101
|
Beloborodov E, Iurova E, Sugak D, Rastorgueva E, Pogodina E, Fomin A, Viktorov D, Slesarev S, Saenko Y. Stabilizing Scaffold for Short Peptides Based on Knottins. Curr Cancer Drug Targets 2024; 24:1275-1285. [PMID: 38357956 DOI: 10.2174/0115680096285288240118090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Bombesin (BBN) is a short peptide with a high affinity for receptors that are expressed on the surface of various types of cancer cells. However, a full length BBN molecule has low in vivo stability. OBJECTIVE In our study, we propose the use of peptide toxins, derived from animal and plant toxins, as scaffold molecules to enhance the bioavailability and stability of bombesin. These peptides possess a unique structure known as an inhibitory cystine knot. METHODS We synthesized structures in which short bombesin was incorporated into various domains of arthropod and plant toxins using solid-phase peptide synthesis. The stability under different conditions was assessed through high-performance liquid chromatography, and binding to cell cultures expressing the bombesin receptor was analyzed. Additionally, toxicity to cell cultures was evaluated using fluorescence microscopy. RESULTS The data obtained demonstrated that placing the short peptide between the first and second cysteine residues in arachnid toxins results in increased in vitro stability and bioavailability, as well as low cytotoxicity. CONCLUSION Arachnid toxins with an inhibitory cystine knot can be considered as a scaffold for increasing the stability of therapeutic peptides.
Collapse
Affiliation(s)
- Evgenii Beloborodov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Elena Iurova
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Dmitrii Sugak
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Eugenia Rastorgueva
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
- Department of General and Clinical Pharmacology and Microbiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russia
| | - Evgeniya Pogodina
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Aleksandr Fomin
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Denis Viktorov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Sergei Slesarev
- Department of Biology, Ecology and Natural Resources Management, Faculty of Ecology, Ulyanovsk State University, Ulyanovsk, Russia
| | - Yury Saenko
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| |
Collapse
|
102
|
Benke D, Bhat MA, Hleihil M. GABAB Receptors: Molecular Organization, Function, and Alternative Drug Development by Targeting Protein-Protein Interactions. THE RECEPTORS 2024:3-39. [DOI: 10.1007/978-3-031-67148-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
103
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
104
|
Singh K, Gupta JK, Kumar S, Soni U. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Bioactive Peptides. Curr Protein Pept Sci 2024; 25:507-526. [PMID: 38561605 DOI: 10.2174/0113892037275221240327042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Neurodegenerative disorders, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a significant and growing global health challenge. Current therapies predominantly focus on symptom management rather than altering disease progression. In this review, we discuss the major therapeutic strategies in practice for these disorders, highlighting their limitations. For AD, the mainstay treatments are cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists. For PD, dopamine replacement therapies, including levodopa, are commonly used. HD is managed primarily with symptomatic treatments, and reusable extends survival in ALS. However, none of these therapies halts or substantially slows the neurodegenerative process. In contrast, this review highlights emerging research into bioactive peptides as potential therapeutic agents. These naturally occurring or synthetically designed molecules can interact with specific cellular targets, potentially modulating disease processes. Preclinical studies suggest that bioactive peptides may mitigate oxidative stress, inflammation, and protein misfolding, which are common pathological features in neurodegenerative diseases. Clinical trials using bioactive peptides for neurodegeneration are limited but show promising initial results. For instance, hemiacetal, a γ-secretase inhibitor peptide, has shown potential in AD by reducing amyloid-beta production, though its development was discontinued due to side effects. Despite these advancements, many challenges remain, including identifying optimal peptides, confirming their mechanisms of action, and overcoming obstacles related to their delivery to the brain. Future research should prioritize the discovery and development of novel bioactive peptides and improve our understanding of their pharmacokinetics and pharmacodynamics. Ultimately, this approach may lead to more effective therapies for neurodegenerative disorders, moving beyond symptom management to potentially modify the course of these devastating diseases.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Urvashi Soni
- Department of Pharmacology, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, Maharashtra, India
| |
Collapse
|
105
|
Aita S, Cerrato A, Laganà A, Montone CM, Taglioni E, Capriotti AL. Untargeted Analysis of Short-Chain Peptides in Urine Samples Short Peptides Analysis. Methods Mol Biol 2024; 2745:31-43. [PMID: 38060178 DOI: 10.1007/978-1-0716-3577-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Short-chain peptides have attracted increasing attention in different research fields, including biomarker discovery, but also a well-known analytical challenge in complex matrices due to their low abundance compared to other molecules, which can cause extensive ion suppression during mass spectrometric acquisition. Moreover, there is a lack of analytical workflows for their comprehensive characterization since ordinary peptidomics strategies cannot identify them. In this context, an enrichment strategy was introduced and developed to isolate and clean up short-chain peptides by graphitized carbon black solid phase extraction. For better coverage of peptide polarity, urine samples were analyzed by ultrahigh performance liquid chromatography by reversed-phase and hydrophilic interaction liquid chromatography. High-resolution mass spectrometry allowed the detection of the eluting peptides by data-dependent mode using a suspect screening strategy with an inclusion list; peptides were identified by a semiautomated workflow implemented on Compound Discoverer. The complementarity of the orthogonal separation strategy was confirmed by peptide identification, resulting in 101 peptides identified from the RP runs, and 111 peptides from the HILIC runs, with 60 common identifications.
Collapse
Affiliation(s)
- SaraElsa Aita
- Dipartimento di Chimica, Università di Roma La Sapienza, Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Università di Roma La Sapienza, Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Università di Roma La Sapienza, Rome, Italy
| | | | - Enrico Taglioni
- Dipartimento di Chimica, Università di Roma La Sapienza, Rome, Italy
| | | |
Collapse
|
106
|
Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. RSC Med Chem 2023; 14:2496-2508. [PMID: 38107173 PMCID: PMC10718590 DOI: 10.1039/d3md00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023] Open
Abstract
Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, β-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Junlong Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Lingyan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
107
|
Zhang M, Zhang Y, Li J, Li J, Ji J, Wang Z. μ opioid receptor carboxyl terminal-derived peptide alleviates morphine tolerance by inhibiting β-arrestin2. Neuroreport 2023; 34:853-859. [PMID: 37942736 DOI: 10.1097/wnr.0000000000001963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The interaction between the μ opioid receptor (MOR) and β-arrestin2 serves as a model for addressing morphine tolerance. A peptide was designed to alleviate morphine tolerance through interfering with the interaction of MOR and β-arrestin2. We developed a peptide derived from MOR. The MOR-TAT-pep peptide was expressed in E. coli Bl21(DE3) and purified. The effects of MOR-TAT-pep in alleviating morphine tolerance was examined through behavior tests. The potential mechanism was detected by Western blotting, Mammalian Two-Hybrid and other techniques. The pretreatment with MOR-TAT-pep prior to morphine usage led to an enhanced analgesic effectiveness of morphine and a significant reduction in the development of morphine tolerance. The peptide directly interacted with β-arrestin2 during morphine treatment and deceased the membrane recruitment of β-arrestin2. MOR-TAT-pep effectively suppressed the increase of β-arrestin2 induced by morphine. The MOR-TAT-pep could alleviate morphine tolerance through inhibition of β-arrestin2.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gynecology, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University
| | - Yanling Zhang
- Department of Gynecology, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University
| | - Jian Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junliang Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junwei Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongshan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
108
|
Fonseca G, Poltavsky I, Tkatchenko A. Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope. J Chem Theory Comput 2023; 19:8706-8717. [PMID: 38011895 PMCID: PMC10720330 DOI: 10.1021/acs.jctc.3c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
As the sophistication of machine learning force fields (MLFF) increases to match the complexity of extended molecules and materials, so does the need for tools to properly analyze and assess the practical performance of MLFFs. To go beyond average error metrics and into a complete picture of a model's applicability and limitations, we developed FFAST (force field analysis software and tools): a cross-platform software package designed to gain detailed insights into a model's performance and limitations, complete with an easy-to-use graphical user interface. The software allows the user to gauge the performance of any molecular force field,─such as popular state-of-the-art MLFF models, ─ on various popular data set types, providing general prediction error overviews, outlier detection mechanisms, atom-projected errors, and more. It has a 3D visualizer to find and picture problematic configurations, atoms, or clusters in a large data set. In this paper, the example of the MACE and NequIP models is used on two data sets of interest [stachyose and docosahexaenoic acid (DHA)]─to illustrate the use cases of the software. With this, it was found that carbons and oxygens involved in or near glycosidic bonds inside the stachyose molecule present increased prediction errors. In addition, prediction errors on DHA rise as the molecule folds, especially for the carboxylic group at the edge of the molecule. We emphasize the need for a systematic assessment of MLFF models for ensuring their successful application to the study of dynamics of molecules and materials.
Collapse
Affiliation(s)
- Gregory Fonseca
- Department of Physics and Materials
Science, University of Luxembourg, Luxembourg City L-1511, Luxembourg
| | - Igor Poltavsky
- Department of Physics and Materials
Science, University of Luxembourg, Luxembourg City L-1511, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials
Science, University of Luxembourg, Luxembourg City L-1511, Luxembourg
| |
Collapse
|
109
|
Shin MK, Hwang IW, Jang BY, Bu KB, Han DH, Lee SH, Oh JW, Yoo JS, Sung JS. The Identification of a Novel Spider Toxin Peptide, Lycotoxin-Pa2a, with Antibacterial and Anti-Inflammatory Activities. Antibiotics (Basel) 2023; 12:1708. [PMID: 38136742 PMCID: PMC10740532 DOI: 10.3390/antibiotics12121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
With the increasing challenge of controlling infectious diseases due to the emergence of antibiotic-resistant strains, the importance of discovering new antimicrobial agents is rapidly increasing. Animal venoms contain a variety of functional peptides, making them a promising platform for pharmaceutical development. In this study, a novel toxin peptide with antibacterial and anti-inflammatory activities was discovered from the spider venom gland transcriptome by implementing computational approaches. Lycotoxin-Pa2a (Lytx-Pa2a) showed homology to known-spider toxin, where functional prediction indicated the potential of both antibacterial and anti-inflammatory peptides without hemolytic activity. The colony-forming assay and minimum inhibitory concentration test showed that Lytx-Pa2a exhibited comparable or stronger antibacterial activity against pathogenic strains than melittin. Following mechanistic studies revealed that Lytx-Pa2a disrupts both cytoplasmic and outer membranes of bacteria while simultaneously inducing the accumulation of reactive oxygen species. The peptide exerted no significant toxicity when treated to human primary cells, murine macrophages, and bovine red blood cells. Moreover, Lytx-Pa2a alleviated lipopolysaccharide-induced inflammation in mouse macrophages by suppressing the expression of inflammatory mediators. These findings not only suggested that Lytx-Pa2a with dual activity can be utilized as a new antimicrobial agent for infectious diseases but also demonstrated the implementation of in silico methods for discovering a novel functional peptide, which may enhance the future utilization of biological resources.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - In-Wook Hwang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Bo-Young Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Kyung-Bin Bu
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Dong-Hee Han
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Seung-Ho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| | - Jung Sun Yoo
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (I.-W.H.); (B.-Y.J.); (K.-B.B.); (D.-H.H.); (S.-H.L.); (J.W.O.)
| |
Collapse
|
110
|
Delgado JAC, Tian YM, Marcon M, König B, Paixão MW. Side-Selective Solid-Phase Metallaphotoredox N(in)-Arylation of Peptides. J Am Chem Soc 2023; 145:26452-26462. [PMID: 37976043 DOI: 10.1021/jacs.3c10792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Postsynthetic diversification of peptides through selective modification of endogenous amino acid side chains has enabled significant advances in peptide drug discovery while expanding the biological and medical chemistry space. However, current tools have been focused on the modification of reactive polar and ionizable side chains, whereas the decoration of aromatic systems (e.g., the N(in) of the tryptophan) has been a long-standing challenge. Here, we introduce metallaphotocatalysis in solid-phase peptide synthesis for the on-resin orthogonal N-arylation of relevant tryptophan-containing peptides. The protocol allows the chemoselective introduction of a new C(sp2)-N bond at the N(in) of tryptophan in biologically active protected peptide sequences in the presence of native redox-sensitive side chains. The fusion of metallaphotocatalysis with solid-phase peptide synthesis opens new perspectives in diversifying native amino acid side chains.
Collapse
Affiliation(s)
- José A C Delgado
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Ya-Ming Tian
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michela Marcon
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Márcio W Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
111
|
Zhang S, Shen J, Wang X, Sun X, Wu Y, Zhang M, Wang R, Hu K. Integration of organoids in peptide drug discovery: Rise of the high‐throughput screening. VIEW 2023; 4. [DOI: 10.1002/viw.20230010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/13/2023] [Indexed: 04/05/2025] Open
Abstract
AbstractOrganoids are three‐dimensional cell aggregates with near‐physiologic cell behaviors and can undergo long‐term expansion in vitro. They are amenable to high‐throughput drug screening processes, which renders them a viable preclinical model for drug development. The procedure of organoid‐based high‐throughput screening has been extensively employed to discover small‐molecule drugs, encompassing the steps of generating organoids, examining efficient drugs in organoid cultures, and data assessment. Compared to small molecules, peptides are more straightforward to synthesize, can be modified chemically, and demonstrate high target specificity and low cytotoxicity. Therefore, they have emerged as promising carriers to deliver drugs to disease‐associated targets and could be efficient therapeutic drugs for various diseases. To date, organoids have been used to evaluate the efficacy of certain peptide agents; however, no organoid‐based high‐throughput screening of peptide drugs has been reported. Given the advantages of peptide drugs, there is an urgent need to establish organoid‐based peptide high‐throughput screening platforms. In this review, we discuss the typical approach of screening small‐molecular drugs with the use of organoid cultures, as well as provide an overview of the studies that have incorporated organoids in peptide research. Drawing on the knowledge from small molecular screens, we explore the difficulties and potential avenues for creating new platforms to identify peptide agents using organoid models.
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jieting Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xiaona Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yuxuan Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences Institute of Quantum Medical Science National Institutes for Quantum Science and Technology Chiba Japan
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
112
|
Ye T, Tao WY, Chen XY, Jiang C, Di B, Xu LL. Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors. Cytokine Growth Factor Rev 2023; 74:1-13. [PMID: 37821254 DOI: 10.1016/j.cytogfr.2023.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3), a member of the nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) family, plays an important role in the innate immune response against pathogen invasions. NLRP3 inflammasome consisting of NLRP3 protein, the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC), and the effector protein pro-caspase-1, is central to this process. Upon activation, NLRP3 inflammasome initiates the release of inflammatory cytokines and triggers a form of cell death known as pyroptosis. Dysregulation or inappropriate activation of NLRP3 has been implicated in various human diseases, including type 2 diabetes, colitis, depression, and gout. Consequently, understanding the mechanism underlying NLRP3 inflammasome activation is critical for the development of therapeutic drugs. In the pursuit of potential therapeutic agents, peptides present several advantages over small molecules. They offer higher selectivity, increased potency, reduced toxicity, and fewer off-target effects. The advancements in molecular biology have expanded the opportunities for applying peptides in medicine, unlocking their vast medical potential. This review begins by providing a comprehensive summary of recent research progress regarding the mechanisms governing NLRP3 inflammasome activation. Subsequently, we offer an overview of current peptide inhibitors capable of modulating the NLRP3 inflammasome activation pathway.
Collapse
Affiliation(s)
- Tao Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
113
|
Freitas CG, Felipe MS. Candida albicans and Antifungal Peptides. Infect Dis Ther 2023; 12:2631-2648. [PMID: 37940816 PMCID: PMC10746669 DOI: 10.1007/s40121-023-00889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Candida albicans, a ubiquitous opportunistic fungal pathogen, plays a pivotal role in human health and disease. As a commensal organism, it normally resides harmlessly within the human microbiota. However, under certain conditions, C. albicans can transition into a pathogenic state, leading to various infections collectively known as candidiasis. With the increasing prevalence of immunocompromised individuals and the widespread use of invasive medical procedures, candidiasis has become a significant public health concern. The emergence of drug-resistant strains further complicates treatment options, highlighting the urgent need for alternative therapeutic strategies. Antifungal peptides (AFPs) have gained considerable attention as potential candidates for combating Candida spp. infections. These naturally occurring peptides possess broad-spectrum antimicrobial activity, including specific efficacy against C. albicans. AFPs exhibit several advantageous properties, such as rapid killing kinetics, low propensity for resistance development, and diverse mechanisms of action, making them promising alternatives to conventional antifungal agents. In recent years, extensive research has focused on discovering and developing novel AFPs with improved efficacy and selectivity against Candida species. Advances in biotechnology and synthetic peptide design have enabled the modification and optimization of natural peptides, enhancing their stability, bioavailability, and therapeutic potential. Nevertheless, several challenges must be addressed before AFPs can be widely implemented in clinical practice. These include optimizing peptide stability, enhancing delivery methods, overcoming potential toxicity concerns, and conducting comprehensive preclinical and clinical studies. This commentary presents a short overview of candidemia and AFP; articles and reviews published in the last 10 years were searched on The National Library of Medicine (National Center for Biotechnology Information-NIH-PubMed). The terms used were C. albicans infections, antimicrobial peptides, antifungal peptides, antifungal peptides mechanisms of action, candidemia treatments and guidelines, synthetic peptides and their challenges, and antimicrobial peptides in clinical trials as the main ones. Older publications were cited if they brought some relevant concept or helped to bring a perspective into our narrative. Articles older than 20 years and those that appeared in PubMed but did not match our goal to bring updated information about using antifungal peptides as an alternative to C. albicans infections were not considered.
Collapse
Affiliation(s)
- Camila G Freitas
- Higher Education Course in Food Technology, Instituto Federal de Brasília (IFB), Brasília, DF, Brazil
- Genomic Sciences and Biotechnology Graduate Program, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil
| | - Maria Sueli Felipe
- Genomic Sciences and Biotechnology Graduate Program, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
- Universidade de Brasília (UNB), Brasília, DF, Brazil.
| |
Collapse
|
114
|
Zhou K, Chen D. Conventional Understanding of SARS-CoV-2 M pro and Common Strategies for Developing Its Inhibitors. Chembiochem 2023; 24:e202300301. [PMID: 37577869 DOI: 10.1002/cbic.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has brought a widespread influence on the world, especially in the face of sudden coronavirus infections, and there is still an urgent need for specific small molecule therapies to cope with possible future pandemics. The pathogen responsible for this pandemic is Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and understanding its structure and lifecycle is beneficial for designing specific drugs of treatment for COVID-19. The main protease (Mpro ) which has conservative and specific advantages is essential for viral replication and transcription. It is regarded as one of the most potential targets for anti-SARS-CoV-2 drug development. This review introduces the popular knowledge of SARS-CoV-2 Mpro in drug development and lists a series of design principles and relevant activities of advanced Mpro inhibitors, hoping to provide some new directions and ideas for researchers.
Collapse
Affiliation(s)
- Kun Zhou
- School of Pharmacy, Yantai University, Yantai, Shandong, RT 264005, P. R. China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, Shandong, RT 264005, P. R. China
| |
Collapse
|
115
|
Román T, Acosta G, Cárdenas C, de la Torre BG, Guzmán F, Albericio F. Protocol for Facile Synthesis of Fmoc-N-Me-AA-OH Using 2-CTC Resin as Temporary and Reusable Protecting Group. Methods Protoc 2023; 6:110. [PMID: 37987357 PMCID: PMC10660853 DOI: 10.3390/mps6060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
One approach to enhance the bioavailability and half-life of peptides in vivo is through N-methylation of one or more of the amino acids within the peptide sequence. However, commercially available Fmoc-N-Me-AA-OHs are limited and often expensive. In this study, a solid-phase synthesis method for Fmoc-N-Me-AA-OH was developed using a 2-chlorotrityl chloride (2-CTC) resin as a temporary protective group for the carboxylic acid strategy. Two strategies for the alkylation step were compared, employing either dimethyl sulfate or methyl iodide in the Biron-Kessler method. In this work we tested the protocol with two amino acids: Fmoc-Thr(tBu)-OH and Fmoc-βAla-OH. The first one is an alpha amino acid, very hindered and with the amine group directly influenced by the electronic effects of the carboxy group, whereas in Fmoc-βAla-OH, the presence of a methylene group weakens this influence due to the intervening carbon atoms. The desired amino acids, Fmoc-N-Me-Thr(tBu)-OH and Fmoc-N-Me-βAla-OH, were synthesized by both strategies with high yield and purity.
Collapse
Affiliation(s)
- Tanya Román
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnica Federico Santa María, Valparaíso 2373223, Chile
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, 08028 Barcelona, Spain;
| | - Gerardo Acosta
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, 08028 Barcelona, Spain;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Constanza Cárdenas
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| | - Fernando Albericio
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, 08028 Barcelona, Spain;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
116
|
Kusuma WA, Fadli A, Fatriani R, Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Purwestri YA, Swasono RT. Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study. Heliyon 2023; 9:e21149. [PMID: 37954374 PMCID: PMC10637925 DOI: 10.1016/j.heliyon.2023.e21149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer.
Collapse
Affiliation(s)
- Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, 16128, Indonesia
| | - Aulia Fadli
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia
| | - Rizka Fatriani
- Tropical Biopharmaca Research Center, IPB University, Bogor, 16128, Indonesia
| | - Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta, 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
117
|
Yaraguppi DA, Bagewadi ZK, Patil NR, Mantri N. Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules 2023; 13:1515. [PMID: 37892197 PMCID: PMC10604914 DOI: 10.3390/biom13101515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review examines iturin, a cyclic lipopeptide originating from Bacillus subtilis and related bacteria. These compounds are structurally diverse and possess potent inhibitory effects against plant disease-causing bacteria and fungi. Notably, Iturin A exhibits strong antifungal properties and low toxicity, making it valuable for bio-pesticides and mycosis treatment. Emerging research reveals additional capabilities, including anticancer and hemolytic features. Iturin finds applications across industries. In food, iturin as a biosurfactant serves beyond surface tension reduction, enhancing emulsions and texture. Biosurfactants are significant in soil remediation, agriculture, wound healing, and sustainability. They also show promise in Microbial Enhanced Oil Recovery (MEOR) in the petroleum industry. The pharmaceutical and cosmetic industries recognize iturin's diverse properties, such as antibacterial, antifungal, antiviral, anticancer, and anti-obesity effects. Cosmetic applications span emulsification, anti-wrinkle, and antibacterial use. Understanding iturin's structure, synthesis, and applications gains importance as biosurfactant and lipopeptide research advances. This review focuses on emphasizing iturin's structural characteristics, production methods, biological effects, and applications across industries. It probes iturin's antibacterial, antifungal potential, antiviral efficacy, and cancer treatment capabilities. It explores diverse applications in food, petroleum, pharmaceuticals, and cosmetics, considering recent developments, challenges, and prospects.
Collapse
Affiliation(s)
- Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Ninganagouda R. Patil
- Department of Physics, B. V Bhoomaraddi College of Engineering and Technology, Hubballi 580031, Karnataka, India;
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
118
|
Carrera-Aubesart A, Gallo M, Defaus S, Todorovski T, Andreu D. Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades. Pharmaceutics 2023; 15:2451. [PMID: 37896211 PMCID: PMC10610229 DOI: 10.3390/pharmaceutics15102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Maria Gallo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| |
Collapse
|
119
|
Zhang L, Liu H. Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function. J Comput Aided Mol Des 2023; 37:463-478. [PMID: 37498491 DOI: 10.1007/s10822-023-00518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
When designing peptide ligands based on the structure of a protein receptor, it can be very useful to narrow down the possible binding positions and bound conformations of the ligand without the need to choose its amino acid sequence in advance. Here, we construct and benchmark a tool for this purpose based on a recently reported statistical energy model named SCUBA (Sidechain-Unknown Backbone Arrangement) for designing protein backbones without considering specific amino acid sequences. With this tool, backbone fragments of different local conformation types are generated and optimized with SCUBA-driven stochastic simulations and simulated annealing, and then ranked and clustered to obtain representative backbone fragment poses of strong SCUBA interaction energies with the receptor. We computationally benchmarked the tool on 111 known protein-peptide complex structures. When the bound ligands are in the strand conformation, the method is able to generate backbone fragments of both low SCUBA energies and low root mean square deviations from experimental structures of peptide ligands. When the bound ligands are helices or coils, low-energy backbone fragments with binding poses similar to experimental structures have been generated for approximately 50% of benchmark cases. We have examined a number of predicted ligand-receptor complexes by atomistic molecular dynamics simulations, in which the peptide ligands have been found to stay at the predicted binding sites and to maintain their local conformations. These results suggest that promising backbone structures of peptides bound to protein receptors can be designed by identifying outstanding minima on the SCUBA-modeled backbone energy landscape.
Collapse
Affiliation(s)
- Lu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Haiyan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- School of Data Science, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
120
|
Shamsian S, Sokouti B, Dastmalchi S. Benchmarking different docking protocols for predicting the binding poses of ligands complexed with cyclooxygenase enzymes and screening chemical libraries. BIOIMPACTS : BI 2023; 14:29955. [PMID: 38505677 PMCID: PMC10945300 DOI: 10.34172/bi.2023.29955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 03/21/2024]
Abstract
Introduction Non-steroidal anti-inflammatory drugs (NSAIDs) constitute an important class of pharmaceuticals acting on cyclooxygenase COX-1 and COX-2 enzymes. Due to their numerous severe side effects, it is necessary to search for new selective, safe, and effective anti-inflammatory drugs. In silico design of novel therapeutics plays an important role in nowadays drug discovery pipelines. In most cases, the design strategies require the use of molecular docking calculations. The docking procedure may require case-specific condition for a successful result. Additionally, many different docking programs are available, which highlights the importance of identifying the most proper docking method and condition for a given problem. Methods In the current work, the performances of five popular molecular docking programs, namely, GOLD, AutoDock, FlexX, Molegro Virtual Docker (MVD) and Glide to predict the binding mode of co- crystallized inhibitors in the structures of known complexes available for cyclooxygenases were evaluated. Furthermore, the best performers, Glide, AutoDock, GOLD and FlexX, were further evaluated in docking-based virtual screening of libraries consisted of active ligands and decoy molecules for cyclooxygenase enzymes and the obtained docking scores were assessed by receiver operating characteristics (ROC) analysis. Results The results of docking experiments indicated that Glide program outperformed other docking programs by correctly predicting the binding poses (RMSD less than 2 Å) of all studied co-crystallized ligands of COX-1 and COX-2 enzymes (i.e., the performance was 100%). However, the performances of the other studied docking methods for correctly predicting the binding poses of the ligands were between 59% to 82%. Virtual screening results treated by ROC analysis revealed that all tested methods are useful tools for classification and enrichment of molecules targeting COX enzymes. The obtained AUCs range between 0.61-0.92 with enrichment factors of 8 - 40 folds. Conclusion The obtained results support the importance of choosing appropriate docking method for predicting ligand-receptor binding modes, and provide specific information about docking calculations on COXs ligands.
Collapse
Affiliation(s)
- Sara Shamsian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
| | - Siavoush Dastmalchi
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
- Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
121
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Hetényi C. Construction of Histone-Protein Complex Structures by Peptide Growing. Int J Mol Sci 2023; 24:13831. [PMID: 37762134 PMCID: PMC10530865 DOI: 10.3390/ijms241813831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structures of histone complexes are master keys to epigenetics. Linear histone peptide tails often bind to shallow pockets of reader proteins via weak interactions, rendering their structure determination challenging. In the present study, a new protocol, PepGrow, is introduced. PepGrow uses docked histone fragments as seeds and grows the full peptide tails in the reader-binding pocket, producing atomic-resolution structures of histone-reader complexes. PepGrow is able to handle the flexibility of histone peptides, and it is demonstrated to be more efficient than linking pre-docked peptide fragments. The new protocol combines the advantages of popular program packages and allows fast generation of solution structures. AutoDock, a force-field-based program, is used to supply the docked peptide fragments used as structural seeds, and the building algorithm of Modeller is adopted and tested as a peptide growing engine. The performance of PepGrow is compared to ten other docking methods, and it is concluded that in situ growing of a ligand from a seed is a viable strategy for the production of complex structures of histone peptides at atomic resolution.
Collapse
Affiliation(s)
| | | | | | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Út 12, 7624 Pécs, Hungary; (B.Z.Z.); (B.B.); (R.B.)
| |
Collapse
|
122
|
Itagaki M, Kamei N, Takeda-Morishita M. Evaluation of Function and Features of Human Induced Pluripotent Stem Cell-Derived Small Intestinal Epithelial Cells for Analyzing Peptide Drug Intestinal Absorption Profiles. J Pharm Sci 2023; 112:2591-2595. [PMID: 37230251 DOI: 10.1016/j.xphs.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Caco-2 cell monolayers are widely employed as an in vitro model of the intestinal barrier, capable of accurately predicting the absorption of conventional small-molecule drugs. However, this model may not be applicable to all drugs, and the accuracy of absorption prediction is typically poor for high molecular weight drugs. Recently, human induced pluripotent stem (iPS) cell-derived small intestinal epithelial cells (hiPSC-SIECs), exhibiting properties similar to those of the small intestine when compared with Caco-2 cells, have been developed and are considered a novel candidate model for in vitro evaluation of intestinal drug permeability. Therefore, we evaluated the utility of human hiPSC-SIECs as a new in vitro model to predict the intestinal absorption of middle-molecular weight drugs and peptide drugs. Firstly, we showed that the hiPSC-SIEC monolayer allowed faster transport of peptide drugs (insulin and glucagon-like peptide-1) than the Caco- 2 cell monolayer. Second, we revealed that hiPSC-SIECs require divalent cations (Mg2+ and Ca2+) to maintain barrier integrity. Third, we demonstrated that experimental conditions established for Caco-2 cells are not persistently applicable to hiPSC-SICEs when analyzing absorption enhancers. Comprehensively clarifying the features of hiPSC-SICEs is essential to establish a new in vitro evaluation model.
Collapse
Affiliation(s)
- Mai Itagaki
- Laboratory of Drug Delivery Systems, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan; Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| |
Collapse
|
123
|
Deigin V, Linkova N, Volpina O. Advancement from Small Peptide Pharmaceuticals to Orally Active Piperazine-2,5-dion-Based Cyclopeptides. Int J Mol Sci 2023; 24:13534. [PMID: 37686336 PMCID: PMC10487935 DOI: 10.3390/ijms241713534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The oral delivery of peptide pharmaceuticals has long been a fundamental challenge in drug development. A new chemical platform was designed based on branched piperazine-2,5-diones for creating orally available biologically active peptidomimetics. The platform includes a bio-carrier with "built-in" functionally active peptide fragments or bioactive molecules that are covalently attached via linkers. The developed platform allows for a small peptide to be taken with a particular biological activity and to be transformed into an orally stable compound displaying the same activity. Based on this approach, various peptidomimetics exhibiting hemostimulating, hemosuppressing, and adjuvant activity were prepared. In addition, new examples of a rare phenomenon when enantiomeric molecules demonstrate reciprocal biological activity are presented. Finally, the review summarizes the evolutionary approach of the short peptide pharmaceutical development from the immunocompetent organ separation to orally active cyclopeptides and peptidomimetics.
Collapse
Affiliation(s)
- Vladislav Deigin
- The Laboratory of Synthetic Vaccines of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| | - Natalia Linkova
- The Research Laboratory of the Development of Drug Delivery Systems, St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
| | - Olga Volpina
- The Laboratory of Synthetic Vaccines of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| |
Collapse
|
124
|
Wang C, Shao S, Li N, Zhang Z, Zhang H, Liu B. Advances in Alzheimer's Disease-Associated Aβ Therapy Based on Peptide. Int J Mol Sci 2023; 24:13110. [PMID: 37685916 PMCID: PMC10487952 DOI: 10.3390/ijms241713110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) urgently needs innovative treatments due to the increasing aging population and lack of effective drugs and therapies. The amyloid fibrosis of AD-associated β-amyloid (Aβ) that could induce a series of cascades, such as oxidative stress and inflammation, is a critical factor in the progression of AD. Recently, peptide-based therapies for AD are expected to be great potential strategies for the high specificity to the targets, low toxicity, fast blood clearance, rapid cell and tissue permeability, and superior biochemical characteristics. Specifically, various chiral amino acids or peptide-modified interfaces draw much attention as effective manners to inhibit Aβ fibrillation. On the other hand, peptide-based inhibitors could be obtained through affinity screening such as phage display or by rational design based on the core sequence of Aβ fibrosis or by computer aided drug design based on the structure of Aβ. These peptide-based therapies can inhibit Aβ fibrillation and reduce cytotoxicity induced by Aβ aggregation and some have been shown to relieve cognition in AD model mice and reduce Aβ plaques in mice brains. This review summarizes the design method and characteristics of peptide inhibitors and their effect on the amyloid fibrosis of Aβ. We further describe some analysis methods for evaluating the inhibitory effect and point out the challenges in these areas, and possible directions for the design of AD drugs based on peptides, which lay the foundation for the development of new effective drugs in the future.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
| | - Shuai Shao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
125
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
126
|
Liu XY, Ji X, Heinis C, Waser J. Peptide-Hypervalent Iodine Reagent Chimeras: Enabling Peptide Functionalization and Macrocyclization. Angew Chem Int Ed Engl 2023; 62:e202306036. [PMID: 37311172 DOI: 10.1002/anie.202306036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Herein, we report a novel strategy for the modification of peptides based on the introduction of highly reactive hypervalent iodine reagents-ethynylbenziodoxolones (EBXs)-onto peptides. These peptide-EBXs can be readily accessed, by both solution- and solid-phase peptide synthesis (SPPS). They can be used to couple the peptide to other peptides or a protein through reaction with Cys, leading to thioalkynes in organic solvents and hypervalent iodine adducts in water buffer. Furthermore, a photocatalytic decarboxylative coupling to the C-terminus of peptides was developed using an organic dye and was also successful in an intramolecular fashion, leading to macrocyclic peptides with unprecedented crosslinking. A rigid linear aryl alkyne linker was essential to achieve high affinity for Keap1 at the Nrf2 binding site with potential protein-protein interaction inhibition.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Xinjian Ji
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
127
|
Li Y, Yang KD, Duan HY, Du YN, Ye JF. Phage-based peptides for pancreatic cancer diagnosis and treatment: alternative approach. Front Microbiol 2023; 14:1231503. [PMID: 37601380 PMCID: PMC10433397 DOI: 10.3389/fmicb.2023.1231503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Pancreatic cancer is a devastating disease with a high mortality rate and a lack of effective therapies. The challenges associated with early detection and the highly aggressive nature of pancreatic cancer have limited treatment options, underscoring the urgent need for better disease-modifying therapies. Peptide-based biotherapeutics have become an attractive area of research due to their favorable properties such as high selectivity and affinity, chemical modifiability, good tissue permeability, and easy metabolism and excretion. Phage display, a powerful technique for identifying peptides with high affinity and specificity for their target molecules, has emerged as a key tool in the discovery of peptide-based drugs. Phage display technology involves the use of bacteriophages to express peptide libraries, which are then screened against a target of interest to identify peptides with desired properties. This approach has shown great promise in cancer diagnosis and treatment, with potential applications in targeting cancer cells and developing new therapies. In this comprehensive review, we provide an overview of the basic biology of phage vectors, the principles of phage library construction, and various methods for binding affinity assessment. We then describe the applications of phage display in pancreatic cancer therapy, targeted drug delivery, and early detection. Despite its promising potential, there are still challenges to be addressed, such as optimizing the selection process and improving the pharmacokinetic properties of phage-based drugs. Nevertheless, phage display represents a promising approach for the development of novel targeted therapies in pancreatic cancer and other tumors.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Ya-nan Du
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
128
|
Botelho Sampaio de Oliveira K, Lopes Leite M, Albuquerque Cunha V, Brito da Cunha N, Luiz Franco O. Challenges and advances in antimicrobial peptide development. Drug Discov Today 2023; 28:103629. [PMID: 37230283 DOI: 10.1016/j.drudis.2023.103629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Microbial resistance is a major concern for public health worldwide, mainly because of the inappropriate use of antimicrobials. In this scenario, antimicrobial peptides (AMPs) have emerged as a potential therapeutic alternative means by which to control infectious diseases, because of their broad spectrum of action. However, some challenges can make their clinical application problematic, including metabolic instability and toxicity. Here, we provide a clear description of AMPs as promising molecules for the development of unusual antimicrobial drugs. We also describe current strategies used to overcome the main difficulties related to AMP clinical application, including different peptide designs and nanoformulation.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Bloco K, 70.790-900, Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasilia, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Pós-graduação em Patologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
129
|
Sviridov D, Dasseux A, Reimund M, Pryor M, Drake SK, Jarin Z, Wolska A, Pastor RW, Remaley AT. Short hydrocarbon stapled ApoC2-mimetic peptides activate lipoprotein lipase and lower plasma triglycerides in mice. Front Cardiovasc Med 2023; 10:1223920. [PMID: 37547254 PMCID: PMC10403075 DOI: 10.3389/fcvm.2023.1223920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Defects in lipolysis can lead to hypertriglyceridemia, which can trigger acute pancreatitis and is also associated with cardiovascular disease. Decreasing plasma triglycerides (TGs) by activating lipoprotein lipase (LPL) with ApoC2 mimetic peptides is a new treatment strategy for hypertriglyceridemia. We recently described a dual ApoC2 mimetic/ApoC3 antagonist peptide called D6PV that effectively lowered TG in several mouse models but has limitations in terms of drug development. The aim of this study was to create the next generation of ApoC2 mimetic peptides. Methods We employed hydrocarbon staples, as well as select amino acid substitutions, to make short single helical mimetic peptides based on the last helix of ApoC2. Peptides were first tested for their ability to activate LPL and then in hypertriglyceridemia mouse models. All-atom simulations of peptides were performed in a lipid-trilayer model of TG-rich lipoproteins to discern their possible mechanism of action. Results We designed a single stapled peptide called SP1 (21 residues), and a double stapled (stitched) peptide called SP2 (21 residues) and its N-terminal acylated analogue, SP2a. The hydrocarbon staples increased the amphipathicity of the peptides and their ability to bind lipids without interfering with LPL activation. Indeed, from all-atom simulations, the conformations of SP1 and SP2a are restrained by the staples and maintains the proper orientation of the LPL activation motif, while still allowing their deeper insertion into the lipid-trilayer model. Intraperitoneal injection of stapled peptides (1-5 umoles/kg) into ApoC2-hypomorphic mice or human ApoC3-transgenic resulted in an 80%-90% reduction in plasma TG within 3 h, similar to the much longer D6PV peptide (41 residues). Other modifications (replacement L-Glu20, L-Glu21 with their D-isomers, N-methylation of Gly19, Met2NorLeu and Ala1alpha-methylAla substitutions, N-terminal octanoylation) were introduced into the SP2a peptide. These changes made SP2a highly resistant to proteolysis against trypsin, pepsin, and Proteinase K, while maintaining similar efficacy in lowering plasma TG in mice. Conclusion We describe a new generation of ApoC2 mimetic peptides based on hydron carbon stapling that are at least equally potent to earlier peptides but are much shorter and resistant to proteolysis and could be further developed into a new therapy for hypertriglyceridemia.
Collapse
Affiliation(s)
- Denis Sviridov
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amaury Dasseux
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mart Reimund
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Milton Pryor
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Steven K. Drake
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zack Jarin
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Anna Wolska
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alan T. Remaley
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
130
|
Feng H, Wang F, Li N, Xu Q, Zheng G, Sun X, Hu M, Xing G, Zhang G. A Random Forest Model for Peptide Classification Based on Virtual Docking Data. Int J Mol Sci 2023; 24:11409. [PMID: 37511165 PMCID: PMC10380188 DOI: 10.3390/ijms241411409] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The affinity of peptides is a crucial factor in studying peptide-protein interactions. Despite the development of various techniques to evaluate peptide-receptor affinity, the results may not always reflect the actual affinity of the peptides accurately. The current study provides a free tool to assess the actual peptide affinity based on virtual docking data. This study employed a dataset that combined actual peptide affinity information (active and inactive) and virtual peptide-receptor docking data, and different machine learning algorithms were utilized. Compared with the other algorithms, the random forest (RF) algorithm showed the best performance and was used in building three RF models using different numbers of significant features (four, three, and two). Further analysis revealed that the four-feature RF model achieved the highest Accuracy of 0.714 in classifying an independent unknown peptide dataset designed with the PEDV spike protein, and it also revealed overfitting problems in the other models. This four-feature RF model was used to evaluate peptide affinity by constructing the relationship between the actual affinity and the virtual docking scores of peptides to their receptors.
Collapse
Affiliation(s)
- Hua Feng
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fangyu Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ning Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qian Xu
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Guanming Zheng
- Public Health and Preventive Medicine Teaching and Research Center, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xuefeng Sun
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Man Hu
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Longhu Modern Immunology Laboratory, Zhengzhou 450002, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
131
|
Kling C, Sommer A, Almeida-Hernandez Y, Rodríguez A, Perez-Erviti JA, Bhadane R, Ständker L, Wiese S, Barth H, Pupo-Meriño M, Pulliainen AT, Sánchez-García E, Ernst K. Inhibition of Pertussis Toxin by Human α-Defensins-1 and -5: Differential Mechanisms of Action. Int J Mol Sci 2023; 24:10557. [PMID: 37445740 DOI: 10.3390/ijms241310557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Whooping cough is a severe childhood disease, caused by the bacterium Bordetella pertussis, which releases pertussis toxin (PT) as a major virulence factor. Previously, we identified the human antimicrobial peptides α-defensin-1 and -5 as inhibitors of PT and demonstrated their capacity to inhibit the activity of the PT enzyme subunit PTS1. Here, the underlying mechanism of toxin inhibition was investigated in more detail, which is essential for developing the therapeutic potential of these peptides. Flow cytometry and immunocytochemistry revealed that α-defensin-5 strongly reduced PT binding to, and uptake into cells, whereas α-defensin-1 caused only a mild reduction. Conversely, α-defensin-1, but not α-defensin-5 was taken up into different cell lines and interacted with PTS1 inside cells, based on proximity ligation assay. In-silico modeling revealed specific interaction interfaces for α-defensin-1 with PTS1 and vice versa, unlike α-defensin-5. Dot blot experiments showed that α-defensin-1 binds to PTS1 and even stronger to its substrate protein Gαi in vitro. NADase activity of PTS1 in vitro was not inhibited by α-defensin-1 in the absence of Gαi. Taken together, these results suggest that α-defensin-1 inhibits PT mainly by inhibiting enzyme activity of PTS1, whereas α-defensin-5 mainly inhibits cellular uptake of PT. These findings will pave the way for optimization of α-defensins as novel therapeutics against whooping cough.
Collapse
Affiliation(s)
- Carolin Kling
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anja Sommer
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser Almeida-Hernandez
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Armando Rodríguez
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Julio A Perez-Erviti
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Rajendra Bhadane
- Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mario Pupo-Meriño
- Departamento de Bioinformática, Centro de Matemática Computacional, Universidad de las Ciencias Informáticas (UCI), Havana 19370, Cuba
| | - Arto T Pulliainen
- Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Elsa Sánchez-García
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
132
|
da Silva Sanches PR, Sanchez-Velazquez R, Batista MN, Carneiro BM, Bittar C, De Lorenzo G, Rahal P, Patel AH, Cilli EM. Antiviral Evaluation of New Synthetic Bioconjugates Based on GA-Hecate: A New Class of Antivirals Targeting Different Steps of Zika Virus Replication. Molecules 2023; 28:4884. [PMID: 37446546 PMCID: PMC10343505 DOI: 10.3390/molecules28134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Re-emerging arboviruses represent a serious health problem due to their rapid vector-mediated spread, mainly in urban tropical areas. The 2013-2015 Zika virus (ZIKV) outbreak in South and Central America has been associated with cases of microcephaly in newborns and Guillain-Barret syndrome. We previously showed that the conjugate gallic acid-Hecate (GA-FALALKALKKALKKLKKALKKAL-CONH2)-is an efficient inhibitor of the hepatitis C virus. Here, we show that the Hecate peptide is degraded in human blood serum into three major metabolites. These metabolites conjugated with gallic acid were synthesized and their effect on ZIKV replication in cultured cells was evaluated. The GA-metabolite 5 (GA-FALALKALKKALKKL-COOH) was the most efficient in inhibiting two ZIKV strains of African and Asian lineage at the stage of both virus entry (virucidal and protective) and replication (post-entry). We also demonstrate that GA-metabolite 5 does not affect cell growth after 7 days of continuous treatment. Thus, this study identifies a new synthetic antiviral compound targeting different steps of ZIKV replication in vitro and with the potential for broad reactivity against other flaviviruses. Our work highlights a promising strategy for the development of new antivirals based on peptide metabolism and bioconjugation.
Collapse
Affiliation(s)
- Paulo Ricardo da Silva Sanches
- School of Pharmaceutical Science, São Paulo State University, Araraquara 14800-903, SP, Brazil
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
- Institute of Chemistry, São Paulo State University, Araraquara 14800-900, SP, Brazil
| | - Ricardo Sanchez-Velazquez
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
| | - Mariana Nogueira Batista
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; (M.N.B.)
| | - Bruno Moreira Carneiro
- School of Health Science, Federal University of Rondonópolis, Rondonópolis 78736-900, MT, Brazil;
| | - Cintia Bittar
- School of Health Science, Federal University of Rondonópolis, Rondonópolis 78736-900, MT, Brazil;
| | - Giuditta De Lorenzo
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
| | - Paula Rahal
- Institute of Bioscience, Humanities and Exact Science, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil;
| | - Arvind H. Patel
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
| | - Eduardo Maffud Cilli
- Institute of Chemistry, São Paulo State University, Araraquara 14800-900, SP, Brazil
| |
Collapse
|
133
|
Ahmed S, Alam W, Alsharif KF, Aschner M, Alzahrani FM, Saso L, Khan H. Therapeutic potential of marine peptides in malignant melanoma. ENVIRONMENTAL RESEARCH 2023; 227:115771. [PMID: 36967001 DOI: 10.1016/j.envres.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 05/08/2023]
Abstract
Malignant melanoma is the most dangerous type of skin cancer. It is becoming more common globally and is increasingly resistant to treatment options. Despite extensive research into its pathophysiology, there are still no proven cures for metastatic melanoma. Unfortunately, current treatments are frequently ineffective and costly, and have several adverse effects. Natural substances have been extensively researched for their anti-MM capabilities. Chemoprevention and adjuvant therapy with natural products is an emerging strategy to prevent, cure or treat melanoma. Numerous prospective drugs are found in aquatic species, providing a plentiful supply of lead cytotoxic chemicals for cancer treatment. Anticancer peptides are less harmful to healthy cells and cure cancer through several different methods, such as altered cell viability, apoptosis, angiogenesis/metastasis suppression, microtubule balance disturbances and targeting lipid composition of the cancer cell membrane. This review addresses marine peptides as effective and safe treatments for MM and details their molecular mechanisms of action.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Fuad M Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza University, 00185, Rome, Italy.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
134
|
Yin S, Wang Y, Yang X. Amphibian-derived wound healing peptides: chemical molecular treasure trove for skin wound treatment. Front Pharmacol 2023; 14:1120228. [PMID: 37377928 PMCID: PMC10291078 DOI: 10.3389/fphar.2023.1120228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Amphibian-derived wound healing peptides thus offer new intervention measures and strategies for skin wound tissue regeneration. As novel drug lead molecules, wound healing peptides can help analyze new mechanisms and discover new drug targets. Previous studies have identified various novel wound healing peptides and analyzed novel mechanisms in wound healing, especially competing endogenous RNAs (ceRNAs) (e.g., inhibition of miR-663a promotes skin repair). In this paper, we review amphibian-derived wound healing peptides, including the acquisition, identification, and activity of peptides, a combination of peptides with other materials, and the analysis of underlying mechanisms, to better understand the characteristics of wound healing peptides and to provide a molecular template for the development of new wound repair drugs.
Collapse
Affiliation(s)
- Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission and Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, China
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
135
|
Di Stasi R, De Rosa L, D'Andrea LD. Structure-Based Design of Peptides Targeting VEGF/VEGFRs. Pharmaceuticals (Basel) 2023; 16:851. [PMID: 37375798 DOI: 10.3390/ph16060851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a main role in the regulation of angiogenesis and lymphangiogenesis. Furthermore, they are implicated in the onset of several diseases such as rheumatoid arthritis, degenerative eye conditions, tumor growth, ulcers and ischemia. Therefore, molecules able to target the VEGF and its receptors are of great pharmaceutical interest. Several types of molecules have been reported so far. In this review, we focus on the structure-based design of peptides mimicking VEGF/VEGFR binding epitopes. The binding interface of the complex has been dissected and the different regions challenged for peptide design. All these trials furnished a better understanding of the molecular recognition process and provide us with a wealth of molecules that could be optimized to be exploited for pharmaceutical applications.
Collapse
Affiliation(s)
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, 80131 Napoli, Italy
| | | |
Collapse
|
136
|
Ansari M, White AD. Learning Peptide Properties with Positive Examples Only. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543289. [PMID: 37333233 PMCID: PMC10274696 DOI: 10.1101/2023.06.01.543289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Deep learning can create accurate predictive models by exploiting existing large-scale experimental data, and guide the design of molecules. However, a major barrier is the requirement of both positive and negative examples in the classical supervised learning frameworks. Notably, most peptide databases come with missing information and low number of observations on negative examples, as such sequences are hard to obtain using high-throughput screening methods. To address this challenge, we solely exploit the limited known positive examples in a semi-supervised setting, and discover peptide sequences that are likely to map to certain antimicrobial properties via positive-unlabeled learning (PU). In particular, we use the two learning strategies of adapting base classifier and reliable negative identification to build deep learning models for inferring solubility, hemolysis, binding against SHP-2, and non-fouling activity of peptides, given their sequence. We evaluate the predictive performance of our PU learning method and show that by only using the positive data, it can achieve competitive performance when compared with the classical positive-negative (PN) classification approach, where there is access to both positive and negative examples.
Collapse
Affiliation(s)
- Mehrad Ansari
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Andrew D. White
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
137
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
138
|
Xu Y, Nie S, Wang M, Zhao Z, Amakye WK, Yuan E, Ren J. Walnut-derived peptide PPKNW alleviate polystyrene microparticles-induced growth inhibition of Lactobacillus rhamnosus GG. FOOD BIOSCI 2023; 53:102528. [DOI: 10.1016/j.fbio.2023.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
139
|
Velayutham M, Sarkar P, Karuppiah KM, Arumugam P, Shajahan S, Abu Haija M, Ahamad T, Arasu MV, Al-Dhabi NA, Choi KC, Guru A, Arockiaraj J. PS9, Derived from an Aquatic Fungus Virulent Protein, Glycosyl Hydrolase, Arrests MCF-7 Proliferation by Regulating Intracellular Reactive Oxygen Species and Apoptotic Pathways. ACS OMEGA 2023; 8:18543-18553. [PMID: 37273629 PMCID: PMC10233697 DOI: 10.1021/acsomega.3c00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 06/06/2023]
Abstract
One of the most common diseases in women is breast cancer, which has the highest death globally. Surgery, chemotherapy, hormone treatments, and radiation are the current treatment options for breast cancer. However, these options have several adverse side effects. Recently, peptide-based drugs have gained attention as anticancer therapy. Studies report that peptides from biological toxins such as venom and virulent pathogenic molecules have potential therapeutic effects against multiple diseases, including cancers. This study reports on the in vitro anticancer effect of a short peptide, PS9, derived from a virulent protein, glycosyl hydrolase, of an aquatic fungus, Aphanomyces invadans. This peptide arrests MCF-7 proliferation by regulating intercellular reactive oxygen species (ROS) and apoptotic pathways. Based on the potential for the anticancer effect of PS9, from the in silico analysis, in vitro analyses using MCF-7 cells were executed. PS9 showed a dose-dependent activity; its IC50 value was 25.27-43.28 μM at 24 h. The acridine orange/ethidium bromide (AO/EtBr) staining, to establish the status of apoptosis in MCF-7 cells, showed morphologies for early and late apoptosis and necrotic cell death. The 2,7-dichlorodihydrofluorescein diacetate (DCFDA) staining and biochemical analyses showed a significant increase in reactive oxygen species (ROS). Besides, PS9 has been shown to regulate the caspase-mediated apoptotic pathway. PS9 is nontoxic, in vitro, and in vivo zebrafish larvae. Together, PS9 may have an anticancer effect in vitro.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department
of Medical Biotechnology and Integrative Physiology, Institute of
Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Purabi Sarkar
- Department
of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore 560066, Karnataka, India
| | - Kanchana M. Karuppiah
- Department
of Medical Research, Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Priyadharsan Arumugam
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College
and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Shanavas Shajahan
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College
and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
- Department
of Chemistry, Khalifa University of Science
and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Department
of Chemistry, Khalifa University of Science
and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for
Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Tansir Ahamad
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ki-Choon Choi
- Grassland
and Forage Division, National Institute
of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Ajay Guru
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College
and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department
of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
140
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
141
|
Xue S, Xu W, Wang L, Wang X, Duan Q, Calcul L, Wang S, Liu W, Sun X, Lu L, Jiang S, Cai J. An HR2-Mimicking Sulfonyl-γ-AApeptide Is a Potent Pan-coronavirus Fusion Inhibitor with Strong Blood-Brain Barrier Permeability, Long Half-Life, and Promising Oral Bioavailability. ACS CENTRAL SCIENCE 2023; 9:1046-1058. [PMID: 37252367 PMCID: PMC10184535 DOI: 10.1021/acscentsci.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 05/31/2023]
Abstract
Neutralizing antibodies and fusion inhibitory peptides have the potential required to combat the global pandemic caused by SARS-CoV-2 and its variants. However, the lack of oral bioavailability and enzymatic susceptibility limited their application, necessitating the development of novel pan-CoV fusion inhibitors. Herein we report a series of helical peptidomimetics, d-sulfonyl-γ-AApeptides, which effectively mimic the key residues of heptad repeat 2 and interact with heptad repeat 1 in the SARS-CoV-2 S2 subunit, resulting in inhibiting SARS-CoV-2 spike protein-mediated fusion between virus and cell membranes. The leads also displayed broad-spectrum inhibitory activity against a panel of other human CoVs and showed strong potency in vitro and in vivo. Meanwhile, they also demonstrated complete resistance to proteolytic enzymes or human sera and exhibited extremely long half-life in vivo and highly promising oral bioavailability, delineating their potential as pan-CoV fusion inhibitors with the potential to combat SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Songyi Xue
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Wei Xu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Lei Wang
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xinling Wang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Qianyu Duan
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Laurent Calcul
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Shaohui Wang
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Wenqi Liu
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xingmin Sun
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Lu Lu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Jianfeng Cai
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
142
|
Khare P, Edgecomb SX, Hamadani CM, E L Tanner E, Manickam DS. Lipid nanoparticle-mediated drug delivery to the brain. Adv Drug Deliv Rev 2023; 197:114861. [PMID: 37150326 DOI: 10.1016/j.addr.2023.114861] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Lipid nanoparticles (LNPs) have revolutionized the field of drug delivery through their applications in siRNA delivery to the liver (Onpattro) and their use in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While LNPs have been extensively studied for the delivery of RNA drugs to muscle and liver targets, their potential to deliver drugs to challenging tissue targets such as the brain remains underexplored. Multiple brain disorders currently lack safe and effective therapies and therefore repurposing LNPs could potentially be a game changer for improving drug delivery to cellular targets both at and across the blood-brain barrier (BBB). In this review, we will discuss (1) the rationale and factors involved in optimizing LNPs for brain delivery, (2) ionic liquid-coated LNPs as a potential approach for increasing LNP accumulation in the brain tissue and (3) considerations, open questions and potential opportunities in the development of LNPs for delivery to the brain.
Collapse
Affiliation(s)
- Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara X Edgecomb
- Department of Chemistry and Biochemistry, The University of Mississippi, MS
| | | | - Eden E L Tanner
- Department of Chemistry and Biochemistry, The University of Mississippi, MS.
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA.
| |
Collapse
|
143
|
Hendrick N, Fraser D, Bennett R, Corazzata K, Adpressa DA, Makarov AA, Beeler A. High-throughput infrared spectroscopy for quantification of peptides in drug discovery. J Pharm Biomed Anal 2023; 229:115350. [PMID: 37001275 DOI: 10.1016/j.jpba.2023.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Peptides have gained an increasing importance in drug discovery as potential therapeutics. Discovery efforts toward finding new, efficacious peptide-based therapeutics have increased the throughput of peptide development, allowing the rapid generation of unique and pure peptide samples. However, high-throughput analysis of peptides may be still challenging and can encumber a high-throughput drug discovery campaign. We report herein a fit-for-purpose method to quantify peptide concentrations using high-throughput infrared spectroscopy (HT-IR). Through the development of this method, multiple critical method parameters were optimized including solvent composition, droplet deposition size, plate drying procedures, sample concentration, and internal standard. The relative absorbance of the amide region (1600-1750 cm-1) to the internal standard, K3Fe(CN)6 (2140 cm-1), was determined to be most effective at providing lowest interference for measuring peptide concentration. The best sample deposition was achieved by dissolving samples in a 50:50 v/v allyl alcohol/water mixture. The developed method was used on 96-well plates and analyzed at a rate of 22 min per plate. Calibration curves to measure sample concentration versus response relationship displayed sufficient linearity (R2 > 0.95). The repeatability and scope of detection was demonstrated with eighteen peptide samples that were measured with most values below 20% relative standard deviation. The linear dynamic range of the method was determined to be between 1 and 5 mg/mL. This developed HT-IR methodology could be a useful tool in peptide drug candidate lead identification and optimization processes.
Collapse
Affiliation(s)
| | - Douglas Fraser
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Raffeal Bennett
- Merck & Co. Inc., MRL, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | - Alexey A Makarov
- Merck & Co. Inc., MRL, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Aaron Beeler
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
144
|
Song L, Lv Z, Li Y, Zhang K, Van der Eycken EV, Cai L. Construction of Peptide-Isoquinolone Conjugates via Rh(III)-Catalyzed C-H Activation/Annulation. Org Lett 2023; 25:2996-3000. [PMID: 37129283 DOI: 10.1021/acs.orglett.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Herein, we disclose a Rh(III)-catalyzed C-H activation/annulation reaction for the derivatization of Lys-based peptides, in situ affording diverse peptide-isoquinolone conjugates. This approach features racemization-free conditions, high atom- and step-economy, excellent chemo- and site-selectivity, and broad scope including substrates bearing unprotected Trp and Tyr, free Ser and Gln, and Met residues. The peptide-isoquinolone conjugates also display good fluorescent properties with maximum emission wavelengths up to 460 nm. Importantly, preliminary antifungal activity studies indicate that peptide-isoquinolone conjugates show potential activities toward crop and forest pathogenic fungi, in which the peptide-isoquinolone conjugate bearing unprotected Tyr residue exhibits much better antifungal activities toward B. cinerea Pers. and C. chrysosperma than the positive control.
Collapse
Affiliation(s)
- Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhenwei Lv
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yan Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kui Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia
| | - Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
145
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
146
|
Gao F, Zhao X, Si Q, Niu X, Hou S, Liu S, Guo J, Wang L, Zhang F. Gemini surfactant-like peptide-based nanocages with β-sheet-enhanced stability and encapsulation efficiency of hydrophobic anticancer drugs. RSC Adv 2023; 13:12863-12868. [PMID: 37114030 PMCID: PMC10126818 DOI: 10.1039/d3ra01950k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Peptide-based scaffolds have been widely applied to drug delivery because of their ease and high yields of synthesis, well-defined structure, biocompatibility, diversity, tunability of properties, and molecular recognition abilities. However, the stability of peptide-based nanostructures highly depends on the intermolecular assembling manner, e.g., α-helix based coiled coils, β-sheet. Inspired by the robust protein fibril structures in amyloidosis, herein we constructed a β-sheet-forming gemini surfactant-like peptide to self-assemble into nanocages with the help of molecular dynamics simulation. As expected, the experimental results showed that nanocages can be formed with the inner diameter of up to ∼400 nm, which were robust enough even under both transmission electron microscopy and atomic force microscopy, indicating the significant contribution of β-sheet conformation. The β-nanocages can load hydrophobic anticancer drugs, e.g., paclitaxel with a very high encapsulation efficiency, which holds great potential for clinic drug delivery due to the improved anticancer effect as compared with paclitaxel alone.
Collapse
Affiliation(s)
- Feng Gao
- School of Life Science, Inner Mongolia Agricultural University Hohhot 010010 China
| | - Xinmin Zhao
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Qiankang Si
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xingkun Niu
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Shaojie Hou
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Shihao Liu
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Jun Guo
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Liping Wang
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Feng Zhang
- School of Life Science, Inner Mongolia Agricultural University Hohhot 010010 China
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| |
Collapse
|
147
|
Dergunova LV, Filippenkov IB, Limborska SA, Myasoedov NF. Neuroprotective Peptides and New Strategies for Ischemic Stroke Drug Discoveries. Genes (Basel) 2023; 14:genes14050953. [PMID: 37239313 DOI: 10.3390/genes14050953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic stroke continues to be one of the leading causes of death and disability in the adult population worldwide. The currently used pharmacological methods for the treatment of ischemic stroke are not effective enough and require the search for new tools and approaches to identify therapeutic targets and potential neuroprotectors. Today, in the development of neuroprotective drugs for the treatment of stroke, special attention is paid to peptides. Namely, peptide action is aimed at blocking the cascade of pathological processes caused by a decrease in blood flow to the brain tissues. Different groups of peptides have therapeutic potential in ischemia. Among them are small interfering peptides that block protein-protein interactions, cationic arginine-rich peptides with a combination of various neuroprotective properties, shuttle peptides that ensure the permeability of neuroprotectors through the blood-brain barrier, and synthetic peptides that mimic natural regulatory peptides and hormones. In this review, we consider the latest achievements and trends in the development of new biologically active peptides, as well as the role of transcriptomic analysis in identifying the molecular mechanisms of action of potential drugs aimed at the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lyudmila V Dergunova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Ivan B Filippenkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Svetlana A Limborska
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
148
|
Samad A, Khurshid B, Mahmood A, Rehman AU, Khalid A, Abdalla AN, Algarni AS, Wadood A. Identification of novel peptide inhibitors for oncogenic KRAS G12D as therapeutic options using mutagenesis-based remodeling and MD simulations. J Biomol Struct Dyn 2023; 41:13425-13437. [PMID: 37010994 DOI: 10.1080/07391102.2023.2192298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/22/2023] [Indexed: 04/04/2023]
Abstract
The Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) serves as a molecular switch, cycling between guanosine triphosphate (GTP)-bound and inactive guanosine diphosphate (GDP)-bound states. KRAS modulates numerous signal transduction pathways including the conventional RAF-MEK-ERK pathway. Mutations in the RAS genes have been linked to the formation of malignant tumors. Human malignancies typically show mutations in the Ras gene including HRAS, KRAS, and NRAS. Among all the mutations in exon 12 and exon 13 of the KRAS gene, the G12D mutation is more prevalent in pancreatic and lung cancer and accounts for around 41% of all G12 mutations, making them potential anticancer therapeutic targets. The present study is aimed at repurposing the peptide inhibitor KD2 of the KRAS G12D mutant. We employed an in-silico mutagenesis approach to design novel peptide inhibitors from the experimentally reported peptide inhibitor, and it was found that substitutions (N8W, N8I, and N8Y) might enhance the peptide's binding affinity toward the KRAS. Molecular dynamics simulations and binding energy calculations confirmed that the newly designed peptide inhibitors are stable and that their binding affinities are stronger as compared to the wild-type peptide. The detailed analysis revealed that newly designed peptides have the potential to inhibit KRAS/Raf interaction and the oncogenic signal of the KRAS G12D mutant. Our findings strongly suggest that these peptides should be tested and clinically validated to combat the oncogenic activity of KRAS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California, USA
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
149
|
Yong J, Mellick AS, Whitelock J, Wang J, Liang K. A Biomolecular Toolbox for Precision Nanomotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205746. [PMID: 36055646 DOI: 10.1002/adma.202205746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The application of nanomotors for cancer diagnosis and therapy is a new and exciting area of research, which when combined with precision nanomedicine, promises to solve many of the issues encountered by previous development of passive nanoparticles. The goal of this article is to introduce nanomotor and nanomedicine researchers to the deep pool of knowledge available regarding cancer cell biology and biochemistry, as well as provide a greater appreciation of the complexity of cell membrane compositions, extracellular surfaces, and their functional consequences. A short description of the nanomotor state-of-art for cancer therapy and diagnosis is first provided, as well as recommendations for future directions of the field. Then, a biomolecular targeting toolbox has been collated for researchers looking to apply their nanomaterial of choice to a biological setting, as well as providing a glimpse into currently available clinical therapies and technologies. This toolbox contains an overview of different classes of targeting molecules available for high affinity and specific targeting and cell surface targets to aid researchers in the selection of a clinical disease model and targeting methodology. It is hoped that this review will provide biological context, inspiration, and direction to future nanomotor and nanomedicine research.
Collapse
Affiliation(s)
- Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Albert S Mellick
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, 2170, Australia
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| |
Collapse
|
150
|
Aillaud I, Funke SA. Tau Aggregation Inhibiting Peptides as Potential Therapeutics for Alzheimer Disease. Cell Mol Neurobiol 2023; 43:951-961. [PMID: 35596819 PMCID: PMC10006036 DOI: 10.1007/s10571-022-01230-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer disease (AD) is the most common progressive neurodegenerative disorder. AD causes enormous personal and economic burden to society as currently only limited palliative therapeutic options are available. The pathological hallmarks of the disease are extracellular plaques, composed of fibrillar amyloid-β (Aβ), and neurofibrillary tangles inside neurons, composed of Tau protein. Until recently, the search for AD therapeutics was focussed more on the Aβ peptide and its pathology, but the results were unsatisfying. As an alternative, Tau might be a promising therapeutic target as its pathology is closely correlated to clinical symptoms. In addition, pathological Tau aggregation occurs in a large group of diseases, called Tauopathies, and in most of them Aβ aggregation does not play a role in disease pathogenesis. The formation of Tau aggregates is triggered by two hexapeptide motifs within Tau; PHF6* and PHF6. Both fragments are interesting targets for the development of Tau aggregation inhibitors (TAI). Peptides represent a unique class of pharmaceutical compounds and are reasonable alternatives to chemical substances or antibodies. They are attributed with high biological activity, valuable specificity and low toxicity, and often are developed as drug candidates to interrupt protein-protein interactions. The preparation of peptides is simple, controllable and the peptides can be easily modified. However, their application may also have disadvantages. Currently, a few peptide compounds acting as TAI are described in the literature, most of them developed by structure-based design or phage display. Here, we review the current state of research in this promising field of AD therapy development.
Collapse
Affiliation(s)
- Isabelle Aillaud
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany
| | - Susanne Aileen Funke
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany.
| |
Collapse
|