101
|
Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, Ye S, Ye K, Wei D, Song Z, Chen D, Liu J. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019; 9:189. [PMID: 31383855 PMCID: PMC6683152 DOI: 10.1038/s41398-019-0525-3] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common dementia in the elderly. Treatment for AD is still a difficult task in clinic. AD is associated with abnormal gut microbiota. However, little is known about the role of fecal microbiota transplantation (FMT) in AD. Here, we evaluated the efficacy of FMT for the treatment of AD. We used an APPswe/PS1dE9 transgenic (Tg) mouse model. Cognitive deficits, brain deposits of amyloid-β (Aβ) and phosphorylation of tau, synaptic plasticity as well as neuroinflammation were assessed. Gut microbiota and its metabolites short-chain fatty acids (SCFAs) were analyzed by 16S rRNA sequencing and 1H nuclear magnetic resonance (NMR). Our results showed that FMT treatment could improve cognitive deficits and reduce the brain deposition of amyloid-β (Aβ) in APPswe/PS1dE9 transgenic (Tg) mice. These improvements were accompanied by decreased phosphorylation of tau protein and the levels of Aβ40 and Aβ42. We observed an increases in synaptic plasticity in the Tg mice, showing that postsynaptic density protein 95 (PSD-95) and synapsin I expression were increased after FMT. We also observed the decrease of COX-2 and CD11b levels in Tg mice after FMT. We also found that FMT treatment reversed the changes of gut microbiota and SCFAs. Thus, FMT may be a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jing Sun
- 0000 0004 1764 2632grid.417384.dDepartment of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Jingxuan Xu
- 0000 0004 1764 2632grid.417384.dDepartment of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Yi Ling
- 0000 0004 1764 2632grid.417384.dDepartment of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Fangyan Wang
- 0000 0001 0348 3990grid.268099.cDepartment of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Tianyu Gong
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Changwei Yang
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Shiqing Ye
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Keyue Ye
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Dianhui Wei
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Ziqing Song
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Danna Chen
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jiaming Liu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. .,Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
102
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 361] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
103
|
Arrazola A, Torrey S. Conditioned place avoidance using encapsulated calcium propionate as an appetite suppressant for broiler breeders. PLoS One 2019; 14:e0206271. [PMID: 31318884 PMCID: PMC6638749 DOI: 10.1371/journal.pone.0206271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Broiler breeders, the parent stock of meat chickens, are feed-restricted throughout the production cycle to avoid obesity-related problems in their health and reproductive performance. Broiler breeders often show signs of chronic hunger, lack of satiety and feeding frustration, and the development of alternative feeding strategies has investigated the inclusion of calcium propionate (CaP) as an appetite suppressant. The mechanisms involved in the reduction of voluntary feed intake are unknown, but are thought to be due to low palatability, gastrointestinal discomfort, or both. The objective of this experiment was to examine the effect of CaP as an appetite suppressant on the experience of a negative affective state, using a conditioned place preference test. Twenty four broiler breeders were trained to associate the consumption of CaP or a placebo pill with a red or blue place, depending on inherent colour preference. Pullets consumed two pills followed by 20 g feed allotment. The CaP pill contained 160 mg of CaP and the placebo pill had 160 mg of feed. Conditioning lasted for 90 min/pullet/day over 8 consecutive days at 7 and 9 weeks of age, and pullets' choice was tested in a T-maze twice on two consecutive days at both 8 and 10 weeks of age. Data were analysed using a linear mixed regression model, with pen nested in the model and age as a repeated measure. Pullets were less likely to choose the place conditioned with the consumption of CaP (P<0.05) and the preference of the placebo linearly increased with training sessions (P<0.05). These results suggest that calcium propionate as an appetite suppressant can induce a negative affective state, reducing feed intake in broiler breeders fed CaP diets by causing an avoidance response rather than satiety.
Collapse
Affiliation(s)
- Aitor Arrazola
- Department of Animal Bioscience, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie Torrey
- Department of Animal Bioscience, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
104
|
Propionic Acid Induces Gliosis and Neuro-inflammation through Modulation of PTEN/AKT Pathway in Autism Spectrum Disorder. Sci Rep 2019; 9:8824. [PMID: 31217543 PMCID: PMC6584527 DOI: 10.1038/s41598-019-45348-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by glia over-proliferation, neuro-inflammation, perturbed neural circuitry, and gastrointestinal symptoms. The role of gut dys-biosis in ASD is intriguing and should be elucidated. We investigated the effect of Propionic acid (PPA), a short-chain fatty acid (SCFA) and a product of dys-biotic ASD gut, on human neural stem cells (hNSCs) proliferation, differentiation and inflammation. hNSCs proliferated to 66 neuropsheres when exposed to PPA versus 45 in control. The neurosphere diameter also increased at day 10 post PPA treatment to (Mean: 193.47 um ± SEM: 6.673 um) versus (154.16 um ± 9.95 um) in control, p < 0.001. Pre-treatment with β-HB, SCFA receptor inhibitor, hindered neurosphere expansion (p < 0.001). While hNSCs spontaneously differentiated to (48.38% ± 6.08%) neurons (Tubulin-IIIβ positive) and (46.63% ± 2.5%) glia (GFAP positive), PPA treatment drastically shifted differentiation to 80% GFAP cells (p < 0.05). Following 2 mM PPA exposure, TNF-α transcription increased 4.98 fold and the cytokine increased 3.29 fold compared to control (P < 0.001). Likewise, GPR41 (PPA receptor) and pro-survival p-Akt protein were elevated (p < 0.001). PTEN (Akt inhibitor) level decreased to (0.42 ug/ul ± 0.04 ug/ul) at 2 mM PPA compared to (0.83 ug/ul ± 0.09 ug/ul) in control (p < 0.001). PPA at 2 mM decreased neurite outgrowth to (80.70 um ± 5.5 um) compared to (194.93 um ± 19.7 um) in control. Clearly, the data supports a significant role for PPA in modulating hNSC patterning leading to gliosis, disturbed neuro-circuitry, and inflammatory response as seen in ASD.
Collapse
|
105
|
From Probiotics to Psychobiotics: Live Beneficial Bacteria Which Act on the Brain-Gut Axis. Nutrients 2019; 11:nu11040890. [PMID: 31010014 PMCID: PMC6521058 DOI: 10.3390/nu11040890] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
There is an important relationship between probiotics, psychobiotics and cognitive and behavioral processes, which include neurological, metabolic, hormonal and immunological signaling pathways; the alteration in these systems may cause alterations in behavior (mood) and cognitive level (learning and memory). Psychobiotics have been considered key elements in affective disorders and the immune system, in addition to their effect encompassing the regulation of neuroimmune regulation and control axes (the hypothalamic-pituitary-adrenal axis or HPA, the sympathetic-adrenal-medullary axis or SAM and the inflammatory reflex) in diseases of the nervous system. The aim of this review is to summarize the recent findings about psychobiotics, the brain-gut axis and the immune system. The review focuses on a very new and interesting field that relates the microbiota of the intestine with diseases of the nervous system and its possible treatment, in neuroimmunomodulation area. Indeed, although probiotic bacteria will be concentrated after ingestion, mainly in the intestinal epithelium (where they provide the host with essential nutrients and modulation of the immune system), they may also produce neuroactive substances which act on the brain-gut axis.
Collapse
|
106
|
Jones L, Kumar J, Mistry A, Sankar Chittoor Mana T, Perry G, Reddy VP, Obrenovich M. The Transformative Possibilities of the Microbiota and Mycobiota for Health, Disease, Aging, and Technological Innovation. Biomedicines 2019; 7:E24. [PMID: 30925795 PMCID: PMC6631383 DOI: 10.3390/biomedicines7020024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota is extremely important for the health of the host across its lifespan.Recent studies have elucidated connections between the gut microbiota and neurological diseaseand disorders such as depression, anxiety, Alzheimer's disease (AD), autism, and a host of otherbrain illnesses. Dysbiosis of the normal gut flora can have negative consequences for humans,especially throughout key periods during our lifespan as the gut microbes change with age in bothphenotype and number of bacterial species. Neurologic diseases, mental disorders, and euthymicstates are influenced by alterations in the metabolites produced by gut microbial milieu. Weintroduce a new concept, namely, the mycobiota and microbiota-gut-brain neuroendocrine axis anddiscuss co-metabolism with emphasis on means to influence or correct disruptions to normal gutflora throughout the lifespan from early development to old age. These changes involveinflammation and involve the permeability of barriers, such as the intestine blood barrier, the blood⁻brain barrier, and others. The mycobiota and microbiota⁻gut⁻brain axis offer new research horizonsand represents a great potential target for new therapeutics, including approaches based aroundinflammatory disruptive process, genetically engineered drug delivery systems, diseased cellculling "kill switches", phage-like therapies, medicinal chemistry, or microbial parabiosis to namea few.
Collapse
Affiliation(s)
- Lucas Jones
- Geriatric Research, Education, and Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
- Department of Molecular and Microbiology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA.
| | - Jessica Kumar
- Geriatric Research, Education, and Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | - Adil Mistry
- Departments of Engineering and Chemistry, Cleveland State University, Cleveland, OH 44115, USA.
| | | | - George Perry
- Distinguished University Chair in Neurobiology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - V Prakash Reddy
- Missouri University of Science and Technology, Rolla, MI, 65409, USA.
| | - Mark Obrenovich
- Geriatric Research, Education, and Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
- Departments of Engineering and Chemistry, Cleveland State University, Cleveland, OH 44115, USA.
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
- MD and CSO, the Gilgamesh Foundation.org, Cleveland, OH 44106, USA.
- Department of Physics, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
107
|
Impaired Spatial Cognition in Adult Rats Treated with Multiple Intracerebroventricular (ICV) Infusions of the Enteric Bacterial Metabolite, Propionic Acid, and Return to Baseline After 1 Week of No Treatment: Contribution to a Rodent Model of ASD. Neurotox Res 2019; 35:823-837. [DOI: 10.1007/s12640-019-0002-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
|
108
|
Fattorusso A, Di Genova L, Dell'Isola GB, Mencaroni E, Esposito S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients 2019; 11:E521. [PMID: 30823414 PMCID: PMC6471505 DOI: 10.3390/nu11030521] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
In recent years, there has been an emerging interest in the possible role of the gut microbiota as a co-factor in the development of autism spectrum disorders (ASDs), as many studies have highlighted the bidirectional communication between the gut and brain (the so-called "gut-brain axis"). Accumulating evidence has shown a link between alterations in the composition of the gut microbiota and both gastrointestinal and neurobehavioural symptoms in children with ASD. The aim of this narrative review was to analyse the current knowledge about dysbiosis and gastrointestinal (GI) disorders in ASD and assess the current evidence for the role of probiotics and other non-pharmacological approaches in the treatment of children with ASD. Analysis of the literature showed that gut dysbiosis in ASD has been widely demonstrated; however, there is no single distinctive profile of the composition of the microbiota in people with ASD. Gut dysbiosis could contribute to the low-grade systemic inflammatory state reported in patients with GI comorbidities. The administration of probiotics (mostly a mixture of Bifidobacteria, Streptococci and Lactobacilli) is the most promising treatment for neurobehavioural symptoms and bowel dysfunction, but clinical trials are still limited and heterogeneous. Well-designed, randomized, placebo-controlled clinical trials are required to validate the effectiveness of probiotics in the treatment of ASD and to identify the appropriate strains, dose, and timing of treatment.
Collapse
Affiliation(s)
- Antonella Fattorusso
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Lorenza Di Genova
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Giovanni Battista Dell'Isola
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Elisabetta Mencaroni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| |
Collapse
|
109
|
Shams S, Foley KA, Kavaliers M, MacFabe DF, Ossenkopp KP. Systemic treatment with the enteric bacterial metabolic product propionic acid results in reduction of social behavior in juvenile rats: Contribution to a rodent model of autism spectrum disorder. Dev Psychobiol 2019; 61:688-699. [DOI: 10.1002/dev.21825] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Soaleha Shams
- Department of Psychology; University of Toronto Mississauga; Mississauga Ontario Canada
| | - Kelly A. Foley
- Graduate Program in Neuroscience; University of Western Ontario; London Ontario Canada
| | - Martin Kavaliers
- Graduate Program in Neuroscience; University of Western Ontario; London Ontario Canada
- Department of Psychology; University of Western Ontario; London Ontario Canada
| | - Derrick F. MacFabe
- Department of Psychology; University of Western Ontario; London Ontario Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience; University of Western Ontario; London Ontario Canada
- Department of Psychology; University of Western Ontario; London Ontario Canada
| |
Collapse
|
110
|
Azhari A, Azizan F, Esposito G. A systematic review of gut-immune-brain mechanisms in Autism Spectrum Disorder. Dev Psychobiol 2018; 61:752-771. [PMID: 30523646 DOI: 10.1002/dev.21803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Despite decades of research, the etiological origins of Autism Spectrum Disorder (ASD) remain elusive. Recently, the mechanisms of ASD have encompassed emerging theories involving the gastrointestinal, immune, and nervous systems. While each of these perspectives presents its own set of supporting evidence, the field requires an integration of these modular concepts and an overarching view of how these subsystems intersect. In this systematic review, we have synthesized relevant evidences from the existing literature, evaluating them in an interdependent manner and in doing so, outlining their possible connections. Specifically, we first discussed gastrointestinal and immuno-inflammation pathways in-depth, exploring the relationships between microbial composition, bacterial metabolites, gut mucosa, and immune system constituents. Accounting for temporal differences in the mechanisms involved in neurodevelopment, prenatal and postnatal phases were further elucidated, where the former focused on maternal immune activation (MIA) and fetal development, while the latter addressed the role of immune dysregulation in contributing to atypical neurodevelopment. As autism remains, foremost, a neurodevelopmental disorder, this review presents an integration of disparate modules into a "Gut-Immune-Brain" paradigm. Existing gaps in the literature have been highlighted, and possible avenues for future research with an integrated physiological perspective underlying ASD have also been suggested.
Collapse
Affiliation(s)
- Atiqah Azhari
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Farouq Azizan
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| |
Collapse
|
111
|
Hu M, Zheng P, Xie Y, Boz Z, Yu Y, Tang R, Jones A, Zheng K, Huang XF. Propionate Protects Haloperidol-Induced Neurite Lesions Mediated by Neuropeptide Y. Front Neurosci 2018; 12:743. [PMID: 30374288 PMCID: PMC6196753 DOI: 10.3389/fnins.2018.00743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023] Open
Abstract
Haloperidol is a commonly used antipsychotic drug for treating schizophrenia. Clinical imaging studies have found that haloperidol can cause volume loss of human brain tissue, which is supported by animal studies showing that haloperidol reduces the number of synaptic spines. The mechanism remains unknown. Gut microbiota metabolites, short chain fatty acids including propionate, are reported to have neuroprotective effect and influence gene expression. This study aims to investigate the effect and mechanism of propionate in the protection of neurite lesion induced by haloperidol. This study showed that 10 μM haloperidol (clinical relevant dose) impaired neurite length in human blastoma SH-SY5Y cells, which were confirmed by using primary mouse striatal spiny neurons. We found that haloperidol impaired neurite length were accompanied by a decreased neuropeptide Y (NPY) expression, but no effect on GSK3β signaling. Importantly, this project research found that propionate was capable of protecting against haloperidol-induced neurite lesions and preventing NPY reduction. To confirm this finding, we used specific siRNAs targeting NPY which blocked the protective effect of propionate on haloperidol-induced neurite lesions. Furthermore, since NPY is regulated by the nuclear transcription factor CREB, we measured pCREB that was decreased by haloperidol and was normalized by propionate. Therefore, propionate has a protective effect against pCREB-NPY mediated haloperidol-induced neurite lesions.
Collapse
Affiliation(s)
- Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China.,Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Peng Zheng
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Yuanyi Xie
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Zehra Boz
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China
| | - Alison Jones
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
112
|
Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: Drivers and consequences. Aust N Z J Psychiatry 2018; 52:924-948. [PMID: 30231628 DOI: 10.1177/0004867418796955] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The blood-brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps initiate, neurological and neuropsychiatric disorders. METHODS In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on the blood-brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood-brain barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being the initial drivers. RESULTS Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood-brain barrier permeability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood-brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 [MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental effect on blood-brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as prostaglandin E2 and pro-inflammatory cytokines, which can cause a 'leaky brain'. CONCLUSION Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a 'leaky gut'. The following evidence-based approaches, which address the leaky gut and blood-brain barrier dysfunction, are suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides and galacto-oligosaccharides.
Collapse
Affiliation(s)
- Gerwyn Morris
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Brisa S Fernandes
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Basant K Puri
- 3 Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Andre F Carvalho
- 2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,4 Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
113
|
Zhang M, Ma W, Zhang J, He Y, Wang J. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Sci Rep 2018; 8:13981. [PMID: 30228282 PMCID: PMC6143520 DOI: 10.1038/s41598-018-32219-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental disorders. Recent studies reported that children with ASD have altered gut microbiota profiles compared with typical development (TD) children. However, few studies on gut bacteria of children with ASD have been conducted in China. Here, in order to elucidate changes of fecal microbiota in children with ASD, 16S rRNA sequencing was conducted and the 16S rRNA (V3-V4) gene tags were amplified. We investigated differences in fecal microbiota between 35 children with ASD and 6 TD children. At the phylum level, the fecal microbiota of ASD group indicated a significant increase of the Bacteroidetes/Firmicutes ratio. At the genus level, we found that the relative abundance of Sutterella, Odoribacter and Butyricimonas was much more abundant in the ASD group whereas the abundance of Veillonella and Streptococcus was decreased significantly compared to the control group. Functional analysis demonstrated that butyrate and lactate producers were less abundant in the ASD group. In addition, we downloaded the association data set of microbe-disease from human microbe-disease association database and constructed a human disease network including ASD using our gut microbiome results. In this microbe-disease network based on microbe similarity of diseases, we found that ASD is positively correlated with periodontal, negatively related to type 1 diabetes. Therefore, these results suggest that microbe-based disease analysis is able to predict novel connection between ASD and other diseases and may play a role in revealing the pathogenesis of ASD.
Collapse
Affiliation(s)
- Mengxiang Zhang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing, 100191, China
| | - Wei Ma
- Central Laboratory, Navy General Hospital of PLA, Beijing, 100191, China
| | - Juan Zhang
- Department of pediatrics, Peking University Third Hospital, Beijing, 100191, China
| | - Yi He
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Autism Research Center, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
114
|
Bhandari R, Paliwal JK, Kuhad A. Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
115
|
Oleskin AV, Shenderov BA, Rogovsky VS. Role of Neurochemicals in the Interaction between the Microbiota and the Immune and the Nervous System of the Host Organism. Probiotics Antimicrob Proteins 2018; 9:215-234. [PMID: 28229287 DOI: 10.1007/s12602-017-9262-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This work is concerned with the role of evolutionary conserved substances, neurotransmitters, and neurohormones, within the complex framework of the microbial consortium-immune system-nervous system axis in the human or animal organism. Although the operation of each of these systems per se is relatively well understood, their combined effects on the host organism still await further research. Drawing on recent research on host-produced and microbial low-molecular-weight neurochemicals such as biogenic amines, amino acids, and short-chain fatty acids (SCFAs), we suggest that these mediators form a part of a universal neurochemical "language." It mediates the whole gamut of harmonious and disharmonious interactions between (a) the intestinal microbial consortium, (b) local and systemic immune cells, and (c) the central and peripheral nervous system. Importantly, the ongoing microbiota-host interactivity is bidirectional. We present evidence that a large number of microbially produced low-molecular-weight compounds are identical or homologous to mediators that are synthesized by immune or nervous cells and, therefore, can bind to the corresponding host receptors. In addition, microbial cells specifically respond to host-produced neuromediators/neurohormones because they have adapted to them during the course of many millions of years of microbiota-host coevolution. We emphasize that the terms "microbiota" and "microbial consortium" are to be used in the broadest sense, so as to include, apart from bacteria, also eukaryotic microorganisms. These are exemplified by the mycobiota whose role in the microbial consortium-immune system-nervous system axis researchers are only beginning to elucidate. In light of the above, it is imperative to reform the current strategies of using probiotic microorganisms and their metabolites for treating and preventing dysbiosis-related diseases. The review demonstrates, in the example of novel probiotics (psychobiotics), that many target-oriented probiotic preparations produce important side effects on a wide variety of processes in the host organism. In particular, we should take into account probiotics' capacity to produce mediators that can considerably modify the operation of the microecological, immune, and nervous system of the human organism.
Collapse
Affiliation(s)
- Alexander V Oleskin
- General Ecology Department, Biology School, Moscow State University, Vorobiev Hills, Moscow, 119991, Russia.
| | - Boris A Shenderov
- Gabrichevsky Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | | |
Collapse
|
116
|
Larroya-García A, Navas-Carrillo D, Orenes-Piñero E. Impact of gut microbiota on neurological diseases: Diet composition and novel treatments. Crit Rev Food Sci Nutr 2018; 59:3102-3116. [PMID: 29870270 DOI: 10.1080/10408398.2018.1484340] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota has significant effects on the structure and function of the enteric and central nervous system including human behaviour and brain regulation. Herein, we analyze the role of this intestinal ecosystem, the effects of dietary changes and the administration of nutritional supplements, such as probiotics, prebiotics, or fecal transplantation in neuropsychiatric disorders. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth delivery and environment. However, diet composition and nutritional status has been repeatedly shown to be one of the most critical modifiable factors of this ecosystem. A comprehensively analysis of the microbiome-intestine-brain axis has been performed, including the impact of intestinal bacteria in alterations in the nervous, immune and endocrine systems and their metabolites. Finally, we discuss the latest literature examining the effects of diet composition, nutritional status and microbiota alterations in several neuropsychiatric disorders, such as autism, anxiety, depression, Alzheimer's disease and anorexia nervosa.
Collapse
Affiliation(s)
- Ana Larroya-García
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - Diana Navas-Carrillo
- Department of Surgery, Hospital de la Vega Lorenzo Guirao, University of Murcia, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| |
Collapse
|
117
|
Arony DA, Gazda S, Kitara DL. Could nodding syndrome in Northern Uganda be a form of autism spectrum disorder? an observational study design. Pan Afr Med J 2018; 30:115. [PMID: 30364427 PMCID: PMC6195236 DOI: 10.11604/pamj.2018.30.115.13634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/26/2018] [Indexed: 01/15/2023] Open
Abstract
Introduction Nodding syndrome (NS) is associated with high anion gap, biotinidase and acetyl carnitine deficiency, vitamin B6 and D deficiency and internal displacement. The objective of this study was to conduct a metabolic analysis on NS children and review literature on its similarities with ASD. Methods We conducted biochemical analysis on blood and urine of NS children at Hope for HumaNs (HfH) centre in 2014 and reviewed literature on its similarities with ASD. Ethical approval was obtained from an IRB. Data analysis was conducted using STATA version 12 and a p-value less than 0.05 was considered significant. Results We found biotinidase deficiency in NS with a mean 1.98 95% CI(1.61, 2.34; p < 0.001); Acetyl carnitine deficiency 16.92 95% CI(16.10,17.75; p<0.001); Low BMI-for-age 16.92 95% CI(16.10,17.75; p = 0.42); Age 14.08 95% CI(0.78,4.660; p = 0.007); IDP duration 4.82 95% CI(4.48, 5.21; p = 0.92); Age at NS onset 8.02 95% CI(7.03, 9.01; p = 0.001); NS associated with multiple nodding episodes (χ2)=22.15, p=0.005; NS siblings with NS (χ2) = 9.68, p = 0.004; NS were in IDPs (χ2) = 22.15, p = 0.005. Conclusion These findings are indicative that NS is associated with biotinidase and acetyl carnitine deficiency, IDPs, and environmental exposures. There are no new cases of NS reported by Ugandan MOH and WHO since 2012 when the IDP camps were disbanded and communities resettled in their own communities and feed on their own grown foods. Perhaps NS may be akin to Autism Spectrum Disorder (ASD). This finding will help support all efforts towards the treatment and rehabilitation of NS children.
Collapse
Affiliation(s)
- Denis Anywar Arony
- Gulu University, Faculty of Medicine, Department of Biochemistry, Gulu, Uganda
| | - Suzanne Gazda
- Founding President for Hope for HumaNs (HfH), Neurologist at the St Antonio, Texas, USA
| | - David Lagoro Kitara
- Gulu University, Faculty of Medicine, Department of Biochemistry, Gulu, Uganda.,Gulu University, Faculty of Medicine, Department of Surgery, Gulu, Uganda
| |
Collapse
|
118
|
Abstract
The microbiome can be defined as the sum of the microbial and host's genome. Recent information regarding this complex organ suggests that in animal models of multiple sclerosis (MS), the composition of the gut microbiome can be altered, giving rise to both the effector and regulatory phases of central nervous system (CNS) demyelination. Experimental findings during the past decade in animal models of MS have provided clear evidence for the significant role of gut microbes in both the effector and regulatory phase of this condition. There is mounting evidence in preliminary human studies suggesting that a dysbiotic MS gut microbiome could affect disease progression. We propose considering the gut microbiome as a key organ for the regulation of tolerance mechanisms and speculate that the gut microbiome is the major environmental risk factor for CNS demyelinating disease. Accordingly, we hypothesize that intervention of the gut microbiome could result in safer novel therapeutic strategies to treat MS.
Collapse
Affiliation(s)
| | - Trevor O Kirby
- Department of Biology, Eastern Washington University, Cheney, Washington 99004
| | - Lloyd H Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| |
Collapse
|
119
|
Sanctuary MR, Kain JN, Angkustsiri K, German JB. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis. Front Nutr 2018; 5:40. [PMID: 29868601 PMCID: PMC5968124 DOI: 10.3389/fnut.2018.00040] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Children with autism spectrum disorders (ASD), characterized by a range of behavioral abnormalities and social deficits, display high incidence of gastrointestinal (GI) co-morbidities including chronic constipation and diarrhea. Research is now increasingly able to characterize the “fragile gut” in these children and understand the role that impairment of specific GI functions plays in the GI symptoms associated with ASD. This mechanistic understanding is extending to the interactions between diet and ASD, including food structure and protein digestive capacity in exacerbating autistic symptoms. Children with ASD and gut co-morbidities exhibit low digestive enzyme activity, impaired gut barrier integrity and the presence of antibodies specific for dietary proteins in the peripheral circulation. These findings support the hypothesis that entry of dietary peptides from the gut lumen into the vasculature are associated with an aberrant immune response. Furthermore, a subset of children with ASD exhibit high concentrations of metabolites originating from microbial activity on proteinaceous substrates. Taken together, the combination of specific protein intakes poor digestion, gut barrier integrity, microbiota composition and function all on a background of ASD represents a phenotypic pattern. A potential consequence of this pattern of conditions is that the fragile gut of some children with ASD is at risk for GI symptoms that may be amenable to improvement with specific dietary changes. There is growing evidence that shows an association between gut dysfunction and dysbiosis and ASD symptoms. It is therefore urgent to perform more experimental and clinical research on the “fragile gut” in children with ASD in order to move toward advancements in clinical practice. Identifying those factors that are of clinical value will provide an evidence-based path to individual management and targeted solutions; from real time sensing to the design of diets with personalized protein source/processing, all to improve GI function in children with ASD.
Collapse
Affiliation(s)
- Megan R Sanctuary
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Jennifer N Kain
- Department of Neurobiology, Physiology and Behavior Department, University of California, Davis, Davis, CA, United States
| | - Kathleen Angkustsiri
- School of Medicine, Department of Pediatrics, University of California, Davis, Sacramento, CA, United States.,Department of Pediatrics, UC Davis MIND Institute, Sacramento, CA, United States
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
120
|
Nath A, Haktanirlar G, Varga Á, Molnár MA, Albert K, Galambos I, Koris A, Vatai G. Biological Activities of Lactose-Derived Prebiotics and Symbiotic with Probiotics on Gastrointestinal System. ACTA ACUST UNITED AC 2018; 54:medicina54020018. [PMID: 30344249 PMCID: PMC6037253 DOI: 10.3390/medicina54020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Lactose-derived prebiotics provide wide ranges of gastrointestinal comforts. In this review article, the probable biochemical mechanisms through which lactose-derived prebiotics offer positive gastrointestinal health are reported along with the up-to-date results of clinical investigations; this might be the first review article of its kind, to the best of our knowledge. Lactose-derived prebiotics have unique biological and functional values, and they are confirmed as ‘safe’ by the Food and Drug Administration federal agency. Medical practitioners frequently recommend them as therapeutics as a pure form or combined with dairy-based products (yoghurt, milk and infant formulas) or fruit juices. The biological activities of lactose-derived prebiotics are expressed in the presence of gut microflora, mainly probiotics (Lactobacillus spp. in the small intestine and Bifidobacterium spp. in the large intestine). Clinical investigations reveal that galacto-oligosaccharide reduces the risks of several types of diarrhea (traveler’s diarrhea, osmotic diarrhea and Clostridium difficile associated relapsing diarrhea). Lactulose and lactosucrose prevent inflammatory bowel diseases (Crohn’s disease and ulcerative colitis). Lactulose and lactitol reduce the risk of hepatic encephalopathy. Furthermore, lactulose, galacto-oligosaccharide and lactitol prevent constipation in individuals of all ages. It is expected that the present review article will receive great attention from medical practitioners and food technologists.
Collapse
Affiliation(s)
- Arijit Nath
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - Gokce Haktanirlar
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Áron Varga
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Máté András Molnár
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Krisztina Albert
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Ildikó Galambos
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - András Koris
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Gyula Vatai
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| |
Collapse
|
121
|
Choi J, Lee S, Won J, Jin Y, Hong Y, Hur TY, Kim JH, Lee SR, Hong Y. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS One 2018; 13:e0192925. [PMID: 29447237 PMCID: PMC5814017 DOI: 10.1371/journal.pone.0192925] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is induced by complex hereditary and environmental factors. However, the mechanisms of ASD development are poorly understood. The purpose of this study was to identify standard indicators of this condition by comparing clinical, pathophysiological, and neurobehavioral features in an autism-like animal model. A total of 22 male Sprague-Dawley rats were randomly divided into control and 500 mg/kg propionic acid (PPA)-treated groups. Rats were subjected to behavioral tests, gene expression analyses, and histological analyses to detect pathophysiological and neurobehavioral alterations. Exploratory activity and non-aggressive behavior were significantly reduced in PPA-treated rats, whereas enhanced aggressive behavior during adjacent interactions was observed on day 14 after PPA administration. To evaluate gene expression after PPA administration, we analyzed hippocampal tissue using reverse transcription PCR. Glial fibrillary acidic protein was augmented in the PPA-treated group on day 14 after appearance of ASD-like behaviors by PPA administration, whereas octamer-binding transcription factor 4 expression was significantly decreased in the PPA-treated group. Histological evaluation revealed significantly reduced diameter and layer thickness of granule cells in PPA-treated rats compared with control rats. We conclude that PPA administration induced abnormal neural cell organization, which may have led to autism-like neurobehaviors, including increased aggressive behavior, reduced exploratory activity, and isolative and passive behaviors.
Collapse
Affiliation(s)
- Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Seunghoon Lee
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Jinyoung Won
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Yunkyung Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Korea
| | - Tai-Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Wanju, Korea
| | - Joo-Heon Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
- * E-mail: (YH); (SRL)
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Korea
- * E-mail: (YH); (SRL)
| |
Collapse
|
122
|
Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry 2018; 8:42. [PMID: 29391397 PMCID: PMC5804031 DOI: 10.1038/s41398-017-0089-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/20/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Butyrate (BT) is a ubiquitous short-chain fatty acid (SCFA) principally derived from the enteric microbiome. BT positively modulates mitochondrial function, including enhancing oxidative phosphorylation and beta-oxidation and has been proposed as a neuroprotectant. BT and other SCFAs have also been associated with autism spectrum disorders (ASD), a condition associated with mitochondrial dysfunction. We have developed a lymphoblastoid cell line (LCL) model of ASD, with a subset of LCLs demonstrating mitochondrial dysfunction (AD-A) and another subset of LCLs demonstrating normal mitochondrial function (AD-N). Given the positive modulation of BT on mitochondrial function, we hypothesized that BT would have a preferential positive effect on AD-A LCLs. To this end, we measured mitochondrial function in ASD and age-matched control (CNT) LCLs, all derived from boys, following 24 and 48 h exposure to BT (0, 0.1, 0.5, and 1 mM) both with and without an in vitro increase in reactive oxygen species (ROS). We also examined the expression of key genes involved in cellular and mitochondrial response to stress. In CNT LCLs, respiratory parameters linked to adenosine triphosphate (ATP) production were attenuated by 1 mM BT. In contrast, BT significantly increased respiratory parameters linked to ATP production in AD-A LCLs but not in AD-N LCLs. In the context of ROS exposure, BT increased respiratory parameters linked to ATP production for all groups. BT was found to modulate individual LCL mitochondrial respiration to a common set-point, with this set-point slightly higher for the AD-A LCLs as compared to the other groups. The highest concentration of BT (1 mM) increased the expression of genes involved in mitochondrial fission (PINK1, DRP1, FIS1) and physiological stress (UCP2, mTOR, HIF1α, PGC1α) as well as genes thought to be linked to cognition and behavior (CREB1, CamKinase II). These data show that the enteric microbiome-derived SCFA BT modulates mitochondrial activity, with this modulation dependent on concentration, microenvironment redox state, and the underlying mitochondrial function of the cell. In general, these data suggest that BT can enhance mitochondrial function in the context of physiological stress and/or mitochondrial dysfunction, and may be an important metabolite that can help rescue energy metabolism during disease states. Thus, insight into this metabolic modulator may have wide applications for both health and disease since BT has been implicated in a wide variety of conditions including ASD. However, future clinical studies in humans are needed to help define the practical implications of these physiological findings.
Collapse
|
123
|
Frye RE, Nankova B, Bhattacharyya S, Rose S, Bennuri SC, MacFabe DF. Modulation of Immunological Pathways in Autistic and Neurotypical Lymphoblastoid Cell Lines by the Enteric Microbiome Metabolite Propionic Acid. Front Immunol 2017; 8:1670. [PMID: 29312285 PMCID: PMC5744079 DOI: 10.3389/fimmu.2017.01670] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Propionic acid (PPA) is a ubiquitous short-chain fatty acid which is a fermentation product of the enteric microbiome and present or added to many foods. While PPA has beneficial effects, it is also associated with human disorders, including autism spectrum disorders (ASDs). We previously demonstrated that PPA modulates mitochondrial dysfunction differentially in subsets of lymphoblastoid cell lines (LCLs) derived from patients with ASD. Specifically, PPA significantly increases mitochondrial function in LCLs that have mitochondrial dysfunction at baseline [individuals with autistic disorder with atypical mitochondrial function (AD-A) LCLs] as compared to ASD LCLs with normal mitochondrial function [individuals with autistic disorder with normal mitochondrial function (AD-N) LCLs] and control (CNT) LCLs. PPA at 1 mM was found to have a minimal effect on expression of immune genes in CNT and AD-N LCLs. However, as hypothesized, Panther analysis demonstrated that 1 mM PPA exposure at 24 or 48 h resulted in significant activation of the immune system genes in AD-A LCLs. When the effect of PPA on ASD LCLs were compared to the CNT LCLs, both ASD groups demonstrated immune pathway activation, although the AD-A LCLs demonstrate a wider activation of immune genes. Ingenuity Pathway Analysis identified several immune-related pathways as key Canonical Pathways that were differentially regulated, specifically human leukocyte antigen expression and immunoglobulin production genes were upregulated. These data demonstrate that the enteric microbiome metabolite PPA can evoke atypical immune activation in LCLs with an underlying abnormal metabolic state. As PPA, as well as enteric bacteria which produce PPA, have been implicated in a wide variety of diseases which have components of immune dysfunction, including ASD, diabetes, obesity, and inflammatory diseases, insight into this metabolic modulator may have wide applications for both health and disease.
Collapse
Affiliation(s)
- Richard E Frye
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | | | - Sudeepa Bhattacharyya
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Sirish C Bennuri
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Derrick F MacFabe
- Kilee Patchell-Evans Autism Research Group, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
124
|
Associations Between Microbiota, Mitochondrial Function, and Cognition in Chronic Marijuana Users. J Neuroimmune Pharmacol 2017; 13:113-122. [PMID: 29101632 DOI: 10.1007/s11481-017-9767-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
Abstract
Marijuana (MJ) use is associated with cognitive deficits. Both mitochondrial (mt) dysfunction and gut dysbiosis also affect cognition. We examined whether cognition is related to peripheral blood mononuclear cells' (PBMCs) mt function and fecal microbiota in chronic MJ users. Nineteen chronic MJ users and 20 non-users were evaluated using the Cognition Battery in NIH Toolbox, their mt function for ATP production, and basal and maximal respirations were measured in PBMCs using the Seahorse XFe96 Analyzer, and the abundances of Prevotella and Bacteroides (associated with plant-based and animal product-based diet, respectively) were calculated from stool microbiota analysis. Average Prevotella:Bacteroides ratio was ~13-fold higher in nonusers than users. Lifetime MJ use correlated inversely with Prevotella:Bacteroides ratio (p = 0.05), mt function (p = 0.0027-0.0057), and Flanker Inhibitory Control and Attention (p = 0.041). Prevotella abundance correlated positively, while Bacteroides abundance correlated inversely, with mt function across all participants (p = 0.0004-0.06). Prevotella abundance also correlated positively with scores of Fluid Cognition, Flanker Inhibitory Control and Attention, List Sorting, and Dimension Change Card Sort in MJ users, but not in non-users (interaction-p = 0.018-0.05). Similarly, mt function correlated positively with scores of Fluid Cognition and Flanker Inhibitory Control and Attention in MJ users, but not in non-users (interaction-p = 0.0018-0.08). These preliminary findings suggest that MJ use is associated with alterations of gut microbiota and mt function, which may further contribute to cognitive deficits. We posited that MJ-associated low vegetable/fruit intake may contribute to these changes. Future studies are needed to delineate the relationships among diet, microbiota, mt function, and cognition in MJ users.
Collapse
|
125
|
Abstract
There is an emerging body of evidence linking the intestinal microbiota with autism spectrum disorders (ASD). Studies have demonstrated differences in the composition of gut bacteria between children with ASD and controls. Certain intestinal bacteria have been observed in abundance and may be involved in the pathogenesis of ASD; including members of the Clostridium and Sutterella genus. Evidence from animal models suggest that certain microbial shifts in the gut may produce changes consistent with the clinical picture of autism, with proposed mechanisms including toxin production, aberrations in fermentation processes/products, and immunological and metabolic abnormalities. In this article, we review studies examining the relationship between intestinal bacteria and ASD, and discuss bacterial species that may be implicated and proposed mechanisms.
Collapse
|
126
|
Lee Y, Park JY, Lee EH, Yang J, Jeong BR, Kim YK, Seoh JY, Lee S, Han PL, Kim EJ. Rapid Assessment of Microbiota Changes in Individuals with Autism Spectrum Disorder Using Bacteria-derived Membrane Vesicles in Urine. Exp Neurobiol 2017; 26:307-317. [PMID: 29093639 PMCID: PMC5661063 DOI: 10.5607/en.2017.26.5.307] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/13/2017] [Accepted: 09/24/2017] [Indexed: 12/12/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) have altered gut microbiota, which appears to regulate ASD symptoms via gut microbiota-brain interactions. Rapid assessment of gut microbiota profiles in ASD individuals in varying physiological contexts is important to understanding the role of the microbiota in regulating ASD symptoms. Microbiomes secrete extracellular membrane vesicles (EVs) to communicate with host cells and secreted EVs are widely distributed throughout the body including the blood and urine. In the present study, we investigated whether bacteria-derived EVs in urine are useful for the metagenome analysis of microbiota in ASD individuals. To address this, bacterial DNA was isolated from bacteria-derived EVs in the urine of ASD individuals. Subsequent metagenome analysis indicated markedly altered microbiota profiles at the levels of the phylum, class, order, family, and genus in ASD individuals relative to control subjects. Microbiota identified from urine EVs included gut microbiota reported in previous studies and their up- and down-regulation in ASD individuals were partially consistent with microbiota profiles previously assessed from ASD fecal samples. However, overall microbiota profiles identified in the present study represented a distinctive microbiota landscape for ASD. Particularly, the occupancy of g_Pseudomonas, g_Sphingomonas, g_Agrobacterium, g_Achromobacter, and g_Roseateles decreased in ASD, whereas g_Streptococcus, g_Akkermansia, g_Rhodococcus, and g_Halomonas increased. These results demonstrate distinctively altered gut microbiota profiles in ASD, and validate the utilization of urine EVs for the rapid assessment of microbiota in ASD.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | | | | | | | - Ju-Young Seoh
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - SoHyun Lee
- Department of Special Education, Ewha Womans University, Seoul 03760, Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Eui-Jung Kim
- Department of Psychiatry, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| |
Collapse
|
127
|
Rose S, Bennuri SC, Murray KF, Buie T, Winter H, Frye RE. Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: A blinded case-control study. PLoS One 2017; 12:e0186377. [PMID: 29028817 PMCID: PMC5640251 DOI: 10.1371/journal.pone.0186377] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/30/2017] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) symptoms are prevalent in autism spectrum disorder (ASD) but the pathophysiology is poorly understood. Imbalances in the enteric microbiome have been associated with ASD and can cause GI dysfunction potentially through disruption of mitochondrial function as microbiome metabolites modulate mitochondrial function and mitochondrial dysfunction is highly associated with GI symptoms. In this study, we compared mitochondrial function in rectal and cecum biopsies under the assumption that certain microbiome metabolites, such as butyrate and propionic acid, are more abundant in the cecum as compared to the rectum. Rectal and cecum mucosal biopsies were collected during elective diagnostic colonoscopy. Using a single-blind case-control design, complex I and IV and citrate synthase activities and complex I-V protein quantity from 10 children with ASD, 10 children with Crohn’s disease and 10 neurotypical children with nonspecific GI complaints were measured. The protein for all complexes, except complex II, in the cecum as compared to the rectum was significantly higher in ASD samples as compared to other groups. For both rectal and cecum biopsies, ASD samples demonstrated higher complex I activity, but not complex IV or citrate synthase activity, compared to other groups. Mitochondrial function in the gut mucosa from children with ASD was found to be significantly different than other groups who manifested similar GI symptomatology suggesting a unique pathophysiology for GI symptoms in children with ASD. Abnormalities localized to the cecum suggest a role for imbalances in the microbiome, potentially in the production of butyrate, in children with ASD.
Collapse
Affiliation(s)
- Shannon Rose
- Autism Research Program, Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Sirish C. Bennuri
- Autism Research Program, Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Katherine F. Murray
- Department of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, Massachusetts, United States of America
| | - Timothy Buie
- Department of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Harland Winter
- Department of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, Massachusetts, United States of America
| | - Richard Eugene Frye
- Autism Research Program, Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
128
|
Zeng Q, Wu S, Sukumaran J, Rodrigo A. Models of microbiome evolution incorporating host and microbial selection. MICROBIOME 2017; 5:127. [PMID: 28946894 PMCID: PMC5613328 DOI: 10.1186/s40168-017-0343-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/15/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. METHODS In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. RESULTS We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong parental contribution, when host-mediated selection acts on microbes concomitantly. CONCLUSIONS We present a computational framework that integrates different selective processes acting on the evolution of microbiomes. Our framework demonstrates that selection acting on microbes can have a strong effect on microbial diversities and fitnesses, whereas selection on hosts can have weaker outcomes.
Collapse
Affiliation(s)
- Qinglong Zeng
- Department of Biology, Duke University, Durham, NC USA
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territories Australia
| | - Steven Wu
- Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Jeet Sukumaran
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI USA
| | - Allen Rodrigo
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territories Australia
| |
Collapse
|
129
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross Talk: The Microbiota and Neurodevelopmental Disorders. Front Neurosci 2017; 11:490. [PMID: 28966571 PMCID: PMC5605633 DOI: 10.3389/fnins.2017.00490] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College CorkCork, Ireland.,Department of Anatomy and Neuroscience, University College CorkCork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
130
|
El Aidy S, Ramsteijn AS, Dini-Andreote F, van Eijk R, Houwing DJ, Salles JF, Olivier JDA. Serotonin Transporter Genotype Modulates the Gut Microbiota Composition in Young Rats, an Effect Augmented by Early Life Stress. Front Cell Neurosci 2017; 11:222. [PMID: 28824378 PMCID: PMC5540888 DOI: 10.3389/fncel.2017.00222] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/13/2017] [Indexed: 02/01/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) plays a vital regulatory role in both the brain and gut. 5-HT is crucial for regulating mood in the brain as well as gastrointestinal motility and secretion peripherally. Alterations in 5-HT transmission have been linked to pathological symptoms in both intestinal and psychiatric disorders and selective 5-HT transporter (5-HTT) inhibitors, affecting the 5-HT system by blocking the 5-HT transporter (5-HTT) have been successfully used to treat CNS- and intestinal disorders. Humans that carry the short allele of the 5-HTT-linked polymorphic region (5-HTTLPR) are more vulnerable to adverse environmental stressors, in particular early life stress. Although, early life stress has been shown to alter the composition of the gut microbiota, it is not known whether a lower 5-HTT expression is also associated with an altered microbiome composition. To investigate this, male and female wild type (5-HTT+/+), heterozygous (5-HTT+/-), and knockout (5-HTT-/-) 5-HT transporter rats were maternally separated for 6 h a day from postnatal day 2 till 15. On postnatal day 21, fecal samples were collected and the impact of 5-HTT genotype and maternal separation (MS) on the microbiome was analyzed using high-throughput sequencing of the bacterial 16S rRNA gene. MS showed a shift in the ratio between the two main bacterial phyla characterized by a decrease in Bacteroidetes and an increase in Firmicutes. Interestingly, the 5-HTT genotype caused a greater microbal dysbiosis (microbial imbalance) compared with MS. A significant difference in microbiota composition was found segregating 5-HTT-/- apart from 5-HTT+/- and 5-HTT+/+ rats. Moreover, exposure of rats with 5-HTT diminished expression to MS swayed the balance of their microbiota away from homeostasis to 'inflammatory' type microbiota characterized by higher abundance of members of the gut microbiome including Desulfovibrio, Mucispirillum, and Fusobacterium, all of which are previously reported to be associated with a state of intestinal inflammation, including inflammation associated with MS and brain disorders like multiple depressive disorders. Overall, our data show for the first time that altered expression of 5-HTT induces disruptions in male and female rat gut microbes and these 5-HTT genotype-related disruptions are augmented when combined with early life stress.
Collapse
Affiliation(s)
- Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Anouschka S Ramsteijn
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Francisco Dini-Andreote
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Roel van Eijk
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Danielle J Houwing
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Joana F Salles
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Jocelien D A Olivier
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| |
Collapse
|
131
|
Abstract
The microbiota is increasingly recognized for its ability to influence the development and function of the nervous system and several complex host behaviors. In this review, we discuss emerging roles for the gut microbiota in modulating host social and communicative behavior, stressor-induced behavior, and performance in learning and memory tasks. We summarize effects of the microbiota on host neurophysiology, including brain microstructure, gene expression, and neurochemical metabolism across regions of the amygdala, hippocampus, frontal cortex, and hypothalamus. We further assess evidence linking dysbiosis of the gut microbiota to neurobehavioral diseases, such as autism spectrum disorder and major depression, drawing upon findings from animal models and human trials. Finally, based on increasing associations between the microbiota, neurophysiology, and behavior, we consider whether investigating mechanisms underlying the microbiota-gut-brain axis could lead to novel approaches for treating particular neurological conditions.
Collapse
Affiliation(s)
- Helen E Vuong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095;
| | - Jessica M Yano
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095;
| | - Thomas C Fung
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095;
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095;
| |
Collapse
|
132
|
Zhu X, Han Y, Du J, Liu R, Jin K, Yi W. Microbiota-gut-brain axis and the central nervous system. Oncotarget 2017; 8:53829-53838. [PMID: 28881854 PMCID: PMC5581153 DOI: 10.18632/oncotarget.17754] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.
Collapse
Affiliation(s)
- Xiqun Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, P.R. China
| | - Jing Du
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, P.R. China
| | - Renzhong Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ketao Jin
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, P.R. China
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
133
|
Rossi E, Cimdins A, Lüthje P, Brauner A, Sjöling Å, Landini P, Römling U. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 2017; 44:1-30. [PMID: 28485690 DOI: 10.1080/1040841x.2017.1303660] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract.
Collapse
Affiliation(s)
- Elio Rossi
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy.,b Novo Nordisk Center for Biosustainabiliy , Technical University of Denmark , Kgs. Lyngby , Denmark
| | - Annika Cimdins
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,d Institute of Hygiene, University of Münster , Münster , Germany
| | - Petra Lüthje
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,e Division of Clinical Microbiology, Department of Laboratory Medicine , Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Annelie Brauner
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Åsa Sjöling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Paolo Landini
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy
| | - Ute Römling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
134
|
Li Q, Han Y, Dy ABC, Hagerman RJ. The Gut Microbiota and Autism Spectrum Disorders. Front Cell Neurosci 2017; 11:120. [PMID: 28503135 PMCID: PMC5408485 DOI: 10.3389/fncel.2017.00120] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal (GI) symptoms are a common comorbidity in patients with autism spectrum disorder (ASD), but the underlying mechanisms are unknown. Many studies have shown alterations in the composition of the fecal flora and metabolic products of the gut microbiome in patients with ASD. The gut microbiota influences brain development and behaviors through the neuroendocrine, neuroimmune and autonomic nervous systems. In addition, an abnormal gut microbiota is associated with several diseases, such as inflammatory bowel disease (IBD), ASD and mood disorders. Here, we review the bidirectional interactions between the central nervous system and the gastrointestinal tract (brain-gut axis) and the role of the gut microbiota in the central nervous system (CNS) and ASD. Microbiome-mediated therapies might be a safe and effective treatment for ASD.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University First HospitalBeijing, China
| | - Ying Han
- Department of Pediatrics, Peking University First HospitalBeijing, China
| | - Angel Belle C Dy
- School of Medicine and Public Health, Ateneo de Manila UniversityQuezon City, Philippines
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical CenterSacramento, CA, USA.,Department of Pediatrics, University of California Davis Medical CenterSacramento, CA, USA
| |
Collapse
|
135
|
Xu Y, Zhou H, Zhu Q. The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment. Front Aging Neurosci 2017; 9:106. [PMID: 28496408 PMCID: PMC5406474 DOI: 10.3389/fnagi.2017.00106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/31/2017] [Indexed: 12/11/2022] Open
Abstract
Progressive cognitive dysfunction is a central characteristic of diabetic encephalopathy (DE). With an aging population, the incidence of DE is rising and it has become a major threat that seriously affects public health. Studies within this decade have indicated the important role of risk factors such as oxidative stress and inflammation on the development of cognitive impairment. With the recognition of the two-way communication between gut and brain, recent investigation suggests that “microbiota-gut-brain axis” also plays a pivotal role in modulating both cognition function and endocrine stability. This review aims to systemically elucidate the underlying impact of diabetes on cognitive impairment.
Collapse
Affiliation(s)
- Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau
| | - Quan Zhu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau.,Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney DiseasesGuangzhou, China
| |
Collapse
|
136
|
|
137
|
Krsička D, Geryk J, Vlčková M, Havlovicová M, Macek M, Pourová R. Identification of likely associations between cerebral folate deficiency and complex genetic- and metabolic pathogenesis of autism spectrum disorders by utilization of a pilot interaction modeling approach. Autism Res 2017; 10:1424-1435. [DOI: 10.1002/aur.1780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/01/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Krsička
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Jan Geryk
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Markéta Vlčková
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Milan Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Radka Pourová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| |
Collapse
|
138
|
Parker W, Hornik CD, Bilbo S, Holzknecht ZE, Gentry L, Rao R, Lin SS, Herbert MR, Nevison CD. The role of oxidative stress, inflammation and acetaminophen exposure from birth to early childhood in the induction of autism. J Int Med Res 2017; 45:407-438. [PMID: 28415925 PMCID: PMC5536672 DOI: 10.1177/0300060517693423] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The wide range of factors associated with the induction of autism is invariably linked with either inflammation or oxidative stress, and sometimes both. The use of acetaminophen in babies and young children may be much more strongly associated with autism than its use during pregnancy, perhaps because of well-known deficiencies in the metabolic breakdown of pharmaceuticals during early development. Thus, one explanation for the increased prevalence of autism is that increased exposure to acetaminophen, exacerbated by inflammation and oxidative stress, is neurotoxic in babies and small children. This view mandates extreme urgency in probing the long-term effects of acetaminophen use in babies and the possibility that many cases of infantile autism may actually be induced by acetaminophen exposure shortly after birth.
Collapse
Affiliation(s)
- William Parker
- 1 Departments of Surgery, Duke University Medical Center, Durham, NC USA
| | - Chi Dang Hornik
- 2 Departments of Pediatrics, Duke University Medical Center, Durham, NC USA
| | - Staci Bilbo
- 3 Departments of Pediatrics, Harvard Medical School, Charlestown, MA, USA
| | - Zoie E Holzknecht
- 1 Departments of Surgery, Duke University Medical Center, Durham, NC USA
| | - Lauren Gentry
- 1 Departments of Surgery, Duke University Medical Center, Durham, NC USA
| | - Rasika Rao
- 1 Departments of Surgery, Duke University Medical Center, Durham, NC USA
| | - Shu S Lin
- 1 Departments of Surgery, Duke University Medical Center, Durham, NC USA
| | - Martha R Herbert
- 4 Departments of Neurology, Harvard Medical School, Charlestown, MA, USA
| | - Cynthia D Nevison
- 5 Institute for Arctic and Alpine Research, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
139
|
Cheng N, Rho JM, Masino SA. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches. Front Mol Neurosci 2017; 10:34. [PMID: 28270747 PMCID: PMC5318388 DOI: 10.3389/fnmol.2017.00034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed.
Collapse
Affiliation(s)
- Ning Cheng
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
| | - Jong M. Rho
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
- Clinical Neurosciences, University of CalgaryCalgary, AB, Canada
- Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - Susan A. Masino
- Neuroscience Program, Department of Psychology, Trinity CollegeHartford, CT, USA
| |
Collapse
|
140
|
Proctor C, Thiennimitr P, Chattipakorn N, Chattipakorn SC. Diet, gut microbiota and cognition. Metab Brain Dis 2017; 32:1-17. [PMID: 27709426 DOI: 10.1007/s11011-016-9917-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.
Collapse
Affiliation(s)
- Cicely Proctor
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
141
|
Noble EE, Hsu TM, Kanoski SE. Gut to Brain Dysbiosis: Mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment. Front Behav Neurosci 2017; 11:9. [PMID: 28194099 PMCID: PMC5277010 DOI: 10.3389/fnbeh.2017.00009] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
Consumption of a Western Diet (WD) that is high in saturated fat and added sugars negatively impacts cognitive function, particularly mnemonic processes that rely on the integrity of the hippocampus. Emerging evidence suggests that the gut microbiome influences cognitive function via the gut-brain axis, and that WD factors significantly alter the proportions of commensal bacteria in the gastrointestinal tract. Here we review mechanisms through which consuming a WD negatively impacts neurocognitive function, with a particular focus on recent evidence linking the gut microbiome with dietary- and metabolic-associated hippocampal impairment. We highlight evidence linking gut bacteria to altered intestinal permeability and blood brain barrier integrity, thus making the brain more vulnerable to the influx of deleterious substances from the circulation. WD consumption also increases production of endotoxin by commensal bacteria, which may promote neuroinflammation and cognitive dysfunction. Recent findings also show that diet-induced alterations in gut microbiota impair peripheral insulin sensitivity, which is associated with hippocampal neuronal derrangements and associated mnemonic deficits. In some cases treatment with specific probiotics or prebiotics can prevent or reverse some of the deleterious impact of WD consumption on neuropsychological outcomes, indicating that targeting the microbiome may be a successful strategy for combating dietary- and metabolic-associated cognitive impairment.
Collapse
Affiliation(s)
- Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Ted M Hsu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA; Neuroscience Program, University of Southern CaliforniaLos Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA; Neuroscience Program, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
142
|
The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Transl Res 2017; 179:126-138. [PMID: 27519147 PMCID: PMC5164971 DOI: 10.1016/j.trsl.2016.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/20/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
There is considerable interest in trying to understand the importance of the gut microbiome in human diseases. The association between dysbiosis, an altered microbial composition, as related to human disease is being explored in the context of different autoimmune conditions, including multiple sclerosis (MS). Recent studies suggest that MS affects the composition of the gut microbiota by altering the relative abundances of specific bacteria and archaea species. Remarkably, some of the bacterial species shown reduced in the gut of MS patients are known to promote immunosuppressive regulatory T cells (Tregs). In MS, the function of a phenotype of Tregs that express CD39, an ectoenzyme involved in the catabolism of adenosine triphosphate as immunomodulatory cells, appears to be reduced. In this review, we discuss the involvement of the gut microbiota in the regulation of experimental models of central nervous system inflammatory demyelination and review the evidence that link the gut microbiome with MS. Further, we hypothesize that the gut microbiome is an essential organ for the control of tolerance in MS patients and a potential source for safer novel therapeutics.
Collapse
|
143
|
Propionic acid metabolism, ASD, and vitamin B12: Is there a role for environmental nitrous oxide? Int J Dev Neurosci 2016; 57:21-23. [PMID: 28043894 DOI: 10.1016/j.ijdevneu.2016.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/17/2016] [Accepted: 12/27/2016] [Indexed: 01/07/2023] Open
Abstract
Foley et al. (2014) published their findings in this journal on the role of prenatal exposure to propionic acid (PPA) and behavioral outcomes in treated rat pups. The authors show that PPA treated pups displayed subtle differences in behavior including nest seeking, novel object recognition, and locomotor activity. Others have previously proposed that PPA infusion in rat could represent a valid animal model of ASD since many of the diagnostic criteria for the disorder spectrum manifest under such conditions. A pathogenic makeover of gut microbiome to facilitate the growth of microbes capable of producing PPA, like Clostridia species, has been proposed as an infectious contributing etiology to the PPA model of ASD, however the reason for this pathogenic microbial overgrowth is not clear. This discussion highlights a previously identified novel environmental factor (i.e., nitrous oxide, N2O) in the etiopathogenesis of ASD and related neuropathology and posits that altered PPA metabolism in ASD may represent a key manifestation of this particular exposure. Trace environmental exposure to N2O may induce release of endogenous opioid peptides that have been shown to confer a virulence advantage to certain microbes, like Pseudomonas aeruginosa. Pathogenic overproduction of PPA in ASD may be a compensatory mechanism to curb this enhanced virulence potential. Therefore, future research on the PPA model of ASD should consider its role as a consequence of environmental exposure to N2O.
Collapse
|
144
|
Berding K, Donovan SM. Microbiome and nutrition in autism spectrum disorder: current knowledge and research needs. Nutr Rev 2016; 74:723-736. [DOI: 10.1093/nutrit/nuw048] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
145
|
Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS Drugs 2016; 30:1019-1041. [PMID: 27417321 PMCID: PMC5078156 DOI: 10.1007/s40263-016-0370-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of the gut microbiota in health and disease is becoming increasingly recognized. The microbiota-gut-brain axis is a bi-directional pathway between the brain and the gastrointestinal system. The bacterial commensals in our gut can signal to the brain through a variety of mechanisms, which are slowly being resolved. These include the vagus nerve, immune mediators and microbial metabolites, which influence central processes such as neurotransmission and behaviour. Dysregulation in the composition of the gut microbiota has been identified in several neuropsychiatric disorders, such as autism, schizophrenia and depression. Moreover, preclinical studies suggest that they may be the driving force behind the behavioural abnormalities observed in these conditions. Understanding how bacterial commensals are involved in regulating brain function may lead to novel strategies for development of microbiota-based therapies for these neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eoin Sherwin
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kiran V Sandhu
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
146
|
Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plast 2016; 2016:3597209. [PMID: 27840741 PMCID: PMC5093279 DOI: 10.1155/2016/3597209] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/24/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Several genetic causes of autism spectrum disorder (ASD) have been identified. However, more recent work has highlighted that certain environmental exposures early in life may also account for some cases of autism. Environmental insults during pregnancy, such as infection or malnutrition, seem to dramatically impact brain development. Maternal viral or bacterial infections have been characterized as disruptors of brain shaping, even if their underlying mechanisms are not yet fully understood. Poor nutritional diversity, as well as nutrient deficiency, is strongly associated with neurodevelopmental disorders in children. For instance, imbalanced levels of essential fatty acids, and especially polyunsaturated fatty acids (PUFAs), are observed in patients with ASD and other neurodevelopmental disorders (e.g., attention deficit hyperactivity disorder (ADHD) and schizophrenia). Interestingly, PUFAs, and specifically n-3 PUFAs, are powerful immunomodulators that exert anti-inflammatory properties. These prenatal dietary and immunologic factors not only impact the fetal brain, but also affect the microbiota. Recent work suggests that the microbiota could be the missing link between environmental insults in prenatal life and future neurodevelopmental disorders. As both nutrition and inflammation can massively affect the microbiota, we discuss here how understanding the crosstalk between these three actors could provide a promising framework to better elucidate ASD etiology.
Collapse
|
147
|
Slattery J, MacFabe DF, Frye RE. The Significance of the Enteric Microbiome on the Development of Childhood Disease: A Review of Prebiotic and Probiotic Therapies in Disorders of Childhood. Clin Med Insights Pediatr 2016; 10:91-107. [PMID: 27774001 PMCID: PMC5063840 DOI: 10.4137/cmped.s38338] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies have highlighted the fact that the enteric microbiome, the trillions of microbes that inhabit the human digestive tract, has a significant effect on health and disease. Methods for manipulating the enteric microbiome, particularly through probiotics and microbial ecosystem transplantation, have undergone some study in clinical trials. We review some of the evidence for microbiome alteration in relation to childhood disease and discuss the clinical trials that have examined the manipulation of the microbiome in an effort to prevent or treat childhood disease with a primary focus on probiotics, prebiotics, and/or synbiotics (ie, probiotics + prebiotics). Studies show that alterations in the microbiome may be a consequence of events occurring during infancy and/or childhood such as prematurity, C-sections, and nosocomial infections. In addition, certain childhood diseases have been associated with microbiome alterations, namely necrotizing enterocolitis, infantile colic, asthma, atopic disease, gastrointestinal disease, diabetes, malnutrition, mood/anxiety disorders, and autism spectrum disorders. Treatment studies suggest that probiotics are potentially protective against the development of some of these diseases. Timing and duration of treatment, the optimal probiotic strain(s), and factors that may alter the composition and function of the microbiome are still in need of further research. Other treatments such as prebiotics, fecal microbial transplantation, and antibiotics have limited evidence. Future translational work, in vitro models, long-term and follow-up studies, and guidelines for the composition and viability of probiotic and microbial therapies need to be developed. Overall, there is promising evidence that manipulating the microbiome with probiotics early in life can help prevent or reduce the severity of some childhood diseases, but further research is needed to elucidate biological mechanisms and determine optimal treatments.
Collapse
Affiliation(s)
- John Slattery
- Arkansas Children’s Research Institute, Little Rock, AR, USA
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Derrick F. MacFabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, University of Western Ontario, London, ON, Canada
| | - Richard E. Frye
- Arkansas Children’s Research Institute, Little Rock, AR, USA
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
148
|
Frye RE, Rose S, Chacko J, Wynne R, Bennuri SC, Slattery JC, Tippett M, Delhey L, Melnyk S, Kahler SG, MacFabe DF. Modulation of mitochondrial function by the microbiome metabolite propionic acid in autism and control cell lines. Transl Psychiatry 2016; 6:e927. [PMID: 27779624 PMCID: PMC5290345 DOI: 10.1038/tp.2016.189] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
Propionic acid (PPA) is a ubiquitous short-chain fatty acid, which is a major fermentation product of the enteric microbiome. PPA is a normal intermediate of metabolism and is found in foods, either naturally or as a preservative. PPA and its derivatives have been implicated in both health and disease. Whereas PPA is an energy substrate and has many proposed beneficial effects, it is also associated with human disorders involving mitochondrial dysfunction, including propionic acidemia and autism spectrum disorders (ASDs). We aimed to investigate the dichotomy between the health and disease effects of PPA by measuring mitochondrial function in ASD and age- and gender-matched control lymphoblastoid cell lines (LCLs) following incubation with PPA at several concentrations and durations both with and without an in vitro increase in reactive oxygen species (ROS). Mitochondrial function was optimally increased at particular exposure durations and concentrations of PPA with ASD LCLs, demonstrating a greater enhancement. In contrast, increasing ROS negated the positive PPA effect with the ASD LCLs, showing a greater detriment. These data demonstrate that enteric microbiome metabolites such as PPA can have both beneficial and toxic effects on mitochondrial function, depending on concentration, exposure duration and microenvironment redox state with these effects amplified in LCLs derived from individuals with ASD. As PPA, as well as enteric bacteria, which produce PPA, have been implicated in a wide variety of diseases, including ASD, diabetes, obesity and inflammatory diseases, insight into this metabolic modulator from the host microbiome may have wide applications for both health and disease.
Collapse
Affiliation(s)
- R E Frye
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA,Arkansas Children's Research Institute, Slot 512-41B, 13 Children's Way, Little Rock, AR 72202, USA. E-mail:
| | - S Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - J Chacko
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - R Wynne
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - S C Bennuri
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - J C Slattery
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - M Tippett
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - L Delhey
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - S Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - S G Kahler
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - D F MacFabe
- Kilee Patchell-Evans Autism Research Group, Division of Developmental Disabilities, Department of Psychology/Psychiatry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
149
|
Berger B, Daniels NM, Yu YW. Computational Biology in the 21st Century: Scaling with Compressive Algorithms. COMMUNICATIONS OF THE ACM 2016; 59:72-80. [PMID: 28966343 PMCID: PMC5615407 DOI: 10.1145/2957324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Algorithmic advances take advantage of the structure of massive biological data landscape.
Collapse
Affiliation(s)
- Bonnie Berger
- Department of Mathematics and EECS at Massachusetts Institute of Technology, Cambridge, MA
| | - Noah M Daniels
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
| | - Y William Yu
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
150
|
Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2016; 27:30971. [PMID: 27389418 PMCID: PMC4937721 DOI: 10.3402/mehd.v27.30971] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
Abstract
The symbiotic gut microbiota plays an important role in the development and homeostasis of the host organism. Its physiological, biochemical, behavioral, and communicative effects are mediated by multiple low molecular weight compounds. Recent data on small molecules produced by gut microbiota in mammalian organisms demonstrate the paramount importance of these biologically active molecules in terms of biology and medicine. Many of these molecules are pleiotropic mediators exerting effects on various tissues and organs. This review is focused on the functional roles of gaseous molecules that perform neuromediator and/or endocrine functions. The molecular mechanisms that underlie the effects of microbial fermentation-derived gaseous metabolites are not well understood. It is possible that these metabolites produce their effects via immunological, biochemical, and neuroendocrine mechanisms that involve endogenous and microbial modulators and transmitters; of considerable importance are also changes in epigenetic transcriptional factors, protein post-translational modification, lipid and mitochondrial metabolism, redox signaling, and ion channel/gap junction/transporter regulation. Recent findings have revealed that interactivity among such modulators/transmitters is a prerequisite for the ongoing dialog between microbial cells and host cells, including neurons. Using simple reliable methods for the detection and measurement of short-chain fatty acids (SCFAs) and small gaseous molecules in eukaryotic tissues and prokaryotic cells, selective inhibitors of enzymes that participate in their synthesis, as well as safe chemical and microbial donors of pleiotropic mediators and modulators of host intestinal microbial ecology, should enable us to apply these chemicals as novel therapeutics and medical research tools.
Collapse
Affiliation(s)
- Alexander V Oleskin
- General Ecology Department, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Boris A Shenderov
- Moscow Research Institute of Epidemiology and Microbiology after G.N. Gabrichevsky, Moscow, Russia; ;
| |
Collapse
|