101
|
RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101638. [PMID: 34683931 PMCID: PMC8541396 DOI: 10.3390/pharmaceutics13101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy. Despite its therapeutic potential, RNA-based drugs have remaining hurdles such as poor tumor delivery and susceptibility to serum degradation, which could be overcome with the incorporation of nanocarriers for clinical applications. Here we summarize the use of small interfering RNA (siRNA) and microRNA (miRNA) in pancreatic cancer therapy in preclinical reports with approaches for targeting either the tumor or tumor microenvironment (TME) using various types of nanocarriers. In these studies, inhibition of oncogene expression and induction of a tumor suppressive response in cancer cells and surrounding immune cells in TME exhibited a strong anticancer effect in pancreatic cancer models. The review discusses the remaining challenges and prospective strategies suggesting the potential of RNAi-based therapeutics for pancreatic cancer.
Collapse
|
102
|
Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021; 81:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Divya Ojha
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
103
|
Jurgielewicz B, Stice S, Yao Y. Therapeutic Potential of Nucleic Acids when Combined with Extracellular Vesicles. Aging Dis 2021; 12:1476-1493. [PMID: 34527423 PMCID: PMC8407886 DOI: 10.14336/ad.2021.0708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), endogenous nanocarriers of proteins, lipids, and genetic material, have been harnessed as intrinsic delivery vectors for nucleic acid therapies. EVs are nanosized lipid bilayer bound vesicles released from most cell types responsible for delivery of functional biologic material to mediate intercellular communication and to modulate recipient cell phenotypes. Due to their innate biological role and composition, EVs possess several advantages as delivery vectors for nucleic acid based therapies including low immunogenicity and toxicity, high bioavailability, and ability to be engineered to enhance targeting to specific recipient cells in vivo. In this review, the current understanding of the biological role of EVs as well as the advancements in loading EVs to deliver nucleic acid therapies are summarized. We discuss the current methods and associated challenges in loading EVs and the prospects of utilizing the inherent characteristics of EVs as a delivery vector of nucleic acid therapies for genetic disorders.
Collapse
Affiliation(s)
- Brian Jurgielewicz
- 1Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA.,2Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Steven Stice
- 1Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA.,2Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA.,3ArunA Bio, Athens, GA 30602, USA
| | - Yao Yao
- 1Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA.,2Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
104
|
He B, Hamby R, Jin H. Plant extracellular vesicles: Trojan horses of cross-kingdom warfare. FASEB Bioadv 2021; 3:657-664. [PMID: 34485834 PMCID: PMC8409559 DOI: 10.1096/fba.2021-00040] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Plants communicate with their interacting microorganisms through the exchange of functional molecules. This communication is critical for plant immunity, for pathogen virulence, and for establishing and maintaining symbioses. Extracellular vesicles (EVs) are lipid bilayer-enclosed spheres that are released by both the host and the microbe into the extracellular environment. Emerging evidence has shown that EVs play a prominent role in plant-microbe interactions by safely transporting functional molecules, such as proteins and RNAs to interacting organisms. Recent studies revealed that plant EVs deliver fungal gene-targeting small RNAs into fungal pathogens to suppress infection via cross-kingdom RNA interference (RNAi). In this review, we focus on the recent advances in our understanding of plant EVs and their role in plant-microbe interactions.
Collapse
Affiliation(s)
- Baoye He
- Department of Microbiology and Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Rachael Hamby
- Department of Microbiology and Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Hailing Jin
- Department of Microbiology and Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
105
|
Conte C, Dal Poggetto G, Schiano Di Cola V, Russo A, Ungaro F, Russo G, Laurienzo P, Quaglia F. PEGylated cationic nanoassemblies based on triblock copolymers to combine siRNA therapeutics with anticancer drugs. Biomater Sci 2021; 9:6251-6265. [PMID: 34369494 DOI: 10.1039/d1bm00909e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nowadays, the clinical administration of siRNA therapeutics is still challenging due to the need of safe and efficient delivery carriers. In this context, biodegradable and amphiphilic triblock copolymers (ABC) containing amine-based cationic segments could be a powerful tool for siRNA delivery. Herein, we propose a range of poly(ethylene glycol) (PEG)-poly(2-dimethyl(aminoethyl) methacrylate) (pDMAEMA)-polycaprolactone (PCL) copolymers with different lengths of the blocks and hydrophilic/lipophilic balance to deliver siRNA alone or in association with a conventional anticancer drug. mPEG-pDMAEMA-PCL copolymers were synthesized by a combination of techniques and characterized by NMR analysis, Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Copolymers were then employed to prepare NPs through nanoprecipitation. NPs based on copolymers with long PCL chains (SSL-NPs and LLL-NPs) showed the best colloidal properties and a highly stable core-shell structure with a better orientation of the PEG fringe on the surface. Concerning siRNA delivery, SSL-NPs based on copolymers with short PEG and pDMAEMA chains showed optimized ability to complex and then deliver siRNA at the cell level. The strong interaction between the nucleic acid and the cationic pDMAEMA blocks of NPs was then confirmed by release studies that showed a sustained release of siRNA within 48 h. The transfection efficiency of NPs was assessed in human melanoma cells. NPs were complexed with a therapeutic siRNA against TUBB3 (TUB-siRNA). We observed the best results with SSL-NPs, probably due to the higher preserved buffer capacity of the pDMAEMA blocks. Finally, in order to give a proof of concept of a possible application in the combined chemo/gene-therapy of cancer, SSL-NPs complexed with TUB-siRNA were loaded with docetaxel (DTX) and then cytotoxicity was evaluated in the same cell line. The co-delivery of TUB-siRNA into NPs appeared to strongly potentiate the anti-proliferative activity of DTX, thus highlighting the combinatory activity of the NPs.
Collapse
Affiliation(s)
- Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Giovanni Dal Poggetto
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Viola Schiano Di Cola
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Annapina Russo
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Francesca Ungaro
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Giulia Russo
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy. and Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
106
|
Sahu R, Pattanayak SP. Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets. Curr Gene Ther 2021; 20:237-258. [PMID: 32807051 DOI: 10.2174/1566523220999200731002408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India,Department of Pharmacy, Central University of South Bihar (Gaya), Bihar-824 236, India
| |
Collapse
|
107
|
Niu D, Hamby R, Sanchez JN, Cai Q, Yan Q, Jin H. RNAs - a new frontier in crop protection. Curr Opin Biotechnol 2021; 70:204-212. [PMID: 34217122 PMCID: PMC8957476 DOI: 10.1016/j.copbio.2021.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a regulatory mechanism conserved in almost all eukaryotes. sRNAs play a critical role in host pathogen interactions either endogenously or by traveling between the interacting organisms and inducing 'cross-Kingdom RNAi' in the counterparty. Cross-kingdom RNAi is the mechanistic basis of host-induced gene silencing (HIGS), which relies on genetically expressing pathogen-gene targeting RNAs in crops, and has been successfully utilized against both microbial pathogens and pests. HIGS is limited by the need to produce genetically engineered crops. Recent studies have demonstrated that double-stranded RNAs and sRNAs can be efficiently taken up by many fungal pathogens, and induce gene silencing in fungal cells. This mechanism, termed 'environmental RNAi', allows direct application of pathogen-gene targeting RNAs onto crops to silence fungal virulence-related genes for plant protection. In this review, we will focus on how we can leverage cross-kingdom RNAi and environmental RNAi for crop disease control.
Collapse
Affiliation(s)
- Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Rachael Hamby
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jonatan Nino Sanchez
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qin Yan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
108
|
Abstract
Introduction: Blood coagulation factor XII (FXII) is an emerging and potentially safe drug target, which dysregulation is associated with thrombosis, hereditary angioedema, and (neuro)inflammation. At the same time, FXII-deficiency is practically asymptomatic. Industrial and academic institutions have developed a number of potential therapeutic agents targeting either FXII zymogen or its active form FXIIa for the treatment of thrombotic and inflammatory conditions associated with the activity of this enzyme.Areas covered: A short overview of the FXII(a) structure and function, underlining its suitability as a drug target, is given. The article reviews patents reported over the last three decades on FXII(a)-targeting therapeutic agents. These agents include small molecules, proteins, peptides, oligonucleotides, siRNAs, and monoclonal antibodies.Expert opinion: The performed analysis of patents revealed that many FXII(a) inhibitors are in the early preclinical stage, while several already showed efficacy in vivo animal models of thrombosis, sepsis, hereditary angioedema, and multiple sclerosis. Two anti-FXIIa agents namely tick protein Ir-CPI and monoclonal antibody CSL312 are currently in human clinical trials. The results of these trials and further studies of FXII(a) pathophysiological functions will encourage the development of new FXII(a) inhibitors.
Collapse
Affiliation(s)
- Dmitrii V Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
109
|
Kampel L, Goldsmith M, Ramishetti S, Veiga N, Rosenblum D, Gutkin A, Chatterjee S, Penn M, Lerman G, Peer D, Muhanna N. Therapeutic inhibitory RNA in head and neck cancer via functional targeted lipid nanoparticles. J Control Release 2021; 337:378-389. [PMID: 34303750 DOI: 10.1016/j.jconrel.2021.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
Abstract
Currently there are no specific therapies addressing the distinctive biology of human papillomavirus (HPV)-induced cancer approved for clinical use. Short interfering RNA (siRNA) has much potential for therapeutic manipulation of HPV E6/E7 oncoproteins. Lipid-based nanoparticles (LNPs) can be utilized for systemic transportation and delivery of siRNA at target site. We recently developed a recombinant protein linker that enables uniform conjugation of targeting antibodies to the LNPs. Herein, we demonstrate the therapeutic efficacy of anti-E6/E7 siRNA delivered via targeted LNPs (tLNPs) in a xenograft HPV-positive tumor model. We show that anti-epidermal growth factor receptor (EGFR) antibodies, anchored to the LNPs as targeting moieties, facilitate cargo delivery but also mediate anti-tumor activity. Treatment with siE6 via tLNPs resulted in 50% greater reduction of tumor volume compared to treatment with siControl encapsulated in isoLNPs (coated with isotype control antibodies). We demonstrate superior suppression of HPV oncogenes and higher induction of apoptosis by the tLNPs both in vitro and in vivo. Altogether, the coupling of inhibitory siE6 with anti-EGFR antibodies, that further elicited anti-tumor effects, successfully restricted tumor progression. This system that combines potent siRNA and therapeutically functional tLNPs can be modulated against various cancer models.
Collapse
Affiliation(s)
- Liyona Kampel
- The Head and Neck Cancer Research Laboratory, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel; The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel; Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Meir Goldsmith
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nuphar Veiga
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rosenblum
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Gutkin
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sushmita Chatterjee
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran Penn
- The Head and Neck Cancer Research Laboratory, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel
| | - Galya Lerman
- The Head and Neck Cancer Research Laboratory, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Nidal Muhanna
- The Head and Neck Cancer Research Laboratory, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel; The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel.
| |
Collapse
|
110
|
Tieu T, Wei Y, Cifuentes‐Rius A, Voelcker NH. Overcoming Barriers: Clinical Translation of siRNA Nanomedicines. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Terence Tieu
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
| | - Yingkai Wei
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Anna Cifuentes‐Rius
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Nicolas H. Voelcker
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
- Melbourne Centre for Nanofabrication 151 Wellington Road Victorian Node of the Australian National Fabrication Facility Clayton VIC 3168 Australia
| |
Collapse
|
111
|
Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan 49341‐74515 Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| | - Zahra Nazari
- Department of Biology School of Basic Sciences Golestan University Gorgan 49361‐79142 Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| |
Collapse
|
112
|
Distribution of Gold Nanoparticles in the Anterior Chamber of the Eye after Intracameral Injection for Glaucoma Therapy. Pharmaceutics 2021; 13:pharmaceutics13060901. [PMID: 34204364 PMCID: PMC8235414 DOI: 10.3390/pharmaceutics13060901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
In glaucoma therapy, nanoparticles (NPs) are a favorable tool for delivering drugs to the outflow tissues of the anterior chamber of the eye where disease development and progression take place. In this context, a prerequisite is an efficient enrichment of NPs in the trabecular meshwork with minimal accumulation in off-target tissues such as the cornea, lens, iris and ciliary body. We evaluated the optimal size for targeting the trabecular meshwork by using gold NPs of 5, 60, 80 and 120 nm with a bare surface (AuNPs) or coated with hyaluronic acid (HA-AuNPs). NPs were compared regarding their colloidal stability, distribution in the anterior chamber of the eye ex vivo and cellular uptake in vitro. HA-AuNPs demonstrated an exceptional colloidal stability. Even after application into porcine eyes ex vivo, the HA coating prevented an aggregation of NPs inside the trabecular meshwork. NPs with a diameter of 120 nm exhibited the highest volume-based accumulation in the trabecular meshwork. Off-target tissues in the anterior chamber demonstrated an exceptionally low gold content. Our findings are particularly important for NPs with encapsulated anti-glaucoma drugs because a higher particle volume would be accompanied by a higher drug payload.
Collapse
|
113
|
Jarzebska NT, Mellett M, Frei J, Kündig TM, Pascolo S. Protamine-Based Strategies for RNA Transfection. Pharmaceutics 2021; 13:pharmaceutics13060877. [PMID: 34198550 PMCID: PMC8231816 DOI: 10.3390/pharmaceutics13060877] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Protamine is a natural cationic peptide mixture mostly known as a drug for the neutralization of heparin and as a compound in formulations of slow-release insulin. Protamine is also used for cellular delivery of nucleic acids due to opposite charge-driven coupling. This year marks 60 years since the first use of Protamine as a transfection enhancement agent. Since then, Protamine has been broadly used as a stabilization agent for RNA delivery. It has also been involved in several compositions for RNA-based vaccinations in clinical development. Protamine stabilization of RNA shows double functionality: it not only protects RNA from degradation within biological systems, but also enhances penetration into cells. A Protamine-based RNA delivery system is a flexible and versatile platform that can be adjusted according to therapeutic goals: fused with targeting antibodies for precise delivery, digested into a cell penetrating peptide for better transfection efficiency or not-covalently mixed with functional polymers. This manuscript gives an overview of the strategies employed in protamine-based RNA delivery, including the optimization of the nucleic acid's stability and translational efficiency, as well as the regulation of its immunostimulatory properties from early studies to recent developments.
Collapse
Affiliation(s)
- Natalia Teresa Jarzebska
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Julia Frei
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M. Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
114
|
Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, Makvandi P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater Sci Eng 2021; 7:2150-2176. [PMID: 33979143 PMCID: PMC8130531 DOI: 10.1021/acsbiomaterials.1c00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Human respiratory viral infections are the leading cause of morbidity and mortality around the world. Among the various respiratory viruses, coronaviruses (e.g., SARS-CoV-2) have created the greatest challenge and most frightening health threat worldwide. Human coronaviruses typically infect the upper respiratory tract, causing illnesses that range from common cold-like symptoms to severe acute respiratory infections. Several promising vaccine formulations have become available since the beginning of 2021. Nevertheless, achievement of herd immunity is still far from being realized. Social distancing remains the only effective measure against SARS-CoV-2 infection. Nanobiotechnology enables the design of nanobiosensors. These nanomedical diagnostic devices have opened new vistas for early detection of viral infections. The present review outlines recent research on the effectiveness of nanoplatforms as diagnostic and antiviral tools against coronaviruses. The biological properties of coronavirus and infected host organs are discussed. The challenges and limitations encountered in combating SARS-CoV-2 are highlighted. Potential nanodevices such as nanosensors, nanobased vaccines, and smart nanomedicines are subsequently presented for combating current and future mutated versions of coronaviruses.
Collapse
Affiliation(s)
- Elham Bidram
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Yasaman Esmaeili
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Abbas Amini
- Centre
for Infrastructure Engineering, Western
Sydney University, Locked
Bag 1797, Penrith 2751, New South Wales, Australia
- Department
of Mechanical Engineering, Australian College
of Kuwait, Al Aqsa Mosque
Street, Mishref, Safat 13015, Kuwait
| | - Rossella Sartorius
- Institute
of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, Naples 80131, Italy
| | - Franklin R. Tay
- The
Graduate
School, Augusta University, 1120 15th Street, Augusta, Georgia 30912, United States
| | - Laleh Shariati
- Applied
Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
- Department
of Biomaterials, Nanotechnology and Tissue Engineering, School of
Advanced Technologies in Medicine, Isfahan
University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Pooyan Makvandi
- Centre
for Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, Pontedera 56025, Pisa, Italy
| |
Collapse
|
115
|
Ren Y, Liu X, Ge H, Guo Y, Zhang Q, Xie M, Wang P, Zhu X, Zhang C. A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1168-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
116
|
Transfer of small interfering RNA by electropermeabilization in tumor spheroids. Bioelectrochemistry 2021; 141:107848. [PMID: 34118554 DOI: 10.1016/j.bioelechem.2021.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022]
Abstract
The ability to modulate deregulated genes by RNAi provides treatment perspectives in certain diseases including cancers. Electrotransfer of oligonucleotides was studied in vitro, showing a direct transfer of negatively charged siRNA across the plasma membrane into the cytoplasm. In vivo, the feasibility of siRNA electrotransfer was demonstrated in different studies and tissues. While effective, electrotransfer of siRNA into 3D tissues still needs to be understood. Here, we evaluated the efficiency of siRNA electrotransfer and assessed its effect in 3D spheroids made of HCT116-GFP cells by confocal fluorescence microscopy and flow cytometry. Our results indicate that siRNA uptake was not uniform across 3D multicellular spheroids. The electrophoretic migration of nucleic acids upon delivery of unipolar electric field pulses could explain the asymmetry of siRNA uptake. Moreover, a gradient was observed from external layers toward the center, leading to siRNA silencing of GFP positive cells located in the outer rim. While siRNA delivery experiments on spheroids may differ from intratumoral injections, the levels of transfection in spheroids are comparable to levels observed in published studies in vivo. Taken together, our results provide fundamental information about siRNA 3D distribution during electrotransfer, indicating that multicellular spheroids remain a relevant alternative to animal experimentation.
Collapse
|
117
|
Kranjc M, Kranjc Brezar S, Serša G, Miklavčič D. Contactless delivery of plasmid encoding EGFP in vivo by high-intensity pulsed electromagnetic field. Bioelectrochemistry 2021; 141:107847. [PMID: 34058542 DOI: 10.1016/j.bioelechem.2021.107847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by external pulsed magnetic field. Recently, HI-PEMF was applied for delivering siRNA molecules to silence enhanced green fluorescent protein (EGFP) in tumors in vivo. Still, delivered siRNA molecules were 21 base pairs long, which is 200-times smaller compared to nucleic acids such as plasmid DNA (pDNA) that are delivered in gene therapies to various targets to generate therapeutic effect. In our study, we demonstrate the use HI-PEMF treatment as a feasible noninvasive approach to achieve in vivo transfection by enabling the transport of larger molecules such as pDNA encoding EGFP into muscle and skin. We obtained a long-term expression of EGFP in the muscle and skin after HI-PEMF, in some mice even up to 230 days and up to 190 days, respectively. Histological analysis showed significantly less infiltration of inflammatory mononuclear cells in muscle tissue after the delivery of pEGFP using HI-PEMF compared to conventional gene electrotransfer. Furthermore, the antitumor effectiveness using HI-PEMF for electrotransfer of therapeutic plasmid, i.e., silencing MCAM was demonstrated. In conclusion, feasibility of HI-PEMF was demonstrated for transfection of different tissues (muscle, skin, tumor) and could have great potential in gene therapy and in DNA vaccination.
Collapse
Affiliation(s)
- Matej Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
118
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
119
|
Salari A, Appak-Baskoy S, Coe IR, Abousawan J, Antonescu CN, Tsai SSH, Kolios MC. Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications. LAB ON A CHIP 2021; 21:1788-1797. [PMID: 33734246 DOI: 10.1039/d0lc01303j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological research and many cell-based therapies rely on the successful delivery of cargo materials into cells. Intracellular delivery in an in vitro setting refers to a variety of physical and biochemical techniques developed for conducting rapid and efficient transport of materials across the plasma membrane. Generally, the techniques that are time-efficient (e.g., electroporation) suffer from heterogeneity and low cellular viability, and those that are precise (e.g., microinjection) suffer from low-throughput and are labor-intensive. Here, we present a novel in vitro microfluidic strategy for intracellular delivery, which is based on the acoustic excitation of adherent cells. Strong mechanical oscillations, mediated by Lamb waves, inside a microfluidic channel facilitate the cellular uptake of different size (e.g., 3-500 kDa, plasmid encoding EGFP) cargo materials through endocytic pathways. We demonstrate successful delivery of 500 kDa dextran to various adherent cell lines with unprecedented efficiency in the range of 65-85% above control. We also show that actuation voltage and treatment duration can be tuned to control the dosage of delivered substances. High viability (≥91%), versatility across different cargo materials and various adherent cell lines, scalability to hundreds of thousands of cells per treatment, portability, and ease-of-operation are among the unique features of this acoustofluidic strategy. Potential applications include targeting through endocytosis-dependant pathways in cellular disorders, such as lysosomal storage diseases, which other physical methods are unable to address. This novel acoustofluidic method achieves rapid, uniform, and scalable delivery of material into cells, and may find utility in lab-on-a-chip applications.
Collapse
Affiliation(s)
- Alinaghi Salari
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Sila Appak-Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Imogen R Coe
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - John Abousawan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - Scott S H Tsai
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
120
|
Soobramoney C, Parboosing R. siRNAs and viruses: The good, the bad and the way forward. Curr Mol Pharmacol 2021; 15:143-158. [PMID: 33881977 DOI: 10.2174/1874467214666210420113427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
There are no available antivirals for many viruses or strains, while current antivirals are limited by toxicity and drug resistance. Therefore, alternative strategies, such as RNA interference (RNAi) are required. RNAi suppresses gene expression of any mRNA, making it an attractive candidate for antiviral therapeutics. Studies have evaluated siRNAs in a range of viruses, with some showing promising results. However, issues with stability and delivery of siRNAs remain. These may be minimized by modifying the siRNA structure, using an efficient delivery vector and targeting multiple regions of a virus's genome in a single dose. Finding these solutions could accelerate the progress of RNAi-based antivirals. This review highlights selected examples of antiviral siRNAs, limitations of RNAi and strategies to overcome these limitations.
Collapse
Affiliation(s)
| | - Raveen Parboosing
- Department of Virology, University of KwaZulu Natal/ National Health Laboratory Services, Durban, South Africa
| |
Collapse
|
121
|
Zhiani M, Mousavi MA, Rostamizadeh K, Pirizadeh R, Osali A, Mennati A, Motlagh B, Fathi M. Apoptosis induction by siRNA targeting integrin-β1 and regorafenib/DDAB-mPEG-PCL hybrid nanoparticles in regorafenib-resistant colon cancer cells. Am J Cancer Res 2021; 11:1170-1184. [PMID: 33948352 PMCID: PMC8085858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Colorectal cancer (CRC) is regarded as the third most common cancer worldwide. Although Regorafenib as a receptor tyrosine kinase inhibitor (RTKI) disrupts tumor growth and angiogenesis in metastatic CRC (mCRC) patients, drug resistance leads to poor prognosis and survival. Integrin-β1 overexpression has been proposed to be the major player in this regard. Herein, the Regorafenib-resistant human colon cancer cell line (SW-48) was induced, and the Integrin-β1 gene expression, as well as apoptosis, was assessed through the combination of small interfering RNA (siRNA) targeting Integrin-β1 and Regorafenib/Dimethyldioctadecylammonium bromide (DDAB)-methoxy poly (ethylene glycol) (mPEG)-poly-ε-caprolactone (PCL) hybrid nanoparticles (HNPs). In the current study, Regorafenib-resistant SW-48 cell line was generated in which the Regorafenib half-maximal inhibitory concentration (IC50) for non-resistant and resistant cells was 13.5±1.5 µM and 55.1±0.8 µM, respectively. The results of DLS also demonstrated that the size and the charge of the HNPs were equal to 66.56±0.5 nm and +29.5±1.2 mv, respectively. In addition, the Integrin-β1 gene expression was significantly higher in resistant cells than in non-resistant ones (P<0.05). The siRNA/HNP complexes in combination with Regorafenib/HNPs were accordingly identified as the most effective treatment to decrease the Integrin-β1 gene expression and to enhance the apoptosis rate in resistant cells (P<0.001). Overall, the study indicated that combination therapy using siRNA/HNP and Regorafenib/HNPs complex could down-regulate the Integrin-β1 gene expression and consequently trigger apoptosis, and this may potentially induce drug sensitivity.
Collapse
Affiliation(s)
- Mina Zhiani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
- Student Research Committee, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Mir Ali Mousavi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
- Student Research Committee, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical SciencesZanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical SciencesZanjan, Iran
| | - Reza Pirizadeh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
- Student Research Committee, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Abdolreza Osali
- Department of Immunology, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Afsaneh Mennati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical SciencesZanjan, Iran
| | - Behrouz Motlagh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Mojtaba Fathi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
| |
Collapse
|
122
|
McMillan A, Nguyen MK, Huynh CT, Sarett SM, Ge P, Chetverikova M, Nguyen K, Grosh D, Duvall CL, Alsberg E. Hydrogel microspheres for spatiotemporally controlled delivery of RNA and silencing gene expression within scaffold-free tissue engineered constructs. Acta Biomater 2021; 124:315-326. [PMID: 33465507 DOI: 10.1016/j.actbio.2021.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Delivery systems for controlled release of RNA interference (RNAi) molecules, including small interfering (siRNA) and microRNA (miRNA), have the potential to direct stem cell differentiation for regenerative musculoskeletal applications. To date, localized RNA delivery platforms in this area have focused predominantly on bulk scaffold-based approaches, which can interfere with cell-cell interactions important for recapitulating some native musculoskeletal developmental and healing processes in tissue regeneration strategies. In contrast, scaffold-free, high density human mesenchymal stem cell (hMSC) aggregates may provide an avenue for creating a more biomimetic microenvironment. Here, photocrosslinkable dextran microspheres (MS) encapsulating siRNA-micelles were prepared via an aqueous emulsion method and incorporated within hMSC aggregates for localized and sustained delivery of bioactive siRNA. siRNA-micelles released from MS in a sustained fashion over the course of 28 days, and the released siRNA retained its ability to transfect cells for gene silencing. Incorporation of fluorescently labeled siRNA (siGLO)-laden MS within hMSC aggregates exhibited tunable siGLO delivery and uptake by stem cells. Incorporation of MS loaded with siRNA targeting green fluorescent protein (siGFP) within GFP-hMSC aggregates provided sustained presentation of siGFP within the constructs and prolonged GFP silencing for up to 15 days. This platform system enables sustained gene silencing within stem cell aggregates and thus shows great potential in tissue regeneration applications. STATEMENT OF SIGNIFICANCE: This work presents a new strategy to deliver RNA-nanocomplexes from photocrosslinked dextran microspheres for tunable presentation of bioactive RNA. These microspheres were embedded within scaffold-free, human mesenchymal stem cell (hMSC) aggregates for sustained gene silencing within three-dimensional cell constructs while maintaining cell viability. Unlike exogenous delivery of RNA within culture medium that suffers from diffusion limitations and potential need for repeated transfections, this strategy provides local and sustained RNA presentation from the microspheres to cells in the constructs. This system has the potential to inhibit translation of hMSC differentiation antagonists and drive hMSC differentiation toward desired specific lineages, and is an important step in the engineering of high-density stem cell systems with incorporated instructive genetic cues for application in tissue regeneration.
Collapse
|
123
|
Egorov E, Pieters C, Korach-Rechtman H, Shklover J, Schroeder A. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv Transl Res 2021; 11:345-352. [PMID: 33585972 PMCID: PMC7882236 DOI: 10.1007/s13346-021-00929-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/20/2023]
Abstract
The field of nanotechnology and personalised medicine is undergoing drastic changes in the approach and efficiency of experimentation. The COVID-19 pandemic has spiralled into mass stagnation of major laboratories around the globe and led to increased investment into remote systems for nanoparticle experiments. A significant number of laboratories now operate using automated systems; however, the extension to nanoparticle preparation and artificial intelligence-dependent databases holds great translational promise. The strive to combine automation with artificial intelligence (AI) grants the ability to optimise targeted therapeutic nanoparticles for unique cell types and patients. In this perspective, the current and future trends of automated approaches to nanomedicine synthesis are discussed and compared with traditional methods.
Collapse
Affiliation(s)
- Egor Egorov
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Calvin Pieters
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Hila Korach-Rechtman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
124
|
Lee S, Kim YY, Ahn HJ. Systemic delivery of CRISPR/Cas9 to hepatic tumors for cancer treatment using altered tropism of lentiviral vector. Biomaterials 2021; 272:120793. [PMID: 33836291 DOI: 10.1016/j.biomaterials.2021.120793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023]
Abstract
Therapeutic application of CRISPR/Cas9 nucleases remains a challenge due to the lack of efficient in vivo delivery carriers. Here, we examine the ability of lentiviral vectors pseudotyped with hepatitis C virus (HCV)/E1E2 envelope glycoproteins to systemically deliver CRISPR/Cas9 to hepatic tumors in vivo. We demonstrated that systemic administration of E1E2-pseudotyped lentiviral vectors can selectively deliver Cas9 and sgRNA specific for kinesin spindle protein (KSP) to Huh7 tumors in the orthotopic Huh7 mice due to the specific interactions between E1E2 and their cellular receptors. This specific delivery leads to effective KSP gene disruption, potently inhibiting tumor growth. Furthermore, we demonstrated that E1E2-pseudotyping is more suitable for systemic delivery of CRISPR/Cas9 in cancer therapy than vesicular stomatitis virus-pseudotyping, the most widely used pseudotyping, because of stability in human serum, little transduction to DCs, low innate immune response, and cell-specific targeting ability. This study suggests that E1E2-pseudotyped lentivirus carrying CRISPR/Cas9 can substantially benefit the treatment of Huh7 tumors.
Collapse
Affiliation(s)
- Sungjin Lee
- Department of Viral Immunology, Scripps Korea Antibody Institute, Chuncheon, South Korea
| | - Young-Youb Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea.
| |
Collapse
|
125
|
Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int J Mol Sci 2021; 22:3295. [PMID: 33804856 PMCID: PMC8036554 DOI: 10.3390/ijms22073295] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Conventional therapies, including surgery, radiation, and chemotherapy have achieved increased survival rates for many types of cancer over the past decades. However, cancer recurrence and/or metastasis to distant organs remain major challenges, resulting in a large, unmet clinical need. Oligonucleotide therapeutics, which include antisense oligonucleotides, small interfering RNAs, and aptamers, show promising clinical outcomes for disease indications such as Duchenne muscular dystrophy, familial amyloid neuropathies, and macular degeneration. While no approved oligonucleotide drug currently exists for any type of cancer, results obtained in preclinical studies and clinical trials are encouraging. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in oncology, review current clinical trials, and discuss associated challenges.
Collapse
Affiliation(s)
- Haoyu Xiong
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia;
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
126
|
Welch JJ, Dean DA, Nilsson BL. Synthesis and Application of Peptide-siRNA Nanoparticles from Disulfide-Constrained Cyclic Amphipathic Peptides for the Functional Delivery of Therapeutic Oligonucleotides to the Lung. Methods Mol Biol 2021; 2208:49-67. [PMID: 32856255 DOI: 10.1007/978-1-0716-0928-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential of RNAi therapies has been largely impeded by the inherent challenges in the functional delivery of siRNA to cells. Herein, we describe protocols for the synthesis and characterization of novel peptide-siRNA nanoparticles prepared from disulfide-constrained amphipathic peptides complexed with siRNA as promising siRNA delivery vectors. We also describe protocols for the application of these nanoparticles to the in vitro and in vivo delivery of siRNA to lung cells for the functional knockdown of lung proteins.
Collapse
Affiliation(s)
- Jade J Welch
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - David A Dean
- Department of Pediatrics and Neonatology, Biomedical Engineering, and Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
127
|
Breast Cancer and the Other Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22063280. [PMID: 33807045 PMCID: PMC8005115 DOI: 10.3390/ijms22063280] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is very heterogenous and the most common gynaecological cancer, with various factors affecting its development. While its impact on human lives and national health budgets is still rising in almost all global areas, many molecular mechanisms affecting its onset and development remain unclear. Conventional treatments still prove inadequate in some aspects, and appropriate molecular therapeutic targets are required for improved outcomes. Recent scientific interest has therefore focused on the non-coding RNAs roles in tumour development and their potential as therapeutic targets. These RNAs comprise the majority of the human transcript and their broad action mechanisms range from gene silencing to chromatin remodelling. Many non-coding RNAs also have altered expression in breast cancer cell lines and tissues, and this is often connected with increased proliferation, a degraded extracellular environment, and higher endothelial to mesenchymal transition. Herein, we summarise the known abnormalities in the function and expression of long non-coding RNAs, Piwi interacting RNAs, small nucleolar RNAs and small nuclear RNAs in breast cancer, and how these abnormalities affect the development of this deadly disease. Finally, the use of RNA interference to suppress breast cancer growth is summarised.
Collapse
|
128
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol Cancer 2021; 20:54. [PMID: 33740988 PMCID: PMC7977189 DOI: 10.1186/s12943-021-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
129
|
Maurer V, Altin S, Ag Seleci D, Zarinwall A, Temel B, Vogt PM, Strauß S, Stahl F, Scheper T, Bucan V, Garnweitner G. In-Vitro Application of Magnetic Hybrid Niosomes: Targeted siRNA-Delivery for Enhanced Breast Cancer Therapy. Pharmaceutics 2021; 13:394. [PMID: 33809700 PMCID: PMC8002368 DOI: 10.3390/pharmaceutics13030394] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Even though the administration of chemotherapeutic agents such as erlotinib is clinically established for the treatment of breast cancer, its efficiency and the therapy outcome can be greatly improved using RNA interference (RNAi) mechanisms for a combinational therapy. However, the cellular uptake of bare small interfering RNA (siRNA) is insufficient and its fast degradation in the bloodstream leads to a lacking delivery and no suitable accumulation of siRNA inside the target tissues. To address these problems, non-ionic surfactant vesicles (niosomes) were used as a nanocarrier platform to encapsulate Lifeguard (LFG)-specific siRNA inside the hydrophilic core. A preceding entrapment of superparamagnetic iron-oxide nanoparticles (FexOy-NPs) inside the niosomal bilayer structure was achieved in order to enhance the cellular uptake via an external magnetic manipulation. After verifying a highly effective entrapment of the siRNA, the resulting hybrid niosomes were administered to BT-474 cells in a combinational therapy with either erlotinib or trastuzumab and monitored regarding the induced apoptosis. The obtained results demonstrated that the nanocarrier successfully caused a downregulation of the LFG gene in BT-474 cells, which led to an increased efficacy of the chemotherapeutics compared to plainly added siRNA. Especially the application of an external magnetic field enhanced the internalization of siRNA, therefore increasing the activation of apoptotic signaling pathways. Considering the improved therapy outcome as well as the high encapsulation efficiency, the formulated hybrid niosomes meet the requirements for a cost-effective commercialization and can be considered as a promising candidate for future siRNA delivery agents.
Collapse
Affiliation(s)
- Viktor Maurer
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Selin Altin
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Didem Ag Seleci
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Ajmal Zarinwall
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Bilal Temel
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
| | - Peter M. Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Frank Stahl
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Thomas Scheper
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Georg Garnweitner
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
130
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
131
|
Han Y, Jones TW, Dutta S, Zhu Y, Wang X, Narayanan SP, Fagan SC, Zhang D. Overview and Update on Methods for Cargo Loading into Extracellular Vesicles. Processes (Basel) 2021; 9. [PMID: 33954091 PMCID: PMC8096148 DOI: 10.3390/pr9020356] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enormous library of pharmaceutical compounds presents endless research avenues. However, several factors limit the therapeutic potential of these drugs, such as drug resistance, stability, off-target toxicity, and inadequate delivery to the site of action. Extracellular vesicles (EVs) are lipid bilayer-delimited particles and are naturally released from cells. Growing evidence shows that EVs have great potential to serve as effective drug carriers. Since EVs can not only transfer biological information, but also effectively deliver hydrophobic drugs into cells, the application of EVs as a novel drug delivery system has attracted considerable scientific interest. Recently, EVs loaded with siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, or therapeutic drugs show improved delivery efficiency and drug effect. In this review, we summarize the methods used for the cargo loading into EVs, including siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, and therapeutic drugs. Furthermore, we also include the recent advance in engineered EVs for drug delivery. Finally, both advantages and challenges of EVs as a new drug delivery system are discussed. Here, we encourage researchers to further develop convenient and reliable loading methods for the potential clinical applications of EVs as drug carriers in the future.
Collapse
Affiliation(s)
- Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Timothy W. Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Xiaoyun Wang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Susan C. Fagan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-6491; Fax: +1-706-721-3994
| |
Collapse
|
132
|
Kurmi M, Suryavanshi V, Panduranga NS, Jayaraman K, Bajpai L, Fish W, Hu Y, Bhutani H. Development of HPLC-CAD stability indicating assay method for polyethylene glycol-conjugated phospholipid (DMPE-PEG 2000) and identification of its degradation products. J Pharm Biomed Anal 2021; 198:113967. [PMID: 33662758 DOI: 10.1016/j.jpba.2021.113967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/26/2023]
Abstract
The study introduces first report on a liquid chromatographic method for the quantification of 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] ammonium salt (DMPE-PEG 2000), which is an important constituent of lipid-based nanoparticles. It involves an HPLC-CAD stability-indicating assay method development for DMPE-PEG 2000 and structure elucidation of its degradation products. Hypersil Gold™ PFP column (150 mm × 4.6 mm, 3.0 μm) was used to achieve the separation among DMPE-PEG 2000 and its degradation products using 0.0025% formic acid in water: methanol (80:20 v/v) as mobile phase A and methanol: acetonitrile (60:40 v/v) as mobile phase B in a gradient elution mode. The method was validated for precision, linearity, sensitivity, solution stability and robustness. Relative standard deviations for the intra-day precision, inter-day precision and sensitivity were 1.6%, 0.6% and 3.8%, respectively. The method was linear in the range from 210 μg/mL to 390 μg/mL with R2 value of 0.996. Further, the solution stability of DMPE-PEG 2000 was evaluated under different stressed and storage conditions to understand the impact of any excursion to its regular storage temperature of -20 °C. The observed degradation products were identified through liquid chromatography high resolution mass spectrometry and a tentative pathway was proposed for the generation of these degradants.
Collapse
Affiliation(s)
- Moolchand Kurmi
- Analytical Research and Development, Biocon Bristol Myers Squibb Research and Development Centre (BBRC), Syngene International Limited, Bangalore 560099, India
| | - Vipul Suryavanshi
- Analytical Research and Development, Biocon Bristol Myers Squibb Research and Development Centre (BBRC), Syngene International Limited, Bangalore 560099, India
| | - Narayana Swamy Panduranga
- Analytical Research and Development, Biocon Bristol Myers Squibb Research and Development Centre (BBRC), Syngene International Limited, Bangalore 560099, India
| | - Karthik Jayaraman
- Analytical Research and Development, Biocon Bristol Myers Squibb Research and Development Centre (BBRC), Syngene International Limited, Bangalore 560099, India
| | - Lakshmikant Bajpai
- Analytical Research and Development, Biocon Bristol Myers Squibb Research and Development Centre (BBRC), Syngene International Limited, Bangalore 560099, India
| | - William Fish
- Drug Product Development, Bristol Myers Squibb Company, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Yue Hu
- Analytical Strategic Operations, Bristol Myers Squibb Company, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Hemant Bhutani
- Analytical Research and Development, Biocon Bristol Myers Squibb Research and Development Centre (BBRC), Bristol Myers Squibb India Private Limited, Bangalore 560099, India.
| |
Collapse
|
133
|
Powsner EH, Harris JC, Day ES. Biomimetic Nanoparticles for the Treatment of Hematologic Malignancies. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Emily H. Powsner
- Department of Biomedical Engineering University of Delaware 161 Colburn Lab Newark DE 19716 USA
| | - Jenna C. Harris
- Department of Materials Science and Engineering University of Delaware 127 The Green Newark DE 19716 USA
| | - Emily S. Day
- Department of Biomedical Engineering University of Delaware 161 Colburn Lab Newark DE 19716 USA
- Department of Materials Science and Engineering University of Delaware 127 The Green Newark DE 19716 USA
- Center for Translational Cancer Research Helen F. Graham Cancer Center and Research Institute 4701 Ogletown Stanton Road Newark DE 19713 USA
| |
Collapse
|
134
|
Mousazadeh H, Pilehvar-Soltanahmadi Y, Dadashpour M, Zarghami N. Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy. J Control Release 2021; 330:1046-1070. [DOI: 10.1016/j.jconrel.2020.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
|
135
|
Titze-de-Almeida SS, Brandão PRDP, Faber I, Titze-de-Almeida R. Leading RNA Interference Therapeutics Part 1: Silencing Hereditary Transthyretin Amyloidosis, with a Focus on Patisiran. Mol Diagn Ther 2021; 24:49-59. [PMID: 31701435 DOI: 10.1007/s40291-019-00434-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 2018, patisiran was the first-ever RNA interference (RNAi)-based drug approved by the US Food and Drug Administration. Now pharmacology textbooks may include a new drug class that results in the effect first described by Fire and Mello 2 decades ago: post-transcriptional gene silencing by a small-interfering RNA (siRNA). Patients with hereditary transthyretin-mediated amyloidosis (hATTR amyloidosis) present with mutations in the transthyretin (TTR) gene that lead to the formation of amyloid deposits in peripheral nerves and heart. The disease may also affect the eye and central nervous system. The formulation of patisiran comprises the RNAi drug encapsulated into a nanoparticle especially developed to deliver the anti-TTR siRNA into the main TTR producer: the liver. Hepatic cells contain apolipoprotein E receptors that recognize ApoE proteins opsonized in the lipid carrier and internalize the drug by endocytosis. Lipid vesicles are disrupted in the cell cytoplasm, and siRNAs are free to trigger the RNAi-based TTR gene silencing. The silencing process involves the binding of siRNA guide strand to 3'-untranslated region sequence of both mutant and wild-type TTR messenger RNA, which culminates in the TTR mRNA cleavage by the RNA-induced silencing complex (RISC) as the first biochemical drug effect. Patisiran 0.3 mg/kg is administered intravenously every 3 weeks. Patients require premedication with anti-inflammatory drugs and antagonists of histamine H1 and H2 receptors to prevent infusion-related reactions and may require vitamin A supplementation. Following patisiran treatment, TTR knockdown remained stable for at least 2 years. Adverse effects were mild to moderate with unchanged hematological, renal, or hepatic parameters. No drug-related severe adverse effects occurred in a 24-month follow-up phase II open-label extension study. At the recommended dosage of patisiran, Cmax and AUC values (mean ± standard deviation) were 7.15 ± 2.14 μg/mL and 184 ± 159 μg·h/mL, respectively. The drug showed stability in circulation with > 95% encapsulated in lipid particles. Metabolization occurred by ribonuclease enzymes, with less than 1% excreted unchanged in the urine. Patisiran ameliorated neuropathy impairment according to the modified Neuropathy Impairment Score + 7 analysis of the phase III study. The Norfolk Quality of Life-Diabetic Neuropathy score and gait speed improved in 51% of the patisiran-treated group in 18 months. Additionally, the modified body mass index showed positive outcomes. Altogether, the data across phase I-III clinical trials points to patisiran as an effective and safe drug for the treatment of hATTR amyloidosis. It is hoped that real-world data from a larger number of patients treated with patisiran will confirm the effectiveness of this first-approved siRNA-based drug.
Collapse
Affiliation(s)
- Simoneide S Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília/FAV, Brasília, DF, Brazil
| | - Pedro Renato de Paula Brandão
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília/FAV, Brasília, DF, Brazil.,Laboratory of Neuroscience and Behavior, University of Brasília, Brasília, DF, Brazil.,Neurology Clinic, Medical Department, Chamber of Deputies, The National Congress, Brasília, DF, Brazil
| | - Ingrid Faber
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília/FAV, Brasília, DF, Brazil.,Laboratory of Neuroscience and Behavior, University of Brasília, Brasília, DF, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília/FAV, Brasília, DF, Brazil.
| |
Collapse
|
136
|
Abstract
PURPOSE One of the most important serious malignancies is gastric cancer (GC) with a high mortality globally. In this way, beside the environmental factors, genetic parameter has a remarkable effective fluctuation in GC. Correspondingly, telomeres are nucleoprotein structures measuring the length of telomeres and they have special potential in diagnosis of various types of cancers. Defect protection of the telomeric length initiates the instability of the genome during cancer, including gastric cancer. The most common way of maintaining telomere length is the function of the telomerase enzyme that replicates the TTAGGG to the end of the 3' chromosome. METHODS In this review, we want to discuss the alterations of hTERT repression on the modification of TERRA gene expression in conjunction with the importance of telomere and telomerase in GC. RESULTS The telomerase enzyme contains two essential components called telomerase reverse transcriptase (hTERT) and RNA telomerase (hTR, hTERC). Deregulation of hTERT plays a key role in the multistage process of tumorigenicity and anticancer drug resistance. The direct relationship between telomerase activity and hTERT has led to hTERT to be considered a key target for cancer treatment. Recent results show that telomeres are transcribed into telomeric repeat-containing RNA (TERRA) in mammalian cells and are long noncoding RNAs (lncRNAs) identified in different tissues. In addition, most chemotherapy methods have a lot of side effects on normal cells. CONCLUSION Telomere and telomerase are useful therapeutic goal. According to the main roles of hTERT in tumorigenesis, growth, migration, and cancer invasion, hTERT and regulatory mechanisms that control the expression of hTERT are attractive therapeutic targets for cancer treatment.
Collapse
|
137
|
Abstract
Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.
Collapse
|
138
|
Laurini E, Aulic S, Marson D, Fermeglia M, Pricl S. Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. Methods Mol Biol 2021; 2282:209-244. [PMID: 33928579 DOI: 10.1007/978-1-0716-1298-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter reviews the different techniques for analyzing the chemical-physical properties, transfection efficiency, cytotoxicity, and stability of covalent cationic dendrimers (CCDs) and self-assembled cationic dendrons (ACDs) for siRNA delivery in the presence and absence of their nucleic cargos. On the basis of the reported examples, a standard essential set of techniques is described for each step of a siRNA/nanovector (NV) complex characterization process: (1) analysis of the basic chemical-physical properties of the NV per se; (2) characterization of the morphology, size, strength, and stability of the siRNA/NV ensemble; (3) characterization and quantification of the cellular uptake and release of the siRNA fragment; (4) in vitro and (5) in vivo experiments for the evaluation of the corresponding gene silencing activity; and (6) assessment of the intrinsic toxicity of the NV and the siRNA/NV complex.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
139
|
Wang H, Wang X, Zhang Y, Cheng R, Yuan J, Zhong Z. Systemic Delivery of NAC-1 siRNA by Neuropilin-Targeted Polymersomes Sensitizes Antiangiogenic Therapy of Metastatic Triple-Negative Breast Cancer. Biomacromolecules 2020; 21:5119-5127. [PMID: 33174734 DOI: 10.1021/acs.biomac.0c01253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antiangiogenic therapy with bevacizumab while being interesting for metastatic triple-negative breast cancer (mTNBC) is restrained by tumor hypoxia elevation and cancer stem cell enrichment. Here, we find that neuropilin-1 (NRP-1)-targeted delivery of nucleus accumbens-associated protein-1 (NAC-1) siRNA mediated by tLyP-1 peptide-functionalized chimaeric polymersomes (tLyP-1-Ps) effectively sensitizes antiangiogenic therapy of mTNBC in vivo. tLyP-1-Ps showed good encapsulation (up to 14.4 wt. %) of siNAC-1, giving robust tLyP-1-Ps-siNAC-1 nanoformulation with a defined size of 48.5 nm (PDI = 0.13) and a surface charge of -9.2 mV, and mediated efficient cytoplasmic transportation of siNAC-1 in MDA-MB-231 TNBC cells, resulting in significant silencing of NAC-1 mRNA and the corresponding oncoprotein. Transwell invasion and wound healing assays revealed that tLyP-1-Ps-siNAC-1 potently inhibited MDA-MB-231 cell invasion and migration. Intriguingly, tLyP-1-Ps-siNAC-1 was shown to markedly improve the bevacizumab therapy of mTNBC, significantly curbing lung metastasis and prolonging the survival time of the MDA-MB-231 metastatic model. The combination of targeted NAC-1 gene silencing and antiangiogenic therapy appears to be an innovative treatment for mTNBC.
Collapse
Affiliation(s)
- Hongyu Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Xiaohui Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Jiandong Yuan
- BrightGene Bio-Medical Technology Company, Ltd., Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
140
|
Pontón I, Martí del Rio A, Gómez Gómez M, Sánchez-García D. Preparation and Applications of Organo-Silica Hybrid Mesoporous Silica Nanoparticles for the Co-Delivery of Drugs and Nucleic Acids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2466. [PMID: 33317099 PMCID: PMC7763534 DOI: 10.3390/nano10122466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Combination therapies rely on the administration of more than one drug, with independent mechanisms of action, aiming to enhance the efficiency of the treatment. For an optimal performance, the implementation of such therapies requires the delivery of the correct combination of drugs to a specific cellular target. In this context, the use of nanoparticles (NP) as platforms for the co-delivery of multiple drugs is considered a highly promising strategy. In particular, mesoporous silica nanoparticles (MSN) have emerged as versatile building blocks to devise complex drug delivery systems (DDS). This review describes the design, synthesis, and application of MSNs to the delivery of multiple drugs including nucleic acids for combination therapies.
Collapse
Affiliation(s)
| | | | | | - David Sánchez-García
- Grup d’Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta, 390, 08017 Barcelona, Spain; (I.P.); (A.M.d.R.); (M.G.G.)
| |
Collapse
|
141
|
Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK. Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics 2020; 12:E1184. [PMID: 33291312 PMCID: PMC7762162 DOI: 10.3390/pharmaceutics12121184] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, the clinical use of biopharmaceutical products has markedly increased because of their obvious advantages over conventional small-molecule drug products. These advantages include better specificity, potency, targeting abilities, and reduced side effects. Despite the substantial clinical and commercial success, the macromolecular structure and intrinsic instability of biopharmaceuticals make their formulation and administration challenging and render parenteral delivery as the only viable option in most cases. The use of nanocarriers for efficient delivery of biopharmaceuticals is essential due to their practical benefits such as protecting from degradation in a hostile physiological environment, enhancing plasma half-life and retention time, facilitating absorption through the epithelium, providing site-specific delivery, and improving access to intracellular targets. In the current review, we highlight the clinical and commercial success of biopharmaceuticals and the overall applications and potential of nanocarriers in biopharmaceuticals delivery. Effective applications of nanocarriers for biopharmaceuticals delivery via invasive and noninvasive routes (oral, pulmonary, nasal, and skin) are presented here. The presented data undoubtedly demonstrate the great potential of combining nanocarriers with biopharmaceuticals to improve healthcare products in the future clinical landscape. In conclusion, nanocarriers are promising delivery tool for the hormones, cytokines, nucleic acids, vaccines, antibodies, enzymes, and gene- and cell-based therapeutics for the treatment of multiple pathological conditions.
Collapse
Affiliation(s)
- Alam Zeb
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Isra Rana
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Ho-Ik Choi
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Cheol-Ho Lee
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Seong-Woong Baek
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Chang-Wan Lim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Najam us Sahar
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ok-Nam Bae
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Jeong-Sook Park
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-Ki Kim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| |
Collapse
|
142
|
PH-responsive strontium nanoparticles for targeted gene therapy against mammary carcinoma cells. Asian J Pharm Sci 2020; 16:236-252. [PMID: 33995617 PMCID: PMC8105532 DOI: 10.1016/j.ajps.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/09/2023] Open
Abstract
Genetic intervention via the delivery of functional genes such as plasmid DNA (pDNA) and short-interfering RNA (siRNA) offers a great way to treat many single or multiple genetic defects effectively, including mammary carcinoma. Delivery of naked therapeutic genes or siRNAs is, however, short-lived due to biological clearance by scavenging nucleases and circulating monocytes. Low cellular internalization of negatively-charged nucleic acids further causes low transfection or silencing activity. Development of safe and effectual gene vectors is therefore undeniably crucial to the success of nucleic acid delivery. Inorganic nanoparticles have attracted considerable attention in the recent years due to their high loading capacity and encapsulation activity. Here we introduce strontium salt-based nanoparticles, namely, strontium sulfate, strontium sulfite and strontium fluoride as new inorganic nanocarriers. Generated strontium salt particles were found to be nanosized with high affinity towards negatively-charged pDNA and siRNA. Degradation of the particles was seen with a drop in pH, suggesting their capacity to respond to pH change and undergo dissolution at endosomal pH to release the genetic materials. While the particles are relatively nontoxic towards the cells, siRNA-loaded SrF2 and SrSO3 particles exerted superior transgene expression and knockdown activity of MAPK and AKT, leading to inhibition of their phosphorylation to a distinctive extent in both MCF-7 and 4T1 cells. Strontium salt nanoparticles have thus emerged as a promising tool for applications in cancer gene therapy.
Collapse
|
143
|
Bahreyni A, Luo H. Advances in Targeting Cancer-Associated Genes by Designed siRNA in Prostate Cancer. Cancers (Basel) 2020; 12:E3619. [PMID: 33287240 PMCID: PMC7761674 DOI: 10.3390/cancers12123619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Short interfering RNAs (siRNAs) have provided novel insights into the field of cancer treatment in light of their ability to specifically target and silence cancer-associated genes. In recent years, numerous studies focus on determining genes that actively participate in tumor formation, invasion, and metastasis in order to establish new targets for cancer treatment. In spite of great advances in designing various siRNAs with diverse targets, efficient delivery of siRNAs to cancer cells is still the main challenge in siRNA-mediated cancer treatment. Recent advancements in the field of nanotechnology and nanomedicine hold great promise to meet this challenge. This review focuses on recent findings in cancer-associated genes and the application of siRNAs to successfully silence them in prostate cancer, as well as recent progress for effectual delivery of siRNAs to cancer cells.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
144
|
Li J, Chen L, Xu X, Fan Y, Xue X, Shen M, Shi X. Targeted Combination of Antioxidative and Anti-Inflammatory Therapy of Rheumatoid Arthritis using Multifunctional Dendrimer-Entrapped Gold Nanoparticles as a Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005661. [PMID: 33205596 DOI: 10.1002/smll.202005661] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Abundant reactive oxygen species and tumor necrosis factor-α (TNF-α) cytokine supply of M1-type macrophages boost rheumatoid arthritis (RA) pathological process. For efficient RA therapy, here a multifunctional nanoplatform is presented based on generation 5 (G5) poly(amidoamine) dendrimer-entrapped gold nanoparticles (Au DENPs) to achieve co-delivery of antioxidant alpha-tocopheryl succinate (α-TOS) and anti-inflammatory anti-TNF-α siRNA to macrophage cells. G5 dendrimers with amine termini are sequentially functionalized with 1,3-propane sultone (1,3-PS), α-TOS through a polyethylene glycol (PEG) spacer, and PEGylated folic acid (FA), and subsequently entrapped with Au NPs. The generated functional Au DENPs exhibit desired cytocompatibility, zwitterion-rendered antifouling property, and FA-mediated targeting specificity, enabling serum-enhanced siRNA delivery to M1-type macrophage cells. Meanwhile, the attached α-TOS affords enhanced oxidation resistance of macrophage cells. In vivo investigation shows that the treatment of a collagen-induced arthritis mouse model using α-TOS-modified Au DENPs/TNF-α siRNA polyplexes can achieve excellent combination therapy effect in inflammatory cytokines downregulation of RA lesion and bone erosions. The therapeutic efficacy is also supported by 3D micro-computed tomography analysis and TNF-α cytokine reduction of RA lesion joints in the mRNA, protein, and histology levels. The created multifunctional nanoplatform may be employed in antioxidative and anti-inflammatory combination therapy of RA.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoying Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Xue Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal, 9020-105, Portugal
| |
Collapse
|
145
|
Fernandes F, Kotharkar P, Chakravorty A, Kowshik M, Talukdar I. Nanocarrier Mediated siRNA Delivery Targeting Stem Cell Differentiation. Curr Stem Cell Res Ther 2020; 15:155-172. [PMID: 31789134 DOI: 10.2174/1574888x14666191202095041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Stem cell-based regenerative medicine holds exceptional therapeutic potential and hence the development of efficient techniques to enhance control over the rate of differentiation has been the focus of active research. One of the strategies to achieve this involves delivering siRNA into stem cells and exploiting the RNA interference (RNAi) mechanism. Transport of siRNA across the cell membrane is a challenge due to its anionic property, especially in primary human cells and stem cells. Moreover, naked siRNA incites immune responses, may cause off-target effects, exhibits low stability and is easily degraded by endonucleases in the bloodstream. Although siRNA delivery using viral vectors and electroporation has been used in stem cells, these methods demonstrate low transfection efficiency, cytotoxicity, immunogenicity, events of integration and may involve laborious customization. With the advent of nanotechnology, nanocarriers which act as novel gene delivery vehicles designed to overcome the problems associated with safety and practicality are being developed. The various nanomaterials that are currently being explored and discussed in this review include liposomes, carbon nanotubes, quantum dots, protein and peptide nanocarriers, magnetic nanoparticles, polymeric nanoparticles, etc. These nanodelivery agents exhibit advantages such as low immunogenic response, biocompatibility, design flexibility allowing for surface modification and functionalization, and control over the surface topography for achieving the desired rate of siRNA delivery and improved gene knockdown efficiency. This review also includes discussion on siRNA co-delivery with imaging agents, plasmid DNA, drugs etc. to achieve combined diagnostic and enhanced therapeutic functionality, both for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Fiona Fernandes
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Pooja Kotharkar
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Adrija Chakravorty
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Meenal Kowshik
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Indrani Talukdar
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| |
Collapse
|
146
|
Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. NANOSCALE ADVANCES 2020; 2:5046-5089. [PMID: 36132021 PMCID: PMC9418019 DOI: 10.1039/d0na00478b] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/22/2020] [Indexed: 05/04/2023]
Abstract
Research efforts on nanomaterial-based therapies for the treatment of autoimmune diseases and cancer have spiked and have made rapid progress over the past years. Nanomedicine has been shown to contribute significantly to overcome current therapeutic limitations, exhibiting advantages compared to conventional therapeutics, such as sustained drug release, delayed drug degradation and site-specific drug delivery. Multiple nanodrugs have reached the clinic, but translation is often hampered by either low targeting efficiency or undesired side effects. Nanomaterials, and especially inorganic nanoparticles, have gained criticism due to their potential toxic effects, including immunological alterations. However, many strategies have been attempted to improve the therapeutic efficacy of nanoparticles and exploit their unique properties for the treatment of inflammation and associated diseases. In this review, we elaborate on the immunomodulatory effects of nanomaterials, with a strong focus on the underlying mechanisms that lead to these specific immune responses. Nanomaterials to be discussed include inorganic nanoparticles such as gold, silica and silver, as well as organic nanomaterials such as polymer-, dendrimer-, liposomal- and protein-based nanoparticles. Furthermore, various approaches for tuning nanomaterials in order to enhance their efficacy and attenuate their immune stimulation or suppression, with respect to the therapeutic application, are described. Additionally, we illustrate how the acquired insights have been used to design immunotherapeutic strategies for a variety of diseases. The potential of nanomedicine-based therapeutic strategies in immunotherapy is further illustrated by an up to date overview of current clinical trials. Finally, recent efforts into enhancing immunogenic cell death through the use of nanoparticles are discussed.
Collapse
Affiliation(s)
- Vincent Lenders
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Xanthippi Koutsoumpou
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Ara Sargsian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| |
Collapse
|
147
|
Kumar V, Yadavilli S, Kannan R. A review on RNAi therapy for NSCLC: Opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1677. [PMID: 33174364 DOI: 10.1002/wnan.1677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the primary cause of cancer death worldwide. Despite developments in chemotherapy and targeted therapies, the 5-year survival rate has remained at approximately 16% for the last four decades. NSCLC is a heterogeneous group of tumors that, through mutations and drivers, also demonstrate intra-tumor heterogeneity. Thus, current treatment approaches revolve around targeting these oncogenes, often using small molecule inhibitors and chemotherapeutics. However, the efficacy of these therapies has been crippled by acquired and inherent drug-resistance in the tumor, accompanied by increased therapeutic dosages and subsequent devastating off-target effects for patients. Evidently, there is a critical need for developing treatment methodologies more effective than the current standard of care. Fortunately, RNA interference, particularly small interfering RNA (siRNA), presents an alternative of silencing specific oncogenes to control tumor growth. Although siRNA therapy is subject to rapid degradation and poor internalization in vivo, nanoparticles can serve as nontoxic and efficient delivery vehicles, even introducing combinational delivery of multiple therapeutic agents. Indeed, siRNA-nanoconstructs possess extraordinary potential as an innovative modality to address clinical needs. This state-of-the-art review summarizes the recent advancements in the development of novel nanosystems for delivering siRNA to NSCLC tumors and analyzes the efficacy of representative examples. By illuminating the most promising biomarkers for silencing, we hope to streamline current therapeutic efforts and highlight powerful translational opportunities to combat NSCLC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Vignesh Kumar
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Sairam Yadavilli
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
148
|
Shirahama S, Onoguchi-Mizutani R, Kawata K, Taniue K, Miki A, Kato A, Kawaguchi Y, Tanaka R, Kaburaki T, Kawashima H, Urade Y, Aihara M, Akimitsu N. Long noncoding RNA U90926 is crucial for herpes simplex virus type 1 proliferation in murine retinal photoreceptor cells. Sci Rep 2020; 10:19406. [PMID: 33173149 PMCID: PMC7656448 DOI: 10.1038/s41598-020-76450-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play vital roles in the pathogenesis of infectious diseases, but the role of lncRNAs in herpes simplex virus 1 (HSV-1) infection remains unknown. Using RNA sequencing analysis, we explored lncRNAs that were highly expressed in murine retinal photoreceptor cell-derived 661W cells infected with HSV-1. U90926 RNA (522 nucleotides) was the most upregulated lncRNA detected post HSV-1 infection. The level of U90926 RNA was continuously increased post HSV-1 infection, reaching a 100-fold increase at 24 h. Cellular fractionation showed that U90926 RNA was located in the nucleus post HSV-1 infection. Downregulation of U90926 expression by RNA interference markedly suppressed HSV-1 DNA replication (80% reduction at 12 h post infection) and HSV-1 proliferation (93% reduction at 12 h post infection) in 661W cells. The survival rates of U90926-knockdown cells were significantly increased compared to those of control cells (81% and 21%, respectively; p < 0.0001). Thus, lncRNA U90926 is crucial for HSV-1 proliferation in retinal photoreceptor cells and consequently leads to host cell death by promoting HSV-1 proliferation.
Collapse
Affiliation(s)
- Shintaro Shirahama
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kentaro Kawata
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan
| | - Kenzui Taniue
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan
| | - Atsuko Miki
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rie Tanaka
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Ophthalmology, Jichi Medical University Saitama Medical Centre, Saitama, Japan
| | | | - Yoshihiro Urade
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan.,Daiichi University of Pharmacy, Fukuoka, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
149
|
Tabatabaeian H, Peiling Yang S, Tay Y. Non-Coding RNAs: Uncharted Mediators of Thyroid Cancer Pathogenesis. Cancers (Basel) 2020; 12:E3264. [PMID: 33158279 PMCID: PMC7694276 DOI: 10.3390/cancers12113264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer is the most prevalent malignancy of the endocrine system and the ninth most common cancer globally. Despite the advances in the management of thyroid cancer, there are critical issues with the diagnosis and treatment of thyroid cancer that result in the poor overall survival of undifferentiated and metastatic thyroid cancer patients. Recent studies have revealed the role of different non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) that are dysregulated during thyroid cancer development or the acquisition of resistance to therapeutics, and may play key roles in treatment failure and poor prognosis of the thyroid cancer patients. Here, we systematically review the emerging roles and molecular mechanisms of ncRNAs that regulate thyroid tumorigenesis and drug response. We then propose the potential clinical implications of ncRNAs as novel diagnostic and prognostic biomarkers for thyroid cancer.
Collapse
Affiliation(s)
- Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Samantha Peiling Yang
- Endocrinology Division, Department of Medicine, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
150
|
Salim L, Desaulniers JP. To Conjugate or to Package? A Look at Targeted siRNA Delivery Through Folate Receptors. Nucleic Acid Ther 2020; 31:21-38. [PMID: 33121373 DOI: 10.1089/nat.2020.0893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) applications have evolved from experimental tools to study gene function to the development of a novel class of gene-silencing therapeutics. Despite decades of research, it was not until August 2018 that the US FDA approved the first-ever RNAi drug, marking a new era for RNAi therapeutics. Although there are many limitations associated with the inherent structure of RNA, delivery to target cells and tissues remains the most challenging. RNAs are unable to diffuse across cellular membranes due to their large size and polyanionic backbone and, therefore, require a delivery vector. RNAi molecules can be conjugated to a targeting ligand or packaged into a delivery vehicle. Alnylam has used both strategies in their FDA-approved formulations to achieve efficient delivery to the liver. To harness the full potential of RNAi therapeutics, however, we must be able to target additional cells and tissues. One promising target is the folate receptor α, which is overexpressed in a variety of tumors despite having limited expression and distribution in normal tissues. Folate can be conjugated directly to the RNAi molecule or used to functionalize delivery vehicles. In this review, we compare both delivery strategies and discuss the current state of research in the area of folate-mediated delivery of RNAi molecules.
Collapse
Affiliation(s)
- Lidya Salim
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Canada
| | | |
Collapse
|