101
|
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev 2016; 37:190-222. [PMID: 27035557 PMCID: PMC4890265 DOI: 10.1210/er.2015-1116] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1-5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes-potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity-have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable "human models" that have contributed to our understanding of the pathophysiological basis of common T1D and T2D.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
102
|
Tang Y, Axelsson AS, Spégel P, Andersson LE, Mulder H, Groop LC, Renström E, Rosengren AH. Genotype-based treatment of type 2 diabetes with an α2A-adrenergic receptor antagonist. Sci Transl Med 2016; 6:257ra139. [PMID: 25298321 DOI: 10.1126/scitranslmed.3009934] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The feasibility of exploiting genomic information for individualized treatment of polygenic diseases remains uncertain. A genetic variant in ADRA2A, which encodes the α(2A)-adrenergic receptor (α(2A)AR), was recently associated with type 2 diabetes. This variant causes receptor overexpression and impaired insulin secretion; thus, we hypothesized that blocking α(2A)AR pharmacologically could improve insulin secretion in patients with the risk genotype. A total of 50 type 2 diabetes patients were recruited on the basis of ADRA2A genotype for a randomized placebo-controlled intervention study with the α(2A)AR antagonist yohimbine. The patients received 0, 10, or 20 mg of yohimbine at three separate visits. The primary endpoint was insulin secretion at 30 min (Ins30) during an oral glucose tolerance test (OGTT). Patients with the risk variant had 25% lower Ins30 than those without risk genotype. After administration of 20 mg of yohimbine, Ins30 was enhanced by 29% in the risk group, making secretion similar to patients carrying the low-risk allele. The corrected insulin response and disposition index in individuals with the high-risk (but not low-risk) allele were improved by 59 ± 18% and 43 ± 14%, respectively. The beneficial effect of yohimbine was not a consequence of improved insulin sensitivity. In summary, the data show that the insulin secretion defect in patients carrying the ADRA2A risk genotype can be corrected by α(2A)AR antagonism. The findings show that knowledge of genetic risk variants can be used to guide therapeutic interventions that directly target the underlying pathophysiology and demonstrate the potential of individualized genotype-specific treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Yunzhao Tang
- Department of Clinical Sciences, Lund University, SE-20502 Malmö, Sweden. 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics (Ministry of Health), Key Laboratory of Hormones and Development, Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Annika S Axelsson
- Department of Clinical Sciences, Lund University, SE-20502 Malmö, Sweden
| | - Peter Spégel
- Department of Clinical Sciences, Lund University, SE-20502 Malmö, Sweden
| | - Lotta E Andersson
- Department of Clinical Sciences, Lund University, SE-20502 Malmö, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences, Lund University, SE-20502 Malmö, Sweden
| | - Leif C Groop
- Department of Clinical Sciences, Lund University, SE-20502 Malmö, Sweden
| | - Erik Renström
- Department of Clinical Sciences, Lund University, SE-20502 Malmö, Sweden
| | - Anders H Rosengren
- Department of Clinical Sciences, Lund University, SE-20502 Malmö, Sweden.
| |
Collapse
|
103
|
Riobello C, Gómez J, Gil-Peña H, Tranche S, Reguero JR, de la Hera JM, Delgado E, Calvo D, Morís C, Santos F, Coto-Segura P, Iglesias S, Alonso B, Alvarez V, Coto E. KCNQ1 gene variants in the risk for type 2 diabetes and impaired renal function in the Spanish Renastur cohort. Mol Cell Endocrinol 2016; 427:86-91. [PMID: 26970180 DOI: 10.1016/j.mce.2016.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 12/22/2022]
Abstract
Several common KCNQ1 gene polymorphisms have been associated with the risk of type 2 diabetes (T2DM) and diabetic nephropathy. This effect is explained by the role of the kcnq1 protein as a potassium channel that in the pancreatic beta-cells drives an electrical signal that facilitates glucose-stimulated insulin secretion. The KCNQ1 gene is also expressed in the kidney, and could thus be implicated in the risk of developing impaired renal function. To test this hypothesis, we genotyped six common KCNQ1 gene variants (three single nucleotide polymorphisms, rs2237892, rs2237895, and rs231362, and three intronic indels) in 681 healthy elderly individuals (>65 years old) from the Spanish Renastur cohort. None of the six variants was associated with T2DM (180 diabetics vs. 581 non-diabetics). The intron 12 insertion allele was associated with a reduced estimated glomerular filtration rate (eGFR<60, n = 90 vs. eGFR≥60, n = 591; II vs ID + DD genotypes, p = 0.031, OR = 2.06, 95%CI = 1.12-4.14). We also performed a next generation sequencing search of variants in the coding regions of the KCNQ1 gene in 100 individuals with the extreme eGFR values. We found two rare amino acid changes (p.K393N and p.P408A) and the 393 Asn variant was found only among diabetics (n = 4; p = 0.05). The two rare alleles were present in the two eGFR groups. Our results suggest that a common KCNQ1 intron 12 indel polymorphism is a risk factor for impaired renal function independent of T2DM. If this association is confirmed by others, further research to determine the mechanism that drives this association would be warranted.
Collapse
Affiliation(s)
| | - Juan Gómez
- Genética Molecular-Laboratorio Medicina, HUCA, Oviedo, Spain
| | | | | | | | | | - Elías Delgado
- Endocrinología, HUCA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain
| | - David Calvo
- Cardiología-Fundación Asturcor, HUCA, Oviedo, Spain
| | - César Morís
- Cardiología-Fundación Asturcor, HUCA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain
| | - Fernando Santos
- Pediatría, HUCA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain
| | - Pablo Coto-Segura
- Dermatología, HUCA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain
| | - Sara Iglesias
- Genética Molecular-Laboratorio Medicina, HUCA, Oviedo, Spain
| | - Belén Alonso
- Genética Molecular-Laboratorio Medicina, HUCA, Oviedo, Spain
| | | | - Eliecer Coto
- Genética Molecular-Laboratorio Medicina, HUCA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; Red investigacion renal (REDINREN), Madrid, Spain.
| |
Collapse
|
104
|
Tkáč I, Gotthardová I. Pharmacogenetic aspects of the treatment of Type 2 diabetes with the incretin effect enhancers. Pharmacogenomics 2016; 17:795-804. [PMID: 27166975 DOI: 10.2217/pgs-2016-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Incretin effect enhancers are drugs used in the treatment of Type 2 diabetes and include GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors (gliptins). Variants in several genes were shown to be involved in the physiology of incretin secretion. Only two gene variants have evidence also from pharmacogenetic studies. TCF7L2 rs7903146 C>T and CTRB1/2 rs7202877 T>G minor allele carriers were both associated with a smaller reduction in HbA1c after gliptin treatment when compared with major allele carriers. After replication in further studies, these observations could be of clinical significance in helping to identify patients with potentially lower or higher response to gliptin treatment.
Collapse
Affiliation(s)
- Ivan Tkáč
- Department of Internal Medicine 4, Šafárik University, Faculty of Medicine, Rastislavova 43, 041 90 Košice, Slovakia.,Department of Internal Medicine 4, Pasteur University Hospital, Košice, Slovakia
| | - Ivana Gotthardová
- Department of Internal Medicine 4, Šafárik University, Faculty of Medicine, Rastislavova 43, 041 90 Košice, Slovakia.,Department of Internal Medicine 4, Pasteur University Hospital, Košice, Slovakia
| |
Collapse
|
105
|
Vinnakota KC, Cha CY, Rorsman P, Balaban RS, La Gerche A, Wade-Martins R, Beard DA, Jeneson JAL. Improving the physiological realism of experimental models. Interface Focus 2016; 6:20150076. [PMID: 27051507 PMCID: PMC4759746 DOI: 10.1098/rsfs.2015.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.
Collapse
Affiliation(s)
- Kalyan C. Vinnakota
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chae Y. Cha
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Robert S. Balaban
- Laboratory of Cardiac Energetics, National Heart Lung Blood Institute, Bethesda, MD, USA
| | - Andre La Gerche
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Daniel A. Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen A. L. Jeneson
- Neuroimaging Centre, Division of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
106
|
Acosta JR, Douagi I, Andersson DP, Bäckdahl J, Rydén M, Arner P, Laurencikiene J. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia 2016; 59:560-70. [PMID: 26607638 DOI: 10.1007/s00125-015-3810-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS We aimed to elucidate the impact of fat cell size and inflammatory status of adipose tissue on the development of type 2 diabetes in non-obese individuals. METHODS We characterised subcutaneous abdominal adipose tissue by examining stromal cell populations by 13 colour flow cytometry, measuring expression of adipogenesis genes in the progenitor cell fraction and determining lipolysis and adipose secretion of inflammatory proteins in 14 non-obese men with type 2 diabetes and 13 healthy controls matched for age, sex, body weight and total fat mass. RESULTS Individuals with diabetes had larger fat cells than the healthy controls but stromal cell population frequencies, adipose lipolysis and secretion of inflammatory proteins did not differ between the two groups. However, in the entire cohort fat cell size correlated positively with the ratio of M1/M2 macrophages, TNF-α secretion, lipolysis and insulin resistance. Expression of genes encoding regulators of adipogenesis and adipose morphology (BMP4, CEBPα [also known as CEBPA], PPARγ [also known as PPARG] and EBF1) correlated negatively with fat cell size. CONCLUSIONS/INTERPRETATION We show that a major phenotype of white adipose tissue in non-obese individuals with type 2 diabetes is adipocyte hypertrophy, which may be mediated by an impaired adipogenic capacity in progenitor cells. Consequently, this could have an impact on adipose tissue inflammation, release of fatty acids, ectopic fat deposition and insulin sensitivity.
Collapse
Affiliation(s)
- Juan R Acosta
- Lipid laboratory, Novum, D4, Department of Medicine Huddinge, Karolinska Institutet, Hälsovägen 7, 14186, Stockholm, Sweden
| | - Iyadh Douagi
- Center of Hematology and Regenerative Medicine, Novum, D4, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Daniel P Andersson
- Lipid laboratory, Novum, D4, Department of Medicine Huddinge, Karolinska Institutet, Hälsovägen 7, 14186, Stockholm, Sweden
| | - Jesper Bäckdahl
- Lipid laboratory, Novum, D4, Department of Medicine Huddinge, Karolinska Institutet, Hälsovägen 7, 14186, Stockholm, Sweden
| | - Mikael Rydén
- Lipid laboratory, Novum, D4, Department of Medicine Huddinge, Karolinska Institutet, Hälsovägen 7, 14186, Stockholm, Sweden
| | - Peter Arner
- Lipid laboratory, Novum, D4, Department of Medicine Huddinge, Karolinska Institutet, Hälsovägen 7, 14186, Stockholm, Sweden
| | - Jurga Laurencikiene
- Lipid laboratory, Novum, D4, Department of Medicine Huddinge, Karolinska Institutet, Hälsovägen 7, 14186, Stockholm, Sweden.
| |
Collapse
|
107
|
van der Kroef S, Noordam R, Deelen J, Akintola AA, Jansen SWM, Postmus I, Wijsman CA, Beekman M, Mooijaart SP, Slagboom PE, van Heemst D. Association between the rs7903146 Polymorphism in the TCF7L2 Gene and Parameters Derived with Continuous Glucose Monitoring in Individuals without Diabetes. PLoS One 2016; 11:e0149992. [PMID: 26914832 PMCID: PMC4767367 DOI: 10.1371/journal.pone.0149992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/08/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The rs7903146-T allele in the transcription factor 7-like 2 (TCF7L2) gene has been associated with impaired pancreatic insulin secretion, enhanced liver glucose production, and an increased risk of type 2 diabetes. Nevertheless, the impact of rs7903146 on daily glucose trajectories remains unclear. Continuous glucose monitoring (CGM) can estimate glycemia and glycemic variability based on consecutive glucose measurements collected over several days. The purpose of the present study was to investigate the associations of rs7903146 with glycemia and glycemic variability in middle-aged participants without diabetes. METHODS Complete data from 235 participants without diabetes from the Leiden Longevity Study were available. Participants were divided into two groups based on rs7903146 genotype; rs7903146-CC genotype carriers (N = 123) and rs7903146-CT/TT genotype carriers (N = 112). Validated parameters of glycemia (e.g., mean 24h glucose level) and glycemic variability (e.g., 24h standard deviation) were derived from data collected with a CGM system for a 72-hour period. RESULTS The study population was on average 64.7 years old (standard deviation = 5.9) and composed of 49.8% of women. Compared with rs7903146-CC carriers, rs7903146-CT/TT carriers exhibited a trend towards a higher mean 24-hour glucose level (5.21 versus 5.32 mmol/L; p-value = 0.15) and a significantly higher mean nocturnal glucose (3:00am- 6:00am; 4.48 versus 4.67 mmol/L; p-value = 0.03) that was explained for 34.6% by body weight and percentage body fat. No differences in measures of glycemic variability between the genotype groups were observed. CONCLUSION Despite limited sample size, our study indicates that the rs7903146-T allele in TCF7L2 was associated with a higher mean nocturnal glucose dependent on body composition, which might suggest that rs7902146 affects liver-specific aspects of glucose metabolism.
Collapse
Affiliation(s)
- Sabrina van der Kroef
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris Deelen
- Section of Molecular Epidemiology, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Abimbola A. Akintola
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Steffy W. M. Jansen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Iris Postmus
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Carolien A. Wijsman
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Simon P. Mooijaart
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - P. Eline Slagboom
- Section of Molecular Epidemiology, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
108
|
Horikoshi M, Pasquali L, Wiltshire S, Huyghe JR, Mahajan A, Asimit JL, Ferreira T, Locke AE, Robertson NR, Wang X, Sim X, Fujita H, Hara K, Young R, Zhang W, Choi S, Chen H, Kaur I, Takeuchi F, Fontanillas P, Thuillier D, Yengo L, Below JE, Tam CHT, Wu Y, Abecasis G, Altshuler D, Bell GI, Blangero J, Burtt NP, Duggirala R, Florez JC, Hanis CL, Seielstad M, Atzmon G, Chan JCN, Ma RCW, Froguel P, Wilson JG, Bharadwaj D, Dupuis J, Meigs JB, Cho YS, Park T, Kooner JS, Chambers JC, Saleheen D, Kadowaki T, Tai ES, Mohlke KL, Cox NJ, Ferrer J, Zeggini E, Kato N, Teo YY, Boehnke M, McCarthy MI, Morris AP. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Hum Mol Genet 2016; 25:2070-2081. [PMID: 26911676 PMCID: PMC5062576 DOI: 10.1093/hmg/ddw048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/15/2016] [Indexed: 11/14/2022] Open
Abstract
To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci.
Collapse
Affiliation(s)
- Momoko Horikoshi
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lorenzo Pasquali
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain, Josep Carreras Leukaemia Research Institute, Badalona, Spain, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Steven Wiltshire
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeroen R Huyghe
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jennifer L Asimit
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Teresa Ferreira
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adam E Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Xu Wang
- Saw Swee Hock School of Public Health
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA, Saw Swee Hock School of Public Health
| | - Hayato Fujita
- Department of Diabetes and Endocrinology, JR Tokyo General Hospital, Tokyo, Japan
| | - Kazuo Hara
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine and
| | - Robin Young
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Weihua Zhang
- Department of Cardiology, Ealing Hospital NHS Trust, Southall, Middlesex, UK, Department of Epidemiology and Biostatistics
| | | | - Han Chen
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA, Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ismeet Kaur
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Pierre Fontanillas
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Dorothée Thuillier
- Integrative Genomics and Modelization of Metabolic Diseases CNRS UMR8199, Lille Institute of Biology, E.G.I.D - FR3508 European Genomics Institute of Diabetes, Lille, France
| | - Loic Yengo
- Integrative Genomics and Modelization of Metabolic Diseases CNRS UMR8199, Lille Institute of Biology, E.G.I.D - FR3508 European Genomics Institute of Diabetes, Lille, France
| | - Jennifer E Below
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | - Gonçalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA, Department of Genetics and Department of Medicine, Harvard Medical School, Boston, MA, USA, Department of Molecular Biology, Diabetes Research Center (Diabetes Unit), Department of Medicine
| | - Graeme I Bell
- Departments of Medicine and Human Genetics, University of Chicago, Chicago, IL, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, Houston, TX, USA
| | - Noél P Burtt
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | | | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA, Diabetes Research Center (Diabetes Unit), Department of Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA, Center for Human Genetic Research, Department of Medicine, and
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Seielstad
- Blood Systems Research Institute, San Francisco, CA, USA, Department of Laboratory Medicine and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Gil Atzmon
- Department of Natural Science, University of Haifa, Haifa, Israel, Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, USA
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Philippe Froguel
- Department of Genomics of Common Disease, School of Public Health, Integrative Genomics and Modelization of Metabolic Diseases CNRS UMR8199, Lille Institute of Biology, E.G.I.D - FR3508 European Genomics Institute of Diabetes, Lille, France
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Dwaipayan Bharadwaj
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Josee Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA, National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, USA, General Medicine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics and Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital NHS Trust, Southall, Middlesex, UK, National Heart and Lung Institute, Cardiovascular Sciences, Hammersmith Campus, Imperial College Healthcare NHS Trust, and
| | - John C Chambers
- Department of Cardiology, Ealing Hospital NHS Trust, Southall, Middlesex, UK, Department of Epidemiology and Biostatistics, Imperial College Healthcare NHS Trust, and
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, Center for Non-Communicable Diseases, University of Pennsylvania, Philadelphia, PA, USA
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine and Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, Japan
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore, Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Nancy J Cox
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Jorge Ferrer
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain, Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain, Department of Medicine, Imperial College London, London, UK
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, Life Sciences Institute and Department of Statistics and Applied Probability, National University of Singapore, Singapore
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK, Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK and
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK, Department of Biostatistics, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
109
|
Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J Mol Endocrinol 2016; 56:R33-54. [PMID: 26576641 DOI: 10.1530/jme-15-0232] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
The inability of pancreatic β-cells to make sufficient insulin to control blood sugar is a central feature of the aetiology of most forms of diabetes. In this review we focus on the deleterious effects of oxidative stress and endoplasmic reticulum (ER) stress on β-cell insulin biosynthesis and secretion and on inflammatory signalling and apoptosis with a particular emphasis on type 2 diabetes (T2D). We argue that oxidative stress and ER stress are closely entwined phenomena fundamentally involved in β-cell dysfunction by direct effects on insulin biosynthesis and due to consequences of the ER stress-induced unfolded protein response. We summarise evidence that, although these phenomenon can be driven by intrinsic β-cell defects in rare forms of diabetes, in T2D β-cell stress is driven by a range of local environmental factors including increased drivers of insulin biosynthesis, glucolipotoxicity and inflammatory cytokines. We describe our recent findings that a range of inflammatory cytokines contribute to β-cell stress in diabetes and our discovery that interleukin 22 protects β-cells from oxidative stress regardless of the environmental triggers and can correct much of diabetes pathophysiology in animal models. Finally we summarise evidence that β-cell dysfunction is reversible in T2D and discuss therapeutic opportunities for relieving oxidative and ER stress and restoring glycaemic control.
Collapse
Affiliation(s)
- Sumaira Z Hasnain
- ImmunityInfection and Inflammation Program, Mater Research Institute, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaMetabolic Diseases ProgramMater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Johannes B Prins
- ImmunityInfection and Inflammation Program, Mater Research Institute, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaMetabolic Diseases ProgramMater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Michael A McGuckin
- ImmunityInfection and Inflammation Program, Mater Research Institute, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaMetabolic Diseases ProgramMater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
110
|
Abstract
How is β-cell mass adjusted to changes in the functional insulin requirements? The answer to this question is central to the understanding of the causes and (potentially) the therapy of type 2 diabetes. In this issue of Cell Metabolism, El Ouaamari et al. (2016) report that increased production of the protease inhibitor SerpinB1 in the liver links insulin resistance to stimulation of β-cell proliferation.
Collapse
Affiliation(s)
- Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, OX3 7LE, Oxford, UK; Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Headington, OX3 7LE, Oxford, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, OX3 7LE, Oxford, UK; Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Headington, OX3 7LE, Oxford, UK; Department of Physiology, Institute of Neuroscience and Physiology, University of Goteborg, Box 432, S-40530 Göteborg, Sweden.
| |
Collapse
|
111
|
Abstract
KCNE β-subunits assemble with and modulate the properties of voltage-gated K(+) channels. In the colon, stomach, and kidney, KCNE3 coassembles with the α-subunit KCNQ1 to form K(+) channels important for K(+) and Cl(-) secretion that appear to be voltage-independent. How KCNE3 subunits turn voltage-gated KCNQ1 channels into apparent voltage-independent KCNQ1/KCNE3 channels is not completely understood. Different mechanisms have been proposed to explain the effect of KCNE3 on KCNQ1 channels. Here, we use voltage clamp fluorometry to determine how KCNE3 affects the voltage sensor S4 and the gate of KCNQ1. We find that S4 moves in KCNQ1/KCNE3 channels, and that inward S4 movement closes the channel gate. However, KCNE3 shifts the voltage dependence of S4 movement to extreme hyperpolarized potentials, such that in the physiological voltage range, the channel is constitutively conducting. By separating S4 movement and gate opening, either by a mutation or PIP2 depletion, we show that KCNE3 directly affects the S4 movement in KCNQ1. Two negatively charged residues of KCNE3 (D54 and D55) are found essential for the effect of KCNE3 on KCNQ1 channels, mainly exerting their effects by an electrostatic interaction with R228 in S4. Our results suggest that KCNE3 primarily affects the voltage-sensing domain and only indirectly affects the gate.
Collapse
|
112
|
Zhang W, Wang H, Guan X, Niu Q, Li W. Variant rs2237892 of KCNQ1 Is Potentially Associated with Hypertension and Macrovascular Complications in Type 2 Diabetes Mellitus in A Chinese Han Population. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:364-70. [PMID: 26678516 PMCID: PMC4747647 DOI: 10.1016/j.gpb.2015.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/05/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
Abstract
KCNQ1 has been identified as a susceptibility gene of type 2 diabetes mellitus (T2DM) in Asian populations through genome-wide association studies. However, studies on the association between gene polymorphism of KCNQ1 and T2DM complications remain unclear. To further analyze the association between different alleles at the single nucleotide polymorphism (SNP) rs2237892 within KCNQ1 and TD2M and its complications, we conducted a case-control study in a Chinese Han population. The C allele of rs2237892 variant contributed to susceptibility to T2DM (odds ratio [OR], 1.45; 95% confidence interval [CI], 1.20-1.75). Genotypes CT (OR, 1.97; 95% CI, 1.24-3.15) and CC (OR, 2.49; 95% CI, 1.57-3.95) were associated with an increased risk of T2DM. Multivariate regression analysis was performed with adjustment of age, gender, and body mass index. We found that systolic blood pressure (P=0.015), prevalence of hypertension (P=0.037), and risk of macrovascular disease (OR, 2.10; CI, 1.00-4.45) were significantly higher in subjects with the CC genotype than in the combined population with genotype either CT or TT. Therefore, our data support that KCNQ1 is associated with an increased risk for T2DM and might contribute to the higher incidence of hypertension and macrovascular complications in patients with T2DM carrying the risk allele C though it needs further to be confirmed in a larger population.
Collapse
Affiliation(s)
- Wanlin Zhang
- Zhejiang Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, China
| | - Hailing Wang
- Zhejiang Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaomin Guan
- Zhejiang Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Niu
- Zhejiang Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, China
| | - Wei Li
- Zhejiang Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325025, China.
| |
Collapse
|
113
|
Jiang S, Shen D, Jia WJ, Han X, Shen N, Tao W, Gao X, Xue B, Li CJ. GGPPS-mediated Rab27A geranylgeranylation regulates β cell dysfunction during type 2 diabetes development by affecting insulin granule docked pool formation. J Pathol 2015; 238:109-19. [PMID: 26434932 DOI: 10.1002/path.4652] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/19/2015] [Accepted: 09/28/2015] [Indexed: 11/09/2022]
Abstract
Loss of first-phase insulin secretion associated with β cell dysfunction is an independent predictor of type 2 diabetes mellitus (T2DM) onset. Here we found that a critical enzyme involved in protein prenylation, geranylgeranyl pyrophosphate synthase (GGPPS), is required to maintain first-phase insulin secretion. GGPPS shows a biphasic expression pattern in islets of db/db mice during the progression of T2DM: GGPPS is increased during the insulin compensatory period, followed by a decrease during β cell dysfunction. Ggpps deletion in β cells results in typical T2DM β cell dysfunction, with blunted glucose-stimulated insulin secretion and consequent insulin secretion insufficiency. However, the number and size of islets and insulin biosynthesis are unaltered. Transmission electron microscopy shows a reduced number of insulin granules adjacent to the cellular membrane, suggesting a defect in docked granule pool formation, while the reserve pool is unaffected. Ggpps ablation depletes GGPP and impairs Rab27A geranylgeranylation, which is responsible for the docked pool deficiency in Ggpps-null mice. Moreover, GGPPS re-expression or GGPP administration restore glucose-stimulated insulin secretion in Ggpps-null islets. These results suggest that GGPPS-controlled protein geranylgeranylation, which regulates formation of the insulin granule docked pool, is critical for β cell function and insulin release during the development of T2DM.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Di Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Wen-Jun Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, People's Republic of China
| | - Ning Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Weiwei Tao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Bin Xue
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| |
Collapse
|
114
|
Gerencser AA. Bioenergetic Analysis of Single Pancreatic β-Cells Indicates an Impaired Metabolic Signature in Type 2 Diabetic Subjects. Endocrinology 2015. [PMID: 26204464 DOI: 10.1210/en.2015-1552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Impaired activation of mitochondrial energy metabolism by glucose has been demonstrated in type 2 diabetic β-cells. The cause of this dysfunction is unknown. The aim of this study was to identify segments of energy metabolism with normal or with altered function in human type 2 diabetes mellitus. The mitochondrial membrane potential (ΔψM), and its response to glucose, is the main driver of mitochondrial ATP synthesis and is hence a central mediator of glucose-induced insulin secretion, but its quantitative determination in β-cells from human donors has not been attempted, due to limitations in assay technology. Here, novel fluorescence microscopic assays are exploited to quantify ΔψM and its response to glucose and other secretagogues in β-cells of dispersed pancreatic islet cells from 4 normal and 3 type 2 diabetic organ donors. Mitochondrial volume densities and the magnitude of ΔψM in low glucose were not consistently altered in diabetic β-cells. However, ΔψM was consistently less responsive to elevation of glucose concentration, whereas the decreased response was not observed with metabolizable secretagogue mixtures that feed directly into the tricarboxylic acid cycle. Single-cell analysis of the heterogeneous responses to metabolizable secretagogues indicated no dysfunction in relaying ΔψM hyperpolarization to plasma membrane potential depolarization in diabetic β-cells. ΔψM of diabetic β-cells was distinctly responsive to acute inhibition of ATP synthesis during glucose stimulation. It is concluded that the mechanistic deficit in glucose-induced insulin secretion and mitochondrial hyperpolarization of diabetic human β-cells is located upstream of the tricarboxylic acid cycle and manifests in dampening the control of ΔψM by glucose metabolism.
Collapse
Affiliation(s)
- Akos A Gerencser
- Buck Institute for Research on Aging and Image Analyst Software, Novato, California 94945; and College of Pharmacy, Touro University California, Vallejo, California 94592
| |
Collapse
|
115
|
Abstract
Islets of Langerhans contain multiple hormone-producing endocrine cells controlling glucose homeostasis. Transcription establishes and maintains islet cellular fates and identities. Genetic and environmental disruption of islet transcription triggers cellular dysfunction and disease. Early transcriptional regulation studies of specific islet genes, including insulin (INS) and the transcription factor PDX1, identified the first cis-regulatory DNA sequences and trans-acting factors governing islet function. Here, we review how human islet "omics" studies are reshaping our understanding of transcriptional regulation in islet (dys)function and diabetes. First, we highlight the expansion of islet transcript number, form, and function and of DNA transcriptional regulatory elements controlling their production. Next, we cover islet transcriptional effects of genetic and environmental perturbation. Finally, we discuss how these studies' emerging insights should empower our diabetes research community to build mechanistic understanding of diabetes pathophysiology and to equip clinicians with tailored, precision medicine options to prevent and treat islet dysfunction and diabetes.
Collapse
Affiliation(s)
- Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine (JAX-GM), Farmington, CT, USA,
| | | | | | | |
Collapse
|
116
|
Dayeh T, Ling C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol 2015; 93:511-21. [PMID: 26369706 DOI: 10.1139/bcb-2015-0057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.
Collapse
Affiliation(s)
- Tasnim Dayeh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| |
Collapse
|
117
|
Abstract
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a key molecule in the soluble N-ethylmaleimide-sensitive factor attachment protein (SNARE) complex mediating fast Ca(2+)-triggered release of hormones and neurotransmitters, and both splice variants, SNAP-25a and SNAP-25b, can participate in this process. Here we explore the hypothesis that minor alterations in the machinery mediating regulated membrane fusion can increase the susceptibility for metabolic disease and precede obesity and type 2 diabetes. Thus, we used a mouse mutant engineered to express normal levels of SNAP-25 but only SNAP-25a. These SNAP-25b-deficient mice were exposed to either a control or a high-fat/high-sucrose diet. Monitoring of food intake, body weight, hypothalamic function, and lipid and glucose homeostases showed that SNAP-25b-deficient mice fed with control diet developed hyperglycemia, liver steatosis, and adipocyte hypertrophy, conditions dramatically exacerbated when combined with the high-fat/high-sucrose diet. Thus, modified SNARE function regulating stimulus-dependent exocytosis can increase the vulnerability to and even provoke metabolic disease. When combined with a high-fat/high-sucrose diet, this vulnerability resulted in diabesity. Our SNAP-25b-deficient mouse may represent a diabesity model.
Collapse
|
118
|
Shomorony A, Pfeifer CR, Aronova MA, Zhang G, Cai T, Xu H, Notkins AL, Leapman RD. Combining quantitative 2D and 3D image analysis in the serial block face SEM: application to secretory organelles of pancreatic islet cells. J Microsc 2015; 259:155-164. [PMID: 26139222 PMCID: PMC4515433 DOI: 10.1111/jmi.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/19/2015] [Indexed: 01/08/2023]
Abstract
A combination of two-dimensional (2D) and three-dimensional (3D) analyses of tissue volume ultrastructure acquired by serial block face scanning electron microscopy can greatly shorten the time required to obtain quantitative information from big data sets that contain many billions of voxels. Thus, to analyse the number of organelles of a specific type, or the total volume enclosed by a population of organelles within a cell, it is possible to estimate the number density or volume fraction of that organelle using a stereological approach to analyse randomly selected 2D block face views through the cells, and to combine such estimates with precise measurement of 3D cell volumes by delineating the plasma membrane in successive block face images. The validity of such an approach can be easily tested since the entire 3D tissue volume is available in the serial block face scanning electron microscopy data set. We have applied this hybrid 3D/2D technique to determine the number of secretory granules in the endocrine α and β cells of mouse pancreatic islets of Langerhans, and have been able to estimate the total insulin content of a β cell.
Collapse
Affiliation(s)
- A Shomorony
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - C R Pfeifer
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - M A Aronova
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - G Zhang
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - T Cai
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - H Xu
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - A L Notkins
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - R D Leapman
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
119
|
Chen LN, Sun Q, Liu SQ, Hu H, Lv J, Ji WJ, Wang M, Chen MX, Zhou J. Erythropoietin improves glucose metabolism and pancreatic β-cell damage in experimental diabetic rats. Mol Med Rep 2015; 12:5391-8. [PMID: 26126591 DOI: 10.3892/mmr.2015.4006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 06/03/2015] [Indexed: 11/05/2022] Open
Abstract
Previous studies have implicated erythropoietin (EPO) signaling in the regulation of glucose metabolism. Whether EPO can be used treat diabetes and the underlying mechanism remain to be elucidated. The present study aimed to investigate whether EPO affects glucose metabolism, and the underlying mechanisms, in experimental diabetic rats. The effects of EPO (300 U/kg three times a week for 4 weeks) on glucose metabolism, hematopoietic function, blood selenium content and the ultrastructure of pancreatic β‑cells were investigated in low dose (25 mg/kg body weight) streptozotocin‑induced experimental diabetic rats provided with a high‑fat diet. The results demonstrated that EPO significantly decreased the fasting blood glucose, the area under the curve of the oral glucose tolerance and insulin tolerance tests and L‑alanine gluconeogenesis. Ultrastructural examination of the pancreatic islets revealed that EPO prevented the dysfunction of pancreatic β‑cells in experimental diabetic rats, ameliorated cytoplasmic vacuolation and fragmentation of mitochondria, and increased the number of secretory granules. EPO administration increased the activities of superoxide dismutase and glutathione peroxidase, and decreased the level of malondialdehyde. Additionally, EPO increased blood selenium in the diabetic rats and produced a hematopoietic effect. These results indicated that EPO modulated glucose metabolism and improved pancreatic β‑cells damage by increasing anti‑oxidation. The detailed mechanisms underlying these effects require further investigation.
Collapse
Affiliation(s)
- Li-Na Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xian, Shaanxi 710061, P.R. China
| | - Qiang Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xian, Shaanxi 710061, P.R. China
| | - Shu-Qing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xian, Shaanxi 710061, P.R. China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xian, Shaanxi 710061, P.R. China
| | - Juan Lv
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xian, Shaanxi 710061, P.R. China
| | - Wen-Jun Ji
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xian, Shaanxi 710061, P.R. China
| | - Meng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xian, Shaanxi 710061, P.R. China
| | - Ming-Xia Chen
- Department of Electron Microscopy Room, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xian, Shaanxi 710061, P.R. China
| | - Jun Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xian, Shaanxi 710061, P.R. China
| |
Collapse
|
120
|
Paternal allelic mutation at the Kcnq1 locus reduces pancreatic β-cell mass by epigenetic modification of Cdkn1c. Proc Natl Acad Sci U S A 2015; 112:8332-7. [PMID: 26100882 DOI: 10.1073/pnas.1422104112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genetic factors are important determinants of the onset and progression of diabetes mellitus. Numerous susceptibility genes for type 2 diabetes, including potassium voltage-gated channel, KQT-like subfamily Q, member1 (KCNQ1), have been identified in humans by genome-wide analyses and other studies. Experiments with genetically modified mice have also implicated various genes in the pathogenesis of diabetes. However, the possible effects of the parent of origin for diabetes susceptibility alleles on disease onset have remained unclear. Here, we show that a mutation at the Kcnq1 locus reduces pancreatic β-cell mass in mice by epigenetic modulation only when it is inherited from the father. The noncoding RNA KCNQ1 overlapping transcript1 (Kcnq1ot1) is expressed from the Kcnq1 locus and regulates the expression of neighboring genes on the paternal allele. We found that disruption of Kcnq1 results in reduced Kcnq1ot1 expression as well as the increased expression of cyclin-dependent kinase inhibitor 1C (Cdkn1c), an imprinted gene that encodes a cell cycle inhibitor, only when the mutation is on the paternal allele. Furthermore, histone modification at the Cdkn1c promoter region in pancreatic islets was found to contribute to this phenomenon. Our observations suggest that the Kcnq1 genomic region directly regulates pancreatic β-cell mass and that genomic imprinting may be a determinant of the onset of diabetes mellitus.
Collapse
|
121
|
Cantley J, Ashcroft FM. Q&A: insulin secretion and type 2 diabetes: why do β-cells fail? BMC Biol 2015; 13:33. [PMID: 25982967 PMCID: PMC4435650 DOI: 10.1186/s12915-015-0140-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- James Cantley
- Department of Physiology, Anatomy & Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy & Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
122
|
Huerta-Chagoya A, Vázquez-Cárdenas P, Moreno-Macías H, Tapia-Maruri L, Rodríguez-Guillén R, López-Vite E, García-Escalante G, Escobedo-Aguirre F, Parra-Covarrubias A, Cordero-Brieño R, Manzo-Carrillo L, Zacarías-Castillo R, Vargas-García C, Aguilar-Salinas C, Tusié-Luna T. Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women. PLoS One 2015; 10:e0126408. [PMID: 25973943 PMCID: PMC4431878 DOI: 10.1371/journal.pone.0126408] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and physiological similarities among Gestational Diabetes Mellitus (GDM) and Type 2 Diabetes (T2D) suggest that both diseases, share a common genetic background. T2D risk variants have been associated to GDM susceptibility. However, the genetic architecture of GDM is not yet completely understood. We analyzed 176 SNPs for 115 loci previously associated to T2D, GDM and body mass index (BMI), as well as a set of 118 Ancestry Informative Markers (AIMs), in 750 pregnant Mexican women. Association with GDM was found for two of the most frequently replicated T2D loci: a TCF7L2 haplotype (CTTC: rs7901695, rs4506565, rs7903146, rs12243326; P=2.16x10-06; OR=2.95) and a KCNQ1 haplotype (TTT: rs2237892, rs163184, rs2237897; P=1.98x10-05; OR=0.55). In addition, we found two loci associated to glycemic traits: CENTD2 (60’ OGTT glycemia: rs1552224, P=0.03727) and MTNR1B (HOMA B: rs1387153, P=0.05358). Remarkably, a major susceptibility SLC16A11 locus for T2D in Mexicans was not shown to play a role in GDM risk. The fact that two of the main T2D associated loci also contribute to the risk of developing GDM in Mexicans, confirm that both diseases share a common genetic background. However, lack of association with a Native American contribution T2D risk haplotype, SLC16A11, suggests that other genetic mechanisms may be in play for GDM.
Collapse
Affiliation(s)
- Alicia Huerta-Chagoya
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | - Paola Vázquez-Cárdenas
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | | | - Leonardo Tapia-Maruri
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | - Rosario Rodríguez-Guillén
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | - Erika López-Vite
- Departamento de Ginelocología y Obstetricia, Hospital General O´Horan, Mérida, Yucatán, México
| | | | - Fernando Escobedo-Aguirre
- Departamento de Ginecología y Medicina Perinatal, Centro Médico Nacional 20 de Noviembre, D.F., Mexico City, Mexico
| | | | - Roberto Cordero-Brieño
- Departamento de Ginecología y Obstetricia, Hospital General Manuel Gea González, D.F., Mexico City, Mexico
| | - Lizette Manzo-Carrillo
- Departamento de Ginecología y Obstetricia, Hospital General Manuel Gea González, D.F., Mexico City, Mexico
| | - Rogelio Zacarías-Castillo
- Departamento de Ginecología y Obstetricia, Hospital General Manuel Gea González, D.F., Mexico City, Mexico
| | - Carlos Vargas-García
- Departamento de Ginecología y Obstetricia, Centro de Investigación Materno Infantil GEN, D.F., Mexico City, Mexico
| | - Carlos Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salcador Zubirán, D.F., Mexico City, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
- * E-mail:
| |
Collapse
|
123
|
Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J 2015; 466:203-18. [PMID: 25697093 DOI: 10.1042/bj20141384] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Insulin release from pancreatic β-cells is required to maintain normal glucose homoeostasis in man and many other animals. Defective insulin secretion underlies all forms of diabetes mellitus, a disease currently reaching epidemic proportions worldwide. Although the destruction of β-cells is responsible for Type 1 diabetes (T1D), both lowered β-cell mass and loss of secretory function are implicated in Type 2 diabetes (T2D). Emerging results suggest that a functional deficiency, involving de-differentiation of the mature β-cell towards a more progenitor-like state, may be an important driver for impaired secretion in T2D. Conversely, at least in rodents, reprogramming of islet non-β to β-cells appears to occur spontaneously in models of T1D, and may occur in man. In the present paper, we summarize the biochemical properties which define the 'identity' of the mature β-cell as a glucose sensor par excellence. In particular, we discuss the importance of suppressing a group of 11 'disallowed' housekeeping genes, including Ldha and the monocarboxylate transporter Mct1 (Slc16a1), for normal nutrient sensing. We then survey the changes in the expression and/or activity of β-cell-enriched transcription factors, including FOXO1, PDX1, NKX6.1, MAFA and RFX6, as well as non-coding RNAs, which may contribute to β-cell de-differentiation and functional impairment in T2D. The relevance of these observations for the development of new approaches to treat T1D and T2D is considered.
Collapse
|
124
|
Prasad RB, Groop L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 2015; 6:87-123. [PMID: 25774817 PMCID: PMC4377835 DOI: 10.3390/genes6010087] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex disease that is caused by a complex interplay between genetic, epigenetic and environmental factors. While the major environmental factors, diet and activity level, are well known, identification of the genetic factors has been a challenge. However, recent years have seen an explosion of genetic variants in risk and protection of T2D due to the technical development that has allowed genome-wide association studies and next-generation sequencing. Today, more than 120 variants have been convincingly replicated for association with T2D and many more with diabetes-related traits. Still, these variants only explain a small proportion of the total heritability of T2D. In this review, we address the possibilities to elucidate the genetic landscape of T2D as well as discuss pitfalls with current strategies to identify the elusive unknown heritability including the possibility that our definition of diabetes and its subgroups is imprecise and thereby makes the identification of genetic causes difficult.
Collapse
Affiliation(s)
- Rashmi B Prasad
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Lund University, CRC, Skåne University Hospital SUS, SE-205 02 Malmö, Sweden.
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Lund University, CRC, Skåne University Hospital SUS, SE-205 02 Malmö, Sweden.
- Finnish Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki 00014, Finland.
| |
Collapse
|
125
|
Kim IS, Yang SY, Han JH, Jung SH, Park HS, Myung CS. Differential Gene Expression in GPR40-Overexpressing Pancreatic β-cells Treated with Linoleic Acid. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:141-9. [PMID: 25729276 PMCID: PMC4342734 DOI: 10.4196/kjpp.2015.19.2.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 01/20/2023]
Abstract
"G protein-coupled receptor 40" (GPR40), a receptor for long-chain fatty acids, mediates the stimulation of glucose-induced insulin secretion. We examined the profiles of differential gene expression in GPR40-activated cells treated with linoleic acid, and finally predicted the integral pathways of the cellular mechanism of GPR40-mediated insulinotropic effects. After constructing a GPR40-overexpressing stable cell line (RIN-40) from the rat pancreatic β-cell line RIN-5f, we determined the gene expression profiles of RIN-5f and RIN-40. In total, 1004 genes, the expression of which was altered at least twofold, were selected in RIN-5f versus RIN-40. Moreover, the differential genetic profiles were investigated in RIN-40 cells treated with 30 µM linoleic acid, which resulted in selection of 93 genes in RIN-40 versus RIN-40 treated with linoleic acid. Based on the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG, http://www.genome.jp/kegg/), sets of genes induced differentially by treatment with linoleic acid in RIN-40 cells were found to be related to mitogen-activated protein (MAP) kinase- and neuroactive ligand-receptor interaction pathways. A gene ontology (GO) study revealed that more than 30% of the genes were associated with signal transduction and cell proliferation. Thus, this study elucidated a gene expression pattern relevant to the signal pathways that are regulated by GPR40 activation during the acute period. Together, these findings increase our mechanistic understanding of endogenous molecules associated with GPR40 function, and provide information useful for identification of a target for the management of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- In-Su Kim
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764, Korea
| | - So-Young Yang
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764, Korea. ; Institute of Drug Research & Development, Chungnam National University, Daejeon 305-764, Korea
| | - Joo-Hui Han
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764, Korea
| | - Sang-Hyuk Jung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764, Korea
| | - Hyun-Soo Park
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764, Korea
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764, Korea. ; Institute of Drug Research & Development, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
126
|
Rutter GA, Hodson DJ. Beta cell connectivity in pancreatic islets: a type 2 diabetes target? Cell Mol Life Sci 2015; 72:453-467. [PMID: 25323131 PMCID: PMC11113448 DOI: 10.1007/s00018-014-1755-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Beta cell connectivity describes the phenomenon whereby the islet context improves insulin secretion by providing a three-dimensional platform for intercellular signaling processes. Thus, the precise flow of information through homotypically interconnected beta cells leads to the large-scale organization of hormone release activities, influencing cell responses to glucose and other secretagogues. Although a phenomenon whose importance has arguably been underappreciated in islet biology until recently, a growing number of studies suggest that such cell-cell communication is a fundamental property of this micro-organ. Hence, connectivity may plausibly be targeted by both environmental and genetic factors in type 2 diabetes mellitus (T2DM) to perturb normal beta cell function and insulin release. Here, we review the mechanisms that contribute to beta cell connectivity, discuss how these may fail during T2DM, and examine approaches to restore insulin secretion by boosting cell communication.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - David J Hodson
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
127
|
Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de Moraes Rego FG, Frigeri HR. ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem 2015; 48:476-82. [PMID: 25583094 DOI: 10.1016/j.clinbiochem.2014.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is a public health problem, which affects a millions worldwide. Most diabetes cases are classified as type 2 diabetes mellitus, which is highly associated with obesity. Type 2 diabetes is considered a multifactorial disorder, with both environmental and genetic factors contributing to its development. An important issue linked with diabetes development is the failure of the insulin releasing mechanism involving abnormal activity of the ATP-dependent potassium channel, KATP. This channel is a transmembrane protein encoded by the KCNJ11 and ABCC8 genes. Furthermore, polymorphisms in these genes have been linked to type 2 diabetes because of the role of KATP in insulin release. While several genetic variations have been reported to be associated with this disease, the E23K polymorphism is most commonly associated with this pathology, as well as to obesity. Here, we review the molecular genetics of the potassium channel and discusses its most described polymorphisms and their associations with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dianne Heloisa Bonfanti
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Larissa Pontes Alcazar
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Priscila Akemi Arakaki
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Laysa Toschi Martins
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Bruna Carla Agustini
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | | | | |
Collapse
|
128
|
Davis MA, Macko AR, Steyn LV, Anderson MJ, Limesand SW. Fetal adrenal demedullation lowers circulating norepinephrine and attenuates growth restriction but not reduction of endocrine cell mass in an ovine model of intrauterine growth restriction. Nutrients 2015; 7:500-16. [PMID: 25584967 PMCID: PMC4303851 DOI: 10.3390/nu7010500] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/25/2014] [Indexed: 12/26/2022] Open
Abstract
Placental insufficiency is associated with fetal hypoglycemia, hypoxemia, and elevated plasma norepinephrine (NE) that become increasingly pronounced throughout the third trimester and contribute to intrauterine growth restriction (IUGR). This study evaluated the effect of fetal adrenal demedullation (AD) on growth and pancreatic endocrine cell mass. Placental insufficiency-induced IUGR was created by exposing pregnant ewes to elevated ambient temperatures during mid-gestation. Treatment groups consisted of control and IUGR fetuses with either surgical sham or AD at 98 days gestational age (dGA; term = 147 dGA), a time-point that precedes IUGR. Samples were collected at 134 dGA. IUGR-sham fetuses were hypoxemic, hypoglycemic, and hypoinsulinemic, and values were similar in IUGR-AD fetuses. Plasma NE concentrations were ~5-fold greater in IUGR-sham compared to control-sham, control-AD, and IUGR-AD fetuses. IUGR-sham and IUGR-AD fetuses weighed less than controls. Compared to IUGR-sham fetuses, IUGR-AD fetuses weighed more and asymmetrical organ growth was absent. Pancreatic β-cell mass and α-cell mass were lower in both IUGR-sham and IUGR-AD fetuses compared to controls, however, pancreatic endocrine cell mass relative to fetal mass was lower in IUGR-AD fetuses. These findings indicate that NE, independently of hypoxemia, hypoglycemia and hypoinsulinemia, influence growth and asymmetry of growth but not pancreatic endocrine cell mass in IUGR fetuses.
Collapse
Affiliation(s)
- Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Leah V Steyn
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
129
|
Rulifson IC, Majeti JZ, Xiong Y, Hamburger A, Lee KJ, Miao L, Lu M, Gardner J, Gong Y, Wu H, Case R, Yeh WC, Richards WG, Baribault H, Li Y. Inhibition of secreted frizzled-related protein 5 improves glucose metabolism. Am J Physiol Endocrinol Metab 2014; 307:E1144-52. [PMID: 25370851 DOI: 10.1152/ajpendo.00283.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elucidating the role of secreted frizzled-related protein 5 (SFRP5) in metabolism and obesity has been complicated by contradictory findings when knockout mice were used to determine metabolic phenotypes. By overexpressing SFRP5 in obese, prediabetic mice we consistently observed elevated hyperglycemia and glucose intolerance, supporting SFRP5 as a negative regulator of glucose metabolism. Accordingly, Sfrp5 mRNA expression analysis of both epididymal and subcutaneous adipose depots of mice indicated a correlation with obesity. Thus, we generated a monoclonal antibody (mAb) against SFRP5 to ascertain the effect of SFRP5 inhibition in vivo. Congruent with SFRP5 overexpression worsening blood glucose levels and glucose intolerance, anti-SFRP5 mAb therapy improved these phenotypes in vivo. The results from both the overexpression and mAb inhibition studies suggest a role for SFRP5 in glucose metabolism and pancreatic β-cell function and thus establish the use of an anti-SFRP5 mAb as a potential approach to treat type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Yumei Xiong
- Amgen Incorporated, South San Francisco, California; and
| | | | | | - Li Miao
- Amgen Incorporated, South San Francisco, California; and
| | - Mei Lu
- Amgen Incorporated, South San Francisco, California; and
| | | | - Yan Gong
- Amgen Incorporated, South San Francisco, California; and
| | - Hai Wu
- Amgen Incorporated, South San Francisco, California; and
| | - Ryan Case
- Amgen Incorporated, South San Francisco, California; and
| | - Wen-Chen Yeh
- Amgen Incorporated, South San Francisco, California; and
| | | | | | - Yang Li
- Amgen Incorporated, South San Francisco, California; and
| |
Collapse
|
130
|
Piccand J, Strasser P, Hodson DJ, Meunier A, Ye T, Keime C, Birling MC, Rutter GA, Gradwohl G. Rfx6 maintains the functional identity of adult pancreatic β cells. Cell Rep 2014; 9:2219-32. [PMID: 25497096 PMCID: PMC4542305 DOI: 10.1016/j.celrep.2014.11.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/27/2014] [Accepted: 11/20/2014] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence suggests that loss of β cell characteristics may cause insulin secretory deficiency in diabetes, but the underlying mechanisms remain unclear. Here, we show that Rfx6, whose mutation leads to neonatal diabetes in humans, is essential to maintain key features of functionally mature β cells in mice. Rfx6 loss in adult β cells leads to glucose intolerance, impaired β cell glucose sensing, and defective insulin secretion. This is associated with reduced expression of core components of the insulin secretion pathway, including glucokinase, the Abcc8/SUR1 subunit of KATP channels and voltage-gated Ca(2+) channels, which are direct targets of Rfx6. Moreover, Rfx6 contributes to the silencing of the vast majority of "disallowed" genes, a group usually specifically repressed in adult β cells, and thus to the maintenance of β cell maturity. These findings raise the possibility that changes in Rfx6 expression or activity may contribute to β cell failure in humans.
Collapse
Affiliation(s)
- Julie Piccand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Perrine Strasser
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - David J Hodson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, UK
| | - Aline Meunier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | | | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, UK
| | - Gérard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France.
| |
Collapse
|
131
|
Hall E, Volkov P, Dayeh T, Esguerra JLS, Salö S, Eliasson L, Rönn T, Bacos K, Ling C. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol 2014; 15:522. [PMID: 25517766 PMCID: PMC4256841 DOI: 10.1186/s13059-014-0522-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022] Open
Abstract
Background Epigenetic factors regulate tissue-specific expression and X-chromosome inactivation. Previous studies have identified epigenetic differences between sexes in some human tissues. However, it is unclear whether epigenetic modifications contribute to sex-specific differences in insulin secretion and metabolism. Here, we investigate the impact of sex on the genome-wide DNA methylation pattern in human pancreatic islets from 53 males and 34 females, and relate the methylome to changes in expression and insulin secretion. Results Glucose-stimulated insulin secretion is higher in female versus male islets. Genome-wide DNA methylation data in human islets clusters based on sex. While the chromosome-wide DNA methylation level on the X-chromosome is higher in female versus male islets, the autosomes do not display a global methylation difference between sexes. Methylation of 8,140 individual X-chromosome sites and 470 autosomal sites shows sex-specific differences in human islets. These include sites in/near AR, DUSP9, HNF4A, BCL11A and CDKN2B. 61 X-chromosome genes and 18 autosomal genes display sex-specific differences in both DNA methylation and expression. These include NKAP, SPESP1 and APLN, which exhibited lower expression in females. Functional analyses demonstrate that methylation of NKAP and SPESP1 promoters in vitro suppresses their transcriptional activity. Silencing of Nkap or Apln in clonal beta-cells results in increased insulin secretion. Differential methylation between sexes is associated with altered levels of microRNAs miR-660 and miR-532 and related target genes. Conclusions Chromosome-wide and gene-specific sex differences in DNA methylation associate with altered expression and insulin secretion in human islets. Our data demonstrate that epigenetics contribute to sex-specific metabolic phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0522-z) contains supplementary material, which is available to authorized users.
Collapse
|
132
|
Bailey KA, Savic D, Zielinski M, Park SY, Wang LJ, Witkowski P, Brady M, Hara M, Bell GI, Nobrega MA. Evidence of non-pancreatic beta cell-dependent roles of Tcf7l2 in the regulation of glucose metabolism in mice. Hum Mol Genet 2014; 24:1646-54. [PMID: 25398947 PMCID: PMC4381752 DOI: 10.1093/hmg/ddu577] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-coding variation within TCF7L2 remains the strongest genetic determinant of type 2 diabetes risk in humans. A considerable effort has been placed in understanding the functional roles of TCF7L2 in pancreatic beta cells, despite evidence of TCF7L2 expression in various peripheral tissues important in glucose homeostasis. Here, we use a humanized mouse model overexpressing Tcf7l2, resulting in glucose intolerance, to infer the contribution of Tcf7l2 overexpression in beta cells and in other tissues to the metabolic phenotypes displayed by these mice. Restoring Tcf7l2 expression specifically in beta cells to endogenous levels, in face of its overexpression elsewhere, results in impaired insulin secretion, reduced beta cell number and islet area, corroborating data obtained in humans showing similar phenotypes as a result of manipulations leading to Tcf7l2 loss of function. Interestingly, the persistent overexpression of Tcf7l2 in non-pancreatic tissues results in a significant worsening in glucose tolerance in vivo, indicating that Tcf7l2 overexpression in beta cells does not account for the glucose intolerance in the Tcf7l2 overexpression mouse model. Collectively, these data posit that Tcf7l2 plays key roles in glucose metabolism through actions beyond pancreatic beta cells, and further points to functionally opposing cell-type specific effects for Tcf7l2 on the maintenance of balanced glucose metabolism, thereby urging a careful examination of its role in non-pancreatic tissues as well as its composite metabolic effects across distinct tissues. Uncovering these roles may lead to new therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew Brady
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL 60637, USA
| | | | - Graeme I Bell
- Department of Human Genetics, Department of Medicine
| | | |
Collapse
|
133
|
Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, Ladenvall C, Rönn T, Ling C. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 2014; 10:e1004735. [PMID: 25375650 PMCID: PMC4222689 DOI: 10.1371/journal.pgen.1004735] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/05/2014] [Indexed: 12/29/2022] Open
Abstract
Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development. However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of 468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis, corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets. Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified candidate genes (GPX7, GSTT1 and SNX19) directly affect key biological processes such as proliferation and apoptosis in pancreatic β-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation interacts to influence gene expression, islet function and potential diabetes risk in humans. Inter-individual variation in genetics and epigenetics affects biological processes and disease susceptibility. However, most studies have investigated genetic and epigenetic mechanisms independently and to uncover novel mechanisms affecting disease susceptibility there is a highlighted need to study interactions between these factors on a genome-wide scale. To identify novel loci affecting islet function and potentially diabetes, we performed the first genome-wide methylation quantitative trait locus (mQTL) analysis in human pancreatic islets including DNA methylation of 468,787 CpG sites located throughout the genome. Our results showed that DNA methylation of 11,735 CpGs in 4,504 unique genes is regulated by genetic factors located in cis (67,438 SNP-CpG pairs). Furthermore, significant mQTLs cover previously reported diabetes loci including KCNJ11, INS, HLA, PDX1 and GRB10. We also found mQTLs associated with gene expression and insulin secretion in human islets. By performing causality inference tests (CIT), we identified CpGs where DNA methylation potentially mediates the genetic impact on gene expression and insulin secretion. Our functional follow-up experiments further demonstrated that identified mQTLs/genes (GPX7, GSTT1 and SNX19) directly affect pancreatic β-cell function. Together, our study provides a detailed map of genome-wide associations between genetic and epigenetic variation, which affect gene expression and insulin secretion in human pancreatic islets.
Collapse
Affiliation(s)
- Anders H. Olsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Petr Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Karl Bacos
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Tasnim Dayeh
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Elin Hall
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Emma A. Nilsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Tina Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
- * E-mail:
| |
Collapse
|
134
|
Hornbak M, Allin KH, Jensen ML, Lau CJ, Witte D, Jørgensen ME, Sandbæk A, Lauritzen T, Andersson Å, Pedersen O, Hansen T. A combined analysis of 48 type 2 diabetes genetic risk variants shows no discriminative value to predict time to first prescription of a glucose lowering drug in Danish patients with screen detected type 2 diabetes. PLoS One 2014; 9:e104837. [PMID: 25157406 PMCID: PMC4144838 DOI: 10.1371/journal.pone.0104837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/03/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To investigate the genetic influence of 48 type 2 diabetes susceptibility variants on disease progression measured as risk of early prescription redemption of glucose lowering drugs in screen-detected patients with type 2 diabetes. METHODS We studied type 2 diabetes progression in 1,480 patients with screen-detected type 2 diabetes from the ADDITION-Denmark study using information of redeemed prescriptions from the Register of Medicinal Products Statistics from 2001-2009 in Denmark. Patients were cluster randomized by general practitioners, who were randomized to treat type 2 diabetes according to either a conventional or a multifactorial intensive treatment algorithm. We investigated the genetic influence on diabetes progression by constructing a genetic risk score (GRS) of all 48 validated type 2 diabetes susceptibility variants, a GRS of 11 variants linked to β-cell function and a GRS of 3 variants linked to insulin sensitivity and assessed the association between number of risk alleles and time from diagnosis until first redeemed prescription of either any glucose lowering drug or an insulin drug. RESULTS The GRS linked to insulin sensitivity only nominally increased the risk of an early prescription redemption with an insulin drug by 39% (HR [95% C.I.] = 1.39 [1.09-1.77], p = 0.009] in patients randomized to the intensive treatment group. Furthermore, the strongest univariate predictors of diabetes progression for the intensive treatment group (measured as time to first insulin) were younger age (HR [95% C.I.] = 0.96 [0.93-0.99]), increased BMI (1.05 [1.01-1.09]), increased HbA1c (1.50 [1.36-.66]), increased TG (1.24 [1.11-1.39]) and reduced fasting serum HDL (0.37 [0.17-0.80]) at baseline. Similar results were obtained for the conventional treatment group. CONCLUSION Higher levels of HbA1c, fasting circulating levels of triglyceride, lower HDL, larger BMI and younger age are significant determinants of early pharmacological intervention in type 2 diabetes. However, known common type 2 diabetes-associated gene variants do not appear to significantly affect disease progression.
Collapse
Affiliation(s)
- Malene Hornbak
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Kristine Højgaard Allin
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Majken Linnemann Jensen
- Steno Diabetes Center A/S, Gentofte, Denmark
- Section for Social and Clinical Pharmacy, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Juel Lau
- Research Centre for Prevention and Health, Capital Region of Denmark, Glostrup Hospital, Glostrup, Denmark
| | - Daniel Witte
- Public Research Centre for Health, Centre for Health Studies, Strassen, Luxembourg
| | | | - Annelli Sandbæk
- Department of Public Health, Section of General Practice Medicine, Aarhus University, Aarhus, Denmark
| | - Torsten Lauritzen
- Department of Public Health, Section of General Practice Medicine, Aarhus University, Aarhus, Denmark
| | - Åsa Andersson
- School of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section of Molecular Diabetes & Metabolism, Institute of Clinical Research & Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
135
|
Pedersen MG, Salunkhe VA, Svedin E, Edlund A, Eliasson L. Calcium current inactivation rather than pool depletion explains reduced exocytotic rate with prolonged stimulation in insulin-secreting INS-1 832/13 cells. PLoS One 2014; 9:e103874. [PMID: 25105407 PMCID: PMC4126658 DOI: 10.1371/journal.pone.0103874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Impairment in beta-cell exocytosis is associated with reduced insulin secretion and diabetes. Here we aimed to investigate the dynamics of Ca2+-dependent insulin exocytosis with respect to pool depletion and Ca2+-current inactivation. We studied exocytosis, measured as increase in membrane capacitance (ΔCm), as a function of calcium entry (Q) in insulin secreting INS-1 832/13 cells using patch clamp and mixed-effects statistical analysis. The observed linear relationship between ΔCm and Q suggests that Ca2+-channel inactivation rather than granule pool restrictions is responsible for the decline in exocytosis observed at longer depolarizations. INS-1 832/13 cells possess an immediately releasable pool (IRP) of ∼10 granules and most exocytosis of granules occurs from a large pool. The latter is attenuated by the calcium-buffer EGTA, while IRP is unaffected. These findings suggest that most insulin release occurs away from Ca2+-channels, and that pool depletion plays a minor role in the decline of exocytosis upon prolonged stimulation.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- * E-mail:
| | - Vishal Ashok Salunkhe
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Emma Svedin
- Center for Infectious Medicine, Department of Medicine, The Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | - Anna Edlund
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
136
|
Thomsen SK, Gloyn AL. The pancreatic β cell: recent insights from human genetics. Trends Endocrinol Metab 2014; 25:425-34. [PMID: 24986330 PMCID: PMC4229643 DOI: 10.1016/j.tem.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a metabolic disease characterised by relative or absolute pancreatic β cell dysfunction. Genetic variants implicated in disease risk can be identified by studying affected individuals. To understand the mechanisms driving genetic associations, variants must be translated through causative transcripts to biological insights. Studies into the genetic basis of Mendelian forms of diabetes have successfully identified genes involved in both β cell function and pancreatic development. For type 2 diabetes (T2D), genome-wide association studies (GWASs) are uncovering an ever-increasing number of susceptibility variants that exert their effect through β cell dysfunction, but translation to mechanistic understanding has in most cases been slow. Improved annotations of the islet genome and advances in whole-genome and -exome sequencing (WHS and WES) have facilitated recent progress.
Collapse
Affiliation(s)
- Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Headington, OX3 7LE, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Headington, OX3 7LE, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Headington, OX3 7LE, UK.
| |
Collapse
|
137
|
Grarup N, Sandholt CH, Hansen T, Pedersen O. Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia 2014; 57:1528-41. [PMID: 24859358 DOI: 10.1007/s00125-014-3270-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/22/2014] [Indexed: 12/29/2022]
Abstract
During the past 7 years, genome-wide association studies have shed light on the contribution of common genomic variants to the genetic architecture of type 2 diabetes, obesity and related intermediate phenotypes. The discoveries have firmly established more than 175 genomic loci associated with these phenotypes. Despite the tight correlation between type 2 diabetes and obesity, these conditions do not appear to share a common genetic background, since they have few genetic risk loci in common. The recent genetic discoveries do however highlight specific details of the interplay between the pathogenesis of type 2 diabetes, insulin resistance and obesity. The focus is currently shifting towards investigations of data from targeted array-based genotyping and exome and genome sequencing to study the individual and combined effect of low-frequency and rare variants in metabolic disease. Here we review recent progress as regards the concepts, methodologies and derived outcomes of studies of the genetics of type 2 diabetes and obesity, and discuss avenues to be investigated in the future within this research field.
Collapse
Affiliation(s)
- Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DIKU Building, Universitetsparken 1, 2100, Copenhagen Ø, Denmark,
| | | | | | | |
Collapse
|
138
|
Zhou Y, Park SY, Su J, Bailey K, Ottosson-Laakso E, Shcherbina L, Oskolkov N, Zhang E, Thevenin T, Fadista J, Bennet H, Vikman P, Wierup N, Fex M, Rung J, Wollheim C, Nobrega M, Renström E, Groop L, Hansson O. TCF7L2 is a master regulator of insulin production and processing. Hum Mol Genet 2014; 23:6419-31. [PMID: 25015099 PMCID: PMC4240194 DOI: 10.1093/hmg/ddu359] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors’, we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2D.
Collapse
Affiliation(s)
- Yuedan Zhou
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | | | - Jing Su
- European Bioinformatics Institute, Functional Genomics, Hinxton, Cambridge CB10 1SD, UK
| | - Kathleen Bailey
- Department of Human Genetics, University of Chicago, IL 60637, USA
| | | | - Liliya Shcherbina
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Nikolay Oskolkov
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Enming Zhang
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Thomas Thevenin
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - João Fadista
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Hedvig Bennet
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Petter Vikman
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Nils Wierup
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Malin Fex
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Johan Rung
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala 75185, Sweden and
| | - Claes Wollheim
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden, Department of Cell Physiology and Metabolism, Université de Genève, University Medical Centre, 1 rue Michel-Servet, Geneva 4 1211, Switzerland
| | - Marcelo Nobrega
- Department of Human Genetics, University of Chicago, IL 60637, USA
| | - Erik Renström
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Leif Groop
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden
| | - Ola Hansson
- Department of Clinical Sciences, CRC, Lund University, Malmö 20502, Sweden,
| |
Collapse
|
139
|
Esguerra JLS, Eliasson L. Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans. Front Genet 2014; 5:209. [PMID: 25071836 PMCID: PMC4083688 DOI: 10.3389/fgene.2014.00209] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
Type-2 diabetes (T2D) is a complex disease characterized by insulin resistance in target tissues and impaired insulin release from pancreatic beta cells. As central tissue of glucose homeostasis, the pancreatic islet continues to be an important focus of research to understand the pathophysiology of the disease. The increased access to human pancreatic islets has resulted in improved knowledge of islet function, and together with advances in RNA sequencing and related technologies, revealed the transcriptional and epigenetic landscape of human islet cells. The discovery of thousands of long non-coding RNA (lncRNA) transcripts highly enriched in the pancreatic islet and/or specifically expressed in the beta-cells, points to yet another layer of gene regulation of many hitherto unknown mechanistic principles governing islet cell functions. Here we review fundamental islet physiology and propose functional implications of the lncRNAs in islet development and endocrine cell functions. We also take into account important differences between rodent and human islets in terms of morphology and function, and suggest how species-specific lncRNAs may partly influence gene regulation to define the unique phenotypic identity of an organism and the functions of its constituent cells. The implication of primate-specific lncRNAs will be far-reaching in all aspects of diabetes research, but most importantly in the identification and development of novel targets to improve pancreatic islet cell functions as a therapeutic approach to treat T2D.
Collapse
Affiliation(s)
- Jonathan L S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University Malmö, Sweden
| |
Collapse
|
140
|
Kameswaran V, Kaestner KH. The Missing lnc(RNA) between the pancreatic β-cell and diabetes. Front Genet 2014; 5:200. [PMID: 25071830 PMCID: PMC4077016 DOI: 10.3389/fgene.2014.00200] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/15/2014] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus represents a group of complex metabolic diseases that result in impaired glucose homeostasis, which includes destruction of β-cells or the failure of these insulin-secreting cells to compensate for increased metabolic demand. Despite a strong interest in characterizing the transcriptome of the different human islet cell types to understand the molecular basis of diabetes, very little attention has been paid to the role of long non-coding RNAs (lncRNAs) and their contribution to this disease. Here we summarize the growing evidence for the potential role of these lncRNAs in β-cell function and dysregulation in diabetes, with a focus on imprinted genomic loci.
Collapse
Affiliation(s)
- Vasumathi Kameswaran
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
141
|
Pullen TJ, Rutter GA. Roles of lncRNAs in pancreatic beta cell identity and diabetes susceptibility. Front Genet 2014; 5:193. [PMID: 25071823 PMCID: PMC4076741 DOI: 10.3389/fgene.2014.00193] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/12/2014] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes usually ensues from the inability of pancreatic beta cells to compensate for incipient insulin resistance. The loss of beta cell mass, function, and potentially beta cell identity contribute to this dysfunction to extents which are debated. In recent years, long non-coding RNAs (lncRNAs) have emerged as potentially providing a novel level of gene regulation implicating critical cellular processes such as pluripotency and differentiation. With over 1000 lncRNAs now identified in beta cells, there is growing evidence for their involvement in the above processes in these cells. While functional evidence on individual islet lncRNAs is still scarce, we discuss how lncRNAs could contribute to type 2 diabetes susceptibility, particularly at loci identified through genome-wide association studies as affecting disease risk.
Collapse
Affiliation(s)
- Timothy J Pullen
- Section of Cell Biology, Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Imperial College London London, UK
| | - Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Imperial College London London, UK
| |
Collapse
|
142
|
Do OH, Low JT, Gaisano HY, Thorn P. The secretory deficit in islets from db/db mice is mainly due to a loss of responding beta cells. Diabetologia 2014; 57:1400-9. [PMID: 24705605 PMCID: PMC4052007 DOI: 10.1007/s00125-014-3226-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/07/2014] [Indexed: 12/03/2022]
Abstract
AIMS/HYPOTHESIS We used the db/db mouse to determine the nature of the secretory defect in intact islets. METHODS Glucose tolerance was compared in db/db and wild-type (WT) mice. Isolated islets were used: to measure insulin secretion and calcium in a two-photon assay of single-insulin-granule fusion; and for immunofluorescence of soluble N-ethylmaleimide-sensitive factor attachment proteins (SNAREs). RESULTS The 13-18-week-old db/db mice showed a diabetic phenotype. Isolated db/db islets showed a 77% reduction in insulin secretion induced by 15 mmol/l glucose and reductions in the amplitude and rise-time of the calcium response to glucose. Ionomycin-induced insulin secretion in WT but not db/db islets. Immunofluorescence showed an increase in the levels of the SNAREs synaptosomal-associated protein 25 (SNAP25) and vesicle-associated membrane protein 2 (VAMP2) in db/db islets, but reduced syntaxin-1A. Therefore, db/db islets have both a compromised calcium response to glucose and a compromised secretory response to calcium. Two-photon microscopy of isolated islets determined the number and distribution of insulin granule exocytic events. Compared with WT, db/db islets showed far fewer exocytic events (an 83% decline at 15 mmol/l glucose). This decline was due to a 73% loss of responding cells and, in the remaining responsive cells, a 50% loss of exocytic responses per cell. An assay measuring granule re-acidification showed evidence for more recaptured granules in db/db islets compared with WT. CONCLUSIONS/INTERPRETATION We showed that db/db islets had a reduced calcium response to glucose and a reduction in syntaxin-1A. Within the db/db islets, changes were manifest as both a reduction in responding cells and a reduction in fusing insulin granules per cell.
Collapse
Affiliation(s)
- Oanh H. Do
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Jiun T. Low
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | | | - Peter Thorn
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
143
|
Holz GG, Leech CA, Chepurny OG. New insights concerning the molecular basis for defective glucoregulation in soluble adenylyl cyclase knockout mice. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2593-600. [PMID: 24980705 DOI: 10.1016/j.bbadis.2014.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
Recently published findings indicate that a knockout (KO) of soluble adenylyl cyclase (sAC, also known as AC-10) gene expression in mice leads to defective glucoregulation that is characterized by reduced pancreatic insulin secretion and reduced intraperitoneal glucose tolerance. Summarized here are current concepts regarding the molecular basis for this phenotype, with special emphasis on the potential role of sAC as a determinant of glucose-stimulated insulin secretion. Highlighted is new evidence that in pancreatic beta cells, oxidative glucose metabolism stimulates mitochondrial CO₂production that in turn generates bicarbonate ion (HCO(3)(-)). Since HCO(3)(-) binds to and directly stimulates the activity of sAC, we propose that glucose-stimulated cAMP production in beta cells is mediated not simply by transmembrane adenylyl cyclases (TMACs), but also by sAC. Based on evidence that sAC is expressed in mitochondria, there exists the possibility that beta-cell glucose metabolism is linked to mitochondrial cAMP production with consequent facilitation of oxidative phosphorylation. Since sAC is also expressed in the cytoplasm, sAC catalyzed cAMP production may activate cAMP sensors such as PKA and Epac2 to control ion channel function, intracellular Ca²⁺ handling, and Ca²⁺-dependent exocytosis. Thus, we propose that the existence of sAC in beta cells provides a new and unexpected explanation for previously reported actions of glucose metabolism to stimulate cAMP production. It seems possible that alterations of sAC activity might be of importance when evaluating new strategies for the treatment of type 2 diabetes (T2DM), or when evaluating why glucose metabolism fails to stimulate insulin secretion in patients diagnosed with T2DM. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- George G Holz
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA; Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA.
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
144
|
Kimple ME, Neuman JC, Linnemann AK, Casey PJ. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes. Exp Mol Med 2014; 46:e102. [PMID: 24946790 PMCID: PMC4081554 DOI: 10.1038/emm.2014.40] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology.
Collapse
Affiliation(s)
- Michelle E Kimple
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua C Neuman
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amelia K Linnemann
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Patrick J Casey
- Duke University Medical Center Department of Pharmacology and Cancer Biology, Durham, NC, USA
| |
Collapse
|
145
|
Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, Powers AC, Rhodes CJ, Sussel L, Weir GC. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. J Clin Endocrinol Metab 2014; 99:1983-92. [PMID: 24712577 PMCID: PMC5393482 DOI: 10.1210/jc.2014-1425] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This article examines the foundation of β-cell failure in type 2 diabetes (T2D) and suggests areas for future research on the underlying mechanisms that may lead to improved prevention and treatment. RESEARCH DESIGN AND METHODS A group of experts participated in a conference on 14-16 October 2013 cosponsored by the Endocrine Society and the American Diabetes Association. A writing group prepared this summary and recommendations. RESULTS The writing group based this article on conference presentations, discussion, and debate. Topics covered include genetic predisposition, foundations of β-cell failure, natural history of β-cell failure, and impact of therapeutic interventions. CONCLUSIONS β-Cell failure is central to the development and progression of T2D. It antedates and predicts diabetes onset and progression, is in part genetically determined, and often can be identified with accuracy even though current tests are cumbersome and not well standardized. Multiple pathways underlie decreased β-cell function and mass, some of which may be shared and may also be a consequence of processes that initially caused dysfunction. Goals for future research include to 1) impact the natural history of β-cell failure; 2) identify and characterize genetic loci for T2D; 3) target β-cell signaling, metabolic, and genetic pathways to improve function/mass; 4) develop alternative sources of β-cells for cell-based therapy; 5) focus on metabolic environment to provide indirect benefit to β-cells; 6) improve understanding of the physiology of responses to bypass surgery; and 7) identify circulating factors and neuronal circuits underlying the axis of communication between the brain and β-cells.
Collapse
|
146
|
Gjesing AP, Hornbak M, Allin KH, Ekstrøm CT, Urhammer SA, Eiberg H, Pedersen O, Hansen T. High heritability and genetic correlation of intravenous glucose- and tolbutamide-induced insulin secretion among non-diabetic family members of type 2 diabetic patients. Diabetologia 2014; 57:1173-81. [PMID: 24604100 DOI: 10.1007/s00125-014-3207-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to estimate the heritability of quantitative measures of glucose regulation obtained from a tolbutamide-modified frequently sampled IVGTT (t-FSIGT) and to correlate the heritability of the glucose-stimulated beta cell response to the tolbutamide-induced beta cell response. In addition, single nucleotide polymorphisms (SNPs) having an exclusive effect on either glucose- or tolbutamide-stimulated insulin release were identified. METHODS Two hundred and eighty-four non-diabetic family members of patients with type 2 diabetes underwent a t-FSIGT with intravenous injection of glucose at t = 0 min and tolbutamide at t = 20 min. Measurements of plasma glucose, serum insulin and serum C-peptide were taken at 33 time points from fasting to 180 min. Insulin secretion rate, acute insulin response (AIR), disposition index (DI) after glucose and disposition index after tolbutamide (DIT), insulin sensitivity (SI), glucose effectiveness (SG) and beta cell responsiveness to glucose were calculated. A polygenic variance component model was used to estimate heritability, genetic correlations and associations. RESULTS We found high heritabilities for acute insulin secretion subsequent to glucose stimulation (AIRglucose h (2) ± SE: 0.88 ± 0.14), but these were slightly lower after tolbutamide (AIRtolbutamide h (2) ± SE: 0.69 ± 0.14). We also estimated the heritabilities for SI (h (2) ± SE: 0.26 ± 0.12), SG (h (2) ± SE: 0.47 ± 0.13), DI (h (2) ± SE: 0.56 ± 0.14), DIT (h (2) ± SE: 0.49 ± 0.14) and beta cell responsiveness to glucose (h (2) ± SE: 0.66 ± 0.12). Additionally, strong genetic correlations were found between measures of beta cell response after glucose and tolbutamide stimulation, with correlation coefficients ranging from 0.77 to 0.88. Furthermore, we identified five SNPs with an exclusive effect on either glucose-stimulated (rs5215, rs1111875, rs11920090) or tolbutamide-stimulated (rs10946398, rs864745) insulin secretion. CONCLUSIONS/INTERPRETATION Our data demonstrate that both glucose- and tolbutamide-induced insulin secretions are highly heritable traits, which are largely under the control of the same genes.
Collapse
Affiliation(s)
- Anette P Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1-3, 2100, Copenhagen Ø, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, Powers AC, Rhodes CJ, Sussel L, Weir GC. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 2014; 37:1751-8. [PMID: 24812433 PMCID: PMC4179518 DOI: 10.2337/dc14-0396] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This article examines the foundation of β-cell failure in type 2 diabetes (T2D) and suggests areas for future research on the underlying mechanisms that may lead to improved prevention and treatment. RESEARCH DESIGN AND METHODS A group of experts participated in a conference on 14-16 October 2013 cosponsored by the Endocrine Society and the American Diabetes Association. A writing group prepared this summary and recommendations. RESULTS The writing group based this article on conference presentations, discussion, and debate. Topics covered include genetic predisposition, foundations of β-cell failure, natural history of β-cell failure, and impact of therapeutic interventions. CONCLUSIONS β-Cell failure is central to the development and progression of T2D. It antedates and predicts diabetes onset and progression, is in part genetically determined, and often can be identified with accuracy even though current tests are cumbersome and not well standardized. Multiple pathways underlie decreased β-cell function and mass, some of which may be shared and may also be a consequence of processes that initially caused dysfunction. Goals for future research include to (1) impact the natural history of β-cell failure; (2) identify and characterize genetic loci for T2D; (3) target β-cell signaling, metabolic, and genetic pathways to improve function/mass; (4) develop alternative sources of β-cells for cell-based therapy; (5) focus on metabolic environment to provide indirect benefit to β-cells; (6) improve understanding of the physiology of responses to bypass surgery; and (7) identify circulating factors and neuronal circuits underlying the axis of communication between the brain and β-cells.
Collapse
Affiliation(s)
- Philippe A Halban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Kenneth S Polonsky
- Department of Medicine, Section of Endocrinology, University of Chicago, Chicago, IL
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research and Center for Diabetes Research, Wake Forest University, Winston-Salem, NC
| | - Meredith A Hawkins
- Department of Medicine (Endocrinology) and Global Diabetes Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Charlotte Ling
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kieren J Mather
- Department of Endocrinology, Indiana University, Indianapolis, IN
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
| | - Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, University of Chicago, Chicago, IL
| | - Lori Sussel
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
| | - Gordon C Weir
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
148
|
Eliasson L, Esguerra JLS. Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol (Oxf) 2014; 211:273-84. [PMID: 24666639 DOI: 10.1111/apha.12285] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 12/15/2022]
Abstract
The progression of diabetes is accompanied by increasing demand to the beta-cells to produce and secrete more insulin, requiring complex beta-cell adaptations. Functionally active and ubiquitous non-coding RNAs (ncRNAs) have the capacity to take part in such adaptations as they have been shown to be key regulatory molecules in various biological processes. In the pancreatic islets, the function of ncRNAs and their contribution to disease development is beginning to be understood. Here, we review the different classes of ncRNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), and their potential contribution to insulin secretion. A special focus will be on miRNAs and their regulatory function in beta-cell physiology and insulin exocytosis. As important players in gene regulation, ncRNAs have huge potential in opening innovative therapeutic avenues against diabetes and associated complications.
Collapse
Affiliation(s)
- L. Eliasson
- Department of Clinical Sciences-Malmö; Islet Cell Exocytosis; Lund University Diabetes Centre; Lund University; Malmö Sweden
| | - J. L. S. Esguerra
- Department of Clinical Sciences-Malmö; Islet Cell Exocytosis; Lund University Diabetes Centre; Lund University; Malmö Sweden
| |
Collapse
|
149
|
Latreille M, Hausser J, Stützer I, Zhang Q, Hastoy B, Gargani S, Kerr-Conte J, Pattou F, Zavolan M, Esguerra JLS, Eliasson L, Rülicke T, Rorsman P, Stoffel M. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014; 124:2722-35. [PMID: 24789908 DOI: 10.1172/jci73066] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic β cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of β cell function to metabolic stress. In this study, we determined that miR-7 is a negative regulator of GSIS in β cells. Using Mir7a2 deficient mice, we revealed that miR-7a2 regulates β cell function by directly regulating genes that control late stages of insulin granule fusion with the plasma membrane and ternary SNARE complex activity. Transgenic mice overexpressing miR-7a in β cells developed diabetes due to impaired insulin secretion and β cell dedifferentiation. Interestingly, perturbation of miR-7a expression in β cells did not affect proliferation and apoptosis, indicating that miR-7 is dispensable for the maintenance of endocrine β cell mass. Furthermore, we found that miR-7a levels are decreased in obese/diabetic mouse models and human islets from obese and moderately diabetic individuals with compensated β cell function. Our results reveal an interconnecting miR-7 genomic circuit that regulates insulin granule exocytosis in pancreatic β cells and support a role for miR-7 in the adaptation of pancreatic β cell function in obesity and type 2 diabetes.
Collapse
|
150
|
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by the loss of beta-cell secretory function and mass. The pathophysiology of beta-cell failure in T2DM involves a complex interaction between genetic susceptibilities and environmental risk factors. One environmental condition that is gaining greater appreciation as a risk factor for T2DM is the disruption of circadian rhythms (eg, shift-work and sleep loss). In recent years, circadian disruption has become increasingly prevalent in modern societies and consistently shown to augment T2DM susceptibility (partly mediated through its effects on pancreatic beta-cells). Since beta-cell failure is essential for development of T2DM, we will review current work from epidemiologic, clinical, and animal studies designed to gain insights into the molecular and physiological mechanisms underlying the predisposition to beta-cell failure associated with circadian disruption. Elucidating the role of circadian clocks in regulating beta-cell health will add to our understanding of T2DM pathophysiology and may contribute to the development of novel therapeutic and preventative approaches.
Collapse
|