3390/nu15081850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite advances in preventive measures and treatment options, cardiovascular disease (CVD) remains the number one cause of death globally. Recent research has challenged the traditional risk factor profile and highlights the potential contribution of non-traditional factors in CVD, such as the gut microbiota and its metabolites. Disturbances in the gut microbiota have been repeatedly associated with CVD, including atherosclerosis and hypertension. Mechanistic studies support a causal role of microbiota-derived metabolites in disease development, such as short-chain fatty acids, trimethylamine-N-oxide, and bile acids, with the latter being elaborately discussed in this review. Bile acids represent a class of cholesterol derivatives that is essential for intestinal absorption of lipids and fat-soluble vitamins, plays an important role in cholesterol turnover and, as more recently discovered, acts as a group of signaling molecules that exerts hormonal functions throughout the body. Studies have shown mediating roles of bile acids in the control of lipid metabolism, immunity, and heart function. Consequently, a picture has emerged of bile acids acting as integrators and modulators of cardiometabolic pathways, highlighting their potential as therapeutic targets in CVD. In this review, we provide an overview of alterations in the gut microbiota and bile acid metabolism found in CVD patients, describe the molecular mechanisms through which bile acids may modulate CVD risk, and discuss potential bile-acid-based treatment strategies in relation to CVD.
Collapse
Affiliation(s)
- Tess Yntema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Debby P Y Koonen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
143
|
Esquivel-Hernández DA, Martínez-López YE, Sánchez-Castañeda JP, Neri-Rosario D, Padrón-Manrique C, Giron-Villalobos D, Mendoza-Ortíz C, Resendis-Antonio O. A network perspective on the ecology of gut microbiota and progression of type 2 diabetes: Linkages to keystone taxa in a Mexican cohort. Front Endocrinol (Lausanne) 2023; 14:1128767. [PMID: 37124757 PMCID: PMC10130651 DOI: 10.3389/fendo.2023.1128767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The human gut microbiota (GM) is a dynamic system which ecological interactions among the community members affect the host metabolism. Understanding the principles that rule the bidirectional communication between GM and its host, is one of the most valuable enterprise for uncovering how bacterial ecology influences the clinical variables in the host. Methods Here, we used SparCC to infer association networks in 16S rRNA gene amplicon data from the GM of a cohort of Mexican patients with type 2 diabetes (T2D) in different stages: NG (normoglycemic), IFG (impaired fasting glucose), IGT (impaired glucose tolerance), IFG + IGT (impaired fasting glucose plus impaired glucose tolerance), T2D and T2D treated (T2D with a 5-year ongoing treatment). Results By exploring the network topology from the different stages of T2D, we observed that, as the disease progress, the networks lose the association between bacteria. It suggests that the microbial community becomes highly sensitive to perturbations in individuals with T2D. With the purpose to identify those genera that guide this transition, we computationally found keystone taxa (driver nodes) and core genera for a Mexican T2D cohort. Altogether, we suggest a set of genera driving the progress of the T2D in a Mexican cohort, among them Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005, Alistipes, Anaerostipes, and Terrisporobacter. Discussion Based on a network approach, this study suggests a set of genera that can serve as a potential biomarker to distinguish the distinct degree of advances in T2D for a Mexican cohort of patients. Beyond limiting our conclusion to one population, we present a computational pipeline to link ecological networks and clinical stages in T2D, and desirable aim to advance in the field of precision medicine.
Collapse
Affiliation(s)
| | - Yoscelina Estrella Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico
| | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Padrón-Manrique
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Giron-Villalobos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Mendoza-Ortíz
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica – Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
144
|
Igudesman D, Crandell JL, Corbin KD, Hooper J, Thomas JM, Bulik CM, Pence BW, Pratley RE, Kosorok MR, Maahs DM, Carroll IM, Mayer-Davis EJ. Associations of Dietary Intake with the Intestinal Microbiota and Short-Chain Fatty Acids Among Young Adults with Type 1 Diabetes and Overweight or Obesity. J Nutr 2023; 153:1178-1188. [PMID: 36841667 PMCID: PMC10356993 DOI: 10.1016/j.tjnut.2022.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diet, a key component of type 1 diabetes (T1D) management, modulates the intestinal microbiota and its metabolically active byproducts-including SCFA-through fermentation of dietary carbohydrates such as fiber. However, the diet-microbiome relationship remains largely unexplored in longstanding T1D. OBJECTIVES We evaluated whether increased carbohydrate intake, including fiber, is associated with increased SCFA-producing gut microbes, SCFA, and intestinal microbial diversity among young adults with longstanding T1D and overweight or obesity. METHODS Young adult men and women with T1D for ≥1 y, aged 19-30 y, and BMI of 27.0-39.9 kg/m2 at baseline provided stool samples at baseline and 3, 6, and 9 mo of a randomized dietary weight loss trial. Diet was assessed by 1-2 24-h recalls. The abundance of SCFA-producing microbes was measured using 16S rRNA gene sequencing. GC-MS measured fecal SCFA (acetate, butyrate, propionate, and total) concentrations. Adjusted and Bonferroni-corrected generalized estimating equations modeled associations of dietary fiber (total, soluble, and pectins) and carbohydrate (available carbohydrate, and fructose) with microbiome-related outcomes. Primary analyses were restricted to data collected before COVID-19 interruptions. RESULTS Fiber (total and soluble) and carbohydrates (available and fructose) were positively associated with total SCFA and acetate concentrations (n = 40 participants, 52 visits). Each 10 g/d of total and soluble fiber intake was associated with an additional 8.8 μmol/g (95% CI: 4.5, 12.8 μmol/g; P = 0.006) and 24.0 μmol/g (95% CI: 12.9, 35.1 μmol/g; P = 0.003) of fecal acetate, respectively. Available carbohydrate intake was positively associated with SCFA producers Roseburia and Ruminococcus gnavus. All diet variables except pectin were inversely associated with normalized abundance of Bacteroides and Alistipes. Fructose was inversely associated with Akkermansia abundance. CONCLUSIONS In young adults with longstanding T1D, fiber and carbohydrate intake were associated positively with fecal SCFA but had variable associations with SCFA-producing gut microbes. Controlled feeding studies should determine whether gut microbes and SCFA can be directly manipulated in T1D.
Collapse
Affiliation(s)
- Daria Igudesman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; AdventHealth Translational Research Institute, Orlando, FL, USA.
| | - Jamie L Crandell
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Julie Hooper
- Division of Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Joan M Thomas
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia M Bulik
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brian W Pence
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Michael R Kosorok
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ian M Carroll
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
145
|
Zhuang Y, Lin Y, Sun H, Zhang Z, Wang T, Fan R, Han L. Gut Microbiota in Children with Hand Foot and Mouth Disease on 16S rRNA Gene Sequencing. Curr Microbiol 2023; 80:159. [PMID: 37004682 DOI: 10.1007/s00284-023-03277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/18/2023] [Indexed: 04/04/2023]
Abstract
Hand foot and mouth disease (HFMD) is a contagious and seasonal viral disease in children. The gut microbiota of HFMD children is not clear now. The study aimed to explore the gut microbiota of HFMD children. The 16S rRNA gene of the gut microbiota of ten HFMD patients and ten healthy children were sequenced on the NovaSeq and PacBio platforms respectively. There were significant differences in gut microbiota between the patients and healthy children. The diversity and abundance of gut microbiota in HFMD patients were lower than that in healthy children. The species Roseburia inulinivorans and Romboutsia timonensis were more abundant in healthy children than those in HFMD patients, which suggests that the two species may be used as probiotics for adjusting the gut microbiota of HFMD patients. Meanwhile, the results of 16S rRNA gene sequences from the two platforms were different. The NovaSeq platform identified more microbiota and has the characteristics of high throughput, short time and low price. However, the NovaSeq platform has low resolution at the species level. The PacBio platform has high resolution based on its long reads length, which is more suitable for species-level analysis. But, the shortcomings of the high price and low throughput of PacBio still need to be overcome. With the development of sequencing technology, the reduction in sequencing price and the increase in throughput will promote the third-generation sequencing technology used in the study of gut microbes.
Collapse
Affiliation(s)
- Yan Zhuang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
- School of Public Health and Laboratory, Qilu Medical University, Zibo, 255300, China
| | - Yiyan Lin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hongxia Sun
- Department of Paediatric, the First Hospital of Zibo, Zibo, 255200, China
| | - Zaiting Zhang
- Department of Paediatric, the First Hospital of Zibo, Zibo, 255200, China
| | - Tao Wang
- Department of Paediatric, the First Hospital of Zibo, Zibo, 255200, China
| | - Rongjun Fan
- School of Public Health and Laboratory, Qilu Medical University, Zibo, 255300, China.
| | - Lu Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
146
|
Zheng L, Cao T, Xiong P, Ma Y, Wei L, Wang J. Characterization of the oral microbiome and gut microbiome of dental caries and extrinsic black stain in preschool children. Front Microbiol 2023; 14:1081629. [PMID: 37065128 PMCID: PMC10103904 DOI: 10.3389/fmicb.2023.1081629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionA lower prevalence of dental caries (hereafter termed “caries”) has been observed in children with dental extrinsic black stain (EBS).MethodsWe investigated the epidemiologic characterization of EBS and explored the possible role of the oral microbiome (OM) and gut microbiome (GM) in EBS formation and caries prevention. In an epidemiologic survey, 2,675 children aged 3–6 years were included. Thirty-eight of these children (7 children had both caries and EBS, 10 had EBS only, 11 had caries only, and 10 were healthy children) were recruited for 16S rRNA sequencing and collection of samples of supragingival plaque and feces. Collected plaque samples were divided into four groups: BCP (EBS+, caries+), BP (EBS+, caries−), CP (EBS−, caries+), and P (EBS−, caries−). Fecal samples were also divided into four groups: BCF (EBS+, caries+), BF (EBS+, caries−), CF (EBS−, caries+), and F (EBS−, caries−).ResultsEBS was observed in 12.10% of this population. Children with EBS had a significantly reduced prevalence of caries and a lower mean value of decayed–missing–filled teeth (dmft; p < 0.01). According to analyses of dental plaque, the P group had the most complex microbiome. The BCP group exhibited greater operational taxonomic unit (OTU) richness but a reduced evenness compared with the BP group, and the CP group showed greater OTU richness than the BP group. At the genus level, higher abundance of Actinomyces and Cardiobacterium species was observed in the BCP group. Higher abundance of Lautropia and Pesudopropionibacteriumin species was observed in the BP group compared with P and CP groups, respectively (p < 0.05). Veillonella species were significantly more common in P and CP groups than in BP groups, whereas Porphyromonas and Fusobacterium species were more common in the CP group (p < 0.05). With regard to the GM, the CF group exhibited greater OTU diversity than the BF group. The GM in the BCF group exhibited the most complex relationships across all fecal groups. GM groups could be distinguished by various unique biomarkers, such as Escherichia and Shigella species in the BCF group, Agathobacter and Ruminococcus species in the CF group, Lactobacillus species in the BF group, and Roseburia species in the F group. Our results suggest that EBS is a possible protective factor against early-childhood caries. Dental plaque and the GM may be relevant to EBS in primary dentition.
Collapse
Affiliation(s)
- Luoyuan Zheng
- School and Hospital of Stomatology, Wenzhou Medical University,, Wenzhou, China
| | - Tingting Cao
- School and Hospital of Stomatology, Wenzhou Medical University,, Wenzhou, China
| | - Puling Xiong
- School and Hospital of Stomatology, Wenzhou Medical University,, Wenzhou, China
| | - Yulian Ma
- School and Hospital of Stomatology, Wenzhou Medical University,, Wenzhou, China
| | - Limin Wei
- Department of Preventive Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Limin Wei, ; Jianfeng Wang,
| | - Jianfeng Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Limin Wei, ; Jianfeng Wang,
| |
Collapse
|
147
|
Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction as a key driver of severe COVID-19. World J Virol 2023; 12:68-90. [PMID: 37033148 PMCID: PMC10075050 DOI: 10.5501/wjv.v12.i2.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 03/21/2023] Open
Abstract
The intestinal lumen harbors a diverse consortium of microorganisms that participate in reciprocal crosstalk with intestinal immune cells and with epithelial and endothelial cells, forming a multi-layered barrier that enables the efficient absorption of nutrients without an excessive influx of pathogens. Despite being a lung-centered disease, severe coronavirus disease 2019 (COVID-19) affects multiple systems, including the gastrointestinal tract and the pertinent gut barrier function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can inflict either direct cytopathic injury to intestinal epithelial and endothelial cells or indirect immune-mediated damage. Alternatively, SARS-CoV-2 undermines the structural integrity of the barrier by modifying the expression of tight junction proteins. In addition, SARS-CoV-2 induces profound alterations to the intestinal microflora at phylogenetic and metabolomic levels (dysbiosis) that are accompanied by disruption of local immune responses. The ensuing dysregulation of the gut-lung axis impairs the ability of the respiratory immune system to elicit robust and timely responses to restrict viral infection. The intestinal vasculature is vulnerable to SARS-CoV-2-induced endothelial injury, which simultaneously triggers the activation of the innate immune and coagulation systems, a condition referred to as “immunothrombosis” that drives severe thrombotic complications. Finally, increased intestinal permeability allows an aberrant dissemination of bacteria, fungi, and endotoxin into the systemic circulation and contributes, to a certain degree, to the over-exuberant immune responses and hyper-inflammation that dictate the severe form of COVID-19. In this review, we aim to elucidate SARS-CoV-2-mediated effects on gut barrier homeostasis and their implications on the progression of the disease.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Konstantakis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| | - Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| |
Collapse
|
148
|
Tajasuwan L, Kettawan A, Rungruang T, Wunjuntuk K, Prombutara P. Role of Dietary Defatted Rice Bran in the Modulation of Gut Microbiota in AOM/DSS-Induced Colitis-Associated Colorectal Cancer Rat Model. Nutrients 2023; 15:nu15061528. [PMID: 36986258 PMCID: PMC10052090 DOI: 10.3390/nu15061528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Defatted rice bran (DRB) is a by-product of rice bran derived after the oil extraction. DRB contains several bioactive compounds, including dietary fiber and phytochemicals. The supplementation with DRB manifests chemopreventive effects in terms of anti-chronic inflammation, anti-cell proliferation, and anti-tumorigenesis in the azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colitis-associated colorectal cancer (CRC) model in rats. However, little is known about its effect on gut microbiota. Herein, we investigated the effect of DRB on gut microbiota and short chain fatty acid (SCFA) production, colonic goblet cell loss, and mucus layer thickness in the AOM/DSS-induced colitis-associated CRC rat model. The results suggested that DRB enhanced the production of beneficial bacteria (Alloprevotella, Prevotellaceae UCG-001, Ruminococcus, Roseburia, Butyricicoccus) and lessened the production of harmful bacteria (Turicibacter, Clostridium sensu stricto 1, Escherichia-Shigella, Citrobacter) present in colonic feces, mucosa, and tumors. In addition, DRB also assisted the cecal SCFAs (acetate, propionate, butyrate) production. Furthermore, DRB restored goblet cell loss and improved the thickness of the mucus layer in colonic tissue. These findings suggested that DRB could be used as a prebiotic supplement to modulate gut microbiota dysbiosis, which decreases the risks of CRC, therefore encouraging further research on the utilization of DRB in various nutritional health products to promote the health-beneficial bacteria in the colon.
Collapse
Affiliation(s)
- Laleewan Tajasuwan
- Graduate Student in Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Aikkarach Kettawan
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kansuda Wunjuntuk
- Department of Home Economics, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
149
|
Eleftheriotis G, Tsounis EP, Aggeletopoulou I, Dousdampanis P, Triantos C, Mouzaki A, Marangos M, Assimakopoulos SF. Alterations in gut immunological barrier in SARS-CoV-2 infection and their prognostic potential. Front Immunol 2023; 14:1129190. [PMID: 37006316 PMCID: PMC10050566 DOI: 10.3389/fimmu.2023.1129190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Although coronavirus disease 2019 (COVID-19) is primarily associated with mild respiratory symptoms, a subset of patients may develop more complicated disease with systemic complications and multiple organ injury. The gastrointestinal tract may be directly infected by SARS-CoV-2 or secondarily affected by viremia and the release of inflammatory mediators that cause viral entry from the respiratory epithelium. Impaired intestinal barrier function in SARS-CoV-2 infection is a key factor leading to excessive microbial and endotoxin translocation, which triggers a strong systemic immune response and leads to the development of viral sepsis syndrome with severe sequelae. Multiple components of the gut immune system are affected, resulting in a diminished or dysfunctional gut immunological barrier. Antiviral peptides, inflammatory mediators, immune cell chemotaxis, and secretory immunoglobulins are important parameters that are negatively affected in SARS-CoV-2 infection. Mucosal CD4+ and CD8+ T cells, Th17 cells, neutrophils, dendritic cells, and macrophages are activated, and the number of regulatory T cells decreases, promoting an overactivated immune response with increased expression of type I and III interferons and other proinflammatory cytokines. The changes in the immunologic barrier could be promoted in part by a dysbiotic gut microbiota, through commensal-derived signals and metabolites. On the other hand, the proinflammatory intestinal environment could further compromise the integrity of the intestinal epithelium by promoting enterocyte apoptosis and disruption of tight junctions. This review summarizes the changes in the gut immunological barrier during SARS-CoV-2 infection and their prognostic potential.
Collapse
Affiliation(s)
- Gerasimos Eleftheriotis
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Periklis Dousdampanis
- Department of Renal Diseases, “Agios Andreas” Patras State General Hospital, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stelios F. Assimakopoulos,
| |
Collapse
|
150
|
Cui X, Su Y, Huang X, Chen J, Ma J, Liao P, He X. Combined analysis of plasma metabolome and intestinal microbiome sequencing to explore jiashen prescription and its potential role in changing intestine–heart axis and effect on chronic heart failure. Front Cardiovasc Med 2023; 10:1147438. [PMID: 36970332 PMCID: PMC10036802 DOI: 10.3389/fcvm.2023.1147438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundHeart failure (HF) is a syndrome with global clinical and socioeconomic burden worldwide owing to its poor prognosis. Jiashen Prescription (JSP), a traditional Chinese medicine (TCM) formula, exhibits unambiguous effects on treating HF. Previously, we have reported that underlying mechanisms of JSP by an untargeted metabolomics approach, but the contribution of gut microbiota and metabolic interaction to the cardioprotective efficacy of JSP remains to be elucidated.Materials and methodsFirstly, the rat model of heart failure was established by the permanent ligation of the left anterior descending coronary artery. The efficacy evaluation of JSP in treating HF rats was per-formed by left ventricular ejection fraction (LVEF). Then, 16S rRNA gene sequencing and LC/MS-based metabolomic analysis were utilized to explore the characteristics of cecal-contents microecology and plasma metabolic profile, respectively. After that, the correlation between intestinal micro-ecological characteristics and plasma metabolic characteristics was analyzed to explore the potential mechanism of the JSP treatment in HF.ResultsJSP could improve the cardiac function of heart failure rats and thus ameliorate heart failure via enhancing rat LVEF. Results of intestinal flora analysis revealed that JSP not only adjusted gut microbiota disturbances by enriching species diversity, reducing the abundance of pathogenic bacteria (such as Allobaculum, Brevinema), as well as increasing the abundance of beneficial bacteria (such as Lactobacillus, Lachnospiraceae_NK4A136_group), but also improved metabolic disorders by reversing metabolite plasma levels to normality. Through the conjoint analysis of 8 metabolites and the OTUs relative abundance data in the 16srRNA sequencing results by WGCNA method, 215 floras significantly related to the eight compounds were identified. The results of the correlation analysis demonstrated a significant association between intestinal microbiota and plasma metabolic profile, especially the significant correlation of Ruminococcaceae_UCG-014 and Protoporphyrin IX, Ruminococcaceae_UCG-005, Christensenellaceae_R-7_group and nicotinamide, dihydrofolic acid.ConclusionThe present study illustrated the underlying mechanism of JSP to treat heart failure by affecting intestinal flora and plasma metabolites, provide a potential therapeutic strategy against heart failure.
Collapse
Affiliation(s)
- Xialian Cui
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yangyan Su
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaotong Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaping Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiang Ma
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peiran Liao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Peiran Liao
| | - Xin He
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
- Xin He
| |
Collapse
|