101
|
Mossman SP, Pierce CC, Watson AJ, Robertson MN, Montefiori DC, Kuller L, Richardson BA, Bradshaw JD, Munn RJ, Hu SL, Greenberg PD, Benveniste RE, Haigwood NL. Protective immunity to SIV challenge elicited by vaccination of macaques with multigenic DNA vaccines producing virus-like particles. AIDS Res Hum Retroviruses 2004; 20:425-34. [PMID: 15157361 DOI: 10.1089/088922204323048177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We utilized SIV(mne) infection of Macaca fascicularis to assess the efficacy of DNA vaccination alone, and as a priming agent in combination with subunit protein boosts. All SIV(mne) structural and regulatory genes were expressed using the human cytomegalovirus Immediate Early-1 promoter in plasmids that directed the formation of virus-like particles in vitro. Macaques (n = 4) were immunized intradermally and intramuscularly four times over 36 weeks with 3 mg plasmid DNA. A second group (n = 4) received two DNA priming inoculations followed by two intramuscular boosts consisting of 250 microg recombinant Env gp160 and 250 microg recombinant Gag-Pol particles in MF-59 adjuvant. These regimens elicited modest cellular immunity prior to challenge. Humoral immune responses to Env gp160 were elicited and sustained by both vaccine protocols, and as expected antibody titers were higher in the protein subunit-boosted animals. Neutralizing antibodies prior to challenge were measurable in two of four subunit-boosted macaques. The two vaccine regimens elicited comparable helper T cell responses at the time of challenge. Vaccinees and mock-immunized controls (n = 4) were challenged intrarectally at week 38 with uncloned SIV(mne). Following challenge all macaques became infected, but both vaccine regimens resulted in reduced peak virus loads (p = 0.07) and significantly improved maintenance of peripheral CD4(+) T cell counts postchallenge (p = 0.007, DNA alone and p = 0.01, all vaccinees). There was no significant difference between the two vaccine groups in levels of plasma viremia or maintenance of CD4(+) T cell counts postchallenge.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/immunology
- CD4 Lymphocyte Count
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/immunology
- Gene Products, env/immunology
- HIV Envelope Protein gp160/genetics
- HIV Envelope Protein gp160/immunology
- Immunity, Cellular
- Macaca fascicularis
- Neutralization Tests
- Plasmids
- Proviruses/genetics
- Proviruses/isolation & purification
- RNA, Viral/blood
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Viral Load
Collapse
Affiliation(s)
- Sally P Mossman
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abel K, La Franco-Scheuch L, Rourke T, Ma ZM, De Silva V, Fallert B, Beckett L, Reinhart TA, Miller CJ. Gamma interferon-mediated inflammation is associated with lack of protection from intravaginal simian immunodeficiency virus SIVmac239 challenge in simian-human immunodeficiency virus 89.6-immunized rhesus macaques. J Virol 2004; 78:841-54. [PMID: 14694116 PMCID: PMC368742 DOI: 10.1128/jvi.78.2.841-854.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although gamma interferon (IFN-gamma) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-gamma-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-gamma T-cell responses and nonspecific IFN-gamma-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-gamma mRNA levels and a high frequency of IFN-gamma-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-gamma mRNA levels and strong in vitro SIV-specific IFN-gamma T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-gamma mRNA levels but weak in vitro anti-SIV IFN-gamma T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-gamma mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3(+) activated T cells. Thus, IFN-gamma-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-gamma-driven inflammation, but they did develop effective antiviral CD8(+)-T-cell responses.
Collapse
Affiliation(s)
- Kristina Abel
- Center for Comparative Medicine, California National Primate Research Center, University of California-Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Malkevitch N, Rohne D, Pinczewski J, Aldrich K, Kalyanaraman VS, Letvin NL, Robert-Guroff M. Evaluation of combination DNA/replication-competent Ad-SIV recombinant immunization regimens in rhesus macaques. AIDS Res Hum Retroviruses 2004; 20:235-44. [PMID: 15018712 DOI: 10.1089/088922204773004969] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Combination vaccine regimens in which priming with recombinant DNA is followed by boosting with recombinant viral vectors have been shown in previous studies to effectively enhance cellular immunity. However, no information exists concerning possible synergy of the cellular immune response when DNA immunization is followed by administration of a recombinant vector able to replicate. As our approach makes use of replication-competent Ad HIV and SIV recombinants, we performed a pilot experiment in six rhesus macaques in which we compared immunogenicity resulting from priming with one or two DNA recombinants encoding the SIVsmH4 env and rev genes with that elicited by a single replication-competent Ad5hr-SIV env/rev priming immunization. All macaques were subsequently administered an Ad5hr-SIV env/rev booster immunization followed by two immunizations with SIV gp120 protein. The choice of the env gene as target immunogen allowed comparison of induced cellular immune responses as well as binding and neutralizing antibodies elicited in serum and mucosal secretions. We report here that all immunized monkeys developed strong cellular immunity to the SIV envelope as shown by secretion of interferon-gamma, lysis of envelope-expressing target cells, and/or proliferation in response to gp120 or inactivated SIV. Similarly, all macaques developed anti-gp120 binding antibodies and neutralizing antibodies in serum and IgG and IgA binding antibodies in mucosal secretions. We did not observe consistently enhanced immune responses in any immunization group. We conclude that two sequential immunizations with the same replication-competent Ad5hr-SIV recombinant is as effective as priming with one or two recombinant DNA vaccines followed by a single Ad5hrSIV recombinant immunization.
Collapse
Affiliation(s)
- Nina Malkevitch
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Nagata T, Aoshi T, Uchijima M, Suzuki M, Koide Y. Cytotoxic T-Lymphocyte-, and Helper T-Lymphocyte-Oriented DNA Vaccination. DNA Cell Biol 2004; 23:93-106. [PMID: 15000749 DOI: 10.1089/104454904322759902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA vaccines have advantages over other types of vaccines in that they can induce strong cellular immune responses, namely cytotoxic T lymphocytes (CTL) and helper T lymphocytes (Th). DNA vaccines are therefore considered a promising alternative to attenuated live vaccines in the field of infectious diseases. So far, various DNA vaccines have been generated and tried to induce a particular cellular immune response by virtue of recombinant DNA technology. DNA vaccines have been designed for efficient transcription and translation of target genes by a variety of strategies. Also, various DNA vaccine strategies for induction of specific CTL and Th have been reported by taking into consideration antigen presentation pathways and the strategies have been shown to be effective to elicit particular T-cell responses. In this paper, we have reviewed these strategies, including our study on epitope-specific T-cell induction by DNA vaccination against Listeria monocytogenes infection. From this review, it has been surmised that, to induce strong immune responses by DNA vaccines, the immunization route and the immunization regimen, such as heterologous "prime-boost" regimen, should also be considered.
Collapse
Affiliation(s)
- Toshi Nagata
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
105
|
Vogel TU, Reynolds MR, Fuller DH, Vielhuber K, Shipley T, Fuller JT, Kunstman KJ, Sutter G, Marthas ML, Erfle V, Wolinsky SM, Wang C, Allison DB, Rud EW, Wilson N, Montefiori D, Altman JD, Watkins DI. Multispecific vaccine-induced mucosal cytotoxic T lymphocytes reduce acute-phase viral replication but fail in long-term control of simian immunodeficiency virus SIVmac239. J Virol 2004; 77:13348-60. [PMID: 14645590 PMCID: PMC296068 DOI: 10.1128/jvi.77.24.13348-13360.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given the current difficulties generating vaccine-induced neutralizing antibodies to human immunodeficiency virus (HIV), the focus of the vaccine community has shifted toward creating cytotoxic-T-lymphocyte (CTL)-based vaccines. Recent reports of CTL-based vaccine trials in macaques challenged with simian/human immunodeficiency virus SHIV-89.6P have supported the notion that such vaccines can ameliorate the course of disease. However, almost all of these studies included Env as an immunogen and since SHIV-89.6P is sensitive to neutralizing antibodies it is difficult to determine the mechanism(s) of protection. Consequently, SHIV-89.6P challenge of macaques may be a poor model for determining vaccine efficacy in humans. To ascertain the effect of vaccine-induced multispecific mucosal CTL, in the absence of Env-specific antibody, on the control of an immunodeficiency virus challenge, we vaccinated Mamu-A*01(+) macaques with constructs encoding a combination of CTL epitopes and full-length proteins (Tat, Rev, and Nef) by using a DNA prime/recombinant modified vaccinia virus Ankara (rMVA) boost regimen. The vaccination induced virus-specific CTL and CD4(+) helper T lymphocytes with CTL frequencies as high as 20,000/million peripheral blood mononuclear cells. The final rMVA vaccination, delivered intravenously, engendered long-lived mucosal CTL. At 16 weeks after the final rMVA vaccination, the vaccinees and naive, Mamu-A*01(+) controls were challenged intrarectally with SIVmac239. Massive early anamnestic cellular immune responses controlled acute-phase viral replication; however, the three vaccinees were unable to control virus replication in the chronic phase. The present study suggests that multispecific mucosal CTL, in the absence of neutralizing antibodies, can achieve a modicum of control over early viral replication but are unable to control chronic-phase viral replication after a high-dose mucosal challenge with a pathogenic simian immunodeficiency virus.
Collapse
Affiliation(s)
- Thorsten U Vogel
- Wisconsin Primate Research Center. Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53715, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Taracha ELN, Bishop R, Musoke AJ, Hill AVS, Gilbert SC. Heterologous priming-boosting immunization of cattle with Mycobacterium tuberculosis 85A induces antigen-specific T-cell responses. Infect Immun 2004; 71:6906-14. [PMID: 14638779 PMCID: PMC308883 DOI: 10.1128/iai.71.12.6906-6914.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterologous priming-boosting vaccination regimens involving priming with plasmid DNA antigen constructs and inoculating (boosting) with the same recombinant antigen expressed in replication-attenuated poxviruses have recently been demonstrated to induce immunity, based on CD4(+)- and CD8(+)-T-cell responses, against several diseases in both rodents and primates. We show that similar priming-boosting vaccination strategies using the 85A antigen of Mycobacterium tuberculosis are effective in inducing antigen-specific gamma interferon-secreting CD4(+) and CD8(+) T cells, detected by a bovine enzyme-linked immunospot assay, in Bos indicus cattle. T-cell responses induced by priming with either plasmid DNA or fowlpox virus 85A constructs were enhanced by boosting with modified vaccinia virus Ankara expressing the same antigen administered intradermally. On the basis of the data, it appears that intradermal priming was more effective than intramuscular delivery of the priming dose for boosting with the modified vaccinia virus Ankara strain in cattle. Using either fowlpox virus or DNA priming, there was a significant bias toward induction of CD4(+)- rather than CD8(+)-T-cell responses. These data illustrate the general applicability of priming-boosting vaccination strategies for induction of antigen-specific T-cell responses and suggest that the method may be useful for development of veterinary vaccines.
Collapse
|
107
|
Abstract
Few advances in the history of vaccination have had as quick a passage (approximately 10 years) from their discovery to clinical trials and, hopefully soon, registration as DNA immunisation. A very clear picture has now emerged of the recognition of the CpG-motif rich, chimaeric bacterial DNA by dendritic cells (antigen-presenting cells [APCs]) and the subsequent activation of T lymphocytes. Both humoral and comprehensive cell-mediated responses occur in both mice and primates. No significant safety concerns have been observed following administration to several hundred human volunteers, including some children. Of special interest is the generation of strong and high avidity CD8+ cytotoxic T lymphocyte (CTL) responses in primates, following priming with chimaeric DNA and subsequent boosting with a chimaeric live viral vector, such as an attenuated poxvirus or adenovirus. The DNA may also be used as a highly potent adjuvant, inducing mainly T helper (Th)1 responses. Advantages include its potential use in the presence of antibody to the targeted infectious agent and a generally simple manufacturing process.
Collapse
Affiliation(s)
- Gordon Ada
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
108
|
Vázquez-Blomquist D, Iglesias E, González-Horta EE, Duarte CA. The HIV-1 chimeric protein CR3 expressed by poxviral vectors induces a diverse CD8+ T cell response in mice and is antigenic for PBMCs from HIV+ patients. Vaccine 2003; 22:145-55. [PMID: 14615141 DOI: 10.1016/j.vaccine.2003.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant avipoxvirus vectors are attractive for vaccination against human immunodeficiency virus type 1 (HIV-1), where induction of a cytotoxic CD8(+) T cell (CTL) response seems to be an important component of protective immunity. We expressed the chimeric protein CR3, composed by CTL epitopes rich regions from, RT, Gag and Nef and conserved Th cell epitopes from gp120, gp41 and Vpr of HIV-1 in a fowlpox virus (FWPV) vector (FPCR3), and used this vector to induce HIV-specific CTL responses in mice. Mice immunised twice intraperitoneally with FPCR3, developed a CD8(+) T cell response measured as production of IFN-gamma by splenocytes in response to stimulation with P815 cells infected with recombinant vaccinia viruses (rVV) expressing CR3, Gag and Nef. The number of IFN-gamma secreting cells was markedly higher when a P815 cell line constitutively expressing CR3 was used as target cells for Enzyme-linked-immunospot (ELISPOT). CR3 epitopes were also specifically recognised by human PBMCs from three HIV(+) patients with different haplotypes. These results confirm the potential of FWPV vectors expressing these novel HIV-1 chimeric proteins to induce a simultaneous CD8(+) T cell response against conserved viral targets and early expressed regulatory proteins.
Collapse
Affiliation(s)
- Dania Vázquez-Blomquist
- Departamento de SIDA, División de Vacunas, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, Cubanacan, Playa, 10600, Ciudad Habana, Cuba
| | | | | | | |
Collapse
|
109
|
Veazey RS, Lifson JD, Schmitz JE, Kuroda MJ, Piatak M, Pandrea I, Purcell J, Bohm R, Blanchard J, Williams KC, Lackner AA. Dynamics of Simian immunodeficiency virus-specific cytotoxic T-cell responses in tissues. J Med Primatol 2003; 32:194-200. [PMID: 14498979 DOI: 10.1034/j.1600-0684.2003.00025.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the dynamics of human immunodeficiency virus and Simian immunodeficiency virus (SIV)-specific cytotoxic T cells (CTLs) have been well documented in the blood, little is known regarding CTL development in other tissues. In this study, seven Mamu-A*01+ macaques were inoculated with SIVmac. Two macaques were killed at 21 days of infection, and SIV gag p11C tetramer responses were measured in the blood, axillary and mesenteric lymph nodes, spleen, bone marrow, and thymus. Three with clinical signs of disease were killed and similarly examined. Four macaques were followed throughout disease progression, and intestinal biopsies and blood were examined at regular time points after inoculation. In animals followed prospectively, peak early tetramer responses were detected in the blood (3.9-19% of CD3+ CD8+ T cells) between day 14-21 post-inoculation (p.i.). After day 49, tetramer responses in the blood diminished and remained relatively stable through day 200, ranging from 0.7-6.5% of CD3+ CD8+ T cells. In contrast, tetramer-positive T cells increased in the intestine in later stages of infection (100-200 days p.i.) in all four infected animals (peak values from 5.3 to 28.8%). Percentages of tetramer-positive cells were consistently higher in the intestine than in the blood in all four animals after day 100. In animals with acquired immunodeficiency syndrome, percentages of CTL in tissues were variable, but were consistently higher in the intestine and spleen compared with blood. These data suggest that while high CTL responses develop at a similar rate, and magnitude in both peripheral and mucosal lymphoid tissues in primary SIV infection, mucosal CTL responses may predominate later in the course of the disease.
Collapse
Affiliation(s)
- Ronald S Veazey
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Rodrigues MM, Boscardin SB, Vasconcelos JR, Hiyane MI, Salay G, Soares IS. Importance of CD8 T cell-mediated immune response during intracellular parasitic infections and its implications for the development of effective vaccines. AN ACAD BRAS CIENC 2003; 75:443-68. [PMID: 14605680 DOI: 10.1590/s0001-37652003000400005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obligatory intracellular parasites such as Plasmodium sp, Trypanosoma cruzi, Toxoplasma gondii and Leishmania sp are responsible for the infection of hundreds of millions of individuals every year. These parasites can deliver antigens to the host cell cytoplasm that are presented through MHC class I molecules to protective CD8 T cells. The in vivo priming conditions of specific CD8 T cells during natural infection are largely unknown and remain as an area that has been poorly explored. The antiparasitic mechanisms mediated by CD8 T cells include both interferon-gamma-dependent and -independent pathways. The fact that CD8 T cells are potent inhibitors of parasitic development prompted many investigators to explore whether induction of these T cells can be a feasible strategy for the development of effective subunit vaccines against these parasitic diseases. Studies performed on experimental models supported the hypothesis that CD8 T cells induced by recombinant viral vectors or DNA vaccines could serve as the basis for human vaccination. Regimens of immunization consisting of two different vectors (heterologous prime-boost) are much more efficient in terms of expansion of protective CD8 T lymphocytes than immunization with a single vector. The results obtained using experimental models have led to clinical vaccination trials that are currently underway.
Collapse
Affiliation(s)
- Mauricio M Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062 São Paulo, SP, Brasil.
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
SUMMARY
Malaria is an intracellular pathogen, for which an effective vaccine is likely to require induction of cell-mediated immunity. Immunisation approaches that stimulate strong and persistent levels of effector T-cells are being sought by many researchers. DNA vaccines, recombinant protein and viral vectors were amongst the vaccine delivery systems that appeared promising for the generation of cellular immunity, and in some initial studies in small animals this goal was achieved. However, clinical trials of these candidate vaccines when used alone or in repeated homologous boosting regimes have been disappointing, with short-lived low levels of induced specific T-cell responses. Recent years have seen the development of immunisation strategies using a combination of different antigen delivery systems encoding the same epitopes or antigen, delivered at an interval of a few weeks apart. This sequential immunisation approach with different vectors is known as heterologous prime-boosting and is capable of inducing greatly enhanced and persistent levels of CD8+ T-cells and Th1-type CD4+ T-cells compared to homologous boosting. This review will summarise the key pre-clinical studies of prime-boost strategy and outline recent progress in clinical trials of this approach. Possible mechanisms of action and potential improvements to existing delivery systems will be discussed. The prime-boost approach represents an encouraging step towards establishing an effective preventative vaccine to one of the world's greatest killers.
Collapse
Affiliation(s)
- Susanna J Dunachie
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Old Road, Oxford OX3 7LJ, UK.
| | | |
Collapse
|
112
|
Pahar B, Li J, Rourke T, Miller CJ, McChesney MB. Detection of antigen-specific T cell interferon γ expression by ELISPOT and cytokine flow cytometry assays in rhesus macaques. J Immunol Methods 2003; 282:103-15. [PMID: 14604545 DOI: 10.1016/j.jim.2003.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both enzyme-linked immunospot (ELISPOT) and cytokine flow cytometry (CFC) methods have been developed for the detection of low-frequency, antigen-specific, cytokine-producing T cells following short-term in vitro stimulation. Peptide-based ELISPOT and CFC assays were compared for the quantitative detection of interferon gamma-positive (IFN-gamma+) antigen-specific T cells in rhesus macaques. Ten normal and nine simian immunodeficiency virus (SIV)-infected monkeys were tested for the detection of IFN-gamma+ memory T cells specific for p27(gag) peptides of SIV with both assays. The CFC assay detected more IFN-gamma+ cells than the ELISPOT assay and this assay was more informative in identifying the phenotype of responding cells. Cryopreserved cells were as functional as fresh cells in heparinized blood samples and compared to EDTA, heparin was the better anticoagulant for yielding IFN-gamma+ cells. Using overlapping peptide pools, 20-mer peptides were more efficient in stimulating CD4+ T cells than 15-mer peptides in the ELISPOT assay, but there was no significant difference between 20- and 15-mer peptides in detecting CD4 or CD8+, IFN-gamma+ T cells in the CFC assay.
Collapse
Affiliation(s)
- Bapi Pahar
- California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
113
|
Gahéry-Ségard H, Pialoux G, Figueiredo S, Igéa C, Surenaud M, Gaston J, Gras-Masse H, Lévy JP, Guillet JG. Long-term specific immune responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine: characterization of CD8+-T-cell epitopes recognized. J Virol 2003; 77:11220-31. [PMID: 14512570 PMCID: PMC224965 DOI: 10.1128/jvi.77.20.11220-11231.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the effect of booster injections and the long-term immune response after injections of an anti-human immunodeficiency virus type 1 (HIV-1) lipopeptide vaccine. This vaccine was injected alone or with QS21 adjuvant to 28 HIV-uninfected volunteers. One month later, after a fourth injection of the vaccine, B- and T-cell anti-HIV responses were detected in >85% of the vaccinated volunteers. One year after this injection, a long-term immune response was observed in >50% of the volunteers. At this point, a positive QS21 effect was observed only in the sustained B-cell and CD4(+)-T-cell responses. To better characterize the CD8(+)-T-cell response, we used a gamma interferon enzyme-linked immunospot method and a bank of 59 HIV-1 epitopes. For the six most common HLA molecules (HLA-A2, -A3, -A11, -A24, -B7 superfamily, and -B8), an average of 10 (range, 3 to 15) HIV-1 epitopes were tested. CD8(+)-T-cell responses were evaluated according to the HLA class I molecules of the volunteers. Each assessment was based on 18 HIV-1 epitopes in average. We showed that 31 HIV-1 epitopes elicited specific CD8(+)-T-cell responses after vaccination. The most frequently recognized peptides were Nef 68-76 (-B7), Nef 71-79 (-B7), Nef 84-92 (-A11), Nef 135-143 (-B7), Nef 136-145 (-A2), Nef 137-145 (-A2), Gag 259-267 (-B8), Gag 260-268 (-A2), Gag 267-274 (-A2), Gag 267-277 (-B7), and Gag 276-283 (A24). We found that CD8(+)-T-cell epitopes were induced at a higher number after a fourth injection (P < 0.05 compared to three injections), which indicates an increase in the breadth of HIV CD8(+)-T-cell epitope recognition after the boost.
Collapse
Affiliation(s)
- Hanne Gahéry-Ségard
- Département d'Immunologie-Membre de l'IFR 116-INSERM U567, Institut Cochin, 75014 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Soboll G, Whalley JM, Koen MT, Allen GP, Fraser DG, Macklin MD, Swain WF, Lunn DP. Identification of equine herpesvirus-1 antigens recognized by cytotoxic T lymphocytes. J Gen Virol 2003; 84:2625-2634. [PMID: 13679596 DOI: 10.1099/vir.0.19268-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) causes serious disease in horses throughout the world, despite the frequent use of vaccines. CTLs are thought to be critical for protection from primary and reactivating latent EHV-1 infections. However, the antigen-specificity of EHV-1-specific CTLs is unknown. The aim of this study was to identify EHV-1 genes that encode proteins containing CTL epitopes and to determine their MHC I (or ELA-A in the horse) restriction. Equine dendritic cells, transfected with a series of EHV-1 genes, were used to stimulate autologous CTL precursor populations derived from previously infected horses. Cytotoxicity was subsequently measured against EHV-1-infected PWM lymphoblast targets. Dendritic cells were infected with EHV-1 (positive control) or transfected with plasmids encoding the gB, gC, gD, gE, gH, gI, gL, immediate-early (IE) or early protein of EHV-1 using the PowderJect XR-1 research device. Dendritic cells transfected with the IE gene induced CTL responses in four of six ponies. All four of these ponies shared a common ELA-A3.1 haplotype. Dendritic cells transfected with gC, gD, gI and gL glycoproteins induced CTLs in individual ponies. The cytotoxic activity was ELA-A-restricted, as heterologous targets from ELA-A mismatched ponies were not killed and an MHC I blocking antibody reduced EHV-1-specific killing. This is the first identification of an EHV-1 protein containing ELA-A-restricted CTL epitopes. This assay can now be used to study CTL specificity for EHV-1 proteins in horses with a broad range of ELA-A haplotypes, with the goal of developing a multi-epitope EHV-1 vaccine.
Collapse
Affiliation(s)
- Gisela Soboll
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - J Millar Whalley
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Mathew T Koen
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - George P Allen
- Department of Veterinary Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Darrilyn G Fraser
- Department of Veterinary Microbiology and Immunology, Washington State University, Pullman, WA 99164, USA
| | - Michael D Macklin
- PowderJect Vaccines Inc., 585 Science Drive, Suite C, Madison, WI 53711, USA
| | - William F Swain
- PowderJect Vaccines Inc., 585 Science Drive, Suite C, Madison, WI 53711, USA
| | - D Paul Lunn
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
115
|
Buge SL, Ma HL, Amara RR, Wyatt LS, Earl PL, Villinger F, Montefiori DC, Staprans SI, Xu Y, Carter E, O'Neil SP, Herndon JG, Hill E, Moss B, Robinson HL, McNicholl JM. Gp120-alum boosting of a Gag-Pol-Env DNA/MVA AIDS vaccine: poorer control of a pathogenic viral challenge. AIDS Res Hum Retroviruses 2003; 19:891-900. [PMID: 14585221 DOI: 10.1089/088922203322493067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Envelope protein immunogens may improve DNA or live-vectored HIV vaccines by complementing antiviral cellular responses with Env antibodies. We tested this concept by administering two immunizations of alum-adjuvanted HIV-1 89.6 gp120 to macaques being primed at weeks 0 and 8 with SHIV 89.6 Gag-Pol-Env DNA and boosted at week 24 with SHIV-89.6 Gag-Pol-Env recombinant modified vaccinia Ankara (MVA). Three hundred micrograms of gp120 was delivered with the second DNA prime and the MVA booster. Eight months after vaccination, all animals were challenged intrarectally with the related, yet serologically distinct, SHIV-89.6P. The gp120 immunizations raised binding, but not neutralizing antibody for the challenge virus, and allowed testing of whether gp120 vaccines that fail to raise neutralizing antibody can improve protection. Following the second gp120 immunization, the plus-gp120 group showed >10 times higher levels of binding antibody than the minus-gp120 group. These levels fell and were overall similar in both groups at the time of challenge. Following the second challenge, both groups had similar temporal patterns and heights of binding and neutralizing antibodies. However, the plus-gp120 group had less consistent control of viremia and higher levels of plasma viral RNA for the first year postchallenge. Assays for complement-dependent enhancing antibody revealed a trend toward higher levels of activity in the plus-gp120 group. This trend did not reach significance in our animal groups of 8. We conclude that gp120 inoculations that fail to raise neutralizing antibody do not improve the efficacy of Gag-Pol-Env DNA/MVA vaccines.
Collapse
Affiliation(s)
- Suzan L Buge
- Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Vaccine approaches against AIDS have focused on inducing cellular immune responses, since many studies revealed the role of T cell responses in the control of human immunodeficiency virus or simian immunodeficiency virus (SIV) infections. The experimental infection of rhesus macaques with SIV or chimeric SHIV is routinely used as a model for AIDS. In such models, DNA immunization is a tool to elicit specific T cell responses and to study their protective efficacy. DNA immunogenicity in primates depends on parameters such as level of antigen expression, choice of the antigen among SIV proteins, use of fusion proteins, route of immunization, and addition of adjuvants. Recent results suggest that priming with DNA and boosting with attenuated recombinant viral vectors, each expressing corresponding SIV antigens, leads to improved specific immunity and, in some cases, affords protection against pathogenic challenge. After preclinical evaluations, DNA has entered clinical trials for a therapeutic or prophylactic gene-based AIDS vaccine.
Collapse
Affiliation(s)
- Anne-Laure Puaux
- Departement des Retrovirus, Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Docteur Roux, 15 75724, Paris cedex, France
| | | |
Collapse
|
117
|
Dean HJ, Fuller D, Osorio JE. Powder and particle-mediated approaches for delivery of DNA and protein vaccines into the epidermis. Comp Immunol Microbiol Infect Dis 2003; 26:373-88. [PMID: 12818623 DOI: 10.1016/s0147-9571(03)00021-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The epidermis of the skin is both a sensitive immune organ and a practical target site for vaccine administration. However, administration of vaccines into the epidermis is difficult to achieve using conventional vaccine delivery methods employing a needle and syringe. A needle-free vaccine delivery system has been developed that efficiently delivers powdered or particulate DNA and protein vaccines into the epidermal tissue. The delivery system can be used to directly transfect antigen presenting cells (APCs) by formulating DNA or protein vaccines onto gold particles (particle-mediated immunization). Antigen can be directly presented to the immune system by the transfected APCs. Antigen can also be expressed and secreted by transfected keratinocytes and picked up by resident APCs through the exogenous antigen presentation pathway. Alternatively, protein antigens can be formulated into a powder and delivered into the extracellular environment where they are picked up by APCs (epidermal powder immunization). Using any of these formulations, epidermal immunization offers the advantage of efficiently delivering vaccines into the APC-rich epidermis. Recent studies demonstrate that epidermal vaccine delivery induces humoral, cellular, and protective immune responses against infectious diseases in both laboratory animals and man.
Collapse
Affiliation(s)
- Hansi J Dean
- PowderJect Vaccines Inc., 585 Science Drive, Madison, WI 53711, USA.
| | | | | |
Collapse
|
118
|
Tritel M, Stoddard AM, Flynn BJ, Darrah PA, Wu CY, Wille U, Shah JA, Huang Y, Xu L, Betts MR, Nabel GJ, Seder RA. Prime-boost vaccination with HIV-1 Gag protein and cytosine phosphate guanosine oligodeoxynucleotide, followed by adenovirus, induces sustained and robust humoral and cellular immune responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2538-47. [PMID: 12928404 DOI: 10.4049/jimmunol.171.5.2538] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A prophylactic vaccine for HIV-1 will probably require the induction and maintenance of both humoral and cellular immunity. One current strategy to achieve such long term immune responses is a prime-boost vaccination approach using a DNA priming inoculation, followed by recombinant viral boost. In this report we use a novel prime-boost approach in which the priming injections consist of recombinant HIV-1 Gag protein mixed with cytosine phosphate guanosine oligodeoxynucleotide (CpG ODN), followed by recombinant adenoviral boost expressing HIV-1 Gag. Analysis of the immune responses indicates that HIV-1 Gag protein plus CpG ODN immunization alone induces potent humoral as well as Th1 and CD8+ T cell responses. Boosting with recombinant adenovirus strikingly enhances CD8+, but not Th1, T cell responses, resulting in CD8+ T cell responses far greater in magnitude than Th1 responses. Furthermore, the Th1 and CD8+ T cell responses following prime-boost immunization were seen in both lymphoid and peripheral mucosal organs and were sustained over several months. Together, these data suggest a new immunization approach for elicitation of long term humoral and cellular immune responses.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adenoviridae/genetics
- Adenoviridae/immunology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cytokines/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Products, gag/administration & dosage
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- HIV Antibodies/biosynthesis
- HIV-1/immunology
- Immunity, Cellular/genetics
- Immunization Schedule
- Immunization, Secondary/methods
- Immunologic Memory/genetics
- Injections, Intramuscular
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Organ Specificity/genetics
- Organ Specificity/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Marc Tritel
- Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Subbramanian RA, Kuroda MJ, Charini WA, Barouch DH, Costantino C, Santra S, Schmitz JE, Martin KL, Lifton MA, Gorgone DA, Shiver JW, Letvin NL. Magnitude and diversity of cytotoxic-T-lymphocyte responses elicited by multiepitope DNA vaccination in rhesus monkeys. J Virol 2003; 77:10113-8. [PMID: 12941922 PMCID: PMC224609 DOI: 10.1128/jvi.77.18.10113-10118.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to develop an AIDS vaccine that elicits high-frequency cytotoxic-T-lymphocyte (CTL) responses with specificity for a diversity of viral epitopes, we explored two prototype multiepitope plasmid DNA vaccines in the simian-human immunodeficiency virus/rhesus monkey model to determine their efficiency in priming for such immune responses. While a simple multiepitope vaccine construct demonstrated limited immunogenicity in monkeys, this same multiepitope genetic sequence inserted into an immunogenic simian immunodeficiency virus gag DNA vaccine elicited high-frequency CTL responses specific for all of the epitopes included in the vaccine. Both multiepitope vaccine prototypes primed for robust epitope-specific CTL responses that developed following boosting with recombinant modified vaccinia virus Ankara vaccines expressing complete viral proteins. The natural hierarchy of immunodominance for these epitopes was clearly evident in the boosted monkeys. These studies suggest that multiepitope plasmid DNA vaccine-based prime-boost regimens can efficiently prime for CTL responses of increased breadth and magnitude, although they do not overcome predicted hierarchies of immunodominance.
Collapse
Affiliation(s)
- Ramu A Subbramanian
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Research East-RE 113, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Aspden K, Passmore JA, Tiedt F, Williamson AL. Evaluation of lumpy skin disease virus, a capripoxvirus, as a replication-deficient vaccine vector. J Gen Virol 2003; 84:1985-1996. [PMID: 12867628 DOI: 10.1099/vir.0.19116-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lumpy skin disease virus (LSDV), a capripoxvirus with a host range limited to ruminants, was evaluated as a replication-deficient vaccine vector for use in non-ruminant hosts. By using the rabies virus glycoprotein (RG) as a model antigen, it was demonstrated that recombinant LSDV encoding the rabies glycoprotein (rLSDV-RG) was able to express RG in both permissive (ruminant) and non-permissive (non-ruminant) cells. The recombinant LSDV, however, replicated to maturity only in permissive but not in non-permissive cells. Recombinant LSDV-RG was assessed for its ability to generate immunity against RG in non-ruminant hosts (rabbits and mice). Rabbits inoculated with rLSDV-RG produced rabies virus (RV) neutralizing antibodies at levels twofold higher than those reported by the WHO to be protective. BALB/c mice immunized with rLSDV-RG elicited levels of RV-specific cellular immunity (T-cell proliferation) comparable with those of mice immunized with a commercial inactivated rabies vaccine (Verorab; Pasteur Merieux). Most importantly, mice immunized with rLSDV-RG were protected from an aggressive intracranial rabies virus challenge.
Collapse
Affiliation(s)
- Kate Aspden
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Jo-Ann Passmore
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Friedrich Tiedt
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Anna-Lise Williamson
- National Health Laboratory Service, University of Cape Town, Observatory 7925, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
121
|
Abstract
Twenty years after the discovery of HIV, there is still no vaccine. This year, an envelope vaccine aimed at stimulating neutralizing antibodies was unable to protect against infection in phase 3 trials. But more than 20 HIV vaccines designed to stimulate T-cell responses are being developed. Will any of them work?
Collapse
Affiliation(s)
- Andrew J McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9D5, UK.
| | | |
Collapse
|
122
|
Sundaram R, Sun Y, Walker CM, Lemonnier FA, Jacobson S, Kaumaya PTP. A novel multivalent human CTL peptide construct elicits robust cellular immune responses in HLA-A*0201 transgenic mice: implications for HTLV-1 vaccine design. Vaccine 2003; 21:2767-81. [PMID: 12798617 DOI: 10.1016/s0264-410x(03)00179-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cytotoxic T-lymphocytes are critical in the clearance of chronic viral infections such as HTLV-1. Peptide-based vaccines may have potential application in invoking antiviral CTL responses. In the development of vaccination strategies, it is becoming increasingly important to elicit a broad immune response against several epitopes simultaneously that may provide large population coverage. In the present study, we addressed this issue, namely the processing and presentation of multiple CTL epitopes simultaneously for the generation of multispecific CTL responses. We designed a novel multivalent peptide consisting of three HLA-A(*)0201 restricted CTL epitopes, with intervening double arginine residues in tandem. These epitopes were derived from the HTLV-1 regulatory protein Tax, which is an attractive target for vaccine development against HTLV-1. Arginine residues were included to provide cleavage sites for proteasomes, to generate the intended MHC Class I ligands. Proteasomal digestion studies and mass spectrometry analysis showed cleavage of the multivalent construct to generate the individual epitopes. Immunization of HLA-A(*)0201 transgenic mice with this construct efficiently elicited cellular responses to each intended epitope in vivo, further validating the applicability of this approach. These data may have potential in the development of immunotherapeutic strategies for the treatment of HTLV-1 disease and in the future design of multivalent subunit peptide vaccines.
Collapse
Affiliation(s)
- Roshni Sundaram
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
Data indicate that resistance to HIV-1 disease involves an array of contrasting HLA genotypic effects that are subtle, but significant, particularly when these genetic effects are considered as a whole. Numerous reports attributing a role for HLA genotype in AIDS outcomes have been reported, and a few of these have been affirmed in multiple studies. Functional studies of immune cell recognition have provided clues to the underlying mechanisms behind some of the strongest HLA associations, suggesting the means by which relative resistance or susceptibility to the virus may occur. SIV infection in non-human primates has served as an invaluable model for understanding AIDS pathogenesis (in rhesus monkeys) and viral resistance (in chimpanzee). The effect of rhesus MHC class I molecules on the evolution of SIV has been convincingly described [19], and a recent study in humans has suggested that selection pressure conferred by HLA molecules is responsible for specific genetic variation in HIV-1 [114]. HIV-1 may eventually have conspicuous evolutionary effects on HLA and other AIDS restriction genes, a prolonged process that could have occurred in chimpanzee [92]. To prevent such an outcome, it will be necessary to approach the disease from many perspectives, andapply comprehensively the knowledge gained to the successful control of the virus.
Collapse
Affiliation(s)
- Mary Carrington
- Basic Research Program, SAIC Frederick, National Cancer Institute, Frederick, MD 21702, USA.
| | | |
Collapse
|
124
|
McKee HJ, Strayer DS. Immune responses against SIV envelope glycoprotein, using recombinant SV40 as a vaccine delivery vector. Vaccine 2003; 20:3613-25. [PMID: 12297408 DOI: 10.1016/s0264-410x(02)00243-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccination protocols using viral gene delivery vectors have often generated relatively weak responses, largely owing to difficulties in boosting immune responses effectively following the primary injection. Because recombinant gene delivery vectors derived from SV40 permit multiple inoculations, to yield incremental immune responses, we tested the use of rSV40s to deliver lentiviral envelope antigens for immunization. An rSV40 carrying SIVmac239 envelope glycoprotein gp130 cDNA (SV(gp130)) was given multiple times to BALB/c mice, with or without a prior priming inoculation using vaccinia virus carrying the same SIV envelope cDNA (VVenvSIV). Sera from these mice were tested for antibodies binding gp130, applying a novel cell-based ELISA protocol that used as targets cloned P815 cells stably transfected with plasmid-derived gp130 cDNA. The same gp130-expressing clone of P815 cells, labeled with 51Cr was used as targets for direct lymphocyte-mediated cytolytic assays using spleen and popliteal lymph node cells as effectors. After six inoculations with SV(gp130), mice made detectable anti-gp130 antibody responses, but high levels of splenic and popliteal lymph node cytotoxic activity were apparent after as few as three injections of SV(gp130) (>40% specific lysis). A single primary inoculation with VVenvSIV preceding SV(gp130) boosts significantly enhanced antibody responses against SIV gp130, but had little effect on cytotoxic lymphocyte responses. Thus, rSV40 vectors may be useful vehicles for delivering lentiviral envelope antigens to elicit protective humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Hayley J McKee
- Department of Pathology and Cell Biology, Jefferson Medical College, 251 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
125
|
Hodge JW, Grosenbach DW, Schlom J. Vector-based delivery of tumor-associated antigens and T-cell co-stimulatory molecules in the induction of immune responses and anti-tumor immunity. CANCER DETECTION AND PREVENTION 2003; 26:275-91. [PMID: 12430632 DOI: 10.1016/s0361-090x(02)00095-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has now been demonstrated in both experimental models and recent clinical trials that certain "self" antigens, which are functionally non-immunogenic in the host, can become immunogenic if presented to the immune system in a certain way. Here, we describe recombinant vaccines and vaccine strategies that have been developed to induce and potentiate T-cell responses of the host to such self-antigens. These strategies include: (a) the use of recombinant poxvirus vectors in which the tumor-associated antigen (TAA) is inserted as a transgene. Recombinant vaccinia vaccines and recombinant avipox (replication-defective) vaccines have been employed to break tolerance to a self-antigen; (b) the use of diversified prime and boost strategies using different vaccines; and (c) the insertion of multiple T-cell co-stimulatory molecules into recombinant poxvirus vectors, along with the TAA gene, to enhance T-cell immune responses to the TAA and induce anti-tumor immunity.
Collapse
Affiliation(s)
- James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
126
|
Abel K, Compton L, Rourke T, Montefiori D, Lu D, Rothaeusler K, Fritts L, Bost K, Miller CJ. Simian-human immunodeficiency virus SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239 is independent of the route of immunization and is associated with a combination of cytotoxic T-lymphocyte and alpha interferon responses. J Virol 2003; 77:3099-118. [PMID: 12584336 PMCID: PMC149756 DOI: 10.1128/jvi.77.5.3099-3118.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Attenuated primate lentivirus vaccines provide the most consistent protection against challenge with pathogenic simian immunodeficiency virus (SIV). Thus, they provide an excellent model to examine the influence of the route of immunization on challenge outcome and to study vaccine-induced protective anti-SIV immune responses. In the present study, rhesus macaques were immunized with live nonpathogenic simian-human immunodeficiency virus (SHIV) 89.6 either intravenously or mucosally (intranasally or intravaginally) and then challenged intravaginally with pathogenic SIVmac239. The route of immunization did not affect mucosal challenge outcome after a prolonged period of systemic infection with the nonpathogenic vaccine virus. Further, protection from the SIV challenge was associated with the induction of multiple host immune effector mechanisms. A comparison of immune responses in vaccinated-protected and vaccinated-unprotected animals revealed that vaccinated-protected animals had higher frequencies of SIV Gag-specific cytotoxic T lymphocytes and gamma interferon (IFN-gamma)-secreting cells during the acute phase postchallenge. Vaccinated-protected animals also had a more pronounced increase in peripheral blood mononuclear cell IFN-alpha mRNA levels than did the vaccinated-unprotected animals in the first few weeks after challenge. Thus, innate as well as cellular anti-SIV immune responses appeared to contribute to the SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239.
Collapse
Affiliation(s)
- Kristina Abel
- Center for Comparative Medicine, California National Primate Research Center, School of Veterinary Medicine, University of California-Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Evans DT, Chen LM, Gillis J, Lin KC, Harty B, Mazzara GP, Donis RO, Mansfield KG, Lifson JD, Desrosiers RC, Galán JE, Johnson RP. Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J Virol 2003; 77:2400-9. [PMID: 12551977 PMCID: PMC141091 DOI: 10.1128/jvi.77.4.2400-2409.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly all human immunodeficiency virus (HIV) infections are acquired mucosally, and the gut-associated lymphoid tissues are important sites for early virus replication. Thus, vaccine strategies designed to prime virus-specific cytotoxic T lymphocyte (CTL) responses that home to mucosal compartments may be particularly effective at preventing or containing HIV infection. The Salmonella type III secretion system has been shown to be an effective approach for stimulating mucosal CTL responses in mice. We therefore tested DeltaphoP-phoQ attenuated strains of Salmonella enterica serovar Typhimurium and S. enterica serovar Typhi expressing fragments of the simian immunodeficiency virus (SIV) Gag protein fused to the type III-secreted SopE protein for the ability to prime virus-specific CTL responses in rhesus macaques. Mamu-A*01(+) macaques were inoculated with three oral doses of recombinant Salmonella, followed by a peripheral boost with modified vaccinia virus Ankara expressing SIV Gag (MVA Gag). Transient low-level CTL responses to the Mamu-A*01 Gag(181-189) epitope were detected following each dose of Salmonella. After boosting with MVA Gag, strong Gag-specific CTL responses were consistently detected, and tetramer staining revealed the expansion of Gag(181-189)-specific CD8(+) T-cell responses in peripheral blood. A significant percentage of the Gag(181-189)-specific T-cell population in each animal also expressed the intestinal homing receptor alpha4beta7. Additionally, Gag(181-189)-specific CD8(+) T cells were detected in lymphocytes isolated from the colon. Yet, despite these responses, Salmonella-primed/MVA-boosted animals did not exhibit improved control of virus replication following a rectal challenge with SIVmac239. Nevertheless, this study demonstrates the potential of mucosal priming by the Salmonella type III secretion system to direct SIV-specific cellular immune responses to the gastrointestinal mucosa in a primate model.
Collapse
Affiliation(s)
- David T Evans
- New England Regional Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Hanke T, Barnfield C, Wee EGT, Ågren L, Samuel RV, Larke N, Liljeström P. Construction and immunogenicity in a prime-boost regimen of a Semliki Forest virus-vectored experimental HIV clade A vaccine. J Gen Virol 2003; 84:361-368. [PMID: 12560568 DOI: 10.1099/vir.0.18738-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, experimental subunit human immunodeficiency virus (HIV) vaccine, SFV.HIVA, was constructed. This consists of Semliki Forest virus (SFV), which is a suitable vaccine vector for use in humans, and a passenger gene encoding HIVA, which is an immunogen derived from HIV-1 clade A that is being currently tested in clinical trials of combined DNA- and modified vaccinia virus Ankara (MVA)-vectored vaccines in Oxford (UK) and Nairobi (Kenya). In the mouse, the SFV.HIVA vaccine was highly immunogenic for T cell-mediated immune responses and induced T cell memory that lasted for at least 6 months. SFV.HIVA was also compared to the vaccines currently used in the clinical trials and was shown to be as effective in T cell induction as pTHr.HIVA DNA but less immunogenic than MVA.HIVA. When tested in a prime-boost regimen, SFV.HIVA-induced responses could be boosted by MVA.HIVA. This work is a part of a long-term effort to build a panel of subunit vaccines expressing a common immunogen, which will allow both a direct comparison of various vaccine vectors and combined vaccination regimens in humans and provide more flexibility and/or a potential optimization of vaccinations for individuals based on their pre-existing anti-vector immunity.
Collapse
Affiliation(s)
- Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Christina Barnfield
- Microbiology and Tumorbiology Center, Karolinska Institutet, Box 280, S-17177 Stockholm, Sweden
| | - Edmund G-T Wee
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Lena Ågren
- Microbiology and Tumorbiology Center, Karolinska Institutet, Box 280, S-17177 Stockholm, Sweden
| | - Rachel V Samuel
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Natasha Larke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Peter Liljeström
- Microbiology and Tumorbiology Center, Karolinska Institutet, Box 280, S-17177 Stockholm, Sweden
| |
Collapse
|
129
|
Slager EH, Borghi M, van der Minne CE, Aarnoudse CA, Havenga MJE, Schrier PI, Osanto S, Griffioen M. CD4+ Th2 cell recognition of HLA-DR-restricted epitopes derived from CAMEL: a tumor antigen translated in an alternative open reading frame. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1490-7. [PMID: 12538712 DOI: 10.4049/jimmunol.170.3.1490] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumor Ag NY-ESO-1 is an attractive target for immunotherapy of cancer, since both CD8(+) CTL and CD4(+) Th cells against NY-ESO-1 have been described. Moreover, NY-ESO-1 as well as the highly homologous tumor Ag LAGE-1 are broadly expressed in various tumor types. Interestingly, the NY-ESO-1 and LAGE-1 genes also encode for proteins translated in an alternative open reading frame. These alternatively translated NY-ESO-ORF2 and CAMEL proteins, derived from the NY-ESO-1 and LAGE-1 genes, respectively, have been demonstrated to be immunogenic, since CTL specific for these proteins have been isolated from melanoma patients. In this study a panel of advanced melanoma patients was screened for the presence of Th cells specific for the alternatively translated tumor Ags NY-ESO-ORF2 and CAMEL. PBMC of melanoma patients were stimulated for 4 days with mixes of overlapping peptides covering the entire NY-ESO-ORF2 and CAMEL protein sequences and were tested for the release of type 1 (IFN-gamma) and type 2 (IL-13) cytokines in ELISPOT assays. In three of 15 patients, T cells specific for two CAMEL peptides (CAMEL(71-92) and CAMEL(81-102)) could be detected. From one of these patients, CD4(+) T cell clones specific for CAMEL(81-102) could be generated. These clones recognized a naturally processed epitope presented in both HLA-DR11 and HLA-DR12 and produced high levels of IL-4, IL-5, and IL-13. In conclusion, this study shows the presence of Th cells specific for the alternatively translated tumor Ag CAMEL in melanoma patients and is the first report that describes the isolation of tumor Ag-specific CD4(+) Th 2 clones.
Collapse
Affiliation(s)
- Elisabeth H Slager
- Department of Clinical Oncology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Cheevers WP, Snekvik KR, Trujillo JD, Kumpula-McWhirter NM, Pretty On Top KJ, Knowles DP. Prime-boost vaccination with plasmid DNA encoding caprine-arthritis encephalitis lentivirus env and viral SU suppresses challenge virus and development of arthritis. Virology 2003; 306:116-25. [PMID: 12620804 DOI: 10.1016/s0042-6822(02)00044-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study evaluated the efficacy of prime-boost vaccination for immune control of caprine arthritis-encephalitis virus (CAEV), a macrophage tropic lentivirus that causes progressive arthritis in the natural host. Vaccination of Saanen goats with pUC-based plasmid DNA expressing CAEV env induces T helper type 1 (Th1) biased immune responses to vector-encoded surface envelope (SU), and the plasmid-primed Th1 response is expanded following boost with purified SU in Freund's incomplete adjuvant (SU-FIA) (J. C. Beyer et al., 2001, Vaccine 19, 1643-1651). Four goats vaccinated with env expression plasmids and boosted with SU-FIA were challenged intravenously with 1 x 10(4) TCID(50) of CAEV at 428 days after SU-FIA boost and evaluated by immunological, virological, and disease criteria. Controls included two goats primed with pUC18 and eight unvaccinated goats. Goats receiving prime-boost vaccination with CAEV env plasmids and SU-FIA became infected but suppressed postchallenge virus replication, provirus loads in lymph node, and development of arthritis for at least 84 weeks.
Collapse
Affiliation(s)
- W P Cheevers
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | |
Collapse
|
131
|
Vázquez Blomquist D, Green P, Laidlaw SM, Skinner MA, Borrow P, Duarte CA. Induction of a strong HIV-specific CD8+ T cell response in mice using a fowlpox virus vector expressing an HIV-1 multi-CTL-epitope polypeptide. Viral Immunol 2003; 15:337-56. [PMID: 12081016 DOI: 10.1089/08828240260066260] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant avipoxvirus vectors are attractive candidates for use in vaccination strategies for infections such as human immunodeficiency virus type 1 (HIV-1), where induction of a CD8+ T cell response is thought to be an important component of protective immunity. Here, we report the expression of a multiepitope polypeptide (TAB9) composed of the central 15 amino acids of the V3 loop from six different isolates of HIV-1 in a fowlpox virus (FWPV) vector, and the use of this vector (FPTAB9LZ) to induce strong HIV-specific CD8+ T cell responses in mice. In animals immunized twice intravenously with FPTAB9LZ, almost 2% of the CD8+ T cells in the spleen were shown to produce IFN-gamma in response to stimulation with HIV-1 peptides 1 week after the second immunization. The most dominant response was to the HIV-1 IIIB peptide. A strong HIV-specific response was also induced by intraperitoneal immunization of mice with FPTAB9LZ, whilst subcutaneous immunization elicited a weaker response. Intraperitoneal immunization with FPTAB9LZ was also shown to provide protection against challenge with a recombinant vaccinia virus expressing antigens, including those in TAB9. These results confirm the potential of FWPV vectors for use in HIV vaccination strategies.
Collapse
|
132
|
Pancholi P, Perkus M, Tricoche N, Liu Q, Prince AM. DNA immunization with hepatitis C virus (HCV) polycistronic genes or immunization by HCV DNA priming-recombinant canarypox virus boosting induces immune responses and protection from recombinant HCV-vaccinia virus infection in HLA-A2.1-transgenic mice. J Virol 2003; 77:382-90. [PMID: 12477843 PMCID: PMC140575 DOI: 10.1128/jvi.77.1.382-390.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We studied immune responses to hepatitis C virus (HCV) genes delivered as DNA encoding the entire HCV protein coding genome in two polycistronic plasmids encoding HCV capsid-E1-E2-NS2-NS3 and HCV NS3-NS4-NS5 in HLA-A2.1-transgenic mice. Immune responses to HCV DNA prime and recombinant canarypox virus boost were also studied with the above constructs. At 8 weeks after a canarypox virus boost, the DNA prime/canarypox virus boosting regimen induced potent cellular immune responses to HCV structural and nonstructural proteins on target cells expressing the HLA-A2.1 allele. High frequencies of gamma interferon-secreting cells, as detected by enzyme-linked immunospot assay, were obtained in response to several endogenously expressed HCV proteins. We also observed cytotoxic-T-lymphocyte reactivity in response to endogenously expressed HCV proteins in fresh spleen cells without in vitro expansion. Upon challenge with a recombinant vaccinia virus expressing HCV proteins at 2 months postimmunization, the HCV DNA prime/canarypox virus-immunized mice showed a complete reduction in vaccinia virus titers compared to HCV DNA prime/boost- and mock-immunized controls. Immune responses were still detectable 4 months after canarypox virus boost in immunized mice. Interestingly, at 10 months postimmunization (8 months after canarypox virus boost), the protection in HCV DNA prime/boost-immunized mice against recombinant HCV-vaccinia virus challenge was higher than that observed in HCV DNA prime/canarypox virus boost-immunized mice.
Collapse
Affiliation(s)
- Preeti Pancholi
- Laboratory of Virology, Lindsley F. Kimball Research Institute of the New York Blood Center, New York 10021, USA
| | | | | | | | | |
Collapse
|
133
|
Vinner L, Wee EGT, Patel S, Corbet S, Gao GP, Nielsen C, Wilson JM, Ertl HCJ, Hanke T, Fomsgaard A. Immunogenicity in Mamu-A*01 rhesus macaques of a CCR5-tropic human immunodeficiency virus type 1 envelope from the primary isolate (Bx08) after synthetic DNA prime and recombinant adenovirus 5 boost. J Gen Virol 2003; 84:203-213. [PMID: 12533717 DOI: 10.1099/vir.0.18589-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Envelopes of primary R5-tropic human immunodeficiency virus type 1 (HIV-1) isolates may be particularly relevant for vaccine purposes and should be evaluated for immunogenicity in animals including macaques before carrying out human vaccine trials. In the present study, the immunogenicities of synthetic HIV-1 env DNA vaccines, which had been derived from the early primary isolate Bx08 and contain humanized codons, were evaluated in mice, guinea pigs and rhesus macaques. Neutralization sensitivity of the HIV-1(Bx08) isolate was found to resemble that of other primary isolate prototypes. Immunogenicity of gp120 delivered as codon-optimized DNA vaccine was comparable to that of recombinant gp120 protein plus adjuvant in mice. Similarly, DNA vaccination of guinea pigs with synthetic gp140(Bx08) and gp150(Bx08) DNA induced a strong antibody response independent of the gene construct and DNA immunization route. Mamu-A*01 rhesus macaques were DNA vaccinated with synthetic gp150(Bx08) or gp140(Bx08) DNA and boosted with a replication-deficient recombinant human adenovirus type 5 expressing a synthetic gp120(Bx08) gene. DNA-vaccinated rhesus macaques developed specific CD8+ T lymphocyte responses and anti-rgp120(IIIb) antibody responses. Both the humoral and cellular responses were significantly improved following intramuscular boosting with the recombinant adenovirus. The demonstrated humoral and cellular immunogenicities of these HIV Bx08 Env vaccines in non-human primates encourages their further development as one component in candidate HIV vaccines for humans.
Collapse
Affiliation(s)
- Lasse Vinner
- Department of Virology, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
| | - Edmund G-T Wee
- MRC, Human Immunology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Sandip Patel
- MRC, Human Immunology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Sylvie Corbet
- Department of Virology, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
| | - Guang P Gao
- Institute for Human Gene Therapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Claus Nielsen
- Department of Virology, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
| | - James M Wilson
- Institute for Human Gene Therapy, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Tomàš Hanke
- MRC, Human Immunology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Anders Fomsgaard
- Department of Virology, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
| |
Collapse
|
134
|
Hanke T, McMichael AJ, Samuel RV, Powell LAJ, McLoughlin L, Crome SJ, Edlin A. Lack of toxicity and persistence in the mouse associated with administration of candidate DNA- and modified vaccinia virus Ankara (MVA)-based HIV vaccines for Kenya. Vaccine 2002; 21:108-14. [PMID: 12443668 DOI: 10.1016/s0264-410x(02)00403-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Toxicity, biodistribution and persistence of candidate HIV vaccines pTHr.HIVA, a recombinant DNA, and MVA.HIVA, a recombinant modified vaccinia virus Ankara, were determined in the Balb/c mouse. The mice were injected with either two doses of intramuscular pTHr.HIVA DNA (50 microg each, separated by an interval of 14 days), two doses of intradermal MVA.HIVA (10(6) plaque-forming units each, separated by an interval of 14 days), or a combination of the two vaccines, each given in two doses, in a prime-boost regimen. The study showed no significant toxic effects, either local or systemic, under any of these employed dosing regimens. With the exception of the sites of delivery, the vaccine-derived HIVA DNA sequences were undetectable 5 weeks after the last dosing. Thus, both the vaccines alone and in a combination were considered safe and suitable for the use in phase I trials in humans.
Collapse
Affiliation(s)
- T Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | |
Collapse
|
135
|
Vogel TU, Horton H, Fuller DH, Carter DK, Vielhuber K, O'Connor DH, Shipley T, Fuller J, Sutter G, Erfle V, Wilson N, Picker LJ, Watkins DI. Differences between T cell epitopes recognized after immunization and after infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4511-21. [PMID: 12370388 DOI: 10.4049/jimmunol.169.8.4511] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence suggests that cellular immune responses play a crucial role in the control of HIV and SIV replication in infected individuals. Several vaccine strategies have therefore targeted these CD8(+) and CD4(+) responses. Whether vaccination induces the same repertoire of responses seen after infection is, however, a key unanswered question in HIV vaccine development. We therefore compared the epitope specificity induced by vaccination to that present postchallenge in the peripheral blood. Intracellular cytokine staining of PBMC stimulated with overlapping 15/20-mer peptides spanning the proteins of SIV were measured after DNA/modified vaccinia Ankara vaccination of eight rhesus macaques. Lymphocytes from 8 animals recognized a total of 39 CD8 epitopes and 41 CD4 epitopes encoded by the vaccine. T cell responses were again monitored after challenge with SIVmac239 to investigate the evolution of these responses. Only 57% of all CD8(+) T cell responses and 19% of all CD4(+) T cell responses present after vaccination were recalled after infection as measured in the peripheral blood. Interestingly, 29 new CD8 epitopes and 5 new CD4 epitopes were recognized by PBMC in the acute phase. These new epitopes were not detected after vaccination, and only some of them were maintained in the chronic phase (33% of CD8 and no CD4 responses). Additionally, 24 new CD8 epitopes and 7 new CD4 epitopes were recognized by PBMC in the chronic phase of infection. The repertoire of the immune response detected in the peripheral blood after immunization substantially differed from the immune response detected in the peripheral blood after infection.
Collapse
MESH Headings
- Administration, Rectal
- Amino Acid Sequence
- Animals
- Base Sequence
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Line, Transformed
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Immunity, Cellular/genetics
- Immunization, Secondary
- Injections, Intradermal
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/virology
- Macaca mulatta
- Molecular Sequence Data
- Peptide Fragments/analysis
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Mapping
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/genetics
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Immunodeficiency Virus/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Proteins/analysis
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Thorsten U Vogel
- Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capital Court, Madison, WI 53715, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Allen TM, Jing P, Calore B, Horton H, O'Connor DH, Hanke T, Piekarczyk M, Ruddersdorf R, Mothé BR, Emerson C, Wilson N, Lifson JD, Belyakov IM, Berzofsky JA, Wang C, Allison DB, Montefiori DC, Desrosiers RC, Wolinsky S, Kunstman KJ, Altman JD, Sette A, McMichael AJ, Watkins DI. Effects of cytotoxic T lymphocytes (CTL) directed against a single simian immunodeficiency virus (SIV) Gag CTL epitope on the course of SIVmac239 infection. J Virol 2002; 76:10507-11. [PMID: 12239328 PMCID: PMC136573 DOI: 10.1128/jvi.76.20.10507-10511.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccine-induced cytotoxic T lymphocytes (CTL) have been implicated in the control of virus replication in simian immunodeficiency virus (SIV)-challenged and simian-human immunodeficiency virus-challenged macaques. Therefore, we wanted to test the impact that vaccine-induced CTL responses against an immunodominant Gag epitope might have in the absence of other immune responses. By themselves, these strong CTL responses failed to control SIVmac239 replication.
Collapse
Affiliation(s)
- Todd M Allen
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Novitsky V, Cao H, Rybak N, Gilbert P, McLane MF, Gaolekwe S, Peter T, Thior I, Ndung'u T, Marlink R, Lee TH, Essex M. Magnitude and frequency of cytotoxic T-lymphocyte responses: identification of immunodominant regions of human immunodeficiency virus type 1 subtype C. J Virol 2002; 76:10155-68. [PMID: 12239290 PMCID: PMC136554 DOI: 10.1128/jvi.76.20.10155-10168.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Accepted: 06/27/2002] [Indexed: 11/20/2022] Open
Abstract
A systematic analysis of immune responses on a population level is critical for a human immunodeficiency virus type 1 (HIV-1) vaccine design. Our studies in Botswana on (i) molecular analysis of the HIV-1 subtype C (HIV-1C) epidemic, (ii) frequencies of major histocompatibility complex class I HLA types, and (iii) cytotoxic T-lymphocyte (CTL) responses in the course of natural infection allowed us to address HIV-1C-specific immune responses on a population level. We analyzed the magnitude and frequency of the gamma interferon ELISPOT-based CTL responses and translated them into normalized cumulative CTL responses. The introduction of population-based cumulative CTL responses reflected both (i) essentials of the predominant virus circulating locally in Botswana and (ii) specificities of the genetic background of the Botswana population, and it allowed the identification of immunodominant regions across the entire HIV-1C. The most robust and vigorous immune responses were found within the HIV-1C proteins Gag p24, Vpr, Tat, and Nef. In addition, moderately strong responses were scattered across Gag p24, Pol reverse transcriptase and integrase, Vif, Tat, Env gp120 and gp41, and Nef. Assuming that at least some of the immune responses are protective, these identified immunodominant regions could be utilized in designing an HIV vaccine candidate for the population of southern Africa. Targeting multiple immunodominant regions should improve the overall vaccine immunogenicity in the local population and minimize viral escape from immune recognition. Furthermore, the analysis of HIV-1C-specific immune responses on a population level represents a comprehensive systematic approach in HIV vaccine design and should be considered for other HIV-1 subtypes and/or different geographic areas.
Collapse
Affiliation(s)
- V Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB-402, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
WHO estimates that currently there are 40 million individuals living with HIV and there are 16000 new infections daily, worldwide. The best strategy to control the AIDS epidemic would be the development of an effective vaccine. New strategies for vaccine development have gained momentum over the past decade, some of which show greater promise in macaque models than did earlier protein-subunit or recombinant-canarypox strategies. These new vaccines include DNA vaccines and live viral vectors, and have been based on the generation of high levels of antiviral T cells. These vaccines do not prevent infection, but rather control virus replication with a rapid expansion and then contraction of antiviral T cells in response to the challenge infection. These recent vaccine successes in macaques raise hope that a vaccine can be developed that will successfully limit both the development of AIDS and viral transmission.
Collapse
Affiliation(s)
- Rama Rao Amara
- Vaccine Research Center and Yerkes Regional Primate Research Center, Emory University, 954, Gatewood Drive, NE, Atlanta, GA 30329, USA.
| | | |
Collapse
|
139
|
Newberg MH, Kuroda MJ, Charini WA, Miura A, Lord CI, Schmitz JE, Gorgone DA, Lifton MA, Kuus-Reichel K, Letvin NL. A simian immunodeficiency virus nef peptide is a dominant cytotoxic T lymphocyte epitope in Indian-origin rhesus monkeys expressing the common MHC class I allele mamu-A*02. Virology 2002; 301:365-73. [PMID: 12359438 DOI: 10.1006/viro.2002.1598] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise measurement of epitope-specific cytotoxic T lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected or vaccinated rhesus monkeys has been important in the evaluation of potential HIV vaccine strategies. This quantitation of CTL has been limited to date by the identification of only one dominant SIV/SHIV epitope in these monkeys. We have recently defined a Nef CTL epitope p199RY (YTSGPGIRY) that is recognized by CD8(+) T lymphocytes from all SIV/SHIV-infected Mamu-A*02(+) rhesus monkeys that have been evaluated. We now measure the frequency of p199RY-specific CD8(+) T lymphocytes in the peripheral blood of these monkeys with quantitative precision, using MHC class I/peptide tetramer staining and peptide-stimulated interferon-gamma Elispot assays. These epitope-specific CD8(+) T lymphocytes are present at a very high frequency and represent a significant proportion of the entire SIV- or SHIV-specific CD8(+) T lymphocyte population in SIV/SHIV-infected Mamu-A*02(+) rhesus monkeys. Knowledge of this dominant CTL epitope should prove valuable in the evaluation of HIV vaccine strategies using this animal model.
Collapse
Affiliation(s)
- Michael H Newberg
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Kumar A, Mukherjee S, Shen J, Buch S, Li Z, Adany I, Liu Z, Zhuge W, Piatak M, Lifson J, McClure H, Narayan O. Immunization of macaques with live simian human immunodeficiency virus (SHIV) vaccines conferred protection against AIDS induced by homologous and heterologous SHIVs and simian immunodeficiency virus. Virology 2002; 301:189-205. [PMID: 12359422 DOI: 10.1006/viro.2002.1544] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the vaccine potential of SHIVs attenuated by deletion of viral accessory genes, seven rhesus macaques were sequentially immunized with Delta vpu Delta nefSHIV-4 (vaccine-I) followed by Delta vpuSHIV(PPC) (vaccine-II). Despite the absence of virological evidence of productive infection with the vaccine strains, based on analysis of infectivity among peripheral blood mononuclear cells (PBMC) of the vaccinated animals, all seven animals developed binding as well as neutralizing antibodies against both vaccine-I and -II. The animals also developed vaccine virus-specific CTLs that recognized homologous as well as heterologous pathogenic SHIVs and SIV, and also soluble inhibitory factors that blocked the in vitro replication of the vaccine strains and different challenge viruses. Virus-specific cellular and humoral responses were sustained throughout a 58-week prechallenge period. To model aspects of natural transmission, the animals received a mucosal (rectal) challenge, with a mixture of three challenge viruses, SHIV(KU), SHIV(89.6)P, and SIV(mac)R71/17E. Two mock-vaccinated control animals inoculated with the same mixture of challenge viruses developed large numbers of infectious PBMC, high plasma viremia, and precipitous loss of CD4(+) T cells. The control animals did not develop any immune responses and succumbed to AIDS between 6 and 7 weeks postchallenge. All seven vaccinated animals became infected with challenge viruses as indicated by the presence of infectious cells in the PBMC and/or viral RNA in plasma. However, peak plasma viremia in vaccinates was two to nearly five logs lower than in the control animals and later plasma viral RNA became undetectable in all vaccinates. Vaccinated animals maintained normal CD4(+) T cell levels throughout the study. Challenge with pathogenic viruses caused massive anamnestic responses as determined by quantitation of virus-specific CD4(+) and CD8(+) T cells by intracellular IFN-gamma staining, and these cells persisted for at least 74 weeks. The study is still in progress and at this time DNA of SIV has become undetectable in lymph nodes of six of the seven vaccinates, SHIV(89.6)P in five of the seven, and SHIV(KU) in three of the seven animals.
Collapse
Affiliation(s)
- Anil Kumar
- University of Kansas Medical Center, Department of Microbiology, Molecular Genetics and Immunology, Kansas City 66160, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Dale CJ, Liu XS, De Rose R, Purcell DFJ, Anderson J, Xu Y, Leggatt GR, Frazer IH, Kent SJ. Chimeric human papilloma virus-simian/human immunodeficiency virus virus-like-particle vaccines: immunogenicity and protective efficacy in macaques. Virology 2002; 301:176-87. [PMID: 12359458 DOI: 10.1006/viro.2002.1589] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials.
Collapse
Affiliation(s)
- C Jane Dale
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Lewis AD, Chen R, Montefiori DC, Johnson PR, Clark KR. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J Virol 2002; 76:8769-75. [PMID: 12163597 PMCID: PMC136414 DOI: 10.1128/jvi.76.17.8769-8775.2002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although several human immunodeficiency virus (HIV) vaccine approaches have elicited meaningful antigen-specific T-cell responses in animal models, no single vaccine candidate has engendered antibodies that broadly neutralize primary isolates of HIV type 1 (HIV-1). Thus, there remains a significant gap in the design of HIV vaccines. To address this issue, we exploited the existence of rare human monoclonal antibodies that have been isolated from HIV-infected individuals. Such antibodies neutralize a wide array of HIV-1 field isolates and have been shown to be effective in vivo. However, practical considerations preclude the use of antibody preparations as a prophylactic passive immunization strategy in large populations. Our concept calls for an antibody gene of choice to be transferred to muscle where the antibody molecule is synthesized and distributed to the circulatory system. In these experiments, we used a recombinant adeno-associated virus (rAAV) vector to deliver the gene for the human antibody IgG1b12 to mouse muscle. Significant levels of HIV-neutralizing activity were found in the sera of mice for over 6 months after a single intramuscular administration of the rAAV vector. This approach allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein.
Collapse
Affiliation(s)
- Anne D Lewis
- Columbus Children's Research Institute, Children's Hospital, Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
143
|
O'Connor DH, Allen TM, Watkins DI. Cytotoxic T-lymphocyte escape monitoring in simian immunodeficiency virus vaccine challenge studies. DNA Cell Biol 2002; 21:659-64. [PMID: 12396608 DOI: 10.1089/104454902760330192] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several vaccine studies have ameliorated disease progression in simian-human immunodeficiency virus (SHIV) infections. The successes of these vaccines have been largely attributed to protective effects of cytotoxic T-lymphocyte (CTL) responses, although the precise correlates of immune protection remain poorly defined. It is now well established that vigorous CTL and antibody responses can rapidly select for viral escape variants after HIV and SIV infection. Here we suggest that viral variation analyses should be performed on viruses derived from vaccinated, SIV-, or SHIV-challenged animals as a routine component of vaccine evaluation to determine the contribution of immune responses to the success (or failure) of the vaccine regimen. To illustrate the importance of escape analysis, we show that rapid emergence of escape variants postchallenge contributed to the failure of a DNA prime/MVA boost vaccine regimen encoding SIV Tat.
Collapse
Affiliation(s)
- David H O'Connor
- University of Wisconsin at Madison, Department of Pathology, Madison, Wisconsin 53709, USA.
| | | | | |
Collapse
|
144
|
Abstract
Fifteen years after the first, definitive reports of HIV-1-specific, CD8+ T cells [147,148], there is ample evidence for the importance of these cells in control of HIV-1 infection. As much is known of their role in the natural history of HIV-1 infection and their cellular and molecular mechanisms of reactivity than of T-cell responses to any other human virus. Indeed, HIV-1-related research has led the scientific field in revealing many new, fundamental principles of cellular immunity in the last 15 years. From these data, there are multiple, posited mechanisms for loss of CD8+ T-cell control of HIV-1 infection. These include both intrinsic defects in T-cell function and loss of T-cell recognition of HIV-1 because of its extraordinary genetic diversity and disruption of antigen presentation. Efforts have begun on devising approaches to reverse these immune defects in infected individuals and develop vaccines that induce T-cell immunity for protection from infection. Combination antiretroviral drug regimens now provide exceptional, long-lasting control of HIV-1 infection, even though they do not restore anti-HIV-1 T-cell immunity fully in persons with chronic HIV-1 infection. Very encouraging results show that such treatment can maintain normal T-cell reactivity specific for this virus in some persons with early HIV-1 infection. Unfortunately, the antiviral treatment does not cure the host of this persistent, latent virus. This has led to new strategies for immunotherapeutic intervention to enhance the level and breadth of the T-cell repertoire specific for the host's residual virus in persons with chronic HIV-1 infection. Although the principles of immunotherapy stem from early in the last century, modern era approaches are integrating highly sophisticated, molecular and cell biology reagents and methods for control of HIV-1 infection. The most promising immunotherapies are autologous virus activated in vivo by STI or administered in autologous DC that have been engineered ex vivo. There are also compelling rationales supported by animal models and early clinical trials for use of cytokines and chemokines as recombinant proteins or DNA to augment anti-HIV-1 T-cell reactivity and trafficking of T cells and APC to tissue sites of infection. For prevention of HIV-1 infection, the discouragingly poor results of vaccine development in the late 1980s and early 1990s have led to very encouraging, recent studies in monkeys that show partially protective and possibly sterilizing immunity. Finally, clinical trials of new-generation DNA and live vector vaccines already have indications of improved induction of HIV-1-specific T-cell responses. Knowledge of HIV-1-specific T-cell immunity and its role in protection from HIV-1 infection and disease must continue to expand until the goal of complete control of HIV-1 infection is accomplished.
Collapse
Affiliation(s)
- Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, 425 Parran Hall, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
145
|
Amara RR, Villinger F, Staprans SI, Altman JD, Montefiori DC, Kozyr NL, Xu Y, Wyatt LS, Earl PL, Herndon JG, McClure HM, Moss B, Robinson HL. Different patterns of immune responses but similar control of a simian-human immunodeficiency virus 89.6P mucosal challenge by modified vaccinia virus Ankara (MVA) and DNA/MVA vaccines. J Virol 2002; 76:7625-31. [PMID: 12097576 PMCID: PMC136377 DOI: 10.1128/jvi.76.15.7625-7631.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently we demonstrated the control of a mucosal challenge with a pathogenic chimera of simian and human immunodeficiency virus (SHIV-89.6P) by priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env-expressing recombinant modified vaccinia virus Ankara (DNA/MVA) vaccine. Here we evaluate the ability of the MVA component of this vaccine to serve as both a prime and a boost for an AIDS vaccine. The same immunization schedule, MVA dose, and challenge conditions were used as in the prior DNA/MVA vaccine trial. Compared to the DNA/MVA vaccine, the MVA-only vaccine raised less than 1/10 the number of vaccine-specific T cells but 10-fold-higher titers of binding antibody for Env. Postchallenge, the animals vaccinated with MVA alone increased their CD8 cell numbers to levels that were similar to those seen in DNA/MVA-vaccinated animals. However, they underwent a slower emergence and contraction of antiviral CD8 T cells and were slower to generate neutralizing antibodies than the DNA/MVA-vaccinated animals. Despite this, by 5 weeks postchallenge, the MVA-only-vaccinated animals had achieved as good control of the viral infection as the DNA/MVA group, a situation that has held up to the present time in the trial (48 weeks postchallenge). Thus, MVA vaccines, as well as DNA/MVA vaccines, merit further evaluation for their ability to control the current AIDS pandemic.
Collapse
Affiliation(s)
- Rama Rao Amara
- Vaccine Research Center and Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Much recent work strongly supports the hypothesis that CD8(+) T lymphocytes (CTLs) exert important immune control over HIV and so are a major selective force in its evolution. We analyse this host-pathogen interplay and focus on new data that describe the overall 'effectiveness' of CTL responses (strength, spread, specificity and 'stamina') and the mechanisms by which HIV may evade this suppressive activity. CTLs directed against HIV recognise very large numbers of distinct epitopes across the genome, are largely functional, turn over rapidly, and possess a phenotype that is distinct from CD8(+) lymphocytes specific for other viruses. Mutation of HIV epitopes that alters or abolishes CTL recognition altogether appears to be the most important immune escape mechanism, as the variation that HIV generates defies the limits of the T cell repertoire. However, this immune evasion is still only well-studied in a few patients. The rules that govern immune escape, and the ultimate limits of CTL capacity to deal with the variant epitopes that currently circulate, are not understood. This information will determine the feasibility of current vaccine approaches that, so far, make no provision for the enormous antigenic plasticity of HIV.
Collapse
Affiliation(s)
- Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, OX1 3SY, Oxford, UK.
| | | | | |
Collapse
|
147
|
Ober BT, Brühl P, Schmidt M, Wieser V, Gritschenberger W, Coulibaly S, Savidis-Dacho H, Gerencer M, Falkner FG. Immunogenicity and safety of defective vaccinia virus lister: comparison with modified vaccinia virus Ankara. J Virol 2002; 76:7713-23. [PMID: 12097585 PMCID: PMC136372 DOI: 10.1128/jvi.76.15.7713-7723.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Potent and safe vaccinia virus vectors inducing cell-mediated immunity are needed for clinical use. Replicating vaccinia viruses generally induce strong cell-mediated immunity; however, they may have severe adverse effects. As a vector for clinical use, we assessed the defective vaccinia virus system, in which deletion of an essential gene blocks viral replication, resulting in an infectious virus that does not multiply in the host. The vaccinia virus Lister/Elstree strain, used during worldwide smallpox eradication, was chosen as the parental virus. The immunogenicity and safety of the defective vaccinia virus Lister were evaluated without and with the inserted human p53 gene as a model and compared to parallel constructs based on modified vaccinia virus Ankara (MVA), the present "gold standard" of recombinant vaccinia viruses in clinical development. The defective viruses induced an efficient Th1-type immune response. Antibody and cytotoxic-T-cell responses were comparable to those induced by MVA. Safety of the defective Lister constructs could be demonstrated in vitro in cell culture as well as in vivo in immunodeficient SCID mice. Similar to MVA, the defective viruses were tolerated at doses four orders of magnitude higher than those of the wild-type Lister strain. While current nonreplicating vectors are produced mainly in primary chicken cells, defective vaccinia virus is produced in a permanent safety-tested cell line. Vaccines based on this system have the additional advantage of enhanced product safety. Therefore, a vector system was made which promises to be a valuable tool not only for immunotherapy for diseases such as cancer, human immunodeficiency virus infection, or malaria but also as a basis for a safer smallpox vaccine.
Collapse
Affiliation(s)
- B T Ober
- Biomedical Research Center, Baxter BioScience/Vaccine AG, A-2304 Orth/Donau, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Horton H, Vogel TU, Carter DK, Vielhuber K, Fuller DH, Shipley T, Fuller JT, Kunstman KJ, Sutter G, Montefiori DC, Erfle V, Desrosiers RC, Wilson N, Picker LJ, Wolinsky SM, Wang C, Allison DB, Watkins DI. Immunization of rhesus macaques with a DNA prime/modified vaccinia virus Ankara boost regimen induces broad simian immunodeficiency virus (SIV)-specific T-cell responses and reduces initial viral replication but does not prevent disease progression following challenge with pathogenic SIVmac239. J Virol 2002; 76:7187-202. [PMID: 12072518 PMCID: PMC136301 DOI: 10.1128/jvi.76.14.7187-7202.2002] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Producing a prophylactic vaccine for human immunodeficiency virus (HIV) has proven to be a challenge. Most biological isolates of HIV are difficult to neutralize, so that conventional subunit-based antibody-inducing vaccines are unlikely to be very effective. In the rhesus macaque model, some protection was afforded by DNA/recombinant viral vector vaccines. However, these studies used as the challenge virus SHIV-89.6P, which is neutralizable, making it difficult to determine whether the observed protection was due to cellular immunity, humoral immunity, or a combination of both. In this study, we used a DNA prime/modified vaccinia virus Ankara boost regimen to immunize rhesus macaques against nearly all simian immunodeficiency virus (SIV) proteins. These animals were challenged intrarectally with pathogenic molecularly cloned SIVmac239, which is resistant to neutralization. The immunization regimen resulted in the induction of virus-specific CD8(+) and CD4(+) responses in all vaccinees. Although anamnestic neutralizing antibody responses against laboratory-adapted SIVmac251 developed after the challenge, no neutralizing antibodies against SIVmac239 were detectable. Vaccinated animals had significantly reduced peak viremia compared with controls (P < 0.01). However, despite the induction of virus-specific cellular immune responses and reduced peak viral loads, most animals still suffered from gradual CD4 depletion and progressed to disease.
Collapse
Affiliation(s)
- Helen Horton
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, Wisconsin 53715, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Mothé BR, Sidney J, Dzuris JL, Liebl ME, Fuenger S, Watkins DI, Sette A. Characterization of the peptide-binding specificity of Mamu-B*17 and identification of Mamu-B*17-restricted epitopes derived from simian immunodeficiency virus proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:210-9. [PMID: 12077247 DOI: 10.4049/jimmunol.169.1.210] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The SIV-infected rhesus macaque is an excellent model to examine candidate AIDS virus vaccines. These vaccines should elicit strong CD8(+) responses. Previous definition of the peptide-binding motif and optimal peptides for Mamu-A*01 has created a demand for Mamu-A*01-positive animals. We have now studied a second MHC class I molecule, Mamu-B*17, that is present in 12% of captive-bred Indian rhesus macaques. The peptide-binding specificity of the Mamu-B*17 molecule was characterized using single substitution analogs of two Mamu-B*17-binding peptides and libraries of naturally occurring sequences of viral or bacterial origin. Mamu-B*17 uses position 2 and the C terminus of its peptide ligands as dominant anchor residues. The C terminus was found to have a very narrow specificity for the bulky aromatic residue W, with other aromatic residues (F and Y) being only occasionally tolerated. Position 2 is associated with a broad chemical specificity, readily accommodating basic (H and R), bulky hydrophobic (F and M), and small aliphatic (A) residues. Using this motif, we identified 50 peptides derived from SIV(mac)239 that bound Mamu-B*17 with an affinity of 500 nM or better. ELISPOT and intracellular cytokine-staining assays showed that 16 of these peptides were antigenic. We have, therefore, doubled the number of MHC class I molecules for which SIV-derived binding peptides have been characterized. This allows for the quantitation of immune responses through tetramers and analysis of CD8(+) function by intracellular cytokine-staining assays and ELISPOT. Furthermore, it is an important step toward the design of a multiepitope vaccine for SIV and HIV.
Collapse
Affiliation(s)
- Bianca R Mothé
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Alexander J, Oseroff C, Dahlberg C, Qin M, Ishioka G, Beebe M, Fikes J, Newman M, Chesnut RW, Morton PA, Fok K, Appella E, Sette A. A decaepitope polypeptide primes for multiple CD8+ IFN-gamma and Th lymphocyte responses: evaluation of multiepitope polypeptides as a mode for vaccine delivery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6189-98. [PMID: 12055232 DOI: 10.4049/jimmunol.168.12.6189] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteins are generally regarded as ineffective immunogens for CTL responses. We synthesized a 100-mer decaepitope polypeptide and tested its capacity to induce multiple CD8(+) IFN-gamma and Th lymphocyte (HTL) responses in HLA transgenic mice. Following a single immunization in the absence of adjuvant, significant IFN-gamma in vitro recall responses were detected for all epitopes included in the construct (six A2.1-, three A11-restricted CTL epitopes, and one universal HTL epitope). Immunization with truncated forms of the decaepitope polypeptide was used to demonstrate that optimal immunogenicity was associated with a size of at least 30-40 residues (3-4 epitopes). Solubility analyses of the truncated constructs were used to identify a correlation between immunogenicity for IFN-gamma responses and the propensity of these constructs to form particulate aggregates. Although the decaepitope polypeptide and a pool of epitopes emulsified in IFA elicited similar levels of CD8(+) responses using fresh splenocytes, we found that the decaepitope polypeptide more effectively primed for in vitro recall CD8(+) T cell responses. Finally, immunogenicity comparisons were also made between the decaepitope polypeptide and a corresponding gene encoding the same polypeptide delivered by naked DNA immunization. Although naked DNA immunization induced somewhat greater direct ex vivo and in vitro recall responses 2 wk after a single immunization, only the polypeptide induced significant in vitro recall responses 6 wk following the priming immunization. These studies support further evaluation of multiepitope polypeptide vaccines for induction of CD8(+) IFN-gamma and HTL responses.
Collapse
MESH Headings
- Animals
- Buffers
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- DNA/administration & dosage
- DNA/immunology
- Drug Contamination
- Emulsions
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Freund's Adjuvant/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- Humans
- Injections, Intramuscular
- Injections, Subcutaneous
- Interferon-gamma/biosynthesis
- Jurkat Cells
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Peptide Fragments/administration & dosage
- Peptide Fragments/chemical synthesis
- Peptide Fragments/immunology
- Solubility
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Transgenes/immunology
- Vaccination/methods
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
|