101
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
102
|
Yin Y, Guo Q, Zhou X, Duan Y, Yang Y, Gong S, Han M, Liu Y, Yang Z, Chen Q, Li F. Role of brain-gut-muscle axis in human health and energy homeostasis. Front Nutr 2022; 9:947033. [PMID: 36276808 PMCID: PMC9582522 DOI: 10.3389/fnut.2022.947033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
The interrelationship between brain, gut and skeletal muscle plays a key role in energy homeostasis of the body, and is becoming a hot topic of research. Intestinal microbial metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites, communicate with the central nervous system (CNS) by binding to their receptors. In fact, there is a cross-talk between the CNS and the gut. The CNS, under the stimulation of pressure, will also affect the stability of the intestinal system, including the local intestinal transport, secretion and permeability of the intestinal system. After the gastrointestinal tract collects information about food absorption, it sends signals to the central system through vagus nerve and other channels to stimulate the secretion of brain-gut peptide and produce feeding behavior, which is also an important part of maintaining energy homeostasis. Skeletal muscle has receptors for SCFAs and BAs. Therefore, intestinal microbiota can participate in skeletal muscle energy metabolism and muscle fiber conversion through their metabolites. Skeletal muscles can also communicate with the gut system during exercise. Under the stimulation of exercise, myokines secreted by skeletal muscle causes the secretion of intestinal hormones, and these hormones can act on the central system and affect food intake. The idea of the brain-gut-muscle axis is gradually being confirmed, and at present it is important for regulating energy homeostasis, which also seems to be relevant to human health. This article focuses on the interaction of intestinal microbiota, central nervous, skeletal muscle energy metabolism, and feeding behavior regulation, which will provide new insight into the diagnostic and treatment strategies for obesity, diabetes, and other metabolic diseases.
Collapse
Affiliation(s)
- Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xihong Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhikang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
103
|
Burgin A, Blannin AK, Peters DM, Holliday A. Acute appetite and eating behaviour responses to apparatus-free, high-intensity intermittent exercise in inactive women with excess weight. Physiol Behav 2022; 254:113906. [PMID: 35817125 DOI: 10.1016/j.physbeh.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
High-intensity intermittent exercise (HIIE) has been shown to transiently suppress appetite, but such exercise has traditionally required the use of specialist apparatus (e.g., cycle ergometer). This study aimed to determine appetite and eating behaviour responses to acute apparatus-free HIIE in inactive women with excess weight. A preliminary study (n = 18 inactive women, 9 healthy weight, 18.0-24.9 kg∙m-2; 9 with excess weight, 25.0-34.9 kg∙m-2) revealed that intervals of 30 s of "all out" star jumping elicited physiological responses akin to intervals of 30 s of "all out" cycling. Twelve women (29.2 ± 2.9kg∙m-2, 38 ± 7years, 28 ± 39 min MVPA∙week-1) then completed three trials in a within-subject, randomised cross-over design: 4 × 30 s "all out" star jumping (4 × 30 s); 2 × 30 s "all out" star jumping (2 × 30 s); resting control (CONT). Upon completing each late-morning exercise trial, lunch was provided upon request from the participant. The time from the exercise bout to lunch request - termed eating latency - was recorded, and ad libitum food intake at lunch was measured. Subjective appetite was measured using a visual analogue scale before and after exercise, and at lunch request. Free-living energy intake (EI) and energy expenditure (EE) were recorded for the remainder of the trial day and the three days following. Change-from-baseline in subjective appetite was significantly lower immediately after 4 × 30 s (-9.6 ± 18.4 mm) and 2 × 30 s (-11.5 ± 21.2 mm) vs. CONT (+8.1 ± 9.6 mm), (both p < 0.05, d = 0.905 and 1.027, respectively). Eating latency (4 × 30 s: 32 ± 33 min, 2 × 30 s: 31 ± 26 min, CONT: 27 ± 23 min, p = 0.843; η2p = 0.017) and lunch EI (4 × 30 s: 662±178 kcal, 2 × 30 sec: 715 ± 237 kcal, CONT: 726 ± 268 kcal, p = 0.451; η2p = 0.077) did not differ significantly between conditions. No significant differences were observed in trial day EI and EE, or in EI and EE on the three days following exercise (all p > 0.05). Mean trial day relative EI (EI - EE) was 201 ± 370 kcal lower after 4 × 30 s than CONT, but this difference was not statistically significant (p = 0.303, d = 0.585). In conclusion, very low-volume star jumping elicited a transient suppression of appetite without altering eating behaviour. (313 words).
Collapse
Affiliation(s)
- Alice Burgin
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom; Youth Sport Trust, SportsPark, 3 Oakwood Drive, Loughborough, United Kingdom
| | - Andrew K Blannin
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Derek M Peters
- School of Allied Health & Community, University of Worcester, Worcester, United Kingdom
| | - Adrian Holliday
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom; Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
104
|
Interactions of dietary insulin index and dietary insulin load with brain-derived neurotrophic factor (BDNF) Val66Met polymorphism in relation to cardiometabolic markers in Iranian diabetic patients: a cross-sectional study. Br J Nutr 2022; 128:785-792. [PMID: 34605382 DOI: 10.1017/s0007114521003974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The progression of cardiometabolic diseases is determined by both genetic and environmental factors. Gene-diet interactions may therefore be important in modulating the risks of developing metabolic diseases. The objectives were to investigate the effect of the interaction between brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms and dietary insulin index (DII) and dietary insulin load (DIL) on cardiometabolic markers among diabetic patients. In this cross-sectional study, blood samples were collected from 667 patients. DIL and DII were defined using a validated FFQ. Genotyping the BDNF Val66Met polymorphism was conducted by the PCR-Restriction fragment length polymorphism (RFLP) method. Interactions between dietary indices and gene variants were evaluated using a generalised linear model. PGF2a concentrations were significantly higher among Val homozygotes than Met-allele carrier. This study revealed that, compared with individuals with the Val/Val genotype, those with the Met/Val or Met/Met genotype had lower BMI (Pinteraction = 0·04), TAG (Pinteraction = 0·04), leptin (Pinteraction = 0·01), LDL (Pinteraction = 0·04) and total cholesterol (Pinteraction = 0·01) when they consumed diets higher on the DIL index. Moreover, the highest quartile of the DIL, compared with the lowest, showed increase in waist circumference (Pinteraction = 0·02) and LDL/HDL (Pinteraction = 0·04) for Val/Val homozygotes compared with Met-allele carriers. BDNF Val66Met variants may interact with DIL and DII, thus be involved in the development of cardiometabolic risk factors. If diabetic patients with Met alleles regulate dietary intakes, they have a protective opportunity to regulate their cardiometabolic markers.
Collapse
|
105
|
Pfabigan DM, Vezzani C, Thorsby PM, Sailer U. Sex difference in human olfactory sensitivity is associated with plasma adiponectin. Horm Behav 2022; 145:105235. [PMID: 35868172 DOI: 10.1016/j.yhbeh.2022.105235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Energy deprivation as well as hormones that regulate appetite and eating can influence olfactory function. This study investigated olfactory sensitivity for a food-related and a non-food odour prior to and after a meal, and its relationship to the energy-regulating hormones ghrelin and adiponectin. The olfactory sensitivity for orange and rose (PEA) odour in healthy, normal-weight volunteers (19 women, 45 men, 1 undisclosed individual) was not affected by the consumption of a meal. Olfactory sensitivity was not associated with concentrations of circulating ghrelin. However, olfactory sensitivity was higher for women than for men, indicating better olfactory performance. This difference between women and men was related to concentrations of plasma adiponectin, an adipose-specific hormone. Adiponectin may thus explain why sex differences in olfactory sensitivity emerge, and may also account for some of the inconsistencies in previous findings on sex differences. Our findings add to the limited literature on the impact of stomach and adipose tissue-derived hormones on olfactory sensitivity. Further studies are needed to establish a causal link between circulating adiponectin and a sex difference in olfactory sensitivity.
Collapse
Affiliation(s)
- Daniela M Pfabigan
- Dept. of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Morbid Obesity Centre, Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway
| | - Cecilia Vezzani
- Dept. of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per Medbøe Thorsby
- Hormone Laboratory, Dep of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway
| | - Uta Sailer
- Dept. of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
106
|
The Circadian Axis and Cardiometabolic Syndrome. JOURNAL OF INTERDISCIPLINARY MEDICINE 2022. [DOI: 10.2478/jim-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Circadian rhythm refers to the daily physiologically fluctuating patterns of systemic processes that occur within a circa 24-hour timeframe, independently of external factors. There is evidence that in time, external and internal cycle misalignment leads to severe health consequences, resulting in the development of cardiometabolic disturbances. Desynchronized hormonal fluctuations along with daily specific macronutrient utilization patterns are also discussed, which by consequence, are all predictors of metabolic syndrome. The aim of this paper is to provide insight on the circadian clock’s organization throughout the human body and to explain the underlying genetic background. By understanding these well-established molecular mechanisms and processes, we believe this paper will provide accuracy regarding the importance of the circadian clock’s integrity and will highlight its role in the etiopathology of cardiometabolic syndrome.
Collapse
|
107
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
108
|
Feingold CL, Smiley A. Healthy Sleep Every Day Keeps the Doctor Away. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10740. [PMID: 36078455 PMCID: PMC9518120 DOI: 10.3390/ijerph191710740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
When one considers the big picture of their health, sufficient sleep may often go overlooked as a keystone element in this picture. Insufficient sleep in either quality or duration is a growing problem for our modern society. It is essential to look at what this means for our health because insufficient sleep increases our risks of innumerable lifechanging diseases. Beyond increasing the risk of developing these diseases, it also makes the symptoms and pathogenesis of many diseases worse. Additionally, consistent quality sleep can not only improve our physical health but has also been shown to improve mental health and overall quality of life. Substandard sleep health could be a root cause for numerous issues individuals may be facing in their lives. It is essential that physicians take the time to learn about how to educate their patients on sleep health and try to work with them on an individual level to help motivate lifestyle changes. Facilitating access to sleep education for their patients is one way in which physicians can help provide patients with the tools to improve their sleep health. Throughout this paper, we will review the mechanisms behind the relationship between insufficient sleep health and chronic disease and what the science says about how inadequate sleep health negatively impacts the overall health and the quality of our lives. We will also explain the lifechanging effects of sufficient sleep and how we can help patients get there.
Collapse
Affiliation(s)
| | - Abbas Smiley
- Westchester Medical Center, New York Medical College, New York, NY 10595, USA
| |
Collapse
|
109
|
Hollstein T, Basolo A, Unlu Y, Ando T, Walter M, Krakoff J, Piaggi P. Effects of Short-term Fasting on Ghrelin/GH/IGF-1 Axis in Healthy Humans: The Role of Ghrelin in the Thrifty Phenotype. J Clin Endocrinol Metab 2022; 107:e3769-e3780. [PMID: 35678263 PMCID: PMC9387714 DOI: 10.1210/clinem/dgac353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT A greater decrease in 24-hour energy expenditure (24hEE) during short-term fasting is indicative of a thrifty phenotype. OBJECTIVE As ghrelin and the growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis are implicated in the regulation of energy intake and metabolism, we investigated whether ghrelin, GH, and IGF-1 concentrations mediate the fasting-induced decrease in 24hEE that characterizes thriftiness. METHODS In 47 healthy individuals, 24hEE was measured in a whole-room indirect calorimeter both during 24-hour eucaloric and fasting conditions. Plasma total ghrelin, GH, and IGF-1 concentrations were measured by enzyme-linked immunosorbent assay after an overnight fast the morning before and after each 24-hour session. RESULTS During 24-hour fasting, on average 24hEE decreased by 8.0% (P < .001), GH increased by ~5-fold (P < .001), whereas ghrelin (mean +23 pg/mL) and IGF-1 were unchanged (both P ≥ .19) despite a large interindividual variability in ghrelin change (SD 150 pg/mL). Greater fasting-induced increase in ghrelin was associated with a greater decrease in 24hEE during 24-hour fasting (r = -0.42, P = .003), such that individuals who increased ghrelin by 200 pg/mL showed an average decrease in 24hEE by 55 kcal/day. CONCLUSION Short-term fasting induced selective changes in the ghrelin/GH/IGF-1 axis, specifically a ghrelin-independent GH hypersecretion that did not translate into increased IGF-1 concentrations. Greater increase in ghrelin after 24-hour fasting was associated with greater decrease in 24hEE, indicating ghrelin as a novel biomarker of increased energy efficiency of the thrifty phenotype.
Collapse
Affiliation(s)
- Tim Hollstein
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
- Institute of Diabetes and Clinical Metabolic Research, 24195 Kiel, Germany
| | - Alessio Basolo
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
| | - Yigit Unlu
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
| | - Takafumi Ando
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
| | - Mary Walter
- Clinical Core Lab, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
| | - Paolo Piaggi
- Correspondence: Paolo Piaggi, PhD, FTOS, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 N 16th Street, Phoenix, AZ 85016, USA. or
| |
Collapse
|
110
|
Protein Catabolism and the Dysregulation of Energy Intake-Related Hormones May Play a Major Role in the Worsening of Malnutrition in Hospitalized Cirrhotic Patients. LIVERS 2022. [DOI: 10.3390/livers2030014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Malnutrition in cirrhotic patients is extremely common and has a multifactorial aetiology, whose constitutive elements have not been completely elucidated yet. Protein depletion is particularly important and an imbalance of hormones regulating hunger and satiety may be an important additive factor. The diagnosis and treatment of malnutrition are extremely important since malnutrition is associated with higher complication rates and mortality. Our observational study aimed to study protein status and energy intake-related hormone levels in a cohort of hospitalized cirrhotic patients. We enrolled 50 hospitalized and clinically stable cirrhotic patients and assessed their nutritional status with anthropometric measurements and nitrogen balance. In a subgroup of 16 patients and 10 healthy controls, circulating ghrelin and leptin levels were studied. We observed that 60% of our patients were malnourished on the basis of the mid-arm muscle circumference values; the recorded daily protein intake was tendentially insufficient (mean protein intake of 0.7 ± 0.5 g protein/kg vs. recommended intake of 1.2–1.5 g of protein/kg/die). Cirrhotic patients had lower circulating levels of both ghrelin and leptin compared to healthy controls. In conclusion, hospitalized cirrhotic patients face a catabolic state and an imbalance in hormones regulating food intake and satiety, and these elements may play a major role in the genesis and/or the worsening of malnutrition.
Collapse
|
111
|
Carew AS, Mekary RA, Kirkland S, Theou O, Siddiqi F, Urquhart R, George M, Blanchard C, Biggs ML, Djoussé L, Mukamal KJ, Cahill LE. Prospective study of breakfast frequency and timing and the risk of incident type 2 diabetes in community-dwelling older adults: the Cardiovascular Health Study. Am J Clin Nutr 2022; 116:325-334. [PMID: 35380627 PMCID: PMC9348984 DOI: 10.1093/ajcn/nqac087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND No evidence-based recommendations regarding optimal breakfast frequency and timing and type 2 diabetes mellitus (T2DM) exist for older adults because of limited studies. OBJECTIVES We sought to prospectively assess relations between breakfast frequency and timing and T2DM risk among older adults and determine whether these depended on sex or cardiometabolic risk factors. METHODS Weekly breakfast frequency and usual daily breakfast time were assessed by questionnaire at baseline in 3747 older adults (aged ≥ 65 y) from the Cardiovascular Health Study (CHS) who were free of cancer and T2DM and followed for 17.6 y. Multivariable-adjusted hazard ratios (aHRs) with 95% CIs estimated from Cox proportional hazards models were used to quantify associations with T2DM. RESULTS Most CHS participants (median age: 74 y; IQR: 71-78 y) consumed breakfast daily (85.5%), and 73% had their first daily eating occasion between 07:00 and 09:00, both of which were associated with higher socioeconomic status, factors that are indicative of a healthier lifestyle, and lower levels of cardiometabolic risk indicators at baseline. During follow-up, 547 T2DM cases were documented. No strong evidence was observed linking breakfast frequency and risk of T2DM. Compared with participants whose breakfast timing (first eating occasion of the day) was 07:00-09:00, those who broke fast after 09:00 had an aHR for T2DM of 0.71 (95% CI: 0.51, 0.99). This association was present in participants with impaired fasting glucose at baseline (aHR: 0.61; 95% CI: 0.39, 0.95) but not in those without (aHR: 0.83; 95% CI: 0.50, 1.38). No associations between eating frequency or timing and T2DM were observed within other prespecified subgroups. CONCLUSIONS Eating breakfast daily was not associated with either higher or lower risk of T2DM in this cohort of older adults, whereas a later (after 09:00) daily first eating occasion time was associated with lower T2DM risk in participants with impaired fasting glucose at baseline.This trial was registered at clinicaltrials.gov as NCT00005133.
Collapse
Affiliation(s)
- Allie S Carew
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rania A Mekary
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Susan Kirkland
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Olga Theou
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- School of Physiotherapy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ferhan Siddiqi
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Robin Urquhart
- QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michelle George
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chris Blanchard
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Mary L Biggs
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Luc Djoussé
- Division on Aging, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kenneth J Mukamal
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, USA
| | - Leah E Cahill
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
112
|
Zhdanov AV, Golubeva AV, Yordanova MM, Andreev DE, Ventura-Silva AP, Schellekens H, Baranov PV, Cryan JF, Papkovsky DB. Ghrelin rapidly elevates protein synthesis in vitro by employing the rpS6K-eEF2K-eEF2 signalling axis. Cell Mol Life Sci 2022; 79:426. [PMID: 35841486 PMCID: PMC9288388 DOI: 10.1007/s00018-022-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Activated ghrelin receptor GHS-R1α triggers cell signalling pathways that modulate energy homeostasis and biosynthetic processes. However, the effects of ghrelin on mRNA translation are unknown. Using various reporter assays, here we demonstrate a rapid elevation of protein synthesis in cells within 15–30 min upon stimulation of GHS-R1α by ghrelin. We further show that ghrelin-induced activation of translation is mediated, at least in part, through the de-phosphorylation (de-suppression) of elongation factor 2 (eEF2). The levels of eEF2 phosphorylation at Thr56 decrease due to the reduced activity of eEF2 kinase, which is inhibited via Ser366 phosphorylation by rpS6 kinases. Being stress-susceptible, the ghrelin-mediated decrease in eEF2 phosphorylation can be abolished by glucose deprivation and mitochondrial uncoupling. We believe that the observed burst of translation benefits rapid restocking of neuropeptides, which are released upon GHS-R1α activation, and represents the most time- and energy-efficient way of prompt recharging the orexigenic neuronal circuitry.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | - Anna V Golubeva
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Martina M Yordanova
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - Dmitry E Andreev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ana Paula Ventura-Silva
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Harriet Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| |
Collapse
|
113
|
Puglisi MJ, Fernandez ML. The Health Benefits of Egg Protein. Nutrients 2022; 14:nu14142904. [PMID: 35889862 PMCID: PMC9316657 DOI: 10.3390/nu14142904] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/31/2022] Open
Abstract
Once the general public accepts that dietary cholesterol is not a concern for cardiovascular disease risk, foods that have been labeled as high-cholesterol sources, including eggs, may be appreciated for their various other dietary components. One of the nutrients in eggs that deserves further discussion is egg protein. Egg protein has been recognized to be highly digestible and an excellent source of essential amino acids, with the highest attainable protein digestibility-corrected amino acid score. Egg protein has been shown to decrease malnutrition in underdeveloped countries, possibly increase height in children, and protect against kwashiorkor. Egg protein has been demonstrated to be important to skeletal muscle health and protective against sarcopenia. Egg protein also can decrease appetite, resulting in a reduction in the caloric intake from the next meal and weight reduction. Other protective effects of egg protein addressed in this review include protection against infection as well as hypotensive and anti-cancer effects.
Collapse
|
114
|
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol 2022; 66:100993. [PMID: 35283168 DOI: 10.1016/j.yfrne.2022.100993] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Tervuursevest 101, 3001 Heverlee, Belgium.
| | - Hakuei Fujiyama
- Department of Psychology, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South St., WA 6150 Perth, Australia.
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
115
|
do Rosário Caldas N, Braulio VB, Brasil MAA, Furtado VCS, de Carvalho DP, Cotrik EM, Dantas JR, Zajdenverg L. Binge eating disorder, frequency of depression, and systemic inflammatory state in individuals with obesity - A cross sectional study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:489-497. [PMID: 35758834 PMCID: PMC10697643 DOI: 10.20945/2359-3997000000489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Introduction Binge eating disorder (BED) is the most prevalent eating disorder in individuals with obesity. Its association with factors that control hunger and satiety has not yet been elucidated. We evaluated whether levels of inflammatory markers, frequency of psychiatric comorbidities, and appetite-related hormones levels differ between individuals with obesity with and without BED. Subjects and methods The Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders-5 - Clinician Version (SCID-5-CV), Binge Eating Scale, and Hospital Anxiety and Depression Scale were evaluated in 39 individuals with obesity. Plasma levels of C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), leptin, ghrelin, and glucagon-like peptide-1 (GLP-1) were measured. Results Individuals of the BED group exhibited significantly higher percentages of altered eating patterns (hyperphagia, bingeing, post-dinner eating, feeling "stuffed", and emotional eating), higher depressive symptom scores and levels of leptin, CRP, and TNF-α, compared to those from the non-BED group. Logistic regression showed that BED was independently associated with depressive symptoms and CRP levels. Conclusion Individuals with obesity and BED showed greater psychiatric comorbidity, worse eating patterns and worse inflammatory profile than those without BED. BED should be assessed as an indicator of clinical severity in patients with obesity.
Collapse
Affiliation(s)
- Nelson do Rosário Caldas
- Universidade Federal do Rio de Janeiro, Serviço de Psiquiatria e Psicologia Médica, Rio de Janeiro, RJ, Brasil,
| | - Valeria Bender Braulio
- Universidade Federal do Rio de Janeiro, Serviço de Nutrologia, Rio de Janeiro, RJ, Brasil
| | - Marco Antônio Alves Brasil
- Universidade Federal do Rio de Janeiro, Serviço de Psiquiatria e Psicologia Médica, Rio de Janeiro, RJ, Brasil
| | | | - Denise Pires de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - Ervin Michelstaedter Cotrik
- Universidade Federal do Rio de Janeiro, Serviço de Psiquiatria e Psicologia Médica, Rio de Janeiro, RJ, Brasil
| | - Joana Rodrigues Dantas
- Universidade Federal do Rio de Janeiro, Serviço de Nutrologia, Rio de Janeiro, RJ, Brasil
| | - Lenita Zajdenverg
- Universidade Federal do Rio de Janeiro, Serviço de Nutrologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
116
|
Chkheidze N, Giorgadze E, Nikolaishvili M, Malazonia A. The Effect of Low Doses of Radon on Ghrelin and Glucose Levels in Rats with Multiple Low-Dose Streptozotoccin-induced Type 2 Diabetes Mellitus. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: The aim of our research was to identify the ghrelin concentration in experimental animals with type 2 diabetes mellitus (T2DM) and to study the effect of radon hormesis balneotherapy using natural thermal waters of Tskaltubo spring, practically, its effect on ghrelin and glucose metabolism.
MATERIALS AND METHODS: To study the effect of radon in balneotherapy, group of experimental animals (multiple low doses streptozotocin-induced T2DM Wistar rats were used) went through the procedure of inhalation of radon by the Tskaltubo mineral water pool, once daily, during 10 days. In animals of the control groups, inhalation with radon was not used. The experimental group and the control group were brought from Tskaltubo to Tbilisi to the Ivane Beritashvili experimental biomedicine center, where the blood of the rats was analyzed.
RESULTS: After radon inhalation therapy with Tskaltubo mineral water, a normalization of the ghrelin levels was observed in the experimental group and despite the different body weight, the levels were approximately the same and close to those of the control group. In the experimental group, ghrelin level normalization was accompanied by glycemia normalization.
CONCLUSION: This research showed that Tskaltubo mineral water radon inhalation caused hormesis, which consequently decreased ghrelin levels in rodents with T2DM and obesity and the result was stable during 3 months. Ghrelin level stabilization positively influenced on glucose levels. The result of our experiment gives us a stimulus to continue future research to find more specific neurochemical mechanisms participating in radon hormesis processes and positively influencing on glucose levels and T2DM outcome.
Collapse
|
117
|
Leone A, De Amicis R, Pellizzari M, Bertoli S, Ravella S, Battezzati A. Appetite ratings and ghrelin concentrations in young adults after administration of a balanced meal. Does sex matter? Biol Sex Differ 2022; 13:25. [PMID: 35659737 PMCID: PMC9167557 DOI: 10.1186/s13293-022-00434-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sex-based differences in appetite ratings have been observed previously. Ghrelin is the only known orexigenic peptide hormone. Sex differences in postprandial ghrelin responses may underlie different perceptions of hunger and satiety, but results are conflicting. We conducted a parallel study to evaluate sex differences in postprandial appetite ratings and ghrelin concentration after administration of a physiological meal among students of University of Milan.
Methods
Twenty-four healthy, normal weight volunteers (12 men and 12 women) aged 18–35 years were recruited. A balanced mixed meal meeting 40% of the estimated daily energy expenditure and providing 60% of calories from carbohydrates, 25% from lipids and 15% from protein was administrated. Sex differences in appetite ratings (satiety, hunger, fullness and desire to eat) and magnitude of ghrelin suppression during postprandial period (up to 180 min) were determined.
Results
In the fasting state, men and women did not differ in appetite ratings and ghrelin concentrations. After feeding, women tended to reach peak of satiety earlier than men, who in turn reached the nadir of hunger later than women (median: 30 min, interquartile range (IQR): 1; 120 vs. 1 min, IQR 1; 1, p = 0.007). Ghrelin suppression was greater in women (median decremental AUC − 95, IQR − 122; − 66) than in men (median decremental AUC − 47, IQR − 87; − 31, p = 0.041).
Conclusions
These findings suggest sex differences in the postprandial appetite regulation that might be important for nutritional strategy to prevent and treat obesity and eating disorders.
Collapse
|
118
|
Wittekind DA, Kratzsch J, Mergl R, Riedel-Heller S, Witte AV, Villringer A, Kluge M. Serum ghrelin is positively associated with physiological anxiety but negatively associated with pathological anxiety in humans: Data from a large community-based study. Psychoneuroendocrinology 2022; 140:105728. [PMID: 35305404 DOI: 10.1016/j.psyneuen.2022.105728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/05/2022] [Accepted: 03/11/2022] [Indexed: 12/19/2022]
Abstract
The orexigenic hormone ghrelin is being increasingly recognized as a stress hormone being involved in anxiety regulation. In animals, ghrelin effects on, and responses to acute stress differed from those in chronic stress, an animal model for anxiety and depression. In humans, elevated ghrelin levels were reported in pathological anxiety (e.g. panic disorder). However, no reports exist on physiological anxiety in mentally healthy subjects. In addition, reports on generalized anxiety symptoms, both in mentally healthy subjects (e.g. worrying) or in adult patients, are lacking. Total serum ghrelin was determined in 1666 subjects of a population-based cross-sectional study ('LIFE'). The 7-item Generalized Anxiety Disorder Scale (GAD-7), detecting also other anxiety disorders, was administered. For multiple linear regression analyses, 1091 subjects were finally included. Serum ghrelin and GAD-7 scores were positively but not significantly associated in the total group (ß=0.00025, standardized β = 0.039, 95%CI: -0.00006;0.0006;p = 0.144), in subjects with no more than mild anxiety, there was a significant positive association (GAD-7 ≤9: n = 1061, 97.25%, β = 0.00032; standardized β = 0.060; 95%CI: 0.000023;0.00062;p = 0.036). In contrast, there was a negative association in subjects with anxiety symptoms above the GAD-7 cut-off (GAD-7 ≥10: n = 30, 2.75%, ß=-0.003, standardized β = -0.462; 95% CI:-0.006;0.0001;p = 0.045). Ghrelin levels were only numerically (p = 0.23) higher in subjects with clinically relevant anxiety symptoms (963.5 ± 399.6 pg/ml; mean±SD) than in those without (901.0 ± 416.4 pg/ml). In conclusion, the positive association between ghrelin and no more than mild anxiety is an initial indication for a role for ghrelin in the regulation of physiological anxiety in humans. This association and the opposed association in pathological anxiety resemble findings in animals showing diverging ghrelin effects in acute and chronic stress.
Collapse
Affiliation(s)
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Roland Mergl
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
| | - Steffi Riedel-Heller
- Faculty of Medicine, Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - A Veronica Witte
- Clinic of Cognitive Neurology, University of Leipzig, and Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Clinic of Cognitive Neurology, University of Leipzig, and Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
119
|
Rademacher J, Raddatz D, Ellrott T. Influence of food images with different macronutrient compositions on serum ghrelin levels: Analysis in healthy males. Obes Sci Pract 2022; 8:328-337. [PMID: 35664245 PMCID: PMC9159557 DOI: 10.1002/osp4.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 12/02/2022] Open
Abstract
Objective Serum concentrations of the orexigenic hormone ghrelin fluctuate in anticipation of food intake. Moreover, presentation of food images causes an increase in serum ghrelin levels. Thus, the visual system may have a quantifiable role in the development of hunger via the endocrine system. The influence of macronutrient visualization on ghrelin has not yet been investigated. Methods In four separate sessions, ghrelin concentrations, insulin, and glucose levels were compared before and after the presentation of different pictures to 14 male participants. Pictures included neutral, non‐food‐related items or isocaloric dishes whose macronutrient composition corresponded predominately to protein/fat, simple carbohydrates, or complex carbohydrates. Results While pre/post ghrelin concentrations numerically increased in all sessions, significant increases were only observed following neutral and protein/fat pictures. The differences were not significant between food groups and compared to neutral images. Insulin levels decreased in all groups, but no significant differences were observed between sessions. The glucose concentrations were within the euglycemic range. Conclusion The results did not reproduce the induction of ghrelin secretion in different food images. Therefore, it is unclear whether the visual perception of food influences ghrelin secretion or whether separation into macronutrients changes the hormone response. Further research is required to differentiate the interactions of sensory‐specific satiety.
Collapse
Affiliation(s)
- Jan‐Gerd Rademacher
- Department of Nephrology and Rheumatology University Medical Center Göttingen Göttingen Germany
| | - Dirk Raddatz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology University Medical Center Göttingen Göttingen Germany
| | - Thomas Ellrott
- Institute for Nutrition and Psychology University Medical Center Göttingen Göttingen Germany
| |
Collapse
|
120
|
Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model. BIOLOGY 2022; 11:biology11060840. [PMID: 35741361 PMCID: PMC9220191 DOI: 10.3390/biology11060840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/03/2023]
Abstract
Simple Summary This study investigated the effects of the antagonization of ghrelin on muscle protein deposition, eating patterns and gut microbiota in pigs by injecting ghrelin antagonist ([D-Lys3]-GHRP-6) in a short term. We found that the antagonization of ghrelin affected the eating patterns of animals, which resulted in changes in the absorption of amino acids and gut microbiota, and it reduced protein deposition in muscles. We emphasize the important role of ghrelin in promoting muscle protein deposition and provide new clues for future research on improving muscle loss. Abstract Ghrelin is an appetite-stimulating hormone that can increase food intake and has been reported to prevent muscle loss; however, the mechanism is not yet fully understood. In this study, [D-Lys3]-GHRP-6 (GHRP) was used to investigate the effects of the antagonization of ghrelin on muscle protein deposition, eating patterns and gut microbiota in a pig model. We found that the growth performance and muscle fiber cross-sectional area of pigs treated with GHRP were significantly reduced compared with the control (CON) group. Moreover, the levels of serum isoleucine, methionine, arginine and tyrosine in the GHRP group were lower than that of the CON group. The abundance of acetate-producing bacteria (Oscillospiraceae UCG-005, Parabacteroides and Oscillospiraceae NK4A214 group) and acetate concentration in the colons of pigs treated with GHRP were significantly reduced. In addition, the injection of GHRP down-regulated the mRNA expression of MCT-1 and mTOR, and it up-regulated the mRNA expression of HDAC1, FOXO1 and Beclin-1. In summary, the antagonization of ghrelin reduced the concentration of important signal molecules (Arg, Met and Ile) that activate the mTOR pathway, concurrently reduce the concentration of HDAC inhibitors (acetate), promote autophagy and finally reduce protein deposition in muscles.
Collapse
|
121
|
Apergi K, Karatzi K, Reppas K, Karaglani E, Usheva N, Giménez-Legarre N, Moreno LA, Dimova R, Antal E, Jemina K, Cardon G, Iotova V, Manios Y, Makrilakis K. Association of breakfast consumption frequency with fasting glucose and insulin sensitivity/b cells function (HOMA-IR) in adults from high-risk families for type 2 diabetes in Europe: the Feel4Diabetes Study. Eur J Clin Nutr 2022; 76:1600-1610. [PMID: 35614208 DOI: 10.1038/s41430-022-01160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE This study aimed to investigate the association of breakfast consumption frequency (BCF) with glycemic control indices in a cross-sectional sample of adults from families at high risk for type 2 diabetes mellitus (T2DM), exploring the role of sex and socioeconomic status (SES). METHODS In 2370 adults (40.8 ± 5.6 years) from 6 European countries, sociodemographic, lifestyle, anthropometric and biochemical characteristics were assessed through standardized procedures. Multivariable regression models were used to examine the association between fasting glucose (FG), fasting insulin (FI), and insulin resistance (HOMA-IR) (dependent variables) with BCF (independent variable) controlling for multiple possible confounders. RESULTS A linear association of BCF with FG (β = -0.557, 95% CI (-0.834, -0.280)) and a quadratic association with FI and HOMA-IR with the highest point of curve observed at BCF = 2.989 (times/week) and at BCF = 2.746, respectively, independent of the used covariates. In males and in participants of high SES, BCF was linearly and inversely associated with FG, while with FI and HOMA-IR there was an association with BCF in quadratic function. In females, BCF was linearly and inversely associated with FG and HOMA-IR, and there was a quadratic association with FI. In low SES there was only a linear association with FG, yet with no statistically significant findings for FI and HOMA-IR. CONCLUSIONS Regular breakfast consumption, especially >3 times/week is associated with improved indices of glycemic control. This association was diminished in low SES participants in the presence of the used covariates.
Collapse
Affiliation(s)
- Kiriaki Apergi
- Medical School, National and Kapodistrian University, Athens, Greece.
| | - Kalliopi Karatzi
- Laboratory of Dietetics and Quality of Life Department Of Food Science & Human Nutrition School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Kyriakos Reppas
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Eva Karaglani
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Natalya Usheva
- Department of Social Medicine and Health Care, Medical University of Varna, Varna, Bulgaria
| | - Natalia Giménez-Legarre
- Growth, Exercise, Nutrition and Development Research Group, School of Health Sciences, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Instituto de InvestigAICón Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis A Moreno
- Growth, Exercise, Nutrition and Development Research Group, School of Health Sciences, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Instituto de InvestigAICón Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de InvestigAICón Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Roumyana Dimova
- Clinical Center of Endocrinology, Medical University of Sofia, Sofia, Bulgaria
| | - Emese Antal
- Hungarian Society of Nutrition, Budapest, Hungary
| | - Kivelä Jemina
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Greet Cardon
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Violeta Iotova
- Department of Pediatrics, Medical University of Varna, Varna, Bulgaria
| | - Yannis Manios
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece.,Institute of Agri-food and Life Sciences, Hellenic Mediterranean University Research Centre, Heraklion, Greece
| | | |
Collapse
|
122
|
Almaski A, Coe S, Lightowler H, Clegg ME, Thondre PS. Finger millet-based muffin decreases insulin response in individuals with prediabetes in a randomised controlled trial. Br J Nutr 2022; 129:1-10. [PMID: 35603664 PMCID: PMC9899571 DOI: 10.1017/s0007114522001623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022]
Abstract
Millet is a grain high in polyphenols and antioxidants, which are bioactive compounds known to influence blood glucose response. The aim of this study was to compare the effect of finger millet muffin and wheat muffin on glycaemic response (GR), insulin response (IR), gastric emptying (GE) and satiety in healthy individuals and people with prediabetes. In a single-blind randomised controlled crossover trial at Oxford Brookes Centre for Nutrition and Health, fifteen healthy individuals and fourteen individuals with prediabetes were recruited between May and December 2017. The participants' GR (3 h), IR (3 h), GE (4 h) and satiety (4 h) were measured before and after the consumption of muffins. A mixed method ANOVA was used to compare GE and the incremental AUC (iAUC) for GR and IR between the participant groups and muffins. There was a significant interaction between participants and muffins on IR iAUC at 180 min (P = 0·042). A significant effect of muffins was found on the GR peak (P = 0·013). The millet muffin decreased the GR peak and IR iAUC compared with the wheat muffin in participants with prediabetes. A significant interaction between participants and muffins for GE ascension time Tasc (P = 0·017) was observed, with no effect of muffins on satiety AUC in the participant groups. This study suggested that polyphenol and fibre-rich finger millet may have the potential to influence the management of prediabetes.
Collapse
Affiliation(s)
- Ameerah Almaski
- Department of Nutrition and Food Science, Taibah University, Universities Road, PO Box: 344, KSA, Medina, Saudi Arabia
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences & Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Shelly Coe
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences & Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Helen Lightowler
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences & Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Miriam E Clegg
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, ReadingRG6 6AP, UK
| | - Pariyarath Sangeetha Thondre
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences & Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
123
|
Wittekind DA, Kratzsch J, Biemann R, Mergl R, Riedel-Heller S, Witte V, Villringer A, Kluge M. Association Between Self-rating Depression Scores and Total Ghrelin and Adipokine Serum Levels in a Large Population-Based Sample. Front Psychiatry 2022; 13:891325. [PMID: 35633817 PMCID: PMC9130496 DOI: 10.3389/fpsyt.2022.891325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ghrelin and the adipokines leptin and adiponectin have been suggested to be involved in mood and anxiety regulation and to be altered in affective disorders. However, studies investigating the association between ghrelin, leptin and adiponectin and depressive symptomatology are scarce but might contribute to a better understanding of their involvement in mood regulation. We thus aimed investigating the association between depressive symptomatology and total ghrelin as well as leptin and adiponectin serum levels in a large population-based sample. Methods Total serum ghrelin, adiponectin and leptin levels were determined in 1666 subjects of a population-based cross-sectional study ("LIFE"). The Center for Epidemiological Studies Depression Scale (CES-D) and the Inventory of Depressive Symptoms - Self Rating (IDS-SR) were administered. Multiple linear regression analyses were conducted to examine the association between total serum ghrelin, leptin and adiponectin and the intensity of depressive symptoms. Results In the total sample (n = 1,092), neither ghrelin nor leptin or adiponectin serum levels showed a significant association with CES-D or IDS-SR sum scores (N = 1,092) or in depressed/non-depressed subjects. Leptin serum levels showed a significantly positive association with IDS-SR sum scores in elderly men (≥60 years; β = 0.122, 95% CI: 0.009; 0.236; p = 0.035). Conclusion Our study suggests that peripheral levels of ghrelin and adipokines in a cross-sectional study design might not be sufficient to measure their involvement in depression, suggesting that associations are more complex and multi-layered.
Collapse
Affiliation(s)
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Roland Mergl
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
| | - Steffi Riedel-Heller
- Faculty of Medicine, Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Veronika Witte
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
124
|
Ginieis R, Abeywickrema S, Oey I, Peng M. Testing Links of Food-Related Olfactory Perception to Peripheral Ghrelin and Leptin Concentrations. Front Nutr 2022; 9:888608. [PMID: 35634372 PMCID: PMC9130723 DOI: 10.3389/fnut.2022.888608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The peptide hormones ghrelin and leptin play major roles in the regulation of appetite and food intake. However, the precise effects of these hormones on sensory processing remain a subject of debate, particularly with food related stimuli and its small body of evidence. Here, we test for relationships between ghrelin and leptin levels against olfactory performance with multiple food-related odours. Specifically, a total of 94 Caucasian males were tested for their supra-threshold sensitivity (i.e., d′), intensity, and valence perception to three odour compounds (i.e., vanilla, potato, and dairy odours). These sensory data were then analysed against peripheral ghrelin and leptin levels, both assessed in plasma samples. Participants’ body adiposity measures were also obtained. Results lent strong support to one of our original hypotheses, with ghrelin levels being positively correlated to the supra-threshold sensitivity of the dairy odour, (r = 0.241, p = 0.020), and intensity ratings to most of the food odours tested [dairy (r = 0.216, p = 0.037) and vanilla (r = 0.241, p = 0.020)]. By contrast, peripheral leptin levels were not significantly linked to any of the olfactory measures (p > 0.05). These relationships remained similar after controlling for variabilities of adiposity measures. The present study brings novel insights by identifying positive links between supra-threshold olfactory perception and ghrelin. This new knowledge is highly relevant for future research linking olfactory shifts to hormonal dysregulation and obesity.
Collapse
Affiliation(s)
- Rachel Ginieis
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Sashie Abeywickrema
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Indrawati Oey
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Mei Peng
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
- *Correspondence: Mei Peng,
| |
Collapse
|
125
|
Althubeati S, Avery A, Tench CR, Lobo DN, Salter A, Eldeghaidy S. Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults: A systematic review and functional neuroimaging meta-analysis. Neurosci Biobehav Rev 2022; 136:104603. [PMID: 35276299 PMCID: PMC9096878 DOI: 10.1016/j.neubiorev.2022.104603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 12/19/2022]
Abstract
Understanding how neurohormonal gut-brain signaling regulates appetite and satiety is vital for the development of therapies for obesity and altered eating behavior. However, reported brain areas associated with appetite or satiety regulators show inconsistency across functional neuroimaging studies. The aim of this study was to systematically assess the convergence of brain regions modulated by appetite and satiety regulators. Twenty-five studies were considered for qualitative synthesis, and 14 independent studies (20-experiments) found eligible for coordinate-based neuroimaging meta-analyses across 212 participants and 123 foci. We employed two different meta-analysis approaches. The results from the systematic review revealed the modulation of insula, amygdala, hippocampus, and orbitofrontal cortex (OFC) with appetite regulators, where satiety regulators were more associated with caudate nucleus, hypothalamus, thalamus, putamen, anterior cingulate cortex in addition to the insula and OFC. The two neuroimaging meta-analyses methods identified the caudate nucleus as a key area associated with satiety regulators. Our results provide quantitative brain activation maps of neurohormonal gut-brain signaling in heathy-weight adults that can be used to define alterations with eating behavior.
Collapse
Affiliation(s)
- Sarah Althubeati
- Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; Faculty of Applied Medical Sciences, Department of Clinical Nutrition, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amanda Avery
- Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Christopher R Tench
- Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Dileep N Lobo
- Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew Salter
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Sally Eldeghaidy
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
126
|
Yamanaka Y, Hashimoto S, Honma A, Honma S, Honma KI. A fixed single meal in the subjective day prevents free-running of the human sleep-wake cycle but not of the circadian pacemaker under temporal isolation. Am J Physiol Regul Integr Comp Physiol 2022; 323:R16-R27. [DOI: 10.1152/ajpregu.00262.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of a fixed single meal per day were examined on the circadian pacemaker and sleep-wake cycle in subjects under temporal isolation. When the time of single meal was allowed to take at any time of day (Ad-lib meal), the sleep-wake cycle as well as the circadian rhythms in plasma melatonin, cortisol and core body temperature were significantly phase-delayed in 8 days. On the other hand, when the time of meal was fixed at 1800 h in local time (RF meal), the phase-shift of sleep-wake cycle was not significant, while those of the circadian rhythms were significant. The differential effects of a fixed single meal schedule were confirmed in most individual subjects. There was no evidence for the prefeeding increase in plasma cortisol and leptin levels under the fixed single meal schedule. The plasma ghrelin level was apparently high before meal in both Ad-lib and RF meal groups, which was, however, likely sculptured by a non-specific prandial drop and gradual increase after meal intake. Single meal augmented the prandial increase of plasma insulin levels by 4-5 times. These findings indicate that a single meal at fixed time of day during the subjective day failed to prevent the human circadian pacemaker but prevented the sleep-wake cycle to free-run at least 8 days under temporal isolation, suggesting that meal time was a potent non-photic time cue for the human sleep-wake cycle.
Collapse
Affiliation(s)
- Yujiro Yamanaka
- Laboratory of Life & Health Sciences, Hokkaido University, Graduate School of Education, Sapporo, Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
| | - Satoko Hashimoto
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Aya Honma
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken-ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
127
|
Shams SM, Watari I, Saito E, Ono T. Molar extraction alters gastric mucosa and ghrelin expression in rat stomach: A preliminary study. APOS TRENDS IN ORTHODONTICS 2022. [DOI: 10.25259/apos_133_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objectives:
Ghrelin is a key regulator of food intake and is considered a hunger hormone that affects cognition, memory, glucose metabolism, and antidepressant effects. Altered occlusion, such as a loss of molars, has been thought to retard digestive function. However, the association between occlusion and digestive function remains poorly understood. Here, we aimed to explore the effect of bilateral maxillary molar extraction on the gastrointestinal mucosa of growing rats and the expression of ghrelin and its receptor, growth hormone secretagogue receptor (GHSR).
Material and Methods:
Twenty-four male 5-week-old Wistar rats were divided into control (CON) and experimental (EXP) groups (n = 12/group). The rats in the EXP group underwent extraction of the bilateral maxillary first, second, and third molars under general anesthesia. Rats in the CON group underwent a sham operation. All rats in both the CON and EXP groups were fed a powder diet and water ad libitum. The body weight of all rats was monitored throughout the EXP period. Rats in both the CON and EXP groups were euthanized on days 14 and 28, and the stomachs were isolated and subjected to histological analysis. Paraffin serial sections were prepared using a microtome for hematoxylin-eosin and immunohistochemical staining using anti-ghrelin and anti-GHSR antibodies. The distribution and expression of ghrelin-immunopositive and GHSR cells were detected and observed under a light microscope. Data were statistically analyzed using t-tests (P < 0.05).
Results:
There were no significant differences in body weight between the CON and EXP groups throughout the EXP period. Histological analysis showed that the area of the submucosa (ASM), and the number of ghrelinimmunopositive cells were significantly decreased in the EXP group compared with the CON group on day 14. Alternatively, there was no significant difference in the ASM and the number of ghrelin-immunopositive cells between the CON and EXP groups on day 28, whereas the number of ghrelin receptors showed no differences across groups. Furthermore, the number of eosinophilic blood cells significantly increased in the EXP group on days 14 and 28.
Conclusion:
Our findings suggest that bilateral maxillary molar extraction may trigger stomach mucosal changes and alter digestive function through ghrelin expression in rats. This is the first report that occlusal deficiency could alter ghrelin expression in the mucosa of the rat stomach, thus raising concerns about the consequential role of ghrelin.
Collapse
Affiliation(s)
- Shahriar Mohd Shams
- Department of Orthodontic Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan,
| | - Ippei Watari
- Department of Orthodontic Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan,
| | - Eri Saito
- Department of Orthodontic Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan,
| | - Takashi Ono
- Department of Orthodontic Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan,
| |
Collapse
|
128
|
Pardak P, Filip R, Woliński J. The Impact of Sleep-Disordered Breathing on Ghrelin, Obestatin, and Leptin Profiles in Patients with Obesity or Overweight. J Clin Med 2022; 11:jcm11072032. [PMID: 35407646 PMCID: PMC8999926 DOI: 10.3390/jcm11072032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Background: The impact of concomitant obesity and sleep disorders on neuropeptides related to energy balance is poorly understood. The aim of this study was to assess the nocturnal profile of total ghrelin, obestatin, and leptin in patients with elevated BMI and to investigate the impact of breathing-related sleep disorders on these hormone levels. Methods: The study involved 58 patients with suspicion of obstructive sleep apnea (OSA). Patients underwent anthropometric and sleep examination and measurements of night ghrelin, leptin, and obestatin levels. Results: In patients with OSA (n = 46), recognized on the basis of sleep examination outcomes, the correlation of anthropometric measurements with parameters of sleep disorders and ghrelin levels was observed, contrary to the control group (n = 12). In the OSA group, levels of ghrelin were significantly lower than in the control group at 5:00 and 7:00. Levels of leptin in the OSA group were also lower than those in the control groups (not statistically significant). Profiles of obestatin in both groups were similar. Conclusions: Our results confirm the relationship between obesity and sleep-disordered breathing. Both these disorders affect ghrelin levels—parameters of obesity negatively correlate with hormone concentration, and OSA seems to lower ghrelin values in the second half of the night.
Collapse
Affiliation(s)
- Piotr Pardak
- IBD Unit, Department of Gastroenterology, Kliniczny Szpital Wojewódzki Nr 2 im. Św. Jadwigi Królowej w Rzeszowie, Medical College of Rzeszów University, 35-301 Rzeszów, Poland;
- Department of Internal Medicine, Medical College of Rzeszów University, University of Rzeszow, 35-310 Rzeszow, Poland
- Department of Internal Medicine, Institute of Rural Health, 20-090 Lublin, Poland
- Correspondence: ; Tel.: +48-17-866-46-07
| | - Rafał Filip
- IBD Unit, Department of Gastroenterology, Kliniczny Szpital Wojewódzki Nr 2 im. Św. Jadwigi Królowej w Rzeszowie, Medical College of Rzeszów University, 35-301 Rzeszów, Poland;
- Department of Internal Medicine, Medical College of Rzeszów University, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Jarosław Woliński
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology & Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| |
Collapse
|
129
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
130
|
Kozorosky EM, Lee CH, Lee JG, Nunez Martinez V, Padayachee LE, Stauss HM. Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin. Physiol Rep 2022; 10:e15253. [PMID: 35441808 PMCID: PMC9020171 DOI: 10.14814/phy2.15253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/15/2023] Open
Abstract
Vagus nerve stimulation (VNS) facilitates weight loss in animals and patients treated with VNS for depression or epilepsy. Likewise, chronic transcutaneous auricular VNS (taVNS) reduces weight gain and improves glucose tolerance in Zucker diabetic fatty rats. If these metabolic effects of taVNS observed in rats translate to humans is unknown. Therefore, the hypothesis of this study was that acute application of taVNS affects glucotropic and orexigenic hormones which could potentially facilitate weight loss and improve glucose tolerance if taVNS were applied chronically. In two single-blinded randomized cross-over protocols, blood glucose levels, plasma concentrations of insulin, C-peptide, glucagon, leptin, and ghrelin, together with heart rate variability and baroreceptor-heart rate reflex sensitivity were determined before and after taVNS (left ear, 10 Hz, 300 µs, 2.0-2.5 mA, 30 min) or sham-taVNS (electrode attached to ear with the stimulator turned off). In a first protocol, subjects (n = 16) were fasted throughout the protocol and in a second protocol, subjects (n = 10) received a high-calorie beverage (220 kCal) after the first blood sample, just before initiation of taVNS or sham-taVNS. No significant effects of taVNS on heart rate variability and baroreceptor-heart rate reflex sensitivity and only minor effects on glucotropic hormones were observed. However, in the second protocol taVNS significantly lowered postprandial plasma ghrelin levels (taVNS: -115.5 ± 28.3 pg/ml vs. sham-taVNS: -51.2 ± 30.6 pg/ml, p < 0.05). This finding provides a rationale for follow-up studies testing the hypothesis that chronic application of taVNS may reduce food intake through inhibition of ghrelin and, therefore, may indirectly improve glucose tolerance through weight loss.
Collapse
Affiliation(s)
| | - Cristina H. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Jessica G. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | | | | | | |
Collapse
|
131
|
Carew AS, Mekary RA, Kirkland S, Theou O, Urquhart R, Parkash R, Cahill LE. Eating Timing and Frequency as a Predictor of Hospitalization and/or Mortality from Coronary Artery Disease: the linked CCHS-DAD-CMDB 2004-2013 Study. CJC Open 2022; 4:625-635. [PMID: 35865018 PMCID: PMC9294983 DOI: 10.1016/j.cjco.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/30/2022] [Indexed: 11/27/2022] Open
|
132
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
133
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
134
|
Jais A, Brüning JC. Arcuate Nucleus-Dependent Regulation of Metabolism-Pathways to Obesity and Diabetes Mellitus. Endocr Rev 2022; 43:314-328. [PMID: 34490882 PMCID: PMC8905335 DOI: 10.1210/endrev/bnab025] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 01/12/2023]
Abstract
The central nervous system (CNS) receives information from afferent neurons, circulating hormones, and absorbed nutrients and integrates this information to orchestrate the actions of the neuroendocrine and autonomic nervous systems in maintaining systemic metabolic homeostasis. Particularly the arcuate nucleus of the hypothalamus (ARC) is of pivotal importance for primary sensing of adiposity signals, such as leptin and insulin, and circulating nutrients, such as glucose. Importantly, energy state-sensing neurons in the ARC not only regulate feeding but at the same time control multiple physiological functions, such as glucose homeostasis, blood pressure, and innate immune responses. These findings have defined them as master regulators, which adapt integrative physiology to the energy state of the organism. The disruption of this fine-tuned control leads to an imbalance between energy intake and expenditure as well as deregulation of peripheral metabolism. Improving our understanding of the cellular, molecular, and functional basis of this regulatory principle in the CNS could set the stage for developing novel therapeutic strategies for the treatment of obesity and metabolic syndrome. In this review, we summarize novel insights with a particular emphasis on ARC neurocircuitries regulating food intake and glucose homeostasis and sensing factors that inform the brain of the organismal energy status.
Collapse
Affiliation(s)
- Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,National Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
135
|
Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front Neurosci 2022; 16:825246. [PMID: 35356051 PMCID: PMC8959415 DOI: 10.3389/fnins.2022.825246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are cyclic patterns of physiological, behavioural and molecular events that occur over a 24-h period. They are controlled by the suprachiasmatic nucleus (SCN), the brain’s master pacemaker which governs peripheral clocks and melatonin release. While circadian systems are endogenous, there are external factors that synchronise the SCN to the ambient environment including light/dark cycles, fasting/fed state, temperature and physical activity. Circadian rhythms also provide internal temporal organisation which ensures that any internal changes that take place are centrally coordinated. Melatonin synchronises peripheral clocks to the external time and circadian rhythms are regulated by gene expression to control physiological function. Synchronisation of the circadian system with the external environment is vital for the health and survival of an organism and as circadian rhythms play a pivotal role in regulating GI physiology, disruption may lead to gastrointestinal (GI) dysfunction. Disorders of gut-brain interactions (DGBIs), also known as functional gastrointestinal disorders (FGIDs), are a group of diseases where patients experience reoccurring gastrointestinal symptoms which cannot be explained by obvious structural abnormalities and include functional dyspepsia (FD) and irritable bowel syndrome (IBS). Food timing impacts on the production of melatonin and given the correlation between food intake and symptom onset reported by patients with DGBIs, chronodisruption may be a feature of these conditions. Recent advances in immunology implicate circadian rhythms in the regulation of immune responses, and DGBI patients report fatigue and disordered sleep, suggesting circadian disruption. Further, melatonin treatment has been demonstrated to improve symptom burden in IBS patients, however, the mechanisms underlying this efficacy are unclear. Given the influence of circadian rhythms on gastrointestinal physiology and the immune system, modulation of these rhythms may be a potential therapeutic option for reducing symptom burden in these patients.
Collapse
Affiliation(s)
- Sophie Fowler
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L. Burns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Grace L. Burns,
| |
Collapse
|
136
|
Perelló M, Cornejo MP, De Francesco PN, Fernandez G, Gautron L, Valdivia LS. The controversial role of the vagus nerve in mediating ghrelin´s actions: gut feelings and beyond. IBRO Neurosci Rep 2022; 12:228-239. [PMID: 35746965 PMCID: PMC9210457 DOI: 10.1016/j.ibneur.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.
Collapse
|
137
|
Stępniowska A, Tutaj K, Juśkiewicz J, Ognik K. Effect of a high-fat diet and chromium on hormones level and Cr retention in rats. J Endocrinol Invest 2022; 45:527-535. [PMID: 34550535 PMCID: PMC8850218 DOI: 10.1007/s40618-021-01677-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022]
Abstract
AIMS The aim of the study was to determine how the administration of a high-fat diet supplemented with various forms of chromium to rats affects accumulation of this element in the tissues and levels of leptin, ghrelin, insulin, glucagon, serotonin, noradrenaline and histamine, as well as selected mineral elements. METHODS The experiment was conducted on 56 male Wistar rats, which were divided into 8 experimental groups. The rats received standard diet or high fat diet (HFD) with addition of 0.3 mg/kg body weight of chromium(III) picolinate (Cr-Pic), chromium(III)-methioninate (Cr-Met), or chromium nanoparticles (Cr-NP). RESULTS Chromium in organic forms was found to be better retained in the body of rats than Cr in nanoparticles form. However, Cr-Pic was the only form that increased the insulin level, which indicates its beneficial effect on carbohydrate metabolism. In blood plasma of rats fed a high-fat diet noted an increased level of serotonin and a reduced level of noradrenaline. The addition of Cr to the diet, irrespective of its form, also increased the serotonin level, which should be considered a beneficial effect. Rats fed a high-fat diet had an unfavourable reduction in the plasma concentrations of Ca, P, Mg and Zn. The reduction of P in the plasma induced by supplementation with Cr in the form of Cr-Pic or Cr-NP may exacerbate the adverse effect of a high-fat diet on the level of this element. CONCLUSION A high-fat diet was shown to negatively affect the level of hormones regulating carbohydrate metabolism (increasing leptin levels and decreasing levels of ghrelin and insulin).
Collapse
Affiliation(s)
- A Stępniowska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - K Tutaj
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - J Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - K Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| |
Collapse
|
138
|
Lovell AJ, Hoecht EM, Hucik B, Cervone DT, Dyck DJ. The effects of diet and chronic exercise on skeletal muscle ghrelin response. Metabol Open 2022; 14:100182. [PMID: 35340718 PMCID: PMC8942827 DOI: 10.1016/j.metop.2022.100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Background Recent findings indicate that ghrelin, particularly the unacylated form (UnAG), acutely stimulates skeletal muscle fatty acid oxidation (FAO) and can preserve insulin signaling and insulin-stimulated glucose uptake in the presence of high concentrations of saturated fatty acids. However, we recently reported that the stimulatory effect of ghrelin on FAO and subsequent ability to protect insulin stimulated glucose uptake was lost following 6-weeks (6w) of chronic high fat feeding. In the current study we examined the effects of both short-term 5 day (5d) and chronic 6w high-fat diet (HFD) on muscle ghrelin response, and whether exercise training could prevent the development of muscle ghrelin resistance with 6w of HFD Methods and Results Soleus muscle strips were isolated from male rats to determine the direct effects of acylated (AG) and UnAG isoforms on FAO and glucose uptake. A 5d HFD did not alter the response of soleus muscle to AG or UnAG. Conversely, 6w of HFD was associated with a loss of ghrelin's ability to stimulate FAO and protect insulin stimulated glucose uptake. Muscle response to UnAG remained intact following the 6w HFD with chronic exercise training. Unexpectedly, muscle response to both AG and UnAG was also lost after 6w of low-fat diet (LFD) consumption. Protein content of the classic ghrelin receptor, GHS-R1a, was not affected by diet or training. Corticotropin-releasing hormone receptor-2 (CRF-2R) content, a putative receptor for ghrelin in muscle, was significantly decreased in soleus from 6w HFD-fed animals and increased following exercise training. This may explain the protection of UnAG response with training in HFD-fed rats but does not explain why ghrelin response was also lost in LFD-fed animals. Conclusions UnAG protects muscle glucose uptake during acute lipid oversupply, likely due to its ability to stimulate FAO. This effect is lost in 6w HFD-fed animals but protected with exercise training. Unexpectedly, ghrelin response was lost in 6w LFD-fed animals. The loss of ghrelin response in muscle with a LFD cannot be explained by a change in putative ghrelin receptor content. We believe that the sedentary nature of the animals is a major factor in the development of muscle ghrelin resistance and warrants further research. Ghrelin stimulates fatty acid oxidation in skeletal muscle. This stimulation is strongly associated with protection from acute fat overload. Prolonged sedentary behaviour and a high fat diet impair ghrelin's ability to stimulate fatty acid oxidation. Exercise training preserves ghrelin's positive effects on skeletal muscle.
Collapse
|
139
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Krishnan GP, Keim NL, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Peripheral Hormones. Adv Nutr 2022; 13:792-820. [PMID: 35191467 PMCID: PMC9156388 DOI: 10.1093/advances/nmac014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Calorie restriction (CR) is a common approach to inducing negative energy balance. Recently, time-restricted feeding (TRF), which involves consuming food within specific time windows during a 24-h day, has become popular owing to its relative ease of practice and potential to aid in achieving and maintaining a negative energy balance. TRF can be implemented intentionally with CR, or TRF might induce CR simply because of the time restriction. This review focuses on summarizing our current knowledge on how TRF and continuous CR affect gut peptides that influence satiety. Based on peer-reviewed studies, in response to CR there is an increase in the orexigenic hormone ghrelin and a reduction in fasting leptin and insulin. There is likely a reduction in glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK), albeit the evidence for this is weak. After TRF, unlike CR, fasting ghrelin decreased in some TRF studies, whereas it showed no change in several others. Further, a reduction in fasting leptin, insulin, and GLP-1 has been observed. In conclusion, when other determinants of food intake are held equal, the peripheral satiety systems appear to be somewhat similarly affected by CR and TRF with regard to leptin, insulin, and GLP-1. But unlike CR, TRF did not appear to robustly increase ghrelin, suggesting different influences on appetite with a potential decrease of hunger after TRF when compared with CR. However, there are several established and novel gut peptides that have not been measured within the context of CR and TRF, and studies that have evaluated effects of TRF are often short-term, with nonuniform study designs and highly varying temporal eating patterns. More evidence and studies addressing these aspects are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
140
|
Metformin: Expanding the Scope of Application-Starting Earlier than Yesterday, Canceling Later. Int J Mol Sci 2022; 23:ijms23042363. [PMID: 35216477 PMCID: PMC8875586 DOI: 10.3390/ijms23042363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes. To a large extent, this review will discuss the proofs of the evidence for this. Another recent important change is a removal of a number of restrictions on its use in patients with heart failure, acute coronary syndrome and chronic kidney disease. We will discuss the reasons for these changes and present a new perspective on the role of increasing lactate in metformin therapy.
Collapse
|
141
|
Wang Y, Wu Q, Zhou Q, Chen Y, Lei X, Chen Y, Chen Q. Circulating acyl and des-acyl ghrelin levels in obese adults: a systematic review and meta-analysis. Sci Rep 2022; 12:2679. [PMID: 35177705 PMCID: PMC8854418 DOI: 10.1038/s41598-022-06636-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Ghrelin is the only known orexigenic gut hormone, and its synthesis, secretion and degradation are affected by different metabolic statuses. This meta-analysis aimed to investigate the potential differences in plasma acyl ghrelin (AG) and des-acyl ghrelin (DAG) concentrations between normal weight and obese adults. Systematic literature searches of PubMed, Embase and Web of Science through October 2021 were conducted for articles reporting AG or DAG levels in obesity and normal weight, and 34 studies with 1863 participants who met the eligibility criteria were identified. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated to evaluate group differences in circulating AG and DAG levels. Pooled effect size showed significantly lower levels of baseline AG (SMD: - 0.85; 95% CI: - 1.13 to - 0.57; PSMD < 0.001) and DAG (SMD: - 1.06; 95% CI: - 1.43 to - 0.69; PSMD < 0.001) in obese groups compared with healthy controls, and similar results were observed when subgroup analyses were stratified by the assay technique or storage procedure. Postprandial AG levels in obese subjects were significantly lower than those in controls when stratified by different time points (SMD 30 min: - 0.85, 95% CI: - 1.18 to - 0.53, PSMD < 0.001; SMD 60 min: - 1.00, 95% CI: - 1.37 to - 0.63, PSMD < 0.001; SMD 120 min: - 1.21, 95% CI: - 1.59 to - 0.83, PSMD < 0.001). In healthy subjects, a postprandial decline in AG was observed at 120 min (SMD: - 0.42; 95% CI: - 0.77 to - 0.06; PSMD = 0.021) but not in obese subjects (SMD: - 0.28; 95% CI: - 0.60 to 0.03; PSMD = 0.074). The mean change in AG concentration was similar in both the obese and lean health groups at each time point (ΔSMD30min: 0.31, 95% CI: - 0.35 to 0.97, PSMD = 0.359; ΔSMD60min: 0.17, 95% CI: - 0.12 to 0.46, PSMD = 0.246; ΔSMD120min: 0.21, 95% CI: - 0.13 to 0.54, PSMD = 0.224). This meta-analysis strengthens the clinical evidence supporting the following: lower baseline levels of circulating AG and DAG in obese individuals; declines in postprandial circulating AG levels, both for the healthy and obese individuals; a shorter duration of AG suppression in obese subjects after meal intake. These conclusions have significance for follow-up studies to elucidate the role of various ghrelin forms in energy homeostasis.
Collapse
Affiliation(s)
- Yanmei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China.,Ya'an Polytechnic College, No. 130 Yucai Road, Yucheng District, Yaan, 625000, Sichuan, China
| | - Qianxian Wu
- Ya'an Polytechnic College, No. 130 Yucai Road, Yucheng District, Yaan, 625000, Sichuan, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Yuyu Chen
- Halifa Regional Centre for Education, No. 33 Spectacle Lake Dr, Dartmouth, NS, B3B1X7, Canada
| | - Xingxing Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Yiding Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
142
|
Lee JH, Xue B, Chen Z, Sun Y. Neuronal GHS-R Differentially Modulates Feeding Patterns under Normal and Obesogenic Conditions. Biomolecules 2022; 12:biom12020293. [PMID: 35204795 PMCID: PMC8961776 DOI: 10.3390/biom12020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
The orexigenic hormone ghrelin increases food intake and promotes obesity through its receptor, growth hormone secretagogue receptor (GHS-R). We previously reported two neuron-specific GHS-R knockout mouse lines, namely pan-neuronal deletion by Syn1-cre and hypothalamic deletion by AgRP-cre, exhibiting differential diet-dependent effects on body weight. GHS-R deficiency in neurons elicited less pronounced metabolic effects under regular diet (RD) than high fat diet (HFD). While there was no difference in total food intake of HFD in either mouse line, Syn1-cre; Ghsrf/f mice showed much greater anti-obesity effect than that of AgRP-cre; Ghsrf/f mice. Meal feeding pattern is known to have a major impact on energy homeostasis and obesity development. Here, we investigated the feeding behaviors of these two neuron-specific GHS-R knockout mice under RD and HFD feeding, by assessing meal number, meal size, meal duration, and feeding frequency. Under the normal diet, RD-fed Syn1-cre; Ghsrf/f mice showed a decreased meal size in dark phase, while RD-fed AgRP-cre; Ghsrf/f mice showed an increased meal duration in dark phase. Under the obesogenic diet, HFD-fed Syn1-cre; Ghsrf/f mice displayed reduced meal numbers in light phase and increased feeding in both light and dark phases, whereas HFD-fed AgRP-cre; Ghsrf/f mice showed a decreased meal duration in the light phase only. Consistently, the expression of neuropeptides (Neuropeptide Y and Orexin) was increased in the hypothalamus of RD-fed Syn1-cre; Ghsrf/f mice, whereas the expression of cannabinoid receptor type 1 (CB1) was increased in the hypothalamus of HFD fed Syn1-cre; Ghsrf/f mice. Overall, feeding pattern changes were more pronounced in Syn1-cre; Ghsrf/f mice than that in AgRP-cre; Ghsrf/f mice, and HFD elicited greater alteration than RD. While AgRP-cre; Ghsrf/f mice consumed HFD meals faster during the day (showing shorter meal duration), Syn1-cre; Ghsrf/f mice ate few HFD meals during the light phase and ate slowly throughout the day (showing longer meal duration in both phases). Our findings reveal that neuronal GHS-R regulates energy homeostasis by altering feeding patterns, and differentially modulates feeding patterns in a site- and diet-dependent manner. The distinctive data in these two mouse lines also suggest that eating slowly during the optimal feeding period (dark phase for mice) may be beneficial in combating obesity.
Collapse
Affiliation(s)
- Jong Han Lee
- Department of Marine Bio and Medical Science, Hanseo University, Seosan 31962, Korea;
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Yuxiang Sun
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Nutrition, Texas A&M University, College Station, TX 7743, USA
- Correspondence: ; Tel.: +1-979-862-9143
| |
Collapse
|
143
|
Buscail E, Deraison C. Postoperative Ileus: a Pharmacological Perspective. Br J Pharmacol 2022; 179:3283-3305. [PMID: 35048360 DOI: 10.1111/bph.15800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Post-operative ileus (POI) is a frequent complication after abdominal surgery. The consequences of POI can be potentially serious such as bronchial inhalation or acute functional renal failure. Numerous advances in peri-operative management, particularly early rehabilitation, have made it possible to decrease POI. Despite this, the rate of prolonged POI ileus remains high and can be as high as 25% of patients in colorectal surgery. From a pathophysiological point of view, POI has two phases, an early neurological phase and a later inflammatory phase, to which we could add a "pharmacological" phase during which analgesic drugs, particularly opiates, play a central role. The aim of this review article is to describe the phases of the pathophysiology of POI, to analyse the pharmacological treatments currently available through published clinical trials and finally to discuss the different research areas for potential pharmacological targets.
Collapse
Affiliation(s)
- Etienne Buscail
- IRSD, INSERM, INRAE, ENVT, University of Toulouse, CHU Purpan (University Hospital Centre), Toulouse, France.,Department of digestive surgery, colorectal surgery unit, Toulouse University Hospital, Toulouse, France
| | - Céline Deraison
- IRSD, INSERM, INRAE, ENVT, University of Toulouse, CHU Purpan (University Hospital Centre), Toulouse, France
| |
Collapse
|
144
|
Desdentado L, Navarrete J, Folgado-Alufre M, de Blas A, Navarro-Siurana J, Ponce F, Molinari G, Jimeno-Martínez A, Rupérez AI, Bueno-Lozano G, Cuenca-Royo A, Corbella E, Agüera Z, Baños RM, Álvarez-Pitti J. Are Peripheral Biomarkers Determinants of Eating Styles in Childhood and Adolescence Obesity? A Cross-Sectional Study. Nutrients 2022; 14:305. [PMID: 35057485 PMCID: PMC8780085 DOI: 10.3390/nu14020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Disturbances in eating behaviors have been widely related to obesity. However, little is known about the role of obesity-related biomarkers in shaping habitual patterns of eating behaviors (i.e., eating styles) in childhood. The objective of the present study was to explore the relationships between several biomarkers crucially involved in obesity (ghrelin, insulin resistance, and leptin/adiponectin ratio) and eating styles in children and adolescents with obesity. Seventy participants aged between 8 and 16 (56.2% men) fulfilled the Spanish version of the Dutch Eating Behavior Questionnaire for Children to measure external, emotional, and restrained eating styles. In addition, concentrations of ghrelin, leptin, adiponectin, insulin, and glucose were obtained through a blood test. Hierarchical multiple regression analyses controlling for age and sex were computed for each eating style. Results indicated that individuals with higher ghrelin concentration levels showed lower scores in restrained eating (β = -0.61, p < 0.001). The total model explained 32% of the variance of the restrained pattern. No other relationships between obesity-related biomarkers and eating behaviors were found. This study highlights that one of the obesity-risk factors, namely lower plasma ghrelin levels, is substantially involved in a well-known maladaptive eating style, restraint eating, in childhood obesity.
Collapse
Affiliation(s)
- Lorena Desdentado
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Polibienestar Research Institute, University of Valencia, Calle Serpis, 29, 46022 Valencia, Spain; (J.N.); (M.F.-A.); (J.N.-S.)
- Department of Personality, Evaluation, and Psychological Treatments, University of Valencia, Avda. Blasco Ibañez, 21, 46010 Valencia, Spain
| | - Jaime Navarrete
- Polibienestar Research Institute, University of Valencia, Calle Serpis, 29, 46022 Valencia, Spain; (J.N.); (M.F.-A.); (J.N.-S.)
| | - María Folgado-Alufre
- Polibienestar Research Institute, University of Valencia, Calle Serpis, 29, 46022 Valencia, Spain; (J.N.); (M.F.-A.); (J.N.-S.)
- Department of Personality, Evaluation, and Psychological Treatments, University of Valencia, Avda. Blasco Ibañez, 21, 46010 Valencia, Spain
| | - Ana de Blas
- Pediatric Department, Consorcio Hospital General Universitario de Valencia, Avda. Tres Cruces, 2, 46014 Valencia, Spain;
| | - Jéssica Navarro-Siurana
- Polibienestar Research Institute, University of Valencia, Calle Serpis, 29, 46022 Valencia, Spain; (J.N.); (M.F.-A.); (J.N.-S.)
| | - Francisco Ponce
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Pediatric Department, Consorcio Hospital General Universitario de Valencia, Avda. Tres Cruces, 2, 46014 Valencia, Spain;
| | - Guadalupe Molinari
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
| | - Andrea Jimeno-Martínez
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Facultad de Ciencias de la Salud, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Calle Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Azahara I. Rupérez
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Facultad de Ciencias de la Salud, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Calle Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Gloria Bueno-Lozano
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Facultad de Ciencias de la Salud, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Calle Miguel Servet, 177, 50013 Zaragoza, Spain
- Paediatric Endocrinology Department, Clinical Hospital Lozano Blesa, Zaragoza, Avda. San Juan Bosco, 50009 Zaragoza, Spain
| | - Aida Cuenca-Royo
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Emili Corbella
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Cardiovascular Risk Unit, Internal Medicine Department, Bellvitge University Hospital—IDIBELL, Feixa Llarga, s/n, 08907 Barcelona, Spain
| | - Zaida Agüera
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Department of Public Health, Mental Health and Perinatal Nursing, Health Sciences Campus Bellvitge, School of Nursing, University of Barcelona, Feixa Llarga, s/n, 08907 Barcelona, Spain
| | - Rosa M. Baños
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Polibienestar Research Institute, University of Valencia, Calle Serpis, 29, 46022 Valencia, Spain; (J.N.); (M.F.-A.); (J.N.-S.)
- Department of Personality, Evaluation, and Psychological Treatments, University of Valencia, Avda. Blasco Ibañez, 21, 46010 Valencia, Spain
| | - Julio Álvarez-Pitti
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; (L.D.); (F.P.); (G.M.); (A.J.-M.); (A.I.R.); (G.B.-L.); (A.C.-R.); (E.C.); (Z.A.); (R.M.B.)
- Pediatric Department, Consorcio Hospital General Universitario de Valencia, Avda. Tres Cruces, 2, 46014 Valencia, Spain;
| |
Collapse
|
145
|
Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022; 23:761. [PMID: 35054944 PMCID: PMC8776007 DOI: 10.3390/ijms23020761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Drug addiction causes constant serious health, social, and economic burden within the human society. The current drug dependence pharmacotherapies, particularly relapse prevention, remain limited, unsatisfactory, unreliable for opioids and tobacco, and even symptomatic for stimulants and cannabinoids, thus, new more effective treatment strategies are researched. The antagonism of the growth hormone secretagogue receptor type A (GHS-R1A) has been recently proposed as a novel alcohol addiction treatment strategy, and it has been intensively studied in experimental models of other addictive drugs, such as nicotine, stimulants, opioids and cannabinoids. The role of ghrelin signaling in these drugs effects has also been investigated. The present review aims to provide a comprehensive overview of preclinical and clinical studies focused on ghrelin's/GHS-R1A possible involvement in these nonalcohol addictive drugs reinforcing effects and addiction. Although the investigation is still in its early stage, majority of the existing reviewed experimental results from rodents with the addition of few human studies, that searched correlations between the genetic variations of the ghrelin signaling or the ghrelin blood content with the addictive drugs effects, have indicated the importance of the ghrelin's/GHS-R1As involvement in the nonalcohol abused drugs pro-addictive effects. Further research is necessary to elucidate the exact involved mechanisms and to verify the future potential utilization and safety of the GHS-R1A antagonism use for these drug addiction therapies, particularly for reducing the risk of relapse.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Anna Khryakova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Alina Certilina
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic;
| |
Collapse
|
146
|
Jin Y, Wilde PJ, Hou Y, Wang Y, Han J, Liu W. An evolving view on food viscosity regulating gastric emptying. Crit Rev Food Sci Nutr 2022; 63:5783-5799. [PMID: 34985365 DOI: 10.1080/10408398.2021.2024132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viscosity is a property of most foods. The consumption of the high-viscosity food is associated with a variety of physiological responses, one of which is their ability to regulate gastric emptying and modulate postprandial glycemic response. Gastric emptying has been proven to be a key step affecting the digestion and absorption of food, whereas, the relationship between viscosity and gastric emptying is still far away from being understood. Here, we reviewed the factors that influence food viscosity and food viscosity changes during digestion. Besides, the effect of food viscosity on gastric emptying and food-viscosity-physiological response were highlighted. Finally, "quantitative relationship" of viscosity and gastric emptying was discussed. This review can contribute to the understanding that how food viscosity affects gastric emptying, and help for developing foods that could control satiety and manage body weight for the specific populations.
Collapse
Affiliation(s)
- Yangyi Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peter J Wilde
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yingying Hou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanping Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
147
|
Petersen N, Greiner TU, Torz L, Bookout A, Gerstenberg MK, Castorena CM, Kuhre RE. Targeting the Gut in Obesity: Signals from the Inner Surface. Metabolites 2022; 12:metabo12010039. [PMID: 35050161 PMCID: PMC8778595 DOI: 10.3390/metabo12010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is caused by prolonged energy surplus. Current anti-obesity medications are mostly centralized around the energy input part of the energy balance equation by increasing satiety and reducing appetite. Our gastrointestinal tract is a key organ for regulation of food intake and supplies a tremendous number of circulating signals that modulate the activity of appetite-regulating areas of the brain by either direct interaction or through the vagus nerve. Intestinally derived messengers are manifold and include absorbed nutrients, microbial metabolites, gut hormones and other enterokines, collectively comprising a fine-tuned signalling system to the brain. After a meal, nutrients directly interact with appetite-inhibiting areas of the brain and induce satiety. However, overall feeding behaviour also depends on secretion of gut hormones produced by highly specialized and sensitive enteroendocrine cells. Moreover, circulating microbial metabolites and their interactions with enteroendocrine cells further contribute to the regulation of feeding patterns. Current therapies exploiting the appetite-regulating properties of the gut are based on chemically modified versions of the gut hormone, glucagon-like peptide-1 (GLP-1) or on inhibitors of the primary GLP-1 inactivating enzyme, dipeptidyl peptidase-4 (DPP-4). The effectiveness of these approaches shows that that the gut is a promising target for therapeutic interventions to achieve significant weigh loss. We believe that increasing understanding of the functionality of the intestinal epithelium and new delivery systems will help develop selective and safe gut-based therapeutic strategies for improved obesity treatment in the future. Here, we provide an overview of the major homeostatic appetite-regulating signals generated by the intestinal epithelial cells and how these signals may be harnessed to treat obesity by pharmacological means.
Collapse
Affiliation(s)
- Natalia Petersen
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Correspondence:
| | - Thomas U. Greiner
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Lola Torz
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Angie Bookout
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk Research Center, Seattle, WA 98109, USA; (A.B.); (C.M.C.)
| | - Marina Kjærgaard Gerstenberg
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
| | - Carlos M. Castorena
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk Research Center, Seattle, WA 98109, USA; (A.B.); (C.M.C.)
| | - Rune Ehrenreich Kuhre
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
148
|
Smith A, Woodside B, Abizaid A. Ghrelin and the Control of Energy Balance in Females. Front Endocrinol (Lausanne) 2022; 13:904754. [PMID: 35909536 PMCID: PMC9334675 DOI: 10.3389/fendo.2022.904754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ghrelin is considered one of the most potent orexigenic peptide hormones and one that promotes homeostatic and hedonic food intake. Research on ghrelin, however, has been conducted predominantly in males and particularly in male rodents. In female mammals the control of energy metabolism is complex and it involves the interaction between ovarian hormones like estrogen and progesterone, and metabolic hormones. In females, the role that ghrelin plays in promoting feeding and how this is impacted by ovarian hormones is not well understood. Basal ghrelin levels are higher in females than in males, and ghrelin sensitivity changes across the estrus cycle. Yet, responses to ghrelin are lower in female and seem dependent on circulating levels of ovarian hormones. In this review we discuss the role that ghrelin plays in regulating homeostatic and hedonic food intake in females, and how the effects of ghrelin interact with those of ovarian hormones to regulate feeding and energy balance.
Collapse
Affiliation(s)
- Andrea Smith
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
- Stress, Trauma and Relience (STAR) Work Group Carleton University, Ottawa, ON, Canada
- *Correspondence: Alfonso Abizaid,
| |
Collapse
|
149
|
Labarthe A, Zizzari P, Fiquet O, Lebrun N, Veldhuis JD, Roelfsema F, Chauveau C, Bohlooly-Y M, Epelbaum J, Tolle V. Effect of Growth Hormone Secretagogue Receptor Deletion on Growth, Pulsatile Growth Hormone Secretion, and Meal Pattern in Male and Female Mice. Neuroendocrinology 2022; 112:215-234. [PMID: 33774644 DOI: 10.1159/000516147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION While the vast majority of research investigating the role of ghrelin or its receptor, GHS-R1a, in growth, feeding, and metabolism has been conducted in male rodents, very little is known about sex differences in this system. Furthermore, the role of GHS-R1a signaling in the control of pulsatile GH secretion and its link with growth or metabolic parameters has never been characterized. METHODS We assessed the sex-specific contribution of GHS-R1a signaling in the activity of the GH/IGF-1 axis, metabolic parameters, and feeding behavior in adolescent (5-6 weeks old) or adult (10-19 weeks old) GHS-R KO (Ghsr-/-) and WT (Ghsr+/+) male and female mice. RESULTS Adult Ghsr-/- male and female mice displayed deficits in weight and linear growth that were correlated with reduced GH pituitary contents in males only. GHS-R1a deletion was associated with reduced meal frequency and increased meal intervals, as well as reduced hypothalamic GHRH and NPY mRNA in males, not females. In adult, GH release from Ghsr-/- mice pituitary explants ex vivo was reduced independently of the sex. However, in vivo pulsatile GH secretion decreased in adult but not adolescent Ghsr-/- females, while in males, GHS-R1a deletion was associated with reduction in pulsatile GH secretion during adolescence exclusively. In males, linear growth did not correlate with pulsatile GH secretion, but rather with ApEn, a measure that reflects irregularity of the rhythmic secretion. Fat mass, plasma leptin concentrations, or ambulatory activity did not predict differences in GH secretion. DISCUSSION/CONCLUSION These results point to a sex-dependent dimorphic effect of GHS-R1a signaling to modulate pulsatile GH secretion and meal pattern in mice with different compensatory mechanisms occurring in the hypothalamus of adult males and females after GHS-R1a deletion. Altogether, we show that GHS-R1a signaling plays a more critical role in the regulation of pulsatile GH secretion during adolescence in males and adulthood in females.
Collapse
Affiliation(s)
- Alexandra Labarthe
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Philippe Zizzari
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Oriane Fiquet
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Nicolas Lebrun
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Johannes D Veldhuis
- Endocrine Research Unit, Department of Medicine, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, New York, USA
| | - Ferdinand Roelfsema
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, The Netherlands
| | - Christophe Chauveau
- Marrow Adiposity and Bone Lab - MABLab ULR 4490, University Littoral Côte d'Opale, Boulogne-sur-Mer, France
- University Lille, CHU Lille, Lille, France
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jacques Epelbaum
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Virginie Tolle
- Université de Paris, UMRS_1266 INSERM, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| |
Collapse
|
150
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|