101
|
Pires M, Rego AC. Apoe4 and Alzheimer's Disease Pathogenesis-Mitochondrial Deregulation and Targeted Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24010778. [PMID: 36614219 PMCID: PMC9821307 DOI: 10.3390/ijms24010778] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
APOE ε4 allele (ApoE4) is the primary genetic risk factor for sporadic Alzheimer's disease (AD), expressed in 40-65% of all AD patients. ApoE4 has been associated to many pathological processes possibly linked to cognitive impairment, such as amyloid-β (Aβ) and tau pathologies. However, the exact mechanism underlying ApoE4 impact on AD progression is unclear, while no effective therapies are available for this highly debilitating neurodegenerative disorder. This review describes the current knowledge of ApoE4 interaction with mitochondria, causing mitochondrial dysfunction and neurotoxicity, associated with increased mitochondrial Ca2+ and reactive oxygen species (ROS) levels, and it effects on mitochondrial dynamics, namely fusion and fission, and mitophagy. Moreover, ApoE4 translocates to the nucleus, regulating the expression of genes involved in aging, Aβ production, inflammation and apoptosis, potentially linked to AD pathogenesis. Thus, novel therapeutical targets can be envisaged to counteract the effects induced by ApoE4 in AD brain.
Collapse
Affiliation(s)
- Mariana Pires
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Polo I, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Polo III, 3004-354 Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Polo I, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Polo III, 3004-354 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-820190; Fax: +351-239-822776
| |
Collapse
|
102
|
Theodorou A, Palaiodimou L, Malhotra K, Zompola C, Katsanos AH, Shoamanesh A, Boviatsis E, Dardiotis E, Spilioti M, Sacco S, Werring DJ, Cordonnier C, Alexandrov AV, Paraskevas GP, Tsivgoulis G. Clinical, Neuroimaging, and Genetic Markers in Cerebral Amyloid Angiopathy-Related Inflammation: A Systematic Review and Meta-Analysis. Stroke 2023; 54:178-188. [PMID: 36453271 DOI: 10.1161/strokeaha.122.040671] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND There are limited data regarding the prevalence of distinct clinical, neuroimaging and genetic markers among patients diagnosed with cerebral amyloid angiopathy-related inflammation (CAA-ri). We sought to determine the prevalence of clinical, radiological, genetic and cerebrospinal fluid biomarker findings in patients with CAA-ri. METHODS A systematic review and meta-analysis of published studies including patients with CAA-ri was conducted to determine the prevalence of clinical, neuroimaging, genetic and cerebrospinal fluid biomarker findings. Subgroup analyses were performed based on (1) prospective or retrospective study design and (2) CAA-ri diagnosis with or without available biopsy. We pooled the prevalence rates using random-effects models and assessed the heterogeneity using Cochran-Q and I2-statistics. RESULTS We identified 4 prospective and 17 retrospective cohort studies comprising 378 patients with CAA-ri (mean age, 71.5 years; women, 52%). The pooled prevalence rates were as follows: cognitive decline at presentation 70% ([95% CI, 54%-84%]; I2=82%), focal neurological deficits 55% ([95% CI, 40%-70%]; I2=82%), encephalopathy 54% ([95% CI, 39%-68%]; I2=43%), seizures 37% ([95% CI, 27%-49%]; I2=65%), headache 31% ([95% CI, 22%-42%]; I2=58%), T2/fluid-attenuated inversion recovery-hyperintense white matter lesions 98% ([95% CI, 93%-100%]; I2=44%), lobar cerebral microbleeds 96% ([95% CI, 92%-99%]; I2=25%), gadolinium enhancing lesions 54% ([95% CI, 42%-66%]; I2=62%), cortical superficial siderosis 51% ([95% CI, 34%-68%]; I2=77%) and lobar macrohemorrhage 40% ([95% CI, 11%-73%]; I2=88%). The prevalence rate of the ApoE (Apolipoprotein E) ε4/ε4 genotype was 34% ([95% CI, 17%-53%]; I2=76%). Subgroup analyses demonstrated no differences in these prevalence rates based on study design and diagnostic strategy. CONCLUSIONS Cognitive decline was the most common clinical feature. Hyperintense T2/fluid-attenuated inversion recovery white matter lesions and lobar cerebral microbleeds were by far the most prevalent neuroimaging findings. Thirty-four percent of patients with CAA-ri have homozygous ApoE ε4/ε4 genotype and scarce data exist regarding the cerebrospinal fluid biomarkers and its significance in these patients.
Collapse
Affiliation(s)
- Aikaterini Theodorou
- Second Department of Neurology (A.T., L.P., C.Z., G.P.P., G.T.), National & Kapodistrian University of Athens, "Attikon" University Hospital, Greece
| | - Lina Palaiodimou
- Second Department of Neurology (A.T., L.P., C.Z., G.P.P., G.T.), National & Kapodistrian University of Athens, "Attikon" University Hospital, Greece
| | - Konark Malhotra
- Department of Neurology, Allegheny Health Network, Pittsburgh, PA (K.M.)
| | - Christina Zompola
- Second Department of Neurology (A.T., L.P., C.Z., G.P.P., G.T.), National & Kapodistrian University of Athens, "Attikon" University Hospital, Greece
| | - Aristeidis H Katsanos
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada (A.H.K., A.S.)
| | - Ashkan Shoamanesh
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada (A.H.K., A.S.)
| | - Efstathios Boviatsis
- Department of Neurosurgery (E.B.), National & Kapodistrian University of Athens, "Attikon" University Hospital, Greece
| | - Efthimios Dardiotis
- Neurology Department, University Hospital of Larissa, University of Thessaly, Greece (E.D.)
| | - Martha Spilioti
- First Department of Neurology, AHEPA General Hospital, Aristotle University of Thessaloniki, Greece (M.S.)
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio, Italy (S.S.)
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom (D.J.W.)
| | - Charlotte Cordonnier
- University Lille, Inserm, CHU Lille, U1172, LilNCog, Lille Neuroscience and Cognition, France (C.C.)
| | - Andrei V Alexandrov
- Department of Neurology, University of Tennessee Health Science Center, Memphis (A.V.A., G.T.)
| | - George P Paraskevas
- Second Department of Neurology (A.T., L.P., C.Z., G.P.P., G.T.), National & Kapodistrian University of Athens, "Attikon" University Hospital, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology (A.T., L.P., C.Z., G.P.P., G.T.), National & Kapodistrian University of Athens, "Attikon" University Hospital, Greece.,Department of Neurology, University of Tennessee Health Science Center, Memphis (A.V.A., G.T.)
| |
Collapse
|
103
|
Takechi R, Sharif A, Brook E, Majimbi M, Chan DC, Lam V, Watts GF, Mamo JCL. Is type 2 diabetes associated dementia a microvascular early-Alzheimer's phenotype induced by aberrations in the peripheral metabolism of lipoprotein-amyloid? Front Endocrinol (Lausanne) 2023; 14:1127481. [PMID: 36875491 PMCID: PMC9978204 DOI: 10.3389/fendo.2023.1127481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
There is increasing evidence of a positive association of type 2 diabetes with Alzheimer's disease (AD), the most prevalent form of dementia. Suggested pathways include cerebral vascular dysfunction; central insulin resistance, or exaggerated brain abundance of potentially cytotoxic amyloid-β (Aβ), a hallmark feature of AD. However, contemporary studies find that Aβ is secreted in the periphery by lipogenic organs and secreted as nascent triglyceride-rich lipoproteins (TRL's). Pre-clinical models show that exaggerated abundance in blood of TRL-Aβ compromises blood-brain barrier (BBB) integrity, resulting in extravasation of the TRL-Aβ moiety to brain parenchyme, neurovascular inflammation and neuronal degeneration concomitant with cognitive decline. Inhibiting secretion of TRL-Aβ by peripheral lipogenic organs attenuates the early-AD phenotype indicated in animal models, consistent with causality. Poorly controlled type 2 diabetes commonly features hypertriglyceridemia because of exaggerated TRL secretion and reduced rates of catabolism. Alzheimer's in diabetes may therefore be a consequence of heightened abundance in blood of lipoprotein-Aβ and accelerated breakdown of the BBB. This review reconciles the prevailing dogma of amyloid associated cytotoxicity as a primary risk factor in late-onset AD, with substantial evidence of a microvascular axis for dementia-in-diabetes. Consideration of potentially relevant pharmacotherapies to treat insulin resistance, dyslipidaemia and by extension plasma amyloidemia in type 2 diabetes are discussed.
Collapse
Affiliation(s)
- Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Arazu Sharif
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Emily Brook
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Dick C. Chan
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Gerald F. Watts
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- *Correspondence: John C. L. Mamo,
| |
Collapse
|
104
|
Jung CH, Mok JO. Recent Updates on Associations among Various Obesity Metrics and Cognitive Impairment: from Body Mass Index to Sarcopenic Obesity. J Obes Metab Syndr 2022; 31:287-295. [PMID: 36530066 PMCID: PMC9828704 DOI: 10.7570/jomes22058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Obesity and obesity-associated morbidity continues to be a major public health issue worldwide. Dementia is also a major health concern in aging societies and its prevalence has increased rapidly. Many epidemiologic studies have shown an association between obesity and cognitive impairment, but this relationship is not as well established as other comorbidities. Conflicting results related to the age and sex of participants, and the methodology used to define obesity and dementia may account for the uncertainty in whether obesity is a modifiable risk factor for dementia. More recently, sarcopenia and sarcopenic obesity have been reported to be associated with cognitive impairment. In addition, new mediators such as the muscle-myokine-brain axis and gut-microbiota-brain axis have been suggested and are attracting interest. In this review, we summarize recent evidence on the link between obesity and cognitive impairment, especially dementia. In particular, we focus on various metrics of obesity, from body mass index to sarcopenia and sarcopenic obesity.
Collapse
Affiliation(s)
- Chan-Hee Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ji-Oh Mok
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea,Corresponding author Ji-Oh Mok https://orcid.org/0000-0003-4882-1206 Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon 14584, Korea Tel: +82-32-621-5156 Fax: +82-32-621-5016 E-mail:
| |
Collapse
|
105
|
Alan E, Kerry Z, Sevin G. Molecular mechanisms of Alzheimer's disease: From therapeutic targets to promising drugs. Fundam Clin Pharmacol 2022; 37:397-427. [PMID: 36576325 DOI: 10.1111/fcp.12861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment so widespread that it interferes with a person's ability to complete daily activities. AD is becoming increasingly common, and it is estimated that the number of patients will reach 152 million by 2050. Current treatment options for AD are symptomatic and have modest benefits. Therefore, considering the human, social, and economic burden of the disease, the development of drugs with the potential to alter disease progression has become a global priority. In this review, the molecular mechanisms involved in the pathology of AD were evaluated as therapeutic targets. The main aim of the review is to focus on new knowledge about mitochondrial dysfunction, oxidative stress, and neuronal transmission in AD, as well as a range of cellular signaling mechanisms and associated treatments. Important molecular interactions leading to AD were described in amyloid cascade and in tau protein function, oxidative stress, mitochondrial dysfunction, cholinergic and glutamatergic neurotransmission, cAMP-regulatory element-binding protein (CREB), the silent mating type information regulation 2 homolog 1 (SIRT-1), neuroinflammation (glial cells), and synaptic alterations. This review summarizes recent experimental and clinical research in AD pathology and analyzes the potential of therapeutic applications based on molecular disease mechanisms.
Collapse
Affiliation(s)
- Elif Alan
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Zeliha Kerry
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gulnur Sevin
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
106
|
APOE Allele Frequency in Southern Greece: Exploring the Role of Geographical Gradient in the Greek Population. Geriatrics (Basel) 2022; 8:geriatrics8010001. [PMID: 36648906 PMCID: PMC9844375 DOI: 10.3390/geriatrics8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND the apolipoprotein e4 allele (APOE4) constitutes an established genetic risk factor for Alzheimer's Disease Dementia (ADD). We aimed to explore the frequency of the APOE isoforms in the Greek population of Southern Greece. METHODS peripheral blood from 175 Greek AD patients, 113 with mild cognitive impairment (MCI), and 75 healthy individuals. DNA isolation was performed with a High Pure PCR Template Kit (Roche), followed by amplification with a real-time qPCR kit (TIB MolBiol) in Roche's Light Cycler PCR platform. RESULTS APOE4 allele frequency was 20.57% in the ADD group, 17.69% in the MCI group, and 6.67% in the control group. APOE3/3 homozygosity was the most common genotype, while the frequency of APOE4/4 homozygosity was higher in the AD group (8.60%). APOE4 carrier status was associated with higher odds for ADD and MCI (OR: 4.49, 95% CI: [1.90-10.61] and OR: 3.82, 95% CI: [1.59-9.17], respectively). CONCLUSION this study examines the APOE isoforms and is the first to report a higher APOE frequency in MCI compared with healthy controls in southern Greece. Importantly, we report the occurrence of the APOE4 allele, related to ADD, as amongst the lowest globally reported, even within the nation, thus enhancing the theory of ethnicity and latitude contribution.
Collapse
|
107
|
The Role of Epigenetics in Neuroinflammatory-Driven Diseases. Int J Mol Sci 2022; 23:ijms232315218. [PMID: 36499544 PMCID: PMC9740629 DOI: 10.3390/ijms232315218] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.
Collapse
|
108
|
Maus A, Figdore D, Milosevic D, Algeciras-Schimnich A, Bornhorst J. Comparison of intact protein and digested peptide techniques for high throughput proteotyping of ApoE. Clin Proteomics 2022; 19:42. [PMID: 36380282 PMCID: PMC9664673 DOI: 10.1186/s12014-022-09379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Apolipoprotein E (ApoE) genotyping has been shown to have diagnostic value in the evaluation of cardiovascular diseases and neurodegenerative disorders such as Alzheimer’s disease. Although genetic testing is well established for this application, liquid chromatography-mass spectrometry (LC–MS) has the potential to provide a high throughput, low-cost alternative for ApoE evaluation. Methods Serum samples were analyzed by peptide, intact protein, and genomic techniques. For peptide analysis, samples were digested with trypsin followed by liquid chromatography-tandem mass spectrometry analysis (LC–MS/MS) using a high-throughput multichannel LC system coupled to a Sciex 7500 mass spectrometer. For intact protein analysis, ApoE was immuno-purified using a monoclonal antibody immobilized on magnetic beads followed by high-resolution LC–MS analysis using an Exploris 480. DNA was extracted and evaluated using Sanger sequencing as a reference method. Results and discussion The peptide measurement method produced one discrepant result when compared to genomic sequencing (out of 38 sequenced samples), whereas the intact protein analysis followed by deconvolution resulted in two discrepant results and when the intact protein data was processed with chromatographic integration there were three discrepant results. Therefore, the intact protein method proved slightly less accurate, required longer analysis time, and is substantially more costly, while providing only a 30 min improvement in sample preparation time. Conclusions With current MS technology clinical laboratories appear to be better served to utilize trypsin digest sample preparation and LC–MS/MS as opposed to high-resolution LC–MS intact protein analysis techniques for evaluation of ApoE proteotype. Peptide analysis methods are capable of producing accurate results with high throughput and minimal cost. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09379-5.
Collapse
|
109
|
Effects of apolipoprotein E4 genotype on cerebro-cerebellar connectivity, brain atrophy, and cognition in patients with Alzheimer's disease. J Neurol Sci 2022; 442:120435. [PMID: 36201963 DOI: 10.1016/j.jns.2022.120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/28/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION While several studies have substantially revealed the influence of the apolipoprotein E4 genotype (APOE4) on the vulnerability of Alzheimer's disease (AD), there are still far fewer studies investigating whether and how APOE4, in the absence of the amyloid-β (Aβ), alters regional brain atrophy, cerebro-cerebellar connectivity and cognitive performance in AD patients. METHODS We employed MRI and neuropsychological data from 234 old adults with AD dementia, including 143 APOE4-positive (with ε2/ε4, ε3/ε4, or ε4/ε4 alleles) and 91 APOE4-negative (with ε2/ε2, ε2/ε3 or ε3/ε3), to investigate the cerebro-cerebellar connectivity in three cerebro-cerebellar brain networks: default mode network, motor network and affective-limbic network. Amyloid PET images were used to evaluate individual Aβ burdens, later used as covariates. Regional volumetric and cortical thickness measures were quantified in both the cerebellum and the cerebrum using the cerebellum segmentation algorithm and Freesurfer5.3, respectively. RESULTS Our corrected functional connectivity (FC) results showed that APOE4 carriers (APOE4+) had lower FC within the cerebro-cerebellar motor network. In addition, significant group differences in regional cortical thickness were observed in the left Crus I, the right VIIB, left superior frontal, and right middle temporal gyri. Group differences in regional brain volumes were observed in the left lobule V and right parstriangularis. Furthermore, multiple linear regression analysis indicated that APOE4+ AD patients show greater episodic memory impairment. CONCLUSION Since amyloid-β, age, education, and gender were included as confounds in the statistical models, our findings suggest that APOE4 independently contributes to brain atrophy, disrupted FC, and associated memory declines in AD patients.
Collapse
|
110
|
Puri V, Kanojia N, Sharma A, Huanbutta K, Dheer D, Sangnim T. Natural product-based pharmacological studies for neurological disorders. Front Pharmacol 2022; 13:1011740. [PMID: 36419628 PMCID: PMC9676372 DOI: 10.3389/fphar.2022.1011740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
Central nervous system (CNS) disorders and diseases are expected to rise sharply in the coming years, partly because of the world's aging population. Medicines for the treatment of the CNS have not been successfully made. Inadequate knowledge about the brain, pharmacokinetic and dynamic errors in preclinical studies, challenges with clinical trial design, complexity and variety of human brain illnesses, and variations in species are some potential scenarios. Neurodegenerative diseases (NDDs) are multifaceted and lack identifiable etiological components, and the drugs developed to treat them did not meet the requirements of those who anticipated treatments. Therefore, there is a great demand for safe and effective natural therapeutic adjuvants. For the treatment of NDDs and other memory-related problems, many herbal and natural items have been used in the Ayurvedic medical system. Anxiety, depression, Parkinson's, and Alzheimer's diseases (AD), as well as a plethora of other neuropsychiatric disorders, may benefit from the use of plant and food-derived chemicals that have antidepressant or antiepileptic properties. We have summarized the present level of knowledge about natural products based on topological evidence, bioinformatics analysis, and translational research in this review. We have also highlighted some clinical research or investigation that will help us select natural products for the treatment of neurological conditions. In the present review, we have explored the potential efficacy of phytoconstituents against neurological diseases. Various evidence-based studies and extensive recent investigations have been included, which will help pharmacologists reduce the progression of neuronal disease.
Collapse
Affiliation(s)
- Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Kampanart Huanbutta
- School of Pharmacy, Eastern Asia University, Rangsit, Pathum Thani, Thailand
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Muang, Chon Buri, Thailand
| |
Collapse
|
111
|
Lennol MP, Sánchez-Domínguez I, Cuchillo-Ibañez I, Camporesi E, Brinkmalm G, Alcolea D, Fortea J, Lleó A, Soria G, Aguado F, Zetterberg H, Blennow K, Sáez-Valero J. Apolipoprotein E imbalance in the cerebrospinal fluid of Alzheimer's disease patients. Alzheimers Res Ther 2022; 14:161. [PMID: 36324176 PMCID: PMC9628034 DOI: 10.1186/s13195-022-01108-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to examine the levels of cerebrospinal fluid (CSF) apolipoprotein E (apoE) species in Alzheimer's disease (AD) patients. METHODS We analyzed two CSF cohorts of AD and control individuals expressing different APOE genotypes. Moreover, CSF samples from the TgF344-AD rat model were included. Samples were run in native- and SDS-PAGE under reducing or non-reducing conditions (with or without β-mercaptoethanol). Immunoprecipitation combined with mass spectrometry or western blotting analyses served to assess the identity of apoE complexes. RESULTS In TgF344-AD rats expressing a unique apoE variant resembling human apoE4, a ~35-kDa apoE monomer was identified, increasing at 16.5 months compared with wild-types. In humans, apoE isoforms form disulfide-linked dimers in CSF, except apoE4, which lacks a cysteine residue. Thus, controls showed a decrease in the apoE dimer/monomer quotient in the APOE ε3/ε4 group compared with ε3/ε3 by native electrophoresis. A major contribution of dimers was found in APOE ε3/ε4 AD cases, and, unexpectedly, dimers were also found in ε4/ε4 AD cases. Under reducing conditions, two apoE monomeric glycoforms at 36 kDa and at 34 kDa were found in all human samples. In AD patients, the amount of the 34-kDa species increased, while the 36-kDa/34-kDa quotient was lower compared with controls. Interestingly, under reducing conditions, a ~100-kDa apoE complex, the identity of which was confirmed by mass spectrometry, also appeared in human AD individuals across all APOE genotypes, suggesting the occurrence of aberrantly resistant apoE aggregates. A second independent cohort of CSF samples validated these results. CONCLUSION These results indicate that despite the increase in total apoE content the apoE protein is altered in AD CSF, suggesting that function may be compromised.
Collapse
Affiliation(s)
- Matthew Paul Lennol
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550 Sant Joan d’Alacant, Spain ,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain
| | - Irene Sánchez-Domínguez
- grid.5841.80000 0004 1937 0247Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Inmaculada Cuchillo-Ibañez
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550 Sant Joan d’Alacant, Spain ,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain ,grid.513062.30000 0004 8516 8274Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Elena Camporesi
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Daniel Alcolea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain ,grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain ,grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain ,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Alberto Lleó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain ,grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Guadalupe Soria
- grid.5841.80000 0004 1937 0247Institute of Neurosciences, University of Barcelona, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Laboratory of Surgical Neuroanatomy, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Fernando Aguado
- grid.5841.80000 0004 1937 0247Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Henrik Zetterberg
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201UK Dementia Research Institute at UCL, London, UK ,grid.24515.370000 0004 1937 1450Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain. .,Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
112
|
Blasiak J, Sobczuk P, Pawlowska E, Kaarniranta K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res Rev 2022; 81:101735. [PMID: 36113764 DOI: 10.1016/j.arr.2022.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease with the retina as the target tissue and aging as per definition the most serious risk factor. However, the retina contains over 60 kinds of cells that form different structures, including the neuroretina and retinal pigment epithelium (RPE) which can age at different rates. Other established or putative AMD risk factors can differentially affect the neuroretina and RPE and can differently interplay with aging of these structures. The occurrence of β-amyloid plaques and increased levels of cholesterol in AMD retinas suggest that AMD may be a syndrome of accelerated brain aging. Therefore, the question about the real meaning of age in AMD is justified. In this review we present and update information on how aging may interplay with some aspects of AMD pathogenesis, such as oxidative stress, amyloid beta formation, circadian rhythm, metabolic aging and cellular senescence. Also, we show how this interplay can be specific for photoreceptors, microglia cells and RPE cells as well as in Bruch's membrane and the choroid. Therefore, the process of aging may differentially affect different retinal structures. As an accurate quantification of biological aging is important for risk stratification and early intervention for age-related diseases, the determination how photoreceptors, microglial and RPE cells age in AMD may be helpful for a precise diagnosis and treatment of this largely untreatable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland; Department of Orthopaedics and Traumatology, Polish Mothers' Memorial Hospital - Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, FI-70029 Finland
| |
Collapse
|
113
|
Jansen IE, van der Lee SJ, Gomez-Fonseca D, de Rojas I, Dalmasso MC, Grenier-Boley B, Zettergren A, Mishra A, Ali M, Andrade V, Bellenguez C, Kleineidam L, Küçükali F, Sung YJ, Tesí N, Vromen EM, Wightman DP, Alcolea D, Alegret M, Alvarez I, Amouyel P, Athanasiu L, Bahrami S, Bailly H, Belbin O, Bergh S, Bertram L, Biessels GJ, Blennow K, Blesa R, Boada M, Boland A, Buerger K, Carracedo Á, Cervera-Carles L, Chene G, Claassen JAHR, Debette S, Deleuze JF, de Deyn PP, Diehl-Schmid J, Djurovic S, Dols-Icardo O, Dufouil C, Duron E, Düzel E, Fladby T, Fortea J, Frölich L, García-González P, Garcia-Martinez M, Giegling I, Goldhardt O, Gobom J, Grimmer T, Haapasalo A, Hampel H, Hanon O, Hausner L, Heilmann-Heimbach S, Helisalmi S, Heneka MT, Hernández I, Herukka SK, Holstege H, Jarholm J, Kern S, Knapskog AB, Koivisto AM, Kornhuber J, Kuulasmaa T, Lage C, Laske C, Leinonen V, Lewczuk P, Lleó A, de Munain AL, Lopez-Garcia S, Maier W, Marquié M, Mol MO, Montrreal L, Moreno F, Moreno-Grau S, Nicolas G, Nöthen MM, Orellana A, Pålhaugen L, Papma JM, Pasquier F, Perneczky R, Peters O, Pijnenburg YAL, Popp J, Posthuma D, Pozueta A, Priller J, Puerta R, Quintela I, Ramakers I, Rodriguez-Rodriguez E, Rujescu D, Saltvedt I, Sanchez-Juan P, Scheltens P, Scherbaum N, Schmid M, Schneider A, Selbæk G, Selnes P, Shadrin A, Skoog I, Soininen H, Tárraga L, Teipel S, Tijms B, Tsolaki M, Van Broeckhoven C, Van Dongen J, van Swieten JC, Vandenberghe R, Vidal JS, Visser PJ, Vogelgsang J, Waern M, Wagner M, Wiltfang J, Wittens MMJ, Zetterberg H, Zulaica M, van Duijn CM, Bjerke M, Engelborghs S, Jessen F, Teunissen CE, Pastor P, Hiltunen M, Ingelsson M, Andreassen OA, Clarimón J, Sleegers K, Ruiz A, Ramirez A, Cruchaga C, Lambert JC, van der Flier W. Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers. Acta Neuropathol 2022; 144:821-842. [PMID: 36066633 PMCID: PMC9547780 DOI: 10.1007/s00401-022-02454-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 01/26/2023]
Abstract
Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
Collapse
Affiliation(s)
- Iris E Jansen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands.
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Duber Gomez-Fonseca
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurosciences and Complex Systems Unit (ENyS), CONICET, Hospital El Cruce, National University A. Jauretche (UNAJ), Florencio Varela, Argentina
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Victor Andrade
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Luca Kleineidam
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Niccolo Tesí
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Ellen M Vromen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Daniel Alcolea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Lavinia Athanasiu
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
| | - Henri Bailly
- Université Paris Cité, EA4468, Maladie d'Alzheimer, F-75013 Paris, France
| | - Olivia Belbin
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sverre Bergh
- The Research-Centre for Age-Related Functional Decline and Disease, Innlandet Hospital Trust, Brumunddal, Norway
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rafael Blesa
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica-CIBERER-IDIS, Santiago de Compostela, Spain
| | - Laura Cervera-Carles
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Geneviève Chene
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France
| | - Jurgen A H R Claassen
- Radboudumc Alzheimer Center, Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Center for Medical Neuroscience, Nijmegen, The Netherlands
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA, 2115, USA
| | - Jean-Francois Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Peter Paul de Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janine Diehl-Schmid
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- kbo-Inn-Salzach-Hospital, Wasserburg am Inn, Germany
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, NORMENT Centre, University of Bergen, Bergen, Norway
| | - Oriol Dols-Icardo
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Pôle de Santé Publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Tormod Fladby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Juan Fortea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg, Germany
| | - Pablo García-González
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Maria Garcia-Martinez
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ina Giegling
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Goldhardt
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Timo Grimmer
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Harald Hampel
- Alzheimer Precision Medicine (APM), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Neurology Business Group, Eisai Inc, 100 Tice Blvd, Woodcliff Lake, NJ, 07677, USA
| | - Olivier Hanon
- Université Paris Cité, EA4468, Maladie d'Alzheimer, F-75013 Paris, France
- Service gériatrie, Centre Mémoire de Ressources et Recherches Ile de France-Broca, AP-HP, Hôpital Broca, F-75013, Paris, France
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, 53127, Bonn, Germany
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Isabel Hernández
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sanna-Kaisa Herukka
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | | | - Anne M Koivisto
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Teemu Kuulasmaa
- Bioinformatics Center, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Carmen Lage
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Atlantic Fellow at the Global Brain Health Institute (GBHI) -, University of California, San Francisco, USA
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Ville Leinonen
- Institute of Clinical Medicine, Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Alberto Lleó
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adolfo López de Munain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario Donostia-OSAKIDETZA, Donostia, Spain
- Instituto Biodonostia, San Sebastián, Spain
- University of The Basque Country, San Sebastian, Spain
| | - Sara Lopez-Garcia
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Marta Marquié
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Laura Montrreal
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Fermin Moreno
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario Donostia-OSAKIDETZA, Donostia, Spain
- Instituto Biodonostia, San Sebastián, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Gael Nicolas
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Rouen, France
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, 53127, Bonn, Germany
| | - Adelina Orellana
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Lene Pålhaugen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Janne M Papma
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich and University of Zürich, Zurich, Switzerland
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Ana Pozueta
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Klinikum rechts der isar, Technical University Munich, 81675, Munich, Germany
| | - Raquel Puerta
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Eloy Rodriguez-Rodriguez
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Dan Rujescu
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Geriatrics, St Olav Hospital, University Hospital of Trondheim, Trondheim, Norway
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Schmid
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Geir Selbæk
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Lluís Tárraga
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Betty Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Magda Tsolaki
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Makedonia, Greece
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - John C van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rik Vandenberghe
- Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | | | - Pieter J Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Göttingen, Germany
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Psychosis Clinic, Gothenburg, Sweden
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Medical Science Department, iBiMED, Aveiro, Portugal
| | - Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Miren Zulaica
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario Donostia-OSAKIDETZA, Donostia, Spain
- Instituto Biodonostia, San Sebastián, Spain
| | - Cornelia M van Duijn
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
- Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Jordi Clarimón
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Agustín Ruiz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Wiesje van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
| |
Collapse
|
114
|
Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2022; 23:12841. [PMID: 36361631 PMCID: PMC9654278 DOI: 10.3390/ijms232112841] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly people. Amyloid beta (Aβ) deposits and neurofibrillary tangles are the major pathological features in an Alzheimer's brain. These proteins are highly expressed in nerve cells and found in most tissues. Tau primarily provides stabilization to microtubules in the part of axons and dendrites. However, tau in a pathological state becomes hyperphosphorylated, causing tau dysfunction and leading to synaptic impairment and degeneration of neurons. This article presents a summary of the role of tau, phosphorylated tau (p-tau) in AD, and other tauopathies. Tauopathies, including Pick's disease, frontotemporal dementia, corticobasal degeneration, Alzheimer's disease, argyrophilic grain disease, progressive supranuclear palsy, and Huntington's disease, are the result of misprocessing and accumulation of tau within the neuronal and glial cells. This article also focuses on current research on the post-translational modifications and genetics of tau, tau pathology, the role of tau in tauopathies and the development of new drugs targeting p-tau, and the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasbir Bisht
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John Culberson
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
115
|
Borgstedt L, Bratke S, Blobner M, Pötzl C, Ulm B, Jungwirth B, Schmid S. Isoflurane has no effect on cognitive or behavioral performance in a mouse model of early-stage Alzheimer’s disease. Front Neurosci 2022; 16:1033729. [DOI: 10.3389/fnins.2022.1033729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPatients with Alzheimer’s disease show a sex-dependent decline of cognitive and behavioral performance. It is controversially discussed whether general anesthesia itself can aggravate or even cause this neurocognitive decline. Therefore, we investigated the effect of general anesthesia on neurocognitive and behavioral function and amyloidopathy in a mouse model of early-stage Alzheimer’s disease with respect to sex.MethodsAfter governmental approval 10 months old Tg2576 mice and wild type (total 85 mice) either underwent general anesthesia with 1.0 minimal alveolar concentration of isoflurane for 2 h or were not exposed to isoflurane (controls). Following cognitive and behavioral testing using the modified hole board test (mHBT), brains were investigated regarding amyloidopathy, inflammation, and apoptosis. Data were analyzed using repeated measure analysis of variance (ANOVA) and univariate analysis of variance (UNIANOVA).ResultsTg2576 mice showed a decline in memory function (p < 0.001), less anxiety (p = 0.022 and p = 0.024), increased locomotor activity (p = 0.025), and impaired fine motor skills (p < 0.001). Amyloid precursor protein (p < 0.001), soluble amyloid-beta (p < 0.001) and insoluble amyloid deposits (p < 0.001) were increased in Tg2576 animals. Neither sex nor exposure to isoflurane had an effect on cognitive or behavioral testing or expression of amyloid-related biomarkers.Discussion and conclusionWe found that 10 months old Tg2576 showed typical signs of early-stage Alzheimer’s disease and corresponding histopathological alterations. Relevant sex-specific differences or an effect of isoflurane anesthesia could not be detected at this early stage of the disease.
Collapse
|
116
|
Coutinho LA, Leão LL, Cassilhas RC, de Paula AMB, Deslandes AC, Monteiro-Junior RS. Alzheimer's disease genes and proteins associated with resistance and aerobic training: An in silico analysis. Exp Gerontol 2022; 168:111948. [PMID: 36087875 DOI: 10.1016/j.exger.2022.111948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Exercise appears to be a viable intervention for maintaining cognitive function and regaining functional autonomy, and perhaps even contributing to a slower progression of Alzheimer's Disease (AD). OBJECTIVE To explore different neuroplasticity pathways modulated by aerobic and strength training, determine whether signaling pathways overlapped for each specific training method (aerobic and strength training), and evaluate whether there is a functional relationship between APOE and APP gene expression with aerobic training modulated by BDNF; and strength training modulated by IGF-1. METHODS An in silico analysis was performed to analyze the connection between exercise types and neuroplasticity as a protective factor in AD. The platform provides a protein-protein interaction network translated into known and predicted interactions. A score > 0.70 was determined as high confidence and the network was considered significant when the Protein-Protein Interaction Enrichment was <0.01. RESULTS Multiple functional associations considered significant between the analyzed proteins. The results of our gene network model support that exercise, both aerobic and strength, can modulate genes that affect hippocampal neuroplasticity and neurogenesis, which may delay cognitive decline and Alzheimer's related symptoms. CONCLUSION The investigation about the functional association of aerobic training via BDNF in the modulation of APP, APOE, and MAPT genes in the hippocampus seems to be established, while strength training seems to induce the production of IGF-1 and IGF-1R, modulating AKT1.
Collapse
Affiliation(s)
| | - Luana Lemos Leão
- Postgraduate Program of Health Sciences, State University of Montes Claros, Montes Claros, MG, Brazil
| | - Ricardo Cardoso Cassilhas
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil; Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil; Postgraduate Program in Health Sciences (PPGCS), UFVJM, Diamantina, MG, Brazil
| | | | | | - Renato Sobral Monteiro-Junior
- Physical Education and Sport Department, State University of Montes Claros, Montes Claros, MG, Brazil; Postgraduate Program of Health Sciences, State University of Montes Claros, Montes Claros, MG, Brazil.
| |
Collapse
|
117
|
PCSK9 Affects Astrocyte Cholesterol Metabolism and Reduces Neuron Cholesterol Supplying In Vitro: Potential Implications in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232012192. [PMID: 36293049 PMCID: PMC9602670 DOI: 10.3390/ijms232012192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
The Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) involvement in Alzheimer’s disease (AD) is poorly investigated. We evaluated the in vitro PCSK9 modulation of astrocyte cholesterol metabolism and neuronal cholesterol supplying, which is fundamental for neuronal functions. Moreover, we investigated PCSK9 neurotoxic effects. In human astrocytoma cells, PCSK9 reduced cholesterol content (−20%; p < 0.05), with a greater effect in presence of beta amyloid peptide (Aβ) (−37%; p < 0.01). PCSK9 increased cholesterol synthesis and reduced the uptake of apoE-HDL-derived cholesterol (−36%; p < 0.0001), as well as the LDL receptor (LDLR) and the apoE receptor 2 (ApoER2) expression (−66% and −31%, respectively; p < 0.01). PCSK9 did not modulate ABCA1- and ABCG1-cholesterol efflux, ABCA1 levels, or membrane cholesterol. Conversely, ABCA1 expression and activity, as well as membrane cholesterol, were reduced by Aβ (p < 0.05). In human neuronal cells, PCSK9 reduced apoE-HDL-derived cholesterol uptake (−41%; p < 0.001) and LDLR/apoER2 expression (p < 0.05). Reduced cholesterol internalization occurred also in PCSK9-overexpressing neurons exposed to an astrocyte-conditioned medium (−39%; p < 0.001). PCSK9 reduced neuronal cholesterol content overall (−29%; p < 0.05) and increased the Aβ-induced neurotoxicity (p < 0.0001). Our data revealed an interfering effect of PCSK9, in cooperation with Aβ, on brain cholesterol metabolism leading to neuronal cholesterol reduction, a potentially deleterious effect. PCSK9 also exerted a neurotoxic effect, and thus represents a potential pharmacological target in AD.
Collapse
|
118
|
Chung JY, Jung HU, Kim DJ, Baek EJ, Kim HK, Kang JO, Lim JE, Oh B. Identification of five genetic variants with differential effects on obesity-related traits based on age. Front Genet 2022; 13:970657. [PMID: 36276968 PMCID: PMC9585212 DOI: 10.3389/fgene.2022.970657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a major public health concern, and its prevalence generally increases with age. As the number of elderly people is increasing in the aging population, the age-dependent increase in obesity has raised interest in the underlying mechanism. To understand the genetic basis of age-related increase in obesity, we identified genetic variants showing age-dependent differential effects on obesity. We conducted stratified analyses between young and old groups using genome-wide association studies of 355,335 United Kingom Biobank participants for five obesity-related phenotypes, including body mass index, body fat percentage, waist-hip ratio, waist circumference, and hip circumference. Using t-statistic, we identified five significant lead single nucleotide polymorphisms: rs2258461 with body mass index, rs9861311 and rs429358 with body fat percentage, rs2870099 with waist-hip ratio, and rs145500243 with waist circumference. Among these single nucleotide polymorphisms, rs429358, located in APOE gene was associated with diverse age-related diseases, such as Alzheimer’s disease, coronary artery disease, age-related degenerative macular diseases, and cognitive decline. The C allele of rs429358 gradually decreases body fat percentage as one grows older in the range of 40–69 years. In conclusion, we identified five genetic variants with differential effects on obesity-related phenotypes based on age using a stratified analysis between young and old groups, which may help to elucidate the mechanisms by which age influences the development of obesity.
Collapse
Affiliation(s)
- Ju Yeon Chung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae-Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Dong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Eun Ju Baek
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Han Kyul Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- *Correspondence: Ji Eun Lim, ; Bermseok Oh,
| | - Bermseok Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- *Correspondence: Ji Eun Lim, ; Bermseok Oh,
| |
Collapse
|
119
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
120
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
121
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
122
|
Pocevičiūtė D, Nuñez-Diaz C, Roth B, Janelidze S, Giannisis A, Hansson O, Wennström M. Increased plasma and brain immunoglobulin A in Alzheimer’s disease is lost in apolipoprotein E ε4 carriers. Alzheimers Res Ther 2022; 14:117. [PMID: 36008818 PMCID: PMC9414424 DOI: 10.1186/s13195-022-01062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Background Alzheimer’s disease (AD) is foremost characterized by β-amyloid (Aβ)-extracellular plaques, tau-intraneuronal fibrillary tangles (NFT), and neuroinflammation, but over the last years it has become evident that peripheral inflammation might also contribute to the disease. AD patients often demonstrate increased levels of circulating proinflammatory mediators and altered antibody levels in the blood. In our study, we investigated the plasma Immunoglobulin A (IgA) levels in association with apolipoprotein E (APOE) ε4 status and Aβ pathology. Methods IgA levels in antemortem-collected (cohort I) and postmortem-collected (cohort II) plasma samples from AD patients (n = 30 in cohort I and n = 16 in cohort II) and non-demented age-matched controls (NC) (n = 42 in cohort I and n = 7 in cohort II) were measured using ELISA. Hippocampal sections from cohort II were immunostained against IgA, and the IgA area fraction as well as the number of IgA positive (IgA+) cells in the cornu ammonis region were analysed using ImageJ. The relationship between plasma IgA levels and cognition, C-reactive protein (CRP), and cerebrospinal fluid (CSF) AD biomarkers in cohort I as well as neuropathology, IgA+ cell number, and IgA area fraction in cohort II was analysed before and after grouping the cohorts into APOEε4 carriers and APOEε4 non-carriers. Results Plasma IgA levels were higher in AD patients compared to NC in both cohorts. Also, AD patients demonstrated higher IgA area fraction and IgA+ cell number compared to NC. When APOEε4 status was considered, higher plasma IgA levels in AD patients were only seen in APOEε4 non-carriers. Finally, plasma IgA levels, exclusively in APOEε4 non-carriers, were associated with cognition, CRP, and CSF Aβ levels in cohort I as well as with IgA area fraction, IgA+ cell number, and Aβ, Lewy body, and NFT neuropathology in cohort II. Conclusions Our study suggests that AD pathology and cognitive decline are associated with increased plasma IgA levels in an APOE allele-dependent manner, where the associations are lost in APOEε4 carriers. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01062-z.
Collapse
|
123
|
Morató X, Pytel V, Jofresa S, Ruiz A, Boada M. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer's Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int J Mol Sci 2022; 23:9305. [PMID: 36012569 PMCID: PMC9409252 DOI: 10.3390/ijms23169305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Since 1906, when Dr. Alois Alzheimer first described in a patient "a peculiar severe disease process of the cerebral cortex", people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60-70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer's disease is needed.
Collapse
Affiliation(s)
- Xavier Morató
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Vanesa Pytel
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Sara Jofresa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
124
|
Neuronal ApoE Regulates the Cell-to-Cell Transmission of α-Synuclein. Int J Mol Sci 2022; 23:ijms23158311. [PMID: 35955451 PMCID: PMC9369063 DOI: 10.3390/ijms23158311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The presence of protein inclusions, called Lewy bodies (LBs) and Lewy neurites (LNs), in the brain is the main feature of Parkinson’s disease (PD). Recent evidence that the prion-like propagation of α-synuclein (α-syn), as a major component of LBs and LNs, plays an important role in the progression of PD has gained much attention, although the molecular mechanism remains unclear. In this study, we evaluated whether neuronal ApoE regulates the cell-to-cell transmission of α-syn and explored its molecular mechanism using in vitro and in vivo model systems. We demonstrate that neuronal ApoE deficiency attenuates both α-syn uptake and release by downregulating LRP-1 and LDLR expression and enhancing chaperone-mediated autophagy activity, respectively, thereby contributing to α-syn propagation. In addition, we observed that α-syn propagation was attenuated in ApoE knockout mice injected with pre-formed mouse α-syn fibrils. This study will help our understanding of the molecular mechanisms underlying α-syn propagation.
Collapse
|
125
|
Mitochondrial function and Aβ in Alzheimer's disease postmortem brain. Neurobiol Dis 2022; 171:105781. [PMID: 35667615 DOI: 10.1016/j.nbd.2022.105781] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Mitochondrial dysfunction is observed in Alzheimer's disease (AD). However, the relationship between functional mitochondrial deficits and AD pathologies is not well established in human subjects. METHODS Post-mortem human brain tissue from 11 non-demented (ND) and 12 AD subjects was used to examine mitochondrial electron transport chain (ETC) function. Data were analyzed by neuropathology diagnosis and Apolipoprotein E (APOE) genotype. Relationships between AD pathology and mitochondrial function were determined. RESULTS AD subjects had reductions in brain cytochrome oxidase (COX) function and complex II Vmax. APOE ε4 carriers had COX, complex II and III deficits. AD subjects had reduced expression of Complex I-III ETC proteins, no changes were observed in APOE ε4 carriers. No correlation between p-Tau Thr 181 and mitochondrial outcomes was observed, although brains from non-demented subjects demonstrated positive correlations between Aβ concentration and COX Vmax. DISCUSSION These data support a dysregulated relationship between brain mitochondrial function and Aβ pathology in AD.
Collapse
|
126
|
Shen WB, Yang JJ, Yang P. RNA Hypomethylation and Unchanged DNA Methylation Levels in the Cortex of ApoE4 Carriers and Alzheimer's Disease Subjects. Curr Alzheimer Res 2022; 19:530-540. [PMID: 36045519 DOI: 10.2174/1567205019666220831125142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and ApoE4 variants are significant risk factors for AD. Epigenetic modifications are involved in AD pathology. However, it is unclear whether DNA/RNA methylation plays a role in AD pathology, and dysregulation of DNA/RNA methylation occurs in ApoE4 carriers. OBJECTIVE The present study aimed to determine whether dysregulation of DNA/RNA methylation is present in the brains of ApoE4 carriers and AD patients. METHODS In this study, postmortem brain tissues from carriers of ApoE4 and ApoE3, from AD and non- AD controls, were used in the analysis of DNA/RNA methylation, methyltransferases, and their demethylases. RESULTS Immunofluorescence staining indicates that RNA methylation is suppressed in ApoE4 carriers. Further analysis shows that the expression of RNA methyltransferases and an RNA methylation reader is suppressed in ApoE4 carriers, whereas RNA demethylase expression is increased. RNA hypomethylation occurs in NeuN+ neurons in ApoE4 carriers and AD patients. Furthermore, in ApoE4 carriers, both DNA methyltransferases and demethylases are downregulated, and overall DNA methylation levels are unchanged. CONCLUSION Our finding indicates that RNA methylation decreased in ApoE4 carriers before AD pathology and AD individuals. The expression of RNA methyltransferases and RNA methylation reader is inhibited, and RNA demethylase is upregulated in ApoE4 carriers, which leads to suppression of RNA methylation, and the suppression precedes the AD pathogenesis and persists through AD pathology.
Collapse
Affiliation(s)
- Wei-Bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - James Jiao Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA.,Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| |
Collapse
|
127
|
Xie Q, Ni M, Gao F, Dai LB, Lv XY, Zhang YF, Shi Q, Zhu XX, Xie JK, Shen Y, Wang SC. Correlation between Cerebrospinal Fluid Core Alzheimer's Disease Biomarkers and β-Amyloid PET in Chinese Dementia Population. ACS Chem Neurosci 2022; 13:1558-1565. [PMID: 35476397 DOI: 10.1021/acschemneuro.2c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The current diagnoses of Alzheimer's disease (AD) mainly rely on such measures as amyloid-β (Aβ) and tau neuropathology biomarkers in vivo via cerebrospinal fluid (CSF) and positron emission tomography (PET) imaging, which had been systematically studied in Caucasian individuals, whereas diagnostic performances of these approaches in Chinese dementia population still remain unclear. This study investigated the associations between the levels of CSF core AD biomarkers, including phosphorylated tau (p-Tau181), total tau (t-Tau), Aβ42, and Aβ40 measured by the single-molecule array (Simoa) and cerebral Aβ deposition status assessed by 18F-Florbetapir PET (Aβ PET), and evaluated the predictive values of CSF core AD biomarkers in discriminating Aβ PET status in a clinical dementia cohort of the Chinese population, which consisted of patients with mild cognitive impairment (MCI), AD dementia, and non-Alzheimer's dementia disease (Non-ADD). Global standard uptake value ratios (SUVRs) were calculated by Aβ PET, which was divided into positive (Aβ+) and negative (Aβ-) through visual analysis. CSF p-Tau181 and p-Tau181/t-Tau ratio were positively correlated with the global SUVR, while CSF Aβ42 and Aβ42/Aβ40 ratio were negatively correlated with the global SUVR. CSF Aβ40 has the highest predictive value in discriminating the MCI group from the AD group, while CSF p-Tau181 was applied to discriminate the AD group from the non-ADD group. CSF Aβ42/Aβ40 ratio, as the optimal predictive factor, was combined with APOE ε4 status rather than age and education, which could improve the predictive ability in differentiating the Aβ+ group from the Aβ- group. The results reveal the universal applicability of CSF core AD biomarkers and Aβ PET imaging in Chinese dementia population, which is helpful in clinical practice and drug trials in China.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Lin-Bin Dai
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xin-Yi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yi-Fan Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qin Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xing-Xing Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ji-Kui Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230001, China
| | - Shi-Cun Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
128
|
Carland M, Pedersen H, Bose M, Novković B, Manson C, Lahan S, Pavlenko A, Yazdi PG, Grabherr MG. EZTraits: A programmable tool to evaluate multi-site deterministic traits. PLoS One 2022; 17:e0259327. [PMID: 35533190 PMCID: PMC9084532 DOI: 10.1371/journal.pone.0259327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/24/2022] [Indexed: 11/19/2022] Open
Abstract
The vast majority of human traits, including many disease phenotypes, are affected by alleles at numerous genomic loci. With a continually increasing set of variants with published clinical disease or biomarker associations, an easy-to-use tool for non-programmers to rapidly screen VCF files for risk alleles is needed. We have developed EZTraits as a tool to quickly evaluate genotype data against a set of rules defined by the user. These rules can be defined directly in the scripting language Lua, for genotype calls using variant ID (RS number) or chromosomal position. Alternatively, EZTraits can parse simple and intuitive text including concepts like 'any' or 'all'. Thus, EZTraits is designed to support rapid genetic analysis and hypothesis-testing by researchers, regardless of programming experience or technical background. The software is implemented in C++ and compiles and runs on Linux and MacOS. The source code is available under the MIT license from https://github.com/selfdecode/rd-eztraits.
Collapse
Affiliation(s)
- Matt Carland
- SelfDecode.com, Miami, Florida, United States of America
| | - Haley Pedersen
- SelfDecode.com, Miami, Florida, United States of America
| | | | | | - Charles Manson
- SelfDecode.com, Miami, Florida, United States of America
| | - Shany Lahan
- SelfDecode.com, Miami, Florida, United States of America
| | - Alex Pavlenko
- SelfDecode.com, Miami, Florida, United States of America
| | - Puya G. Yazdi
- SelfDecode.com, Miami, Florida, United States of America
| | | |
Collapse
|
129
|
Bossaerts L, Cacace R, Van Broeckhoven C. The role of ATP-binding cassette subfamily A in the etiology of Alzheimer's disease. Mol Neurodegener 2022; 17:31. [PMID: 35477481 PMCID: PMC9044696 DOI: 10.1186/s13024-022-00536-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the leading cause of dementia, clinically characterized by memory deficits and progressive cognitive decline. Despite decades of research effective therapies are lacking, and a large part of the genetic heritability remains unidentified. ABCA7 and ABCA1, members of the ATP-binding cassette subfamily A (ABCA), were identified as AD risk genes in genome-wide association studies. Nevertheless, genetic and/or functional studies propose a link between AD and two other members of the ABCA subclass, i.e., ABCA2 and ABCA5. Main body Changes in expression or dysfunction of these transporters were found to increase amyloid β levels. This might be related to the common role of ABCA transporters in cellular cholesterol homeostasis, for which a prominent role in AD development has been suggested. In this review, we provide a comprehensive overview and discussion on the contribution of the ABCA subfamily to the etiopathogenesis of AD. Conclusions A better understanding of the function and identification of disease-associated genetic variants in ABCA transporters can contribute to the development of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Liene Bossaerts
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp - CDE, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| |
Collapse
|
130
|
Deprez M, Moreira J, Sermesant M, Lorenzi M. Decoding Genetic Markers of Multiple Phenotypic Layers Through Biologically Constrained Genome-To-Phenome Bayesian Sparse Regression. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:830956. [PMID: 39086978 PMCID: PMC11285669 DOI: 10.3389/fmmed.2022.830956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/18/2022] [Indexed: 08/02/2024]
Abstract
The applicability of multivariate approaches for the joint analysis of genomics and phenomics information is currently limited by the lack of scalability, and by the difficulty of interpreting the related findings from a biological perspective. To tackle these limitations, we present Bayesian Genome-to-Phenome Sparse Regression (G2PSR), a novel multivariate regression method based on sparse SNP-gene constraints. The statistical framework of G2PSR is based on a Bayesian neural network, were constraints on SNPs-genes associations are integrated by incorporating a priori knowledge linking variants to their respective genes, to then reconstruct the phenotypic data in the output layer. Interpretability is promoted by inducing sparsity on the genes through variational dropout, allowing to estimate the uncertainty associated with each gene, and related SNPs, in the reconstruction task. Ultimately, G2PSR is conceived to prevent multiple testing correction and to assess the combined effect of SNPs, thus increasing the statistical power in detecting genome-to-phenome associations. The effectiveness of G2PSR was demonstrated on synthetic and real data, with respect to state-of-the-art methods based on group-wise sparsity constraints. The application on real data consisted in an imaging-genetics analysis on the Alzheimer's Disease Neuroimaging Initiative data, relating SNPs from more than 3,500 genes to clinical and multi-variate brain volumetric information. The experimental results show that our method can provide accurate selection of relevant genes in dataset with large SNPs-to-samples ratio, thus overcoming the main limitations of current genome-to-phenome association methods.
Collapse
Affiliation(s)
- Marie Deprez
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| | - Julien Moreira
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| | - Maxime Sermesant
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| | - Marco Lorenzi
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| |
Collapse
|
131
|
Chen X, Yang J, Zhang H, Huang Y, Cao Y, Yan S, Zong G, Zheng Y, Wang X, Yuan C. Plasma folate levels in relation to cognitive impairment: a community-based cohort of older adults in China. Eur J Nutr 2022; 61:2837-2845. [PMID: 35303753 DOI: 10.1007/s00394-022-02825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Lower plasma level of folate has been associated with an increased risk of age-related cognitive impairment. However, studies that examined this relation have yielded mixed results. We aimed to examine the prospective association of plasma folate level with risk of cognitive impairment in a community-based prospective cohort of older adults in China. METHODS This study included 615 participants (mean age: 76.3 years) without baseline cognitive impairment from the Rugao Longevity and Ageing Study (RuLAS). We used logistic regression to examine the prospective association between baseline plasma folate and risk of cognitive impairment in the next two years. Fasting blood samples were collected and assayed for plasma folate level at baseline. Cognitive impairment was defined as Hasegawa Dementia Scale (HDS) score ≤ 21.5 points. RESULTS During two years' follow-up, 20.7% of the participants developed cognitive impairment. After controlled for age, gender, and plasma homocysteine, a higher level of plasma folate was associated with lower odds of cognitive impairment. The corresponding odds ratio (OR) with 95% confidence interval was 0.41 (0.19-0.89) comparing participants at extreme quintiles of plasma folate (median level 17.2 vs. 6.3 nmol/L). The associations were similar after further adjustment for major demographic and lifestyle factors (OR = 0.42, 0.18-0.98). Moreover, the inverse association was particularly stronger among males (OR = 0.12, 0.03-0.52) but was non-significant among females. CONCLUSION Our findings support a potential beneficial role of higher plasma folate levels in cognitive function in older Chinese adults, particularly among males. Future studies with larger sample size and longer follow-up are warranted to confirm these findings and to identify the optimal plasma folate level for cognitive function.
Collapse
Affiliation(s)
- Xiao Chen
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaxi Yang
- Bia-Echo Asia Centre for Reproductive Longevity & Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Zhang
- Human Phenome Institute, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuhui Huang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaying Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiyu Yan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- Human Phenome Institute, Fudan University, Shanghai, China. .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
132
|
Medrano-Jiménez E, Meza-Sosa KF, Urbán-Aragón JA, Secundino I, Pedraza-Alva G, Pérez-Martínez L. Microglial activation in Alzheimer's disease: The role of flavonoids and microRNAs. J Leukoc Biol 2022; 112:47-77. [PMID: 35293018 DOI: 10.1002/jlb.3mr1021-531r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia and is characterized by progressive cognitive impairment and neuronal degeneration. Microglial activation is an important pathologic hallmark of AD. During disease progression, microglial cells switch from an alternative or anti-inflammatory and neuroprotective profile (M2) to a classic or proinflammatory and neurotoxic profile (M1). Phenotypically, M1 microglia is characterized by the activation of inflammatory signaling pathways that cause increased expression of proinflammatory genes, including those coding for cytokines and chemokines. This microglia-mediated neuroinflammation contributes to neuronal cell death. Recent studies in microglial cells have shown that a group of plant-derived compounds, known as flavonoids, possess anti-inflammatory properties and therefore exert a neuroprotective effect through regulating microglia activation. Here, we discuss how flavonoids can promote the switch from an inflammatory M1 phenotype to an anti-inflammatory M2 phenotype in microglia and how this represents a valuable opportunity for the development of novel therapeutic strategies to blunt neuroinflammation and boost neuronal recovery in AD. We also review how certain flavonoids can inhibit neuroinflammation through their action on the expression of microglia-specific microRNAs (miRNAs), which also constitute a key therapeutic approach in different neuropathologies involving an inflammatory component, including AD. Finally, we propose novel targets of microglia-specific miRNAs that may be considered for AD treatment.
Collapse
Affiliation(s)
- Elisa Medrano-Jiménez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Karla F Meza-Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - José A Urbán-Aragón
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Ismael Secundino
- Universidad De La Salle Bajío, Facultad de Odontología y Escuela de Veterinaria, León-Guanajuato, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
133
|
Bai X, Mai M, Yao K, Zhang M, Huang Y, Zhang W, Guo X, Xu Y, Zhang Y, Qurban A, Duan L, Bu J, Zhang J, Wu J, Zhao Y, Yuan X, Zu H. The role of DHCR24 in the pathogenesis of AD: re-cognition of the relationship between cholesterol and AD pathogenesis. Acta Neuropathol Commun 2022; 10:35. [PMID: 35296367 PMCID: PMC8925223 DOI: 10.1186/s40478-022-01338-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that 3β-hydroxysterol-Δ24 reductase (DHCR24) has a remarked decline in the brain of AD patients. In brain cholesterol synthetic metabolism, DHCR24 is known as the heavily key synthetase in cholesterol synthesis. Moreover, mutations of DHCR24 gene result in inhibition of the enzymatic activity of DHCR24, causing brain cholesterol deficiency and desmosterol accumulation. Furthermore, in vitro studies also demonstrated that DHCR24 knockdown lead to the inhibition of cholesterol synthesis, and the decrease of plasma membrane cholesterol and intracellular cholesterol level. Obviously, DHCR24 could play a crucial role in maintaining cholesterol homeostasis via the control of cholesterol synthesis. Over the past two decades, accumulating data suggests that DHCR24 activity is downregulated by major risk factors for AD, suggesting a potential link between DHCR24 downregulation and AD pathogenesis. Thus, the brain cholesterol loss seems to be induced by the major risk factors for AD, suggesting a possible causative link between brain cholesterol loss and AD. According to previous data and our study, we further found that the reduced cholesterol level in plasma membrane and intracellular compartments by the deficiency of DHCR24 activity obviously was involved in β-amyloid generation, tau hyperphosphorylation, apoptosis. Importantly, increasing evidences reveal that the brain cholesterol loss and lipid raft disorganization are obviously linked to neuropathological impairments which are associated with AD pathogenesis. Therefore, based on previous data and research on DHCR24, we suppose that the brain cholesterol deficiency/loss might be involved in the pathogenesis of AD.
Collapse
|
134
|
Jett S, Malviya N, Schelbaum E, Jang G, Jahan E, Clancy K, Hristov H, Pahlajani S, Niotis K, Loeb-Zeitlin S, Havryliuk Y, Isaacson R, Brinton RD, Mosconi L. Endogenous and Exogenous Estrogen Exposures: How Women's Reproductive Health Can Drive Brain Aging and Inform Alzheimer's Prevention. Front Aging Neurosci 2022; 14:831807. [PMID: 35356299 PMCID: PMC8959926 DOI: 10.3389/fnagi.2022.831807] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 01/14/2023] Open
Abstract
After advanced age, female sex is the major risk factor for late-onset Alzheimer's disease (AD), the most common cause of dementia affecting over 24 million people worldwide. The prevalence of AD is higher in women than in men, with postmenopausal women accounting for over 60% of all those affected. While most research has focused on gender-combined risk, emerging data indicate sex and gender differences in AD pathophysiology, onset, and progression, which may help account for the higher prevalence in women. Notably, AD-related brain changes develop during a 10-20 year prodromal phase originating in midlife, thus proximate with the hormonal transitions of endocrine aging characteristic of the menopause transition in women. Preclinical evidence for neuroprotective effects of gonadal sex steroid hormones, especially 17β-estradiol, strongly argue for associations between female fertility, reproductive history, and AD risk. The level of gonadal hormones to which the female brain is exposed changes considerably across the lifespan, with relevance to AD risk. However, the neurobiological consequences of hormonal fluctuations, as well as that of hormone therapies, are yet to be fully understood. Epidemiological studies have yielded contrasting results of protective, deleterious and null effects of estrogen exposure on dementia risk. In contrast, brain imaging studies provide encouraging evidence for positive associations between greater cumulative lifetime estrogen exposure and lower AD risk in women, whereas estrogen deprivation is associated with negative consequences on brain structure, function, and biochemistry. Herein, we review the existing literature and evaluate the strength of observed associations between female-specific reproductive health factors and AD risk in women, with a focus on the role of endogenous and exogenous estrogen exposures as a key underlying mechanism. Chief among these variables are reproductive lifespan, menopause status, type of menopause (spontaneous vs. induced), number of pregnancies, and exposure to hormonal therapy, including hormonal contraceptives, hormonal therapy for menopause, and anti-estrogen treatment. As aging is the greatest risk factor for AD followed by female sex, understanding sex-specific biological pathways through which reproductive history modulates brain aging is crucial to inform preventative and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Niharika Malviya
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Grace Jang
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Jahan
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Katherine Clancy
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Hollie Hristov
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Kellyann Niotis
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Yelena Havryliuk
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
135
|
Chen W, Cai W, Hoover B, Kahn CR. Insulin action in the brain: cell types, circuits, and diseases. Trends Neurosci 2022; 45:384-400. [PMID: 35361499 PMCID: PMC9035105 DOI: 10.1016/j.tins.2022.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Since its discovery over 100 years ago, insulin has been recognized as a key hormone in control of glucose homeostasis. Deficiencies of insulin signaling are central to diabetes and many other disorders. The brain is among the targets of insulin action, and insulin resistance is a major contributor to many diseases, including brain disorders. Here, we summarize key roles of insulin action in the brain and how this involves different brain cell types. Disordered brain insulin signaling can also contribute to neuropsychiatric diseases, affecting brain circuits involved in mood and cognition. Understanding of insulin signaling in different brain cell types/circuits and how these are altered in disease may lead to the development of new therapeutic approaches to these challenging disorders.
Collapse
|
136
|
Maltais M, Lorrain D, Léveillé P, Viens I, Vachon A, Houeto A, Presse N, Plourde M. Long-chain Omega-3 fatty acids supplementation and cognitive performance throughout adulthood: A 6-month randomized controlled trial. Prostaglandins Leukot Essent Fatty Acids 2022; 178:102415. [PMID: 35338847 DOI: 10.1016/j.plefa.2022.102415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate whether omega-3 polyunsaturated fatty acids (n-3 PUFA) supplementation improve cognitive performance and if apolipoprotein E (APOE) genotype or age were effect modifiers. METHODS Healthy adults of 20 to 80 years old (n = 193) were completed a 6-month double-blind randomized controlled trial with two groups: 2.5 g/day of n-3 PUFA or a placebo. Primary outcomes were visuospatial ability and working memory and secondary outcomes were episodic memory and executive function, measured at baseline and 6 months. RESULTS Cognitive performances did not significantly differ between groups on primary or secondary outcomes after 6 months of treatment. APOE carriers and age were not effect modifiers for any outcomes. Those with low episodic memory scores and taking the n-3 PUFA supplement, significantly improved their scores (p = 0.043). CONCLUSIONS A 6-month n-3 PUFA supplementation did not improve cognitive performance in cognitively healthy adults and APOE status or age were not effect modifiers.
Collapse
Affiliation(s)
- Mathieu Maltais
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Dominique Lorrain
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Département de Psychologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pauline Léveillé
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada
| | - Isabelle Viens
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Annick Vachon
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Anita Houeto
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada
| | - Nancy Presse
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud de l'Ile-de-Montréal, Canada
| | - Mélanie Plourde
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
137
|
Holden S, Kundu P, Torres ERS, Sudhakar R, Krenik D, Grygoryev D, Turker MS, Raber J. Apolipoprotein E Isoform-Dependent Effects on Human Amyloid Precursor Protein/Aβ-Induced Behavioral Alterations and Cognitive Impairments and Insoluble Cortical Aβ42 Levels. Front Aging Neurosci 2022; 14:767558. [PMID: 35299942 PMCID: PMC8922030 DOI: 10.3389/fnagi.2022.767558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Mice expressing human amyloid precursor protein (APP) containing the dominant Swedish and Iberian mutations (AppNL-F ) or also Arctic mutation (AppNL-G-F ) show neuropathology and hippocampus-dependent cognitive impairments pertinent to Alzheimer's disease (AD) in mouse models at 18 and 6 months of age, respectively. Apolipoprotein E, involved in cholesterol metabolism, plays an important role in maintaining the brain. There are three human apolipoprotein E isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 protects against AD risk. At 6 months of age, prior to the onset of plaque pathology, E3, but not E4, protected against hAPP/Aβ-induced impairments in spatial memory retention in the Morris water maze. However, these earlier studies were limited as hapoE was not expressed outside the brain and E3 or E4 was not expressed under control of an apoE promotor, E2 was often not included, hAPP was transgenically overexpressed and both mouse and hAPP were present. Therefore, to determine whether apoE has isoform-dependent effects on hAPP/Aβ-induced behavioral alterations and cognitive impairments in adult female and male mice at 6 and 18 months of age, we crossed AppNL-G-F and AppNL-F mice with E2, E3, and E4 mice. To distinguish whether genotype differences seen at either time point were due to main effects of hAPP, hapoE, or hAPP × hapoE genetic interactions, we also behavioral and cognitively tested E2, E3, and E4 female and male mice at 6 and 18 months of age. We also compared behavioral and cognitive performance of 18-month-old AppNL-G-F and AppNL-F female and male mice on a murine apoE background along with that of age-and sex-matched C57BL/6J wild-type mice. For many behavioral measures at both time points there were APP × APOE interactions, supporting that apoE has isoform-dependent effects on hAPP/Aβ-induced behavioral and cognitive performance. NL-G-F/E3, but not NL-G-F/E2, mice had lower cortical insoluble Aβ42 levels than NL-G-F/E4 mice. NL-F/E3 and NL-F/E2 mice had lower cortical insoluble Aβ42 levels than NL-F/E4 mice. These results demonstrate that there are apoE isoform-dependent effects on hAPP/Aβ-induced behavioral alterations and cognitive impairments and cortical insoluble Aβ42 levels in mouse models containing only human APP and apoE.
Collapse
Affiliation(s)
- Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Eileen R. S. Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Reetesh Sudhakar
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Destine Krenik
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Dmytro Grygoryev
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Mitchel S. Turker
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Psychiatry, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
138
|
Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159123. [PMID: 35151900 DOI: 10.1016/j.bbalip.2022.159123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
High-density lipoproteins (HDLs play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDLs, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).
Collapse
|
139
|
Tan L, Chen Z, Teng M, Chen B, Xu H. Genome-wide analysis of mRNAs, lncRNAs, and circRNAs during intramuscular adipogenesis in Chinese Guizhou Congjiang pigs. PLoS One 2022; 17:e0261293. [PMID: 35077458 PMCID: PMC8789167 DOI: 10.1371/journal.pone.0261293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/30/2021] [Indexed: 01/12/2023] Open
Abstract
Intramuscular fat content is an important determinant of meat quality, and preadipocyte differentiation plays a critical role in intramuscular fat deposition in pigs. However, many types of RNA differentiation, including messenger RNA (mRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) remain unreported despite their crucial roles in regulating adipogenesis. Chinese Guizhou Congjiang pigs are raised in the Guizhou province of China for their high-quality meat. Therefore, it is important for breeders to explore the mechanisms of proliferation and differentiation of intramuscular adipocytes from the longissimus dorsi muscle of these pigs. In the present study, a transcriptome analysis of intramuscular preadipocytes from Chinese Guizhou Congjiang pigs, including analyses of mRNAs, lncRNAs, and circRNAs at days 0 (D0), 4 (D4), and 8 (D8) was performed. A total of 1,538, 639, and 445 differentially expressed (DE) mRNAs, 479, 192, and 126 DE lncRNAs, and 360, 439, and 304 DE circRNAs were detected between D4 and D0, D8 and D0, and D8 and D4, respectively. Functional analyses identified many significantly enriched RNAs related to lipid deposition, cell differentiation, metabolism processes, and obesity-related diseases, biological processes, and pathways. We identified two lncRNAs (TCONS_00012086 and TCONS_00007245) closely related to fat deposition according to their target genes and tissue expression profiles. Subcellular distribution analysis using quantitative real-time PCR (qRT-PCR) revealed that both TCONS_00012086 and TCONS_00007245 are cytoplasmic lncRNAs. These data provide a genome-wide resource for mRNAs, lncRNAs, and circRNAs potentially involved in Chinese Guizhou Congjiang pig fat metabolism, thus improving our understanding of their function in adipogenesis.
Collapse
Affiliation(s)
- Lulin Tan
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhaojun Chen
- The Potato Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - MingDe Teng
- College of Life Science, Guizhou University, Guiyang, China
| | - Bin Chen
- College of Life Science, Guizhou University, Guiyang, China
| | - Houqiang Xu
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
140
|
Stepanichev MY. Using Genome Editing for Alzheimer’s Disease Therapy: from Experiment to Clinic. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
141
|
Josephine Boder E, Banerjee IA. Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling. Bioengineering (Basel) 2021; 8:211. [PMID: 34940364 PMCID: PMC8698996 DOI: 10.3390/bioengineering8120211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.
Collapse
Affiliation(s)
| | - Ipsita A. Banerjee
- Department of Chemistry, Fordham University, 441 E. Fordham Road, Bronx, NY 10458, USA;
| |
Collapse
|
142
|
Jeong ES, Bajgai J, You IS, Rahman MH, Fadriquela A, Sharma S, Kwon HU, Lee SY, Kim CS, Lee KJ. Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice Model. Int J Mol Sci 2021; 22:ijms222413313. [PMID: 34948107 PMCID: PMC8703468 DOI: 10.3390/ijms222413313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress (OS) is one of the causative factors in the pathogenesis of various neurodegenerative diseases, including Alzheimer’s disease (AD) and cognitive dysfunction. In the present study, we investigated the effects of hydrogen (H2) gas inhalation in trimethyltin (TMT)-induced neurotoxicity and cognitive dysfunction in the C57BL/6 mice. First, mice were divided into the following groups: mice without TMT injection (NC), TMT-only injection group (TMT only), TMT injection + lithium chloride-treated group as a positive control (PC), and TMT injection + 2% H2 inhalation-treated group (H2). The TMT injection groups were administered a single dosage of intraperitoneal TMT injection (2.6 mg/kg body weight) and the H2 group was treated with 2% H2 for 30 min once a day for four weeks. Additionally, a behavioral test was performed with Y-maze to test the cognitive abilities of the mice. Furthermore, multiple OS- and AD-related biomarkers such as reactive oxygen species (ROS), nitric oxide (NO), calcium (Ca2+), malondialdehyde (MDA), glutathione peroxidase (GPx), catalase, inflammatory cytokines, apolipoprotein E (Apo-E), amyloid β (Aβ)-40, phospho-tau (p-tau), Bcl-2, and Bcl-2- associated X (Bax) were investigated in the blood and brain. Our results demonstrated that TMT exposure alters seizure and spatial recognition memory. However, after H2 treatment, memory deficits were ameliorated. H2 treatment also decreased AD-related biomarkers, such as Apo-E, Aβ-40, p-tau, and Bax and OS markers such as ROS, NO, Ca2+, and MDA in both serum and brain. In contrast, catalase and GPx activities were significantly increased in the TMT-only group and decreased after H2 gas treatment in serum and brain. In addition, inflammatory cytokines such as granulocyte colony-stimulating factors (G-CSF), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) were found to be significantly decreased after H2 treatment in both serum and brain lysates. In contrast, Bcl-2 and vascular endothelial growth factor (VEGF) expression levels were found to be enhanced after H2 treatment. Taken together, our results demonstrated that 2% H2 gas inhalation in TMT-treated mice exhibits memory enhancing activity and decreases the AD, OS, and inflammatory-related markers. Therefore, H2 might be a candidate for repairing neurodegenerative diseases with cognitive dysfunction. However, further mechanistic studies are needed to fully clarify the effects of H2 inhalation on TMT-induced neurotoxicity and cognitive dysfunction.
Collapse
Affiliation(s)
- Eun-Sook Jeong
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
| | - Johny Bajgai
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
| | - In-Soo You
- GOOTZ Co., Ltd., 79-6, Yuljeong-ro 247 beon-gil, Yangju-si, Suwon 11457, Korea; (I.-S.Y.); (H.-U.K.); (S.-Y.L.)
| | - Md. Habibur Rahman
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Ailyn Fadriquela
- Department of Laboratory Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Subham Sharma
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Hwang-Un Kwon
- GOOTZ Co., Ltd., 79-6, Yuljeong-ro 247 beon-gil, Yangju-si, Suwon 11457, Korea; (I.-S.Y.); (H.-U.K.); (S.-Y.L.)
| | - So-Yeon Lee
- GOOTZ Co., Ltd., 79-6, Yuljeong-ro 247 beon-gil, Yangju-si, Suwon 11457, Korea; (I.-S.Y.); (H.-U.K.); (S.-Y.L.)
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
- Correspondence: ; Tel.: +82-(033)-741-331
| |
Collapse
|
143
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
144
|
Nadeem MS, Hosawi S, Alshehri S, Ghoneim MM, Imam SS, Murtaza BN, Kazmi I. Symptomatic, Genetic, and Mechanistic Overlaps between Autism and Alzheimer's Disease. Biomolecules 2021; 11:1635. [PMID: 34827633 PMCID: PMC8615882 DOI: 10.3390/biom11111635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Autism spectrum disorder (ASD) and Alzheimer's disease (AD) are neurodevelopmental and neurodegenerative disorders affecting two opposite ends of life span, i.e., childhood and old age. Both disorders pose a cumulative threat to human health, with the rate of incidences increasing considerably worldwide. In the context of recent developments, we aimed to review correlated symptoms and genetics, and overlapping aspects in the mechanisms of the pathogenesis of ASD and AD. Dementia, insomnia, and weak neuromuscular interaction, as well as communicative and cognitive impairments, are shared symptoms. A number of genes and proteins linked with both disorders have been tabulated, including MECP2, ADNP, SCN2A, NLGN, SHANK, PTEN, RELN, and FMR1. Theories about the role of neuron development, processing, connectivity, and levels of neurotransmitters in both disorders have been discussed. Based on the recent literature, the roles of FMRP (Fragile X mental retardation protein), hnRNPC (heterogeneous ribonucleoprotein-C), IRP (Iron regulatory proteins), miRNAs (MicroRNAs), and α-, β0, and γ-secretases in the posttranscriptional regulation of cellular synthesis and processing of APP (amyloid-β precursor protein) have been elaborated to describe the parallel and overlapping routes and mechanisms of ASD and AD pathogenesis. However, the interactive role of genetic and environmental factors, oxidative and metal ion stress, mutations in the associated genes, and alterations in the related cellular pathways in the development of ASD and AD needs further investigation.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| |
Collapse
|
145
|
Lessard-Beaudoin M, M Gonzalez L, AlOtaibi M, Chouinard-Watkins R, Plourde M, Calon F, Graham RK. Diet enriched in omega-3 fatty acids alleviates olfactory system deficits in APOE4 transgenic mice. Eur J Neurosci 2021; 54:7092-7108. [PMID: 34549475 DOI: 10.1111/ejn.15472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Olfactory dysfunction is observed in several neurological disorders including Mild Cognitive Impairment (MCI) and Alzheimer disease (AD). These deficits occur early and correlate with global cognitive performance, depression and degeneration of olfactory regions in the brain. Despite extensive human studies, there has been little characterization of the olfactory system in models of AD. In order to determine if olfactory structural and/or molecular phenotypes are observed in a model expressing a genetic risk factor for AD, we assessed the olfactory bulb (OB) in APOE4 transgenic mice. A significant decrease in OB weight was observed at 12 months of age in APOE4 mice concurrent with inflammation and decreased NeuN expression. In order to determine if a diet rich in omega-3s may alleviate the olfactory system phenotypes observed, we assessed WT and APOE4 mice on a docosahexaenoic acid (DHA) diet. APOE4 mice on a DHA diet did not present with atrophy of the OB, and the alterations in NeuN and IBA-1 expression were alleviated. Furthermore, alterations in caspase mRNA and protein expression in the APOE4 OB were not observed with a DHA diet. Similar to the human AD condition, OB atrophy is an early phenotype in the APOE4 mice and concurrent with inflammation. These data support a link between the structural olfactory brain region atrophy and the olfactory dysfunction observed in AD and suggest that inflammation and cell death pathways may contribute to the olfactory deficits observed. Furthermore, the results suggest that diets enriched in DHA may provide benefit to APOE4 allele carriers.
Collapse
Affiliation(s)
- Melissa Lessard-Beaudoin
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Pharmacology and Physiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Laura M Gonzalez
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Pharmacology and Physiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Majed AlOtaibi
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Pharmacology and Physiology, University of Sherbrooke, Sherbrooke, Quebec, Canada.,Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Raphaël Chouinard-Watkins
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Melanie Plourde
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frederic Calon
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Rona K Graham
- Research Center on Aging, CIUSSS de L'Estrie - CHUS, Sherbrooke, Quebec, Canada.,Department of Pharmacology and Physiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
146
|
Martínez M, Inestrosa NC. The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neurosci Biobehav Rev 2021; 128:454-466. [PMID: 34224789 DOI: 10.1016/j.neubiorev.2021.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder primarily affecting the elderly. The disease manifests as progressive deterioration in cognitive functions, leading to a loss of autonomy. The identification of transcriptional changes in susceptible signaling pathways has provided clues to the origin and progression of AD and has pinpointed synapse loss as the prominent event in early stages of the disease. Synapse failure represents a key pathological correlate of cognitive decline in patients. Genetics and transcriptomics studies have also identified novel genes, processes, and pathways associated with AD. This evidence suggests that a deficiency in Wnt signaling pathway contributes to AD pathogenesis by inducing synaptic dysfunction and neuronal degeneration. In the adult nervous system, Wnt signaling plays a crucial role in synaptic physiology, modulating the synaptic vesicle cycle, trafficking neurotransmitter receptors, and modulating the expression of different genes associated with these processes. In this review, we describe the general transcriptional landscape associated with AD, specifically transcriptional changes associated with the Wnt signaling pathway and their effects in the context of disease.
Collapse
Affiliation(s)
- Milka Martínez
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
147
|
Rao W, Zhang Y, Li K, Zhang XY. Association between cognitive impairment and apolipoprotein A1 or apolipoprotein B levels is regulated by apolipoprotein E variant rs429358 in patients with chronic schizophrenia. Aging (Albany NY) 2021; 13:16353-16366. [PMID: 34135129 PMCID: PMC8266354 DOI: 10.18632/aging.203161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
ApoE gene polymorphism may be involved in the change in blood lipid profile and cognitive impairment of the general population. However, few studies explored the effects of ApoE gene polymorphism on blood lipid levels and cognition in schizophrenia. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was employed to evaluate the cognition and the SNPStats was used to investigate the association of ApoE rs429358 with schizophrenia. The models of analysis of covariance and multivariate analysis were conducted to investigate the effect of ApoE rs429358 on cognition in schizophrenia. Altogether, 637 patients with schizophrenia and 467 healthy controls were recruited in this study. The findings in the case group found that both the ApoA1 and ApoB levels were predictors for RBANS total score (p < 0.001 vs. p = 0.011), immediate memory (p < 0.001 vs. p = 0.019), language (p < 0.001 vs. p = 0.013), attention (p < 0.001 vs. p < 0.001), except ApoA1 level only was a predictor for visuospatial/constructional (p = 0.014) and delayed memory (p < 0.001). When the association was examined in different ApoE rs429358 genotype subgroups, the association between ApoA1 level and RBANS scores (except for the language score) or between ApoB level and RBANS scores (except for the attention score) was regulated by ApoE rs429358. Our results suggest that patients with schizophrenia have broad cognitive impairment compared with healthy controls. For patients with schizophrenia, both ApoA1 and ApoB levels were positively associated with cognition. There was a significant association between ApoA1 or ApoB levels and cognition in schizophrenia, which was regulated by the ApoE rs429358.
Collapse
Affiliation(s)
- Wenwang Rao
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Unit of Psychiatry, Department of Public Health and Medicinal Administration & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yunshu Zhang
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Department of Sleep Medicine, Hebei Psychiatric Hospital, Hebei Province, China
| | - Keqing Li
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Department of Sleep Medicine, Hebei Psychiatric Hospital, Hebei Province, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
148
|
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides Derived from Growth Factors to Treat Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22116071. [PMID: 34199883 PMCID: PMC8200100 DOI: 10.3390/ijms22116071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Jessica Jann
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Chloé Langlois-Blais
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie–Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1G 1B1, Canada;
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| |
Collapse
|
149
|
Wang H, Lo MT, Rosenthal SB, Makowski C, Andreassen OA, Salem RM, McEvoy LK, Fiecas M, Chen CH. Similar Genetic Architecture of Alzheimer's Disease and Differential APOE Effect Between Sexes. Front Aging Neurosci 2021; 13:674318. [PMID: 34122051 PMCID: PMC8194397 DOI: 10.3389/fnagi.2021.674318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Sex differences have been observed in the clinical manifestations of Alzheimer’s disease (AD) and elucidating their genetic basis is an active research topic. Based on autosomal genotype data of 7,216 men and 10,680 women, including 8,136 AD cases and 9,760 controls, we explored sex-related genetic heterogeneity in AD by investigating SNP heritability, genetic correlation, as well as SNP- and gene-based genome-wide analyses. We found similar SNP heritability (men: 19.5%; women: 21.5%) and high genetic correlation (Rg = 0.96) between the sexes. The heritability of APOE ε4-related risks for AD, after accounting for effects of all SNPs excluding chromosome 19, was nominally, but not significantly, higher in women (10.6%) than men (9.7%). In age-stratified analyses, ε3/ε4 was associated with a higher risk of AD among women than men aged 65–75 years, but not in the full sample. Apart from APOE, no new significant locus was identified in sex-stratified gene-based analyses. Our result of the high genetic correlation indicates overall similar genetic architecture of AD in both sexes at the genome-wide averaged level. Our study suggests that clinically observed sex differences may arise from sex-specific variants with small effects or more complicated mechanisms involving epigenetic alterations, sex chromosomes, or gene-environment interactions.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| | - Min-Tzu Lo
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, San Diego, CA, United States
| | - Carolina Makowski
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| | - Ole A Andreassen
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rany M Salem
- Department of Family Medicine and Public Health, Division of Epidemiology, University of California, San Diego, San Diego, CA, United States
| | - Linda K McEvoy
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States.,Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, CA, United States
| | - Mark Fiecas
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Chi-Hua Chen
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|