101
|
Li Y, Duan JZ, He Q, Wang CQ. miR‑155 modulates high glucose‑induced cardiac fibrosis via the Nrf2/HO‑1 signaling pathway. Mol Med Rep 2020; 22:4003-4016. [PMID: 32901848 DOI: 10.3892/mmr.2020.11495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/29/2020] [Indexed: 11/05/2022] Open
Abstract
Cardiac fibrosis is a major pathological manifestation of diabetic cardiomyopathy, which is a leading cause of mortality in patients with diabetes. MicroRNA (miR)‑155 is upregulated in cardiomyocytes in cardiac fibrosis, and the aim of the present study was to investigate if the inhibition of miR‑155 was able to ameliorate cardiac fibrosis by targeting the nuclear factor erythroid‑2‑related factor 2 (Nrf2)/heme oxygenase‑1 (HO‑1) signaling pathway. H9C2 rat cardiomyocytes were cultured with high glucose (HG; 30 mM) to establish an in vitro cardiac fibrosis model that mimicked diabetic conditions; a miR‑155 inhibitor and a miR‑155 mimic were transfected into H9C2 cells. Following HG treatment, H9C2 cells exhibited increased expression levels of miR‑155 and the fibrosis markers collagen I and α‑smooth muscle actin (α‑SMA). In addition, the expression levels of endonuclear Nrf2 and HO‑1 were decreased, but the expression level of cytoplasmic Nrf2 was increased. Moreover, oxidative stress, mitochondrial damage and cell apoptosis were significantly increased, as indicated by elevated reactive oxygen species, malonaldehyde and monomeric JC‑1 expression levels. In addition, superoxide dismutase expression was attenuated and there was an increased expression level of released cytochrome‑c following HG treatment. Furthermore, it was demonstrated that expression levels of Bcl‑2 and uncleaved Poly (ADP‑ribose) polymerase were downregulated, whereas Bax, cleaved caspase‑3 and caspase‑9 were upregulated after HG treatment. However, the miR‑155 inhibitor significantly restored Nrf2 and HO‑1 expression levels, and reduced oxidative stress levels, the extent of mitochondrial damage and the number of cells undergoing apoptosis. Additionally, the miR‑155 inhibitor significantly reversed the expression levels of collagen I and α‑SMA, thus ameliorating fibrosis. Furthermore, the knockdown of Nrf2 reversed the above effects induced by the miR‑155 inhibitor. In conclusion, the miR‑155 inhibitor may ameliorate diabetic cardiac fibrosis by reducing the accumulation of oxidative stress‑related molecules, and preventing mitochondrial damage and cardiomyocyte apoptosis by enhancing the Nrf2/HO‑1 signaling pathway. This mechanism may facilitate the development of novel targets to prevent cardiac fibrosis in patients with diabetes.
Collapse
Affiliation(s)
- Yu Li
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jing-Zhu Duan
- Department of Respiratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qian He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Chong-Quan Wang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
102
|
Mehmood M. Asthma and Obstructive Sleep Apnea: Taking It to Heart. Am J Respir Crit Care Med 2020; 201:1447-1448. [PMID: 32027809 PMCID: PMC7258646 DOI: 10.1164/rccm.201912-2537le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
103
|
Mosher CL, Mentz RJ. Cardiovascular implications of idiopathic pulmonary fibrosis: A way forward together? Am Heart J 2020; 226:69-74. [PMID: 32521292 DOI: 10.1016/j.ahj.2020.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease has an increased prevalence among patients with idiopathic pulmonary fibrosis (IPF). Cardiovascular disease and IPF share similar symptoms with overlapping demographics and risk factors for disease development. Common cellular mediators leading to disease development and progression have been identified in both the cardiovascular and pulmonary organ systems. In this context, discovery of new therapeutic targets and medical therapies could be mutually beneficial across cardiopulmonary diseases. Here we present (1) a clinical review of IPF for the cardiovascular clinician and (2) common cellular mechanisms responsible for fibrosis in the heart and lungs and (3) highlight future research considerations and the potential role of novel therapeutic agents which may be mutually beneficial in cardiac and pulmonary fibrosis.
Collapse
|
104
|
Bektik E, Cowan DB, Wang DZ. Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. Int J Mol Sci 2020; 21:ijms21155424. [PMID: 32751460 PMCID: PMC7432754 DOI: 10.3390/ijms21155424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a type of sustained arrhythmia in humans often characterized by devastating alterations to the cardiac conduction system as well as the structure of the atria. AF can lead to decreased cardiac function, heart failure, and other complications. Long non-coding RNAs (lncRNAs) have been shown to play important roles in the cardiovascular system, including AF; however, a large group of lncRNAs is not conserved between mouse and human. Furthermore, AF has complex networks showing variations in mechanisms in different species, making it challenging to utilize conventional animal models to investigate the functional roles and potential therapeutic benefits of lncRNAs for AF. Fortunately, pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) offer a reliable platform to study lncRNA functions in AF because of certain electrophysiological and molecular similarities with native human CMs. In this review, we first summarize the broad aspects of lncRNAs in various heart disease settings, then focus on their potential roles in AF development and pathophysiology. We also discuss current uses of PSCs in AF research and describe how these studies could be developed into novel therapeutics for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Douglas B. Cowan
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
105
|
Al-U'datt D, Allen BG, Nattel S. Role of the lysyl oxidase enzyme family in cardiac function and disease. Cardiovasc Res 2020; 115:1820-1837. [PMID: 31504232 DOI: 10.1093/cvr/cvz176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Heart diseases are a major cause of morbidity and mortality world-wide. Lysyl oxidase (LOX) and related LOX-like (LOXL) isoforms play a vital role in remodelling the extracellular matrix (ECM). The LOX family controls ECM formation by cross-linking collagen and elastin chains. LOX/LOXL proteins are copper-dependent amine oxidases that catalyse the oxidation of lysine, causing cross-linking between the lysine moieties of lysine-rich proteins. Dynamic changes in LOX and LOXL protein-expression occur in a variety of cardiac pathologies; these changes are believed to be central to the associated tissue-fibrosis. An awareness of the potential pathophysiological importance of LOX has led to the evaluation of interventions that target LOX/LOXL proteins for heart-disease therapy. The purposes of this review article are: (i) to summarize the basic biochemistry and enzyme function of LOX and LOXL proteins; (ii) to consider their tissue and species distribution; and (iii) to review the results of experimental studies of the roles of LOX and LOXL proteins in heart disease, addressing involvement in the mechanisms, pathophysiology and therapeutic responses based on observations in patient samples and relevant animal models. Therapeutic targeting of LOX family enzymes has shown promising results in animal models, but small-molecule approaches have been limited by non-specificity and off-target effects. Biological approaches show potential promise but are in their infancy. While there is strong evidence for LOX-family protein participation in heart failure, myocardial infarction, cardiac hypertrophy, dilated cardiomyopathy, atrial fibrillation and hypertension, as well as potential interest as therapeutic targets, the precise involvement of LOX-family proteins in heart disease requires further investigation.
Collapse
Affiliation(s)
- Doa'a Al-U'datt
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | - Bruce G Allen
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Medicine, Université de Montreal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Stanley Nattel
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Medicine, Université de Montreal, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
106
|
Self DNA perpetuates IPF lung fibroblast senescence in a cGAS-dependent manner. Clin Sci (Lond) 2020; 134:889-905. [PMID: 32219338 DOI: 10.1042/cs20191160] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
Senescence and mitochondrial stress are mutually reinforcing age-related processes that contribute to idiopathic pulmonary fibrosis (IPF); a lethal disease that manifests primarily in the elderly. Whilst evidence is accumulating that GMP-AMP synthase (cGAS) is crucial in perpetuating senescence by binding damaged DNA released into the cytosol, its role in IPF is not known. The present study examines the contributions of cGAS and self DNA to the senescence of lung fibroblasts from IPF patients (IPF-LFs) and age-matched controls (Ctrl-LFs). cGAS immunoreactivity was observed in regions of fibrosis associated with fibroblasts in lung tissue of IPF patients. Pharmacological inhibition of cGAS or its knockdown by silencing RNA (siRNA) diminished the escalation of IPF-LF senescence in culture over 7 days as measured by decreased p21 and p16 expression, histone 2AXγ phosphorylation and/or IL-6 production (P < 0.05, n = 5-8). The targeting of cGAS also attenuated etoposide-induced senescence in Ctrl-LFs (P < 0.05, n = 5-8). Levels of mitochondrial DNA (mDNA) detected by qPCR in the cytosol and medium of IPF-LFs or senescence-induced Ctrl-LFs were higher than Ctrl-LFs at baseline (P < 0.05, n = 5-7). The addition of DNAse I (100 U/ml) deaccelerated IPF-LF senescence (P < 0.05, n = 5), whereas ectopic mDNA or the induction of endogenous mDNA release augmented Ctrl-LF senescence in a cGAS-dependent manner (P < 0.05, n = 5). In conclusion, we provide evidence that cGAS reinforces lung fibroblast senescence involving damaged self DNA. The targeting of cGAS to supress senescent-like responses may have potential important therapeutic implications in the treatment of IPF.
Collapse
|
107
|
Massai D, Pisani G, Isu G, Rodriguez Ruiz A, Cerino G, Galluzzi R, Pisanu A, Tonoli A, Bignardi C, Audenino AL, Marsano A, Morbiducci U. Bioreactor Platform for Biomimetic Culture and in situ Monitoring of the Mechanical Response of in vitro Engineered Models of Cardiac Tissue. Front Bioeng Biotechnol 2020; 8:733. [PMID: 32766218 PMCID: PMC7381147 DOI: 10.3389/fbioe.2020.00733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, relevant advances have been made in the generation of engineered cardiac constructs to be used as functional in vitro models for cardiac research or drug testing, and with the ultimate but still challenging goal of repairing the damaged myocardium. To support cardiac tissue generation and maturation in vitro, the application of biomimetic physical stimuli within dedicated bioreactors is crucial. In particular, cardiac-like mechanical stimulation has been demonstrated to promote development and maturation of cardiac tissue models. Here, we developed an automated bioreactor platform for tunable cyclic stretch and in situ monitoring of the mechanical response of in vitro engineered cardiac tissues. To demonstrate the bioreactor platform performance and to investigate the effects of cyclic stretch on construct maturation and contractility, we developed 3D annular cardiac tissue models based on neonatal rat cardiac cells embedded in fibrin hydrogel. The constructs were statically pre-cultured for 5 days and then exposed to 4 days of uniaxial cyclic stretch (sinusoidal waveform, 10% strain, 1 Hz) within the bioreactor. Explanatory biological tests showed that cyclic stretch promoted cardiomyocyte alignment, maintenance, and maturation, with enhanced expression of typical mature cardiac markers compared to static controls. Moreover, in situ monitoring showed increasing passive force of the constructs along the dynamic culture. Finally, only the stretched constructs were responsive to external electrical pacing with synchronous and regular contractile activity, further confirming that cyclic stretching was instrumental for their functional maturation. This study shows that the proposed bioreactor platform is a reliable device for cyclic stretch culture and in situ monitoring of the passive mechanical response of the cultured constructs. The innovative feature of acquiring passive force measurements in situ and along the culture allows monitoring the construct maturation trend without interrupting the culture, making the proposed device a powerful tool for in vitro investigation and ultimately production of functional engineered cardiac constructs.
Collapse
Affiliation(s)
- Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Giuseppe Pisani
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Giuseppe Isu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andres Rodriguez Ruiz
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Giulia Cerino
- Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Renato Galluzzi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alessia Pisanu
- Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andrea Tonoli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alberto L Audenino
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Anna Marsano
- Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| |
Collapse
|
108
|
Li F, Long TY, Bi SS, Sheikh SA, Zhang CL. circPAN3 exerts a profibrotic role via sponging miR-221 through FoxO3/ATG7-activated autophagy in a rat model of myocardial infarction. Life Sci 2020; 257:118015. [PMID: 32629000 DOI: 10.1016/j.lfs.2020.118015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Cardiac fibrosis is the scarring process occurs commonly with CVDs impairing the function and structure of heart. Herein, we investigated the role of circPAN3 in the pathogenesis of cardiac fibrosis. METHODS A rat myocardial infarction (MI) model was constructed to evaluate the role of circPAN3. Expression of circPAN3 in MI was determined, and si-circPAN3 was applied to verify its profibrotic effects. With an in vitro model, cardiac fibroblasts were stimulated by transforming growth factor beta 1 (TGFβ1). Immunofluorescent staining was employed to assess the fibrosis-related markers, as well as autophagy activity. CCK-8 and transwell assays were performed to determine cell proliferation and migration. Luciferase reporter assay and RNA pull-down were subjected to verify the interaction of circPAN3/miR-221. The enrichment of FoxO3 on the promoter region of ATG7 was detected using CHIP assay. RESULTS Elevated circPAN3 was found in rat MI heart tissue, of which knockdown attenuated cardiac fibrosis after MI. In an in vitro model exposing with TGFβ1, increasing cell proliferation and migration were observed, whereas these effects were abolished by circPAN3 knockdown, as well as autophagy activity. miR-221 was identified as a target to be involved in circPAN3-mediated cardiac fibrosis after MI. miR-221 negatively regulated FoxO3, thus causing the inhibition of ATG7 transcription. The regulatory network of circPAN3/miR-221/FoxO3/ATG7 in cardiac fibrosis was further determined in vivo. CONCLUSION circPAN3 exhibited profibrotic effects during autophagy-mediated cardiac fibrosis via miR-221/FoxO3/ATG7 axis, which may serve as potential biomarkers for cardiac fibrosis therapeutics.
Collapse
Affiliation(s)
- Fei Li
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Tian-Yi Long
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Si-Si Bi
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Sayed Ali Sheikh
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Internal Medicine Department, Cardiology, College of Medicine, Jouf University, Saudi Arabia
| | - Cheng-Long Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
109
|
Zabihollahy F, Rajan S, Ukwatta E. Machine Learning-Based Segmentation of Left Ventricular Myocardial Fibrosis from Magnetic Resonance Imaging. Curr Cardiol Rep 2020; 22:65. [PMID: 32562100 DOI: 10.1007/s11886-020-01321-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Myocardial fibrosis (MF) arises due to myocardial infarction and numerous cardiac diseases. MF may lead to several heart disorders, such as heart failure, arrhythmias, and ischemia. Cardiac magnetic resonance (CMR) imaging techniques, such as late gadolinium enhancement (LGE) CMR, enable non-invasive assessment of MF in the left ventricle (LV). Manual assessment of MF on CMR is a tedious and time-consuming task that is subject to high observer variability. Automated segmentation and quantification of MF is important for risk stratification and treatment planning in patients with heart disorders. This article aims to review the machine learning (ML)-based methodologies developed for MF quantification in the LV using CMR images. RECENT FINDINGS With the availability of relatively large labeled datasets supervised learning methods based on both conventional ML and state-of-the-art deep learning (DL) methods have been successfully applied for automated segmentation of MF. The incorporation of ML algorithms into imaging techniques such as 3D LGE CMR permits fast characterization of MF on CMR imaging and may enhance the diagnosis and prognosis of patients with heart disorders. Concurrently, the studies using cine CMR images have revealed that accurate segmentation of MF on non-contrast CMR imaging might be possible. The application of ML/DL tools in CMR image interpretation is likely to result in accurate and efficient quantification of MF.
Collapse
Affiliation(s)
- Fatemeh Zabihollahy
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada.
| | - S Rajan
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - E Ukwatta
- School of Engineering, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
110
|
Künzel SR, Rausch JSE, Schäffer C, Hoffmann M, Künzel K, Klapproth E, Kant T, Herzog N, Küpper JH, Lorenz K, Dudek S, Emig R, Ravens U, Rog-Zielinska EA, Peyronnet R, El-Armouche A. Modeling atrial fibrosis in vitro-Generation and characterization of a novel human atrial fibroblast cell line. FEBS Open Bio 2020; 10:1210-1218. [PMID: 32421922 PMCID: PMC7327914 DOI: 10.1002/2211-5463.12896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Atrial fibrillation (AF) is regularly accompanied by cardiac fibrosis and concomitant heart failure. Due to the heterogeneous nature and complexity of fibrosis, the knowledge about the underlying mechanisms is limited, which prevents effective pharmacotherapy. A deeper understanding of cardiac fibroblasts is essential to meet this need. We previously described phenotypic and functional differences between atrial fibroblasts from patients in sinus rhythm and with AF. Herein, we established and characterized a novel human atrial fibroblast line, which displays typical fibroblast morphology and function comparable to primary cells but with improved proliferation capacity and low spontaneous myofibroblast differentiation. These traits make our model suitable for the study of fibrosis mechanisms and for drug screening aimed at developing effective antifibrotic pharmacotherapy.
Collapse
Affiliation(s)
- Stephan R Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Johanna S E Rausch
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Schäffer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maximilian Hoffmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karolina Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Erik Klapproth
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Theresa Kant
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Natalie Herzog
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS e. V., Dortmund, Germany
| | - Svenja Dudek
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts Herzzentrum, Freiburg Bad - Krozingen, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ramona Emig
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts Herzzentrum, Freiburg Bad - Krozingen, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts Herzzentrum, Freiburg Bad - Krozingen, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts Herzzentrum, Freiburg Bad - Krozingen, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts Herzzentrum, Freiburg Bad - Krozingen, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
111
|
Wan XL, Zhou ZL, Wang P, Zhou XM, Xie MY, Mei J, Weng J, Xi HT, Chen C, Wang ZY, Wang ZB. Small molecule proteomics quantifies differences between normal and fibrotic pulmonary extracellular matrices. Chin Med J (Engl) 2020; 133:1192-1202. [PMID: 32433051 PMCID: PMC7249707 DOI: 10.1097/cm9.0000000000000754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pulmonary fibrosis is a respiratory disease caused by the proliferation of fibroblasts and accumulation of the extracellular matrix (ECM). It is known that the lung ECM is mainly composed of a three-dimensional fiber mesh filled with various high-molecular-weight proteins. However, the small-molecular-weight proteins in the lung ECM and their differences between normal and fibrotic lung ECM are largely unknown. METHODS Healthy adult male Sprague-Dawley rats (Rattus norvegicus) weighing about 150 to 200 g were randomly divided into three groups using random number table: A, B, and C and each group contained five rats. The rats in Group A were administered a single intragastric (i.g.) dose of 500 μL of saline as control, and those in Groups B and C were administered a single i.g. dose of paraquat (PQ) dissolved in 500 μL of saline (20 mg/kg). After 2 weeks, the lungs of rats in Group B were harvested for histological observation, preparation of de-cellularized lung scaffolds, and proteomic analysis for small-molecular-weight proteins, and similar procedures were performed on Group C and A after 4 weeks. The differentially expressed small-molecular-weight proteins (DESMPs) between different groups and the subcellular locations were analyzed. RESULTS Of the 1626 small-molecular-weight proteins identified, 1047 were quantifiable. There were 97 up-regulated and 45 down-regulated proteins in B vs. A, 274 up-regulated and 31 down-regulated proteins in C vs. A, and 237 up-regulated and 28 down-regulated proteins identified in C vs. B. Both the up-regulated and down-regulated proteins in the three comparisons were mainly distributed in single-organism processes and cellular processes within biological process, cell and organelle within cellular component, and binding within molecular function. Further, more up-regulated than down-regulated proteins were identified in most sub-cellular locations. The interactions of DESMPs identified in extracellular location in all comparisons showed that serum albumin (Alb) harbored the highest degree of node (25), followed by prolyl 4-hydroxylase beta polypeptide (12), integrin β1 (10), apolipoprotein A1 (9), and fibrinogen gamma chain (9). CONCLUSIONS Numerous PQ-induced DESMPs were identified in de-cellularized lungs of rats by high throughput proteomics analysis. The DESMPs between the control and treatment groups showed diversity in molecular functions, biological processes, and pathways. In addition, the interactions of extracellular DESMPs suggested that the extracellular proteins Alb, Itgb1, Apoa1, P4hb, and Fgg in ECM could be potentially used as biomarker candidates for pulmonary fibrosis. These results provided useful information and new insights regarding pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin-Long Wan
- Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Center for Health Assessment, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhi-Liang Zhou
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Peng Wang
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao-Ming Zhou
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Meng-Ying Xie
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jin Mei
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Weng
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hai-Tao Xi
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhi-Yi Wang
- Center for Health Assessment, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhi-Bin Wang
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
112
|
Maione AS, Pilato CA, Casella M, Gasperetti A, Stadiotti I, Pompilio G, Sommariva E. Fibrosis in Arrhythmogenic Cardiomyopathy: The Phantom Thread in the Fibro-Adipose Tissue. Front Physiol 2020; 11:279. [PMID: 32317983 PMCID: PMC7147329 DOI: 10.3389/fphys.2020.00279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disorder, predisposing to malignant ventricular arrhythmias leading to sudden cardiac death, particularly in young and athletic patients. Pathological features include a progressive loss of myocardium with fibrous or fibro-fatty substitution. During the last few decades, different clinical aspects of ACM have been well investigated but still little is known about the molecular mechanisms that underlie ACM pathogenesis, leading to these phenotypes. In about 50% of ACM patients, a genetic mutation, predominantly in genes that encode for desmosomal proteins, has been identified. However, the mutation-associated mechanisms, causing the observed cardiac phenotype are not always clear. Until now, the attention has been principally focused on the study of molecular mechanisms that lead to a prominent myocardium adipose substitution, an uncommon marker for a cardiac disease, thus often recognized as hallmark of ACM. Nonetheless, based on Task Force Criteria for the diagnosis of ACM, cardiomyocytes death associated with fibrous replacement of the ventricular free wall must be considered the main tissue feature in ACM patients. For this reason, it urges to investigate ACM cardiac fibrosis. In this review, we give an overview on the cellular effectors, possible triggers, and molecular mechanisms that could be responsible for the ventricular fibrotic remodeling in ACM patients.
Collapse
Affiliation(s)
- Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Assunta Pilato
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michela Casella
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessio Gasperetti
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milan, Italy
- University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
113
|
Xu M, Xie F, Tang X, Wang T, Wang S. Insights into the role of circular RNA in macrophage activation and fibrosis disease. Pharmacol Res 2020; 156:104777. [PMID: 32244027 DOI: 10.1016/j.phrs.2020.104777] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs which form a covalent bond structure without a 5' cap or a 3' polyadenylated tail, which is deleted through back-splicing. The expression of circRNAs in highly divergent eukaryotes is abundant. With the development of high-throughput sequencing, the mysteries of circRNAs have gradually been revealed. Increased attention has been paid to determining their biological functions and whether their changed expression profiles are linked to disease progression. Functionally, circRNAs have been shown to act as miRNA sponges or nuclear transcription factor regulators, and to play a part in RNA splicing. Various types of circRNAs have been discovered to be differentially expressed under steady physiological and pathological conditions. Recently, several studies have focused on the roles of circRNAs in macrophages on inflammatory stimulation. In this study, we review the current advances in the understanding of circRNAs in macrophages under various pathological conditions, in particular during organ fibrosis, and summarize possible directions for future circRNA applications.
Collapse
Affiliation(s)
- Mengxue Xu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Feiting Xie
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
114
|
Barbosa DM, Fahlbusch P, Herzfeld de Wiza D, Jacob S, Kettel U, Al-Hasani H, Krüger M, Ouwens DM, Hartwig S, Lehr S, Kotzka J, Knebel B. Rhein, a novel Histone Deacetylase (HDAC) inhibitor with antifibrotic potency in human myocardial fibrosis. Sci Rep 2020; 10:4888. [PMID: 32184434 PMCID: PMC7078222 DOI: 10.1038/s41598-020-61886-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
Although fibrosis depicts a reparative mechanism, maladaptation of the heart due to excessive production of extracellular matrix accelerates cardiac dysfunction. The anthraquinone Rhein was examined for its anti-fibrotic potency to mitigate cardiac fibroblast-to-myofibroblast transition (FMT). Primary human ventricular cardiac fibroblasts were subjected to hypoxia and characterized with proteomics, transcriptomics and cell functional techniques. Knowledge based analyses of the omics data revealed a modulation of fibrosis-associated pathways and cell cycle due to Rhein administration during hypoxia, whereas p53 and p21 were identified as upstream regulators involved in the manifestation of cardiac fibroblast phenotypes. Mechanistically, Rhein acts inhibitory on HDAC classes I/II as enzymatic inhibitor. Rhein-mediated cellular effects were linked to the histone deacetylase (HDAC)-dependent protein stabilization of p53 under normoxic but not hypoxic conditions. Functionally, Rhein inhibited collagen contraction, indicating anti-fibrotic property in cardiac remodeling. This was accompanied by increased abundance of SMAD7, but not SMAD2/3, and consistently SMAD-specific E3 ubiquitin ligase SMURF2. In conclusion, this study identifies Rhein as a novel potent direct HDAC inhibitor that may contribute to the treatment of cardiac fibrosis as anti-fibrotic agent. As readily available drug with approved safety, Rhein constitutes a promising potential therapeutic approach in the supplemental and protective intervention of cardiac fibrosis.
Collapse
Affiliation(s)
- David Monteiro Barbosa
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Medical Faculty, Institute of Cardiovascular Physiology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Daniella Herzfeld de Wiza
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich-Heine-University, Duesseldorf, Germany
| | - Martina Krüger
- Medical Faculty, Institute of Cardiovascular Physiology, Heinrich-Heine-University, Duesseldorf, Germany
| | - D Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Jorg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Aufm Hennekamp 65, 40225, Duesseldorf, Germany. .,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.
| |
Collapse
|
115
|
Tikhomirov R, Reilly-O’Donnell B, Catapano F, Faggian G, Gorelik J, Martelli F, Emanueli C. Exosomes: From Potential Culprits to New Therapeutic Promise in the Setting of Cardiac Fibrosis. Cells 2020; 9:E592. [PMID: 32131460 PMCID: PMC7140485 DOI: 10.3390/cells9030592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a significant global health problem associated with many inflammatory and degenerative diseases affecting multiple organs, individually or simultaneously. Fibrosis develops when extracellular matrix (ECM) remodeling becomes excessive or uncontrolled and is associated with nearly all forms of heart disease. Cardiac fibroblasts and myofibroblasts are the main effectors of ECM deposition and scar formation. The heart is a complex multicellular organ, where the various resident cell types communicate between themselves and with cells of the blood and immune systems. Exosomes, which are small extracellular vesicles, (EVs), contribute to cell-to-cell communication and their pathophysiological relevance and therapeutic potential is emerging. Here, we will critically review the role of endogenous exosomes as possible fibrosis mediators and discuss the possibility of using stem cell-derived and/or engineered exosomes as anti-fibrotic agents.
Collapse
Affiliation(s)
- Roman Tikhomirov
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, Policlinico G., B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy; (G.F.); (F.M.)
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese Milano, Italy
| | - Benedict Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
| | - Giuseppe Faggian
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, Policlinico G., B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy; (G.F.); (F.M.)
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
| | - Fabio Martelli
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, Policlinico G., B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy; (G.F.); (F.M.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
| |
Collapse
|
116
|
Zhang Z, Bai M, Barbosa GO, Chen A, Wei Y, Luo S, Wang X, Wang B, Tsukui T, Li H, Sheppard D, Kornberg TB, Ma DK. Broadly conserved roles of TMEM131 family proteins in intracellular collagen assembly and secretory cargo trafficking. SCIENCE ADVANCES 2020; 6:eaay7667. [PMID: 32095531 PMCID: PMC7015688 DOI: 10.1126/sciadv.aay7667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Collagen is the most abundant protein in animals. Its dysregulation contributes to aging and many human disorders, including pathological tissue fibrosis in major organs. How premature collagen proteins in the endoplasmic reticulum (ER) assemble and route for secretion remains molecularly undefined. From an RNA interference screen, we identified an uncharacterized Caenorhabditis elegans gene tmem-131, deficiency of which impairs collagen production and activates ER stress response. We find that amino termini of human TMEM131 contain bacterial PapD chaperone-like domains, which recruit premature collagen monomers for proper assembly and secretion. Carboxy termini of TMEM131 interact with TRAPPC8, a component of the TRAPP tethering complex, to drive collagen cargo trafficking from ER to the Golgi. We provide evidence that previously undescribed roles of TMEM131 in collagen recruitment and secretion are evolutionarily conserved in C. elegans, Drosophila, and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Meirong Bai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guilherme Oliveira Barbosa
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuehua Wei
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shuo Luo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dean Sheppard
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
117
|
Cellular cross-talks in the diseased and aging heart. J Mol Cell Cardiol 2020; 138:136-146. [DOI: 10.1016/j.yjmcc.2019.11.152] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
|
118
|
Affiliation(s)
- Lee Borthwick
- Fibrosis Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Fiona Oakley
- Fibrosis Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
119
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
120
|
Dias HB, de Oliveira JR, Donadio MVF, Kimura S. Fructose-1,6-bisphosphate prevents pulmonary fibrosis by regulating extracellular matrix deposition and inducing phenotype reversal of lung myofibroblasts. PLoS One 2019; 14:e0222202. [PMID: 31509566 PMCID: PMC6738633 DOI: 10.1371/journal.pone.0222202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is the result of chronic injury where fibroblasts become activated and secrete large amounts of extracellular matrix (ECM), leading to impaired fibroblasts degradation followed by stiffness and loss of lung function. Fructose-1,6-bisphosphate (FBP), an intermediate of glycolytic pathway, decreases PF development, but the underlying mechanism is unknown. To address this issue, PF was induced in vivo using a mouse model, and pulmonary fibroblasts were isolated from healthy and fibrotic animals. In PF model mice, lung function was improved by FBP as revealed by reduced collagen deposition and downregulation of ECM gene expression such as collagens and fibronectin. Fibrotic lung fibroblasts (FLF) treated with FBP for 3 days in vitro showed decreased proliferation, contraction, and migration, which are characteristic of myofibroblast to fibroblast phenotype reversal. ECM-related genes and proteins such as collagens, fibronectin and α-smooth muscle actin, were also downregulated in FBP-treated FLF. Moreover, matrix metalloproteinase (MMP) 1, responsible for ECM degradation, was produced only in fibroblasts obtained from healthy lungs (HLF) and FBP did not alter its expression. On the other hand, tissue inhibitor of metalloproteinase (TIMP)-1, a MMP1 inhibitor, and MMP2, related to fibroblast tissue-invasion, were predominantly produced by FLF and FBP was able to downregulate its expression. These results demonstrate that FBP may prevent bleomycin-induced PF development through reduced expression of collagen and other ECM components mediated by a reduced TIMP-1 and MMP2 expression.
Collapse
Affiliation(s)
- Henrique Bregolin Dias
- Laboratory of Cellular Biophysics and Inflammation, PUCRS, Porto Alegre, RS, Brazil
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | | | | | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
121
|
Organ crosstalk: the potent roles of inflammation and fibrotic changes in the course of organ interactions. Inflamm Res 2019; 68:825-839. [PMID: 31327029 DOI: 10.1007/s00011-019-01271-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Organ crosstalk can be defined as the complex and mutual biological communication between distant organs mediated by signaling factors. Normally, crosstalk helps to coordinate and maintain homeostasis, but sudden or chronic dysfunction in any organ causes dysregulation in another organ. Many signal molecules, including cytokines and growth factors, are involved in the metabolic dysregulation, and excessive or inappropriate release of these molecules leads to organ dysfunction or disease (e.g., obesity, type 2 diabetes). AIM AND METHOD The aim of this review is to reveal the impact of organ crosstalk on the pathogenesis of diseases associated with organ interactions and the role of inflammatory and fibrotic changes in the organ dysfunction. After searching in MEDLINE, PubMed and Google Scholar databases using 'organ crosstalk' as a keyword, studies related to organ crosstalk and organ interaction were compiled and examined. CONCLUSION The organ crosstalk and the functional integration of organ systems are exceedingly complex processes. Organ crosstalk contributes to metabolic homeostasis and affects the inflammatory response, related pathways and fibrotic changes. As in the case of interactions between adipose tissue and intestine, stimulation of inflammatory mechanisms plays an active role in the development of diseases including insulin resistance, obesity, type 2 diabetes and hepatic steatosis. The increased level of knowledge about the 'crosstalk' between any organ and distant organs will facilitate the early diagnosis of the disease as well as the management of the treatment practices in the short- and long-term organ dysfunction.
Collapse
|
122
|
Coelho NM, Wang A, McCulloch CA. Discoidin domain receptor 1 interactions with myosin motors contribute to collagen remodeling and tissue fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118510. [PMID: 31319111 DOI: 10.1016/j.bbamcr.2019.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Discoidin Domain Receptor (DDR) genes and their homologues have been identified in sponges, worms and flies. These genes code for proteins that are implicated in cell adhesion to matrix proteins. DDRs are now recognized as playing central regulatory roles in several high prevalence human diseases, including invasive cancers, atherosclerosis, and organ fibrosis. While the mechanisms by which DDRs contribute to these diseases are just now being delineated, one of the common themes involves cell adhesion to collagen and the assembly and organization of collagen fibers in the extracellular matrix. In mammals, the multi-functional roles of DDRs in promoting cell adhesion to collagen fibers and in mediating collagen-dependent signaling, suggest that DDRs contribute to multiple pathways of extracellular matrix remodeling, which are centrally important processes in health and disease. In this review we consider that interactions of the cytoplasmic domains of DDR1 with cytoskeletal motor proteins may contribute to matrix remodeling by promoting collagen fiber alignment and compaction. Poorly controlled collagen remodeling with excessive compaction of matrix proteins is a hallmark of fibrotic lesions in many organs and tissues that are affected by infectious, traumatic or chemical-mediated injury. An improved understanding of the mechanisms by which DDRs mediate collagen remodeling and collagen-dependent signaling could suggest new drug targets for treatment of fibrotic diseases.
Collapse
Affiliation(s)
- N M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - A Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - C A McCulloch
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
123
|
Koopsamy Naidoo SV, Bester MJ, Arbi S, Venter C, Dhanraj P, Oberholzer HM. Oral exposure to cadmium and mercury alone and in combination causes damage to the lung tissue of Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:86-94. [PMID: 30981014 DOI: 10.1016/j.etap.2019.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Environmental presence and human exposure to heavy metals in air and cigarette smoke has led to a worldwide increase in respiratory disease. The effects of oral exposure to heavy metals in liver and kidney structure and function have been widely investigated and the respiratory system as a target is often overlooked. The aim of the study was to investigate the possible structural changes in the lung tissue of Sprague-Dawley rats after oral exposure for 28 days to cadmium (Cd) and mercury (Hg), alone and in combination at 1000 times the World Health Organization's limit for each metal in drinking water. Following exposure, the general morphology of the bronchiole and lungs as well as collagen and elastin distribution was evaluated using histological techniques and transmission electron microscopy. In the lungs, structural changes to the alveoli included collapsed alveolar spaces, presence of inflammatory cells and thickening of the alveolar walls. In addition, exposure to Cd and Hg caused degeneration of the alveolar structures resulting in confluent alveoli. Changes in bronchiole morphology included an increase in smooth muscle mass with luminal epithelium degeneration, detachment and aggregation. Prominent bronchiole-associated lymphoid tissue was present in the group exposed to Cd and Hg. Ultrastructural examination confirmed the presence of fibrosis where in the Cd exposed group, collagen fibrils arrangement was dense, while in the Hg exposed group, additional prominent elastin was present. This study identified the lungs as target of heavy metals toxicity following oral exposure resulting in cellular damage, inflammation and fibrosis and increased risk of respiratory disease where Hg showed the greatest fibrotic effect, which was further, aggravated in combination with Cd.
Collapse
Affiliation(s)
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Sandra Arbi
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Chantelle Venter
- Laboratory for Microscopy and Microanalysis, University of Pretoria, South Africa
| | - Priyanka Dhanraj
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Hester Magdalena Oberholzer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa.
| |
Collapse
|
124
|
Wang J, Shen W, Zhang JY, Jia CH, Xie ML. Stevioside attenuates isoproterenol-induced mouse myocardial fibrosis through inhibition of the myocardial NF-κB/TGF-β1/Smad signaling pathway. Food Funct 2019; 10:1179-1190. [PMID: 30735218 DOI: 10.1039/c8fo01663a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stevioside, a natural glycoside compound, has many beneficial biological activities, but its protective effect on myocardial fibrosis has not been reported yet. This study aimed to investigate the effect of stevioside. The isoproterenol-induced model mice were orally given stevioside 75-300 mg kg-1 for 40 days. The results showed that after the administration of stevioside, the myocardial hydroxyproline, collagen accumulation, and protein expressions of collagen I/III, α-smooth muscle actin, transforming growth factor-β1 (TGF-β1), nuclear factor kappa B p65 (NF-κB p65), Smad2/3, and P-Smad2/3 were decreased, while the glutathione peroxidase and superoxide dismutase levels in serum and myocardial tissues and protein expressions of myocardial peroxisome proliferator-activated receptor γ (PPARγ) and Smad7 were increased. After the preincubation of isoproterenol-stimulated cardiac fibroblasts with the PPARγ antagonist GW9662, stevioside-reduced protein expressions were decreased, but stevioside-induced Smad7 was not affected. These findings demonstrated that stevioside could exert a protective effect on mouse myocardial fibrosis, and its mechanisms were associated with the increments of antioxidant ability, PPARγ activation, and Smad7 expression, which caused a synergistic inhibition of the NF-κB/TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jia Wang
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
125
|
Axl expression is increased in early stages of left ventricular remodeling in an animal model with pressure-overload. PLoS One 2019; 14:e0217926. [PMID: 31181097 PMCID: PMC6557565 DOI: 10.1371/journal.pone.0217926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 01/24/2023] Open
Abstract
Background AXL is a receptor tyrosine kinase that has been related to kidney and vascular disorders. Heart failure patients with reduced ejection fraction have higher AXL in serum than controls. No information about Axl expression with HF progression is available. Methods Thoracic transverse aortic constriction (TAC) was successfully performed on male Wistar rats (n = 25) with different constriction levels. Controls underwent sham surgery (n = 12). Echocardiography measurements were performed 4–8 weeks after surgery. Collagen deposition was measured with picrosirius red staining. Axl mRNA levels in left ventricle (LV), left kidney (LK) and ascending aorta (aAo) and the LV expression of cardiac remodeling and fibrogenic factors were quantified with real-time PCR. AXL LV protein levels were quantified with western blot and localization was analyzed by immunohistochemistry. Soluble AXL levels in plasma were assayed with ELISA. Results Successful TAC rats were classified into LV hypertrophy (LVH) or heart failure (HF), modeling the progressive cardiac changes after pressure overload. Collagen deposition was increased only in the HF group. LV Axl mRNA levels were higher in LVH and HF than in Sham rats, and correlated with LVHi, and hypertrophic and fibrogenic mediators. However, no association was found with LV systolic function. AXL was expressed in LV myocytes and other cell types. Concentration of circulating sAXL in plasma was increased in the LVH group compared to Sham and HF rats. Axl mRNA levels were similar in all groups in the LK and aAo. Conclusions Axl expression pattern suggests a role in the early progression of LV remodeling in HF but not in the later systolic dysfunction. The higher levels of circulating AXL found in HF patients most probably shed from the heart.
Collapse
|
126
|
Hinderer S, Schenke-Layland K. Cardiac fibrosis - A short review of causes and therapeutic strategies. Adv Drug Deliv Rev 2019; 146:77-82. [PMID: 31158407 DOI: 10.1016/j.addr.2019.05.011] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023]
Abstract
Fibrotic diseases cause annually more than 800,000 deaths worldwide, whereof the majority accounts for lung and cardiac fibrosis. A pathological remodeling of the extracellular matrix either due to ageing or as a result of an injury or disease leads to fibrotic scars. In the heart, these scars cause several cardiac dysfunctions either by reducing the ejection fraction due to a stiffened myocardial matrix, or by impairing electric conductance, or they can even lead to death. Today it is known that there are several different types of cardiac scars depending on the underlying cause of fibrosis. In this review, we present an overview of what is known about cardiac fibrosis including the role of cardiac cells and extracellular matrix in this disease. We will further summarize current diagnostic tools and highlight pre-clinical or clinical therapeutic strategies to address cardiac fibrosis.
Collapse
Affiliation(s)
- Svenja Hinderer
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL, 3645 Los Angeles, CA, USA.
| |
Collapse
|
127
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
128
|
Effect of Peritoneal Dialysis on Serum Fibrosis Biomarkers in Patients with Refractory Congestive Heart Failure. Int J Mol Sci 2019; 20:ijms20112610. [PMID: 31141909 PMCID: PMC6600259 DOI: 10.3390/ijms20112610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Cardiac collagen remodeling is important in the progression of heart failure. Estimation of cardiac collagen turnover by serum levels of serological markers is used for monitoring cardiac tissue repair and fibrosis. Peritoneal dialysis (PD) is used for the long-term management of refractory congestive heart failure (CHF). In this study, we investigated the effect of PD treatment on circulating fibrosis markers levels in patients with refractory CHF and fluid overload. Methods: Twenty-five patients with refractory CHF treated with PD were prospectively enrolled in the study. Circulating fibrosis markers procollagen type III C-peptide (PIIINP), matrix metalloproteinase 2 (MMP-2), and tissue inhibitor of metalloproteinases I (TIMP-1) levels were checked at baseline and after three and six months of treatment. Results: The clinical benefit of PD manifested by improved NYHA functional class and reduced hospitalization rate. Serum brain natriuretic peptide (BNP) levels decreased significantly during the treatment. Serum MMP-2 and TIMP-1 decreased significantly on PD. Circulating PIIINP showed two patterns of change, either decreased or increased following PD treatment. Patients in whom circulating PIIINP decreased had significantly lower baseline serum albumin, lower baseline mean arterial blood pressure, higher serum CRP, and a less significant improvement in hospitalization rate compared to the patients in whom circulating PIIINP increased. Patients in whom all three markers decreased demonstrated a trend to longer survival compared to patients whose markers increased or did not change. Conclusion: In refractory CHF patients PD treatment was associated with a reduction in circulating fibrosis markers.
Collapse
|
129
|
Wang Y, Michiels T, Setroikromo R, van Merkerk R, Cool RH, Quax WJ. Creation of RANKL mutants with low affinity for decoy receptor OPG and their potential anti-fibrosis activity. FEBS J 2019; 286:3582-3593. [PMID: 31081236 PMCID: PMC6852375 DOI: 10.1111/febs.14925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Fibrosis is characterized by the progressive alteration of the tissue structure due to the excessive production of extracellular matrix (ECM). The signaling system encompassing Receptor Activator of Nuclear factor NF‐κB Ligand (RANKL)/RANK/Osteoprotegerin (OPG) was discovered to play an important role in the regulation of ECM formation and degradation in bone tissue. However, whether and how this signaling pathway plays a role in liver or pulmonary ECM degradation is unclear up to now. Interestingly, increased decoy receptor OPG levels are found in fibrotic tissues. We hypothesize that RANKL can stimulate RANK on macrophages and initiate the process of ECM degradation. This process may be inhibited by highly expressed OPG in fibrotic conditions. In this case, RANKL mutants that can bind to RANK without binding to OPG might become promising therapeutic candidates. In this study, we built a structure‐based library containing 44 RANKL mutants and found that the Q236 residue of RANKL is important for OPG binding. We show that RANKL_Q236D can activate RAW cells to initiate the process of ECM degradation and is able to escape from the obstruction by exogenous OPG. We propose that the generation of RANKL mutants with reduced affinity for OPG is a promising strategy for the exploration of new therapeutics against fibrosis.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Timo Michiels
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| |
Collapse
|
130
|
Paakkola T, Salokas K, Miinalainen I, Lehtonen S, Manninen A, Kaakinen M, Ruddock LW, Varjosalo M, Kaarteenaho R, Uusimaa J, Hinttala R. Biallelic mutations in human NHLRC2 enhance myofibroblast differentiation in FINCA disease. Hum Mol Genet 2019; 27:4288-4302. [PMID: 30239752 DOI: 10.1093/hmg/ddy298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 01/04/2023] Open
Abstract
The development of tissue fibrosis is complex and at the present time, not fully understood. Fibrosis, neurodegeneration and cerebral angiomatosis (FINCA disease) have been described in patients with mutations in NHL repeat-containing protein 2 (NHLRC2). However, the molecular functions of NHLRC2 are uncharacterized. Herein, we identified putative interacting partners for NHLRC2 using proximity-labeling mass spectrometry. We also investigated the function of NHLRC2 using immortalized cells cultured from skin biopsies of FINCA patients and normal fibroblasts with NHLRC2 knock-down and NHLRC2 overexpressing gene modifications. Transmission electron microscopy analysis of immortalized cell cultures from three FINCA patients demonstrated multilamellar bodies and distinctly organized vimentin filaments. Additionally, two of three cultures derived from patient skin biopsies contained cells that exhibited features characteristic of myofibroblasts. Altogether, the data presented in this study show for the first time that NHLRC2 is involved in cellular organization through regulation of the cytoskeleton and vesicle transport. We conclude that compound heterozygous p.Asp148Tyr and p.Arg201GlyfsTer6 mutations in NHLRC2 lead to severe tissue fibrosis in humans by enhancing the differentiation of fibroblasts to myofibroblasts.
Collapse
Affiliation(s)
- Teija Paakkola
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, Finland, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland, Helsinki, Finland
| | | | | | - Aki Manninen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Lloyd W Ruddock
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Finland, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland, Helsinki, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Unit of Internal Medicine and Respiratory Medicine, Oulu University Hospital, OYS, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Reetta Hinttala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
131
|
Li B, Luo F, Luo X, Li B, Qi L, Zhang D, Tang Y. Effects of atrial fibrosis induced by mitral regurgitation on atrial electrophysiology and susceptibility to atrial fibrillation in pigs. Cardiovasc Pathol 2019; 40:32-40. [DOI: 10.1016/j.carpath.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023] Open
|
132
|
Rehman M, Vodret S, Braga L, Guarnaccia C, Celsi F, Rossetti G, Martinelli V, Battini T, Long C, Vukusic K, Kocijan T, Collesi C, Ring N, Skoko N, Giacca M, Del Sal G, Confalonieri M, Raspa M, Marcello A, Myers MP, Crovella S, Carloni P, Zacchigna S. High-throughput screening discovers antifibrotic properties of haloperidol by hindering myofibroblast activation. JCI Insight 2019; 4:123987. [PMID: 30996132 PMCID: PMC6538355 DOI: 10.1172/jci.insight.123987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Fibrosis is a hallmark in the pathogenesis of various diseases, with very limited therapeutic solutions. A key event in the fibrotic process is the expression of contractile proteins, including α-smooth muscle actin (αSMA) by fibroblasts, which become myofibroblasts. Here, we report the results of a high-throughput screening of a library of approved drugs that led to the discovery of haloperidol, a common antipsychotic drug, as a potent inhibitor of myofibroblast activation. We show that haloperidol exerts its antifibrotic effect on primary murine and human fibroblasts by binding to sigma receptor 1, independent from the canonical transforming growth factor-β signaling pathway. Its mechanism of action involves the modulation of intracellular calcium, with moderate induction of endoplasmic reticulum stress response, which in turn abrogates Notch1 signaling and the consequent expression of its targets, including αSMA. Importantly, haloperidol also reduced the fibrotic burden in 3 different animal models of lung, cardiac, and tumor-associated fibrosis, thus supporting the repurposing of this drug for the treatment of fibrotic conditions.
Collapse
Affiliation(s)
| | | | | | - Corrado Guarnaccia
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo,” Trieste, Italy
| | - Giulia Rossetti
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | - Chiara Collesi
- Molecular Medicine, and
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Natasa Skoko
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine, and
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giannino Del Sal
- National Laboratory CIB, Area Science Park Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marcello Raspa
- National Research Council, CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, Rome, Italy
| | | | - Michael P. Myers
- Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Sergio Crovella
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Paolo Carloni
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Serena Zacchigna
- Cardiovascular Biology
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
133
|
Shetty AK, Upadhya R, Madhu LN, Kodali M. Novel Insights on Systemic and Brain Aging, Stroke, Amyotrophic Lateral Sclerosis, and Alzheimer's Disease. Aging Dis 2019; 10:470-482. [PMID: 31011489 PMCID: PMC6457051 DOI: 10.14336/ad.2019.0330] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that underlie the pathophysiology of aging, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and stroke are not fully understood and have been the focus of intense and constant investigation worldwide. Studies that provide insights on aging and age-related disease mechanisms are critical for advancing novel therapies that promote successful aging and prevent or cure multiple age-related diseases. The April 2019 issue of the journal, "Aging & Disease" published a series of articles that confer fresh insights on numerous age-related conditions and diseases. The age-related topics include the detrimental effect of overweight on energy metabolism and muscle integrity, senoinflammation as the cause of neuroinflammation, the link between systemic C-reactive protein and brain white matter loss, the role of miR-34a in promoting healthy heart and brain, the potential of sirtuin 3 for reducing cardiac and pulmonary fibrosis, and the promise of statin therapy for ameliorating asymptomatic intracranial atherosclerotic stenosis. Additional aging-related articles highlighted the involvement of miR-181b-5p and high mobility group box-1 in hypertension, Yes-associated protein in cataract formation, multiple miRs and long noncoding RNAs in coronary artery disease development, the role of higher meat consumption on sleep problems, and the link between glycated hemoglobin and depression. The topics related to ALS suggested that individuals with higher education and living in a rural environment have a higher risk for developing ALS, and collagen XIX alpha 1 is a prognostic biomarker of ALS. The topics discussed on AD implied that extracellular amyloid β42 is likely the cause of intraneuronal neurofibrillary tangle accumulation in familial AD and traditional oriental concoctions may be useful for slowing down the progression of AD. The article on stroke suggested that inhibition of the complement system is likely helpful in promoting brain repair after ischemic stroke. The significance of the above findings for understanding the pathogenesis in aging, ALS, AD, and stroke, slowing down the progression of aging, ALS and AD, and promoting brain repair after stroke are discussed.
Collapse
Affiliation(s)
- Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas, USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas, USA
| |
Collapse
|
134
|
Murtha LA, Morten M, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Ngo DT, Sverdlov AL, Knight DA, Boyle AJ. The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis. Aging Dis 2019; 10:419-428. [PMID: 31011486 PMCID: PMC6457057 DOI: 10.14336/ad.2018.0601] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Aging promotes a range of degenerative pathologies characterized by progressive losses of tissue and/or cellular function. Fibrosis is the hardening, overgrowth and scarring of various tissues characterized by the accumulation of extracellular matrix components. Aging is an important predisposing factor common for fibrotic heart and respiratory disease. Age-related processes such as senescence, inflammaging, autophagy and mitochondrial dysfunction are interconnected biological processes that diminish the regenerative capacity of the aged heart and lung and have been shown to play a crucial role in cardiac fibrosis and idiopathic pulmonary fibrosis. This review focuses on these four processes of aging in relation to their role in fibrosis. It has long been established that the heart and lung are linked both functionally and anatomically when it comes to health and disease, with an ever-expanding aging population, the incidence of fibrotic disease and therefore the number of fibrosis-related deaths will continue to rise. There are currently no feasible therapies to treat the effects of chronic fibrosis therefore highlighting the importance of exploring the processes of aging and its role in inducing and exacerbating fibrosis of each organ. The focus of this review may help to highlight potential avenues of therapeutic exploration
Collapse
Affiliation(s)
- Lucy A Murtha
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew Morten
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael J Schuliga
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nishani S Mabotuwana
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sean A Hardy
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David W Waters
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Janette K Burgess
- 4University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen and W. J. Kolff Research Institute, The Netherlands.,5Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia.,6Discipline of Pharmacology, The University of Sydney, NSW 2006, Australia
| | - Doan Tm Ngo
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Aaron L Sverdlov
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,7Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada.,8Adjunct Professor, Department of Medicine, University of Western Australia, Australia.,9Research and Innovation Conjoint, Hunter New England Health District, Australia
| | - Andrew J Boyle
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
135
|
Liu B, Bing Q, Li S, Han B, Lu J, Baiyun R, Zhang X, Lv Y, Wu H, Zhang Z. Role of A 2B adenosine receptor-dependent adenosine signaling in multi-walled carbon nanotube-triggered lung fibrosis in mice. J Nanobiotechnology 2019; 17:45. [PMID: 30922349 PMCID: PMC6440149 DOI: 10.1186/s12951-019-0478-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Multi-walled carbon nanotube (MWCNT)-induced lung fibrosis leads to health concerns in human. However, the mechanisms underlying fibrosis pathogenesis remains unclear. The adenosine (ADO) is produced in response to injury and serves a detrimental role in lung fibrosis. In this study, we aimed to explore the ADO signaling in the progression of lung fibrosis induced by MWCNT. Results MWCNT exposure markedly increased A2B adenosine receptor (A2BAR) expression in the lungs and ADO level in bronchoalveolar lavage fluid, combined with elevation of blood neutrophils, collagen fiber deposition, and activation of myeloperoxidase (MPO) activity in the lungs. Furthermore, MWCNT exposure elicited an activation of transforming growth factor (TGF)-β1 and follistatin-like 1 (Fstl1), leading to fibroblasts recruitment and differentiation into myofibroblasts in the lungs in an A2BAR-dependent manner. Conversely, treatment of the selective A2BAR antagonist CVT-6883 exhibited a significant reduction in levels of fibrosis mediators and efficiently decreased cytotoxicity and inflammatory in MWCNT treated mice. Conclusion Our results reveal that accumulation of extracellular ADO promotes the process of the fibroblast-to-myofibroblast transition via A2BAR/TGF-β1/Fstl1 signaling in MWCNT-induced lung fibrosis.
Collapse
Affiliation(s)
- Biying Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China
| | - Qizheng Bing
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jingjing Lu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Ruiqi Baiyun
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoya Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China. .,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
136
|
Carter P, Lagan J, Fortune C, Bhatt DL, Vestbo J, Niven R, Chaudhuri N, Schelbert EB, Potluri R, Miller CA. Association of Cardiovascular Disease With Respiratory Disease. J Am Coll Cardiol 2019; 73:2166-2177. [PMID: 30846341 DOI: 10.1016/j.jacc.2018.11.063] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/08/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The relationship between respiratory diseases and individual cardiovascular diseases, and the impact of cardiovascular diseases on mortality in patients with respiratory disease, are unclear. OBJECTIVES This study sought to determine the relationship between chronic obstructive pulmonary disease (COPD), asthma and interstitial lung disease (ILD), and individual cardiovascular diseases, and evaluate the impact of individual cardiovascular diseases on all-cause mortality in respiratory conditions. METHODS The authors conducted a cohort study of all patients admitted to 7 National Health Service hospitals across the North West of England, between January 1, 2000, and March 31, 2013, with relevant respiratory diagnoses, with age-matched and sex-matched control groups. RESULTS A total of 31,646 COPD, 60,424 asthma, and 1,662 ILD patients were included. Control groups comprised 158,230, 302,120, and 8,310 patients, respectively (total follow-up 2,968,182 patient-years). COPD was independently associated with ischemic heart disease (IHD), heart failure (HF), atrial fibrillation, and peripheral vascular disease, all of which were associated with all-cause mortality (e.g., odds ratio for the association of COPD with HF: 2.18 [95% confidence interval (CI): 2.08 to 2.26]; hazard ratio for the contribution of HF to mortality in COPD: 1.65 [95% CI: 1.61 to 1.68]). Asthma was independently associated with IHD, and multiple cardiovascular diseases contributed to mortality (e.g., HF hazard ratio: 1.81 [95% CI: 1.75 to 1.87]). ILD was independently associated with IHD and HF, both of which were associated with mortality. Patients with lung disease were less likely to receive coronary revascularization. CONCLUSIONS Lung disease is independently associated with cardiovascular diseases, particularly IHD and HF, which contribute significantly to all-cause mortality. However, patients with lung disease are less likely to receive coronary revascularization.
Collapse
Affiliation(s)
- Paul Carter
- ACALM Study Unit in collaboration with Aston Medical School, Aston University, Birmingham, United Kingdom; Cambridge Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Jakub Lagan
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Christien Fortune
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, Massachusetts. https://twitter.com/DLBHATTMD
| | - Jørgen Vestbo
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom; Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Robert Niven
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom; Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nazia Chaudhuri
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom; Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Erik B Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rahul Potluri
- ACALM Study Unit in collaboration with Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom; Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
137
|
Hardy SA, Mabotuwana NS, Murtha LA, Coulter B, Sanchez-Bezanilla S, Al-Omary MS, Senanayake T, Loering S, Starkey M, Lee RJ, Rainer PP, Hansbro PM, Boyle AJ. Novel role of extracellular matrix protein 1 (ECM1) in cardiac aging and myocardial infarction. PLoS One 2019; 14:e0212230. [PMID: 30789914 PMCID: PMC6383988 DOI: 10.1371/journal.pone.0212230] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The prevalence of heart failure increases in the aging population and following myocardial infarction (MI), yet the extracellular matrix (ECM) remodeling underpinning the development of aging- and MI-associated cardiac fibrosis remains poorly understood. A link between inflammation and fibrosis in the heart has long been appreciated, but has mechanistically remained undefined. We investigated the expression of a novel protein, extracellular matrix protein 1 (ECM1) in the aging and infarcted heart. METHODS Young adult (3-month old) and aging (18-month old) C57BL/6 mice were assessed. Young mice were subjected to left anterior descending artery-ligation to induce MI, or transverse aortic constriction (TAC) surgery to induce pressure-overload cardiomyopathy. Left ventricle (LV) tissue was collected early and late post-MI/TAC. Bone marrow cells (BMCs) were isolated from young healthy mice, and subject to flow cytometry. Human cardiac fibroblast (CFb), myocyte, and coronary artery endothelial & smooth muscle cell lines were cultured; human CFbs were treated with recombinant ECM1. Primary mouse CFbs were cultured and treated with recombinant angiotensin-II or TGF-β1. Immunoblotting, qPCR and mRNA fluorescent in-situ hybridization (mRNA-FISH) were conducted on LV tissue and cells. RESULTS ECM1 expression was upregulated in the aging LV, and in the infarct zone of the LV early post-MI. No significant differences in ECM1 expression were found late post-MI or at any time-point post-TAC. ECM1 was not expressed in any resident cardiac cells, but ECM1 was highly expressed in BMCs, with high ECM1 expression in granulocytes. Flow cytometry of bone marrow revealed ECM1 expression in large granular leucocytes. mRNA-FISH revealed that ECM1 was indeed expressed by inflammatory cells in the infarct zone at day-3 post-MI. ECM1 stimulation of CFbs induced ERK1/2 and AKT activation and collagen-I expression, suggesting a pro-fibrotic role. CONCLUSIONS ECM1 expression is increased in ageing and infarcted hearts but is not expressed by resident cardiac cells. Instead it is expressed by bone marrow-derived granulocytes. ECM1 is sufficient to induce cardiac fibroblast stimulation in vitro. Our findings suggest ECM1 is released from infiltrating inflammatory cells, which leads to cardiac fibroblast stimulation and fibrosis in aging and MI. ECM1 may be a novel intermediary between inflammation and fibrosis.
Collapse
Affiliation(s)
- Sean A. Hardy
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nishani S. Mabotuwana
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Lucy A. Murtha
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brianna Coulter
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Mohammed S. Al-Omary
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Tharindu Senanayake
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Svenja Loering
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Malcolm Starkey
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Randall J. Lee
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
- Edyth and Eli Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States of America
| | - Peter P. Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Philip M. Hansbro
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for inflammation, Centenary Institute, Sydney, NSW, Australia
- University of Technology, Faculty of Science, Ultimo, NSW, Australia
| | - Andrew J. Boyle
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
- * E-mail:
| |
Collapse
|
138
|
Lee MO, Jung KB, Jo SJ, Hyun SA, Moon KS, Seo JW, Kim SH, Son MY. Modelling cardiac fibrosis using three-dimensional cardiac microtissues derived from human embryonic stem cells. J Biol Eng 2019; 13:15. [PMID: 30809271 PMCID: PMC6375184 DOI: 10.1186/s13036-019-0139-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cardiac fibrosis is the most common pathway of many cardiac diseases. To date, there has been no suitable in vitro cardiac fibrosis model that could sufficiently mimic the complex environment of the human heart. Here, a three-dimensional (3D) cardiac sphere platform of contractile cardiac microtissue, composed of human embryonic stem cell (hESC)-derived cardiomyocytes (CMs) and mesenchymal stem cells (MSCs), is presented to better recapitulate the human heart. Results We hypothesized that MSCs would develop an in vitro fibrotic reaction in response to treatment with transforming growth factor-β1 (TGF-β1), a primary inducer of cardiac fibrosis. The addition of MSCs improved sarcomeric organization, electrophysiological properties, and the expression of cardiac-specific genes, suggesting their physiological relevance in the generation of human cardiac microtissue model in vitro. MSCs could also generate fibroblasts within 3D cardiac microtissues and, subsequently, these fibroblasts were transdifferentiated into myofibroblasts by the exogenous addition of TGF-β1. Cardiac microtissues displayed fibrotic features such as the deposition of collagen, the presence of numerous apoptotic CMs and the dissolution of mitochondrial networks. Furthermore, treatment with pro-fibrotic substances demonstrated that this model could reproduce key molecular and cellular fibrotic events. Conclusions This highlights the potential of our 3D cardiac microtissues as a valuable tool for manifesting and evaluating the pro-fibrotic effects of various agents, thereby representing an important step forward towards an in vitro system for the prediction of drug-induced cardiac fibrosis and the study of the pathological changes in human cardiac fibrosis. Electronic supplementary material The online version of this article (10.1186/s13036-019-0139-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mi-Ok Lee
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 341411 Republic of Korea
| | - Kwang Bo Jung
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 341411 Republic of Korea.,2Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Seong-Jae Jo
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 341411 Republic of Korea.,2Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Sung-Ae Hyun
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, Daejeon, 34114 Republic of Korea
| | - Kyoung-Sik Moon
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, Daejeon, 34114 Republic of Korea
| | - Joung-Wook Seo
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, Daejeon, 34114 Republic of Korea
| | - Sang-Heon Kim
- 4Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea.,5Department of Biomedical Engineering, KIST school, UST, Daejeon, 34113 Republic of Korea
| | - Mi-Young Son
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 341411 Republic of Korea.,2Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| |
Collapse
|
139
|
Quijada P, Misra A, Velasquez LS, Burke RM, Lighthouse JK, Mickelsen DM, Dirkx RA, Small EM. Pre-existing fibroblasts of epicardial origin are the primary source of pathological fibrosis in cardiac ischemia and aging. J Mol Cell Cardiol 2019; 129:92-104. [PMID: 30771308 DOI: 10.1016/j.yjmcc.2019.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/11/2023]
Abstract
Serum response factor (SRF) and the SRF co-activators myocardin-related transcription factors (MRTFs) are essential for epicardium-derived progenitor cell (EPDC)-mobilization during heart development; however, the impact of developmental EPDC deficiencies on adult cardiac physiology has not been evaluated. Here, we utilize the Wilms Tumor-1 (Wt1)-Cre to delete Mrtfs or Srf in the epicardium, which reduced the number of EPDCs in the adult cardiac interstitium. Deficiencies in Wt1-lineage EPDCs prevented the development of cardiac fibrosis and diastolic dysfunction in aged mice. Mice lacking MRTF or SRF in EPDCs also displayed preservation of cardiac function following myocardial infarction partially due to the depletion of Wt1 lineage-derived cells in the infarct. Interestingly, depletion of Wt1-lineage EPDCs allows for the population of the infarct with a Wt1-negative cell lineage with a reduced fibrotic profile. Taken together, our study conclusively demonstrates the contribution of EPDCs to both ischemic cardiac remodeling and the development of diastolic dysfunction in old age, and reveals the existence of an alternative Wt1-negative source of resident fibroblasts that can populate the infarct.
Collapse
Affiliation(s)
- Pearl Quijada
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Adwiteeya Misra
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Lissette S Velasquez
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ryan M Burke
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ronald A Dirkx
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
140
|
Hargreaves IP, Mantle D. Coenzyme Q10 Supplementation in Fibrosis and Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:103-112. [DOI: 10.1007/978-3-030-25650-0_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
141
|
He Y, Ling S, Sun Y, Sheng Z, Chen Z, Pan X, Ma G. DNA methylation regulates α-smooth muscle actin expression during cardiac fibroblast differentiation. J Cell Physiol 2018; 234:7174-7185. [PMID: 30362530 DOI: 10.1002/jcp.27471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Cardiac fibroblast (CF) differentiation to myofibroblasts expressing α-smooth muscle actin (α-SMA) plays a key role in cardiac fibrosis. Therefore, a study of the mechanism regulating α-SMA expression is a means to understanding the mechanism of fibroblast differentiation and cardiac fibrosis. Previous studies have shown that DNA methylation is associated with gene expression and is related to the development of tissue fibrosis. However, the mechanisms by which CF differentiation is regulated by DNA methylation remain unclear. Here, we explored the epigenetic regulation of α-SMA expression and its relevance in CF differentiation. In this study, we demonstrated that α-SMA was overexpressed and DNMT1 expression was downregulated in the infarct area after myocardial infarction. Treatment of CFs with transforming growth factor-β1 (TGF-β1 ) in vitro upregulated α-SMA expression via epigenetic modifications. TGF-β1 also inhibited DNMT1 expression and activity during CF differentiation. In addition, α-SMA expression was regulated by DNMT1. Conversely, increasing DNMT1 expression levels rescued the TGF-β1 -induced upregulation of α-SMA expression. Finally, TGF-β1 regulated α-SMA expression by inhibiting the DNMT1-mediated DNA methylation of the α-SMA promoter. Taken together, our research showed that inhibition of the DNMT1-mediated DNA methylation of the α-SMA promoter plays an essential role in CF differentiation. In addition, DNMT1 may be a new target for the prevention and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Yanru He
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China.,Department of Cardiology, School of Medicine, Southeast University, Nanjing, China
| | - Sunkai Ling
- Department of Cardiology, School of Medicine, Southeast University, Nanjing, China
| | - Yuning Sun
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China.,Department of Cardiology, School of Medicine, Southeast University, Nanjing, China
| | - Zulong Sheng
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Zhongpu Chen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xiaodong Pan
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| |
Collapse
|
142
|
Schuliga M, Pechkovsky DV, Read J, Waters DW, Blokland KEC, Reid AT, Hogaboam CM, Khalil N, Burgess JK, Prêle CM, Mutsaers SE, Jaffar J, Westall G, Grainge C, Knight DA. Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts. J Cell Mol Med 2018; 22:5847-5861. [PMID: 30255990 PMCID: PMC6237609 DOI: 10.1111/jcmm.13855] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence highlights that senescence plays an important role in idiopathic pulmonary fibrosis (IPF). This study delineates the specific contribution of mitochondria and the superoxide they form to the senescent phenotype of lung fibroblasts from IPF patients (IPF‐LFs). Primary cultures of IPF‐LFs exhibited an intensified DNA damage response (DDR) and were more senescent than age‐matched fibroblasts from control donors (Ctrl‐LFs). Furthermore, IPF‐LFs exhibited mitochondrial dysfunction, exemplified by increases in mitochondrial superoxide, DNA, stress and activation of mTORC1. The DNA damaging agent etoposide elicited a DDR and augmented senescence in Ctrl‐LFs, which were accompanied by disturbances in mitochondrial homoeostasis including heightened superoxide production. However, etoposide had no effect on IPF‐LFs. Mitochondrial perturbation by rotenone involving sharp increases in superoxide production also evoked a DDR and senescence in Ctrl‐LFs, but not IPF‐LFs. Inhibition of mTORC1, antioxidant treatment and a mitochondrial targeting antioxidant decelerated IPF‐LF senescence and/or attenuated pharmacologically induced Ctrl‐LF senescence. In conclusion, increased superoxide production by dysfunctional mitochondria reinforces lung fibroblast senescence via prolongation of the DDR. As part of an auto‐amplifying loop, mTORC1 is activated, altering mitochondrial homoeostasis and increasing superoxide production. Deeper understanding the mechanisms by which mitochondria contribute to fibroblast senescence in IPF has potentially important therapeutic implications.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dmitri V Pechkovsky
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Jane Read
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - David W Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Kaj E C Blokland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen Research Institute of Asthma and COPD and KOLFF Institute, Groningen, Netherlands
| | - Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Cory M Hogaboam
- Department of Medicine, Cedars-Sinai, Los Angeles, California
| | - Nasreen Khalil
- Department of Respiratory Medicine, UBC, Vancouver, British Columbia, Canada
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen Research Institute of Asthma and COPD and KOLFF Institute, Groningen, Netherlands
| | - Cecilia M Prêle
- Institute for Respiratory Health, University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Jade Jaffar
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Christopher Grainge
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
143
|
Corey SJ, Jha J, McCart EA, Rittase WB, George J, Mattapallil JJ, Mehta H, Ognoon M, Bylicky MA, Summers TA, Day RM. Captopril mitigates splenomegaly and myelofibrosis in the Gata1 low murine model of myelofibrosis. J Cell Mol Med 2018; 22:4274-4282. [PMID: 29971909 PMCID: PMC6111823 DOI: 10.1111/jcmm.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/05/2018] [Indexed: 01/06/2023] Open
Abstract
Allogeneic stem cell transplantation is currently the only curative therapy for primary myelofibrosis (MF), while the JAK2 inhibitor, ruxolitinib. Has been approved only for palliation. Other therapies are desperately needed to reverse life-threatening MF. However, the cell(s) and cytokine(s) that promote MF remain unclear. Several reports have demonstrated that captopril, an inhibitor of angiotensin-converting enzyme that blocks the production of angiotensin II (Ang II), mitigates fibrosis in heart, lung, skin and kidney. Here, we show that captopril can mitigate the development of MF in the Gata1low mouse model of primary MF. Gata1low mice were treated with 79 mg/kg/d captopril in the drinking water from 10 to 12 months of age. At 13 months of age, bone marrows were examined for fibrosis, megakaryocytosis and collagen expression; spleens were examined for megakaryocytosis, splenomegaly and collagen expression. Treatment of Gata1low mice with captopril in the drinking water was associated with normalization of the bone marrow cellularity; reduced reticulin fibres, splenomegaly and megakaryocytosis; and decreased collagen expression. Our findings suggest that treating with the ACE inhibitors captopril has a significant benefit in overcoming pathological changes associated with MF.
Collapse
Affiliation(s)
- Seth J. Corey
- Division of Pediatric Hematology, Oncology & Stem Cell TransplantationThe Massey Cancer Center at Virginia Commonwealth UniversityRichmondVAUSA
| | - Jyoti Jha
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Elizabeth A. McCart
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - William B. Rittase
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Jeffy George
- Department of MicrobiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Joseph J. Mattapallil
- Department of MicrobiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Hrishikesh Mehta
- Division of Pediatric Hematology, Oncology & Stem Cell TransplantationThe Massey Cancer Center at Virginia Commonwealth UniversityRichmondVAUSA
| | - Mungunsukh Ognoon
- Department of AnesthesiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Michelle A. Bylicky
- Neuroscience Graduate ProgramUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Thomas A. Summers
- Department of PathologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Regina M. Day
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
144
|
The aging heart. Clin Sci (Lond) 2018; 132:1367-1382. [PMID: 29986877 DOI: 10.1042/cs20171156] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
As the elderly segment of the world population increases, it is critical to understand the changes in cardiac structure and function during the normal aging process. In this review, we outline the key molecular pathways and cellular processes that underlie the phenotypic changes in the heart and vasculature that accompany aging. Reduced autophagy, increased mitochondrial oxidative stress, telomere attrition, altered signaling in insulin-like growth factor, growth differentiation factor 11, and 5'- AMP-activated protein kinase pathways are among the key molecular mechanisms underlying cardiac aging. Aging promotes structural and functional changes in the atria, ventricles, valves, myocardium, pericardium, the cardiac conduction system, and the vasculature. We highlight the factors known to accelerate and attenuate the intrinsic aging of the heart and vessels in addition to potential preventive and therapeutic avenues. A greater understanding of the processes involved in cardiac aging may facilitate our ability to mitigate the escalating burden of CVD in older individuals and promote healthy cardiac aging.
Collapse
|
145
|
Perrucci GL, Rurali E, Pompilio G. Cardiac fibrosis in regenerative medicine: destroy to rebuild. J Thorac Dis 2018; 10:S2376-S2389. [PMID: 30123577 DOI: 10.21037/jtd.2018.03.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major limitations for cardiac regeneration in patients after myocardial infarction (MI) are the wide loss of cardiomyocytes and the adverse structural alterations of extracellular matrix (ECM). Cardiac fibroblast differentiation into myofibroblasts (MFB) leads to a huge deposition of ECM and to the subsequent loss of ventricular structural integrity. All these molecular events depict the fundamental features at the basis of the post-MI fibrosis and deserve in depth cellular and molecular studies to fill the gap in the clinical practice. Indeed, to date, there are no effective therapeutic approaches to limit the post-MI massive fibrosis development. In this review we describe the involvement of integrins and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)/ADAMTS-like (ADAMTSL) proteins in cardiac reparative pro-fibrotic response after MI, proposing some of them as novel potential pharmacological tools.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Giulio Pompilio
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy.,Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| |
Collapse
|
146
|
Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med 2018; 65:2-15. [PMID: 29958900 DOI: 10.1016/j.mam.2018.06.003] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
Fibrosis denotes excessive scarring, which exceeds the normal wound healing response to injury in many tissues. Although the extracellular matrix deposition appears unstructured disrupting the normal tissue architecture and subsequently impairing proper organ function, fibrogenesis is a highly orchestrated process determined by defined sequences of molecular signals and cellular response mechanisms. Persistent injury and parenchymal cell death provokes tissue inflammation, macrophage activation and immune cell infiltration. The release of biologically highly active soluble mediators (alarmins, cytokines, chemokines) lead to the local activation of collagen producing mesenchymal cells such as pericytes, myofibroblasts or Gli1 positive mesenchymal stem cell-like cells, to a transition of various cell types into myofibroblasts as well as to the recruitment of fibroblast precursors. Clinical observations and experimental models highlighted that fibrosis is not a one-way road. Specific mechanistic principles of fibrosis regression involve the resolution of chronic tissue injury, the shift of inflammatory processes towards recovery, deactivation of myofibroblasts and finally fibrolysis of excess matrix scaffold. The thorough understanding of common principles of fibrogenic molecular signals and cellular mechanisms in various organs - such as liver, kidney, lung, heart or skin - is the basis for developing improved diagnostics including biomarkers or imaging techniques and novel antifibrotic therapeutics.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Frank Tacke
- Dept. of Medicine III, University Hospital Aachen, Germany.
| |
Collapse
|
147
|
March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N, Popplewell LJ. Targeting TGFβ Signaling to Address Fibrosis Using Antisense Oligonucleotides. Biomedicines 2018; 6:biomedicines6030074. [PMID: 29941814 PMCID: PMC6164894 DOI: 10.3390/biomedicines6030074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues. A plethora of drugs have shown promise in pre-clinical models, which is not always borne out translationally in clinical trial. With the recent approvals of two antisense oligonucleotides for the treatment of the genetic diseases Duchenne muscular dystrophy and spinal muscular atrophy, we explore here the potential of antisense oligonucleotides to knockdown the expression of pro-fibrotic proteins. We give an overview of the generalized fibrotic process, concentrating on key players and highlight where antisense oligonucleotides have been used effectively in cellular and animal models of different fibrotic conditions. Consideration is given to the advantages antisense oligonucleotides would have as an anti-fibrotic therapy alongside factors that would need to be addressed to improve efficacy. A prospective outlook for the development of antisense oligonucleotides to target fibrosis is outlined.
Collapse
Affiliation(s)
- James T March
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Golnoush Golshirazi
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Viktorija Cernisova
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Heidi Carr
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Yee Leong
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Ngoc Lu-Nguyen
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Linda J Popplewell
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
148
|
Matthews AT, Ross MK. Role of lysyl oxidase on microvascular function. Am J Physiol Heart Circ Physiol 2018; 314:H784-H786. [PMID: 29351472 DOI: 10.1152/ajpheart.00729.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Anberitha T Matthews
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Matthew K Ross
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
149
|
Dong Y, Yang D, Han Y, Cheng W, Sun J, Wan K, Liu H, Greiser A, Zhou X, Chen Y. Age and Gender Impact the Measurement of Myocardial Interstitial Fibrosis in a Healthy Adult Chinese Population: A Cardiac Magnetic Resonance Study. Front Physiol 2018; 9:140. [PMID: 29559916 PMCID: PMC5845542 DOI: 10.3389/fphys.2018.00140] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 02/12/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Diffuse myocardial fibrosis is a common pathological process in many cardiovascular diseases. In order to determine disease, we must have standard normal imaging values. We investigated myocardial interstitial fibrosis of the left ventricle (LV) in a healthy population of Chinese adults and explored the impact of gender, age, and other physiological factors using a T1 mapping technique of cardiac magnetic resonance imaging (CMR). Materials and Methods: We recruited 69 healthy adult Chinese subjects (35 males; age 18–76). LV function and global strain were obtained from functional imaging. T1 mapping was performed using a modified look-locker sequence. Global and segmental native T1 and extracellular volume (ECV) were calculated using dedicated software. Gender, age, and segmental variation of both native myocardial T1 and ECV of the LV were analyzed. Results: The global myocardial native T1 and ECV of the LV in this Chinese adult healthy population was 1,202 ± 45 ms and 27 ± 3% at 3T field strength, respectively. Females had a higher myocardial native T1 and ECV of the LV compared to males [1,210 (1,188–1,264) ms vs. 1,182 (1,150–1,211) ms, P < 0.001; 28 ± 3 vs. 26 ± 3%, P = 0.027, respectively]. ECV in older group was higher than younger group [27 (26–29)% vs. 25 (24–29), P = 0.019]. The multi-variate linear regression analysis showed that only gender (Beta = −0.512, P < 0.001) was independently related with global native T1 of LV while gender (Beta = −0.278, P = 0.017) and age (Beta = 0.303, P = 0.010) were independently related with global ECV of LV. From the base to apex of the LV, myocardial native T1 (P = 0.020) and ECV (P < 0.001) significantly increased. Within the same slice of the LV, there were significant segmental variations of both myocardial native T1 (P < 0.001) and ECV (P < 0.001) values. Conclusion: Gender and age have significant impacts on the imaging markers of myocardial interstitial fibrosis in healthy adult Chinese volunteers. Segmental variation of myocardial interstitial fibrosis was also observed.
Collapse
Affiliation(s)
- Yang Dong
- Cardiology Division, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Yang
- Cardiology Division, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchi Han
- Cardiovascular Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wei Cheng
- Radiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Radiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wan
- Cardiology Division, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Liu
- Cardiology Division, West China Hospital, Sichuan University, Chengdu, China
| | | | - Xiaoyue Zhou
- Northeast Asia MR Collaboration, Siemens Healthcare, Beijing, China
| | - Yucheng Chen
- Cardiology Division, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|