101
|
Abstract
Since their discovery in 1973, dendritic cells (DCs) have gained strong interest from immunologists because of their unique capacity to sensitize naive T cells. There is now strong evidence that cells of the dendritic family not only control immunity but also regulate responses to self and non-self, thereby avoiding immunopathology. These two complementary functions are critical to ensure the integrity of the organism in an environment full of antigens. How DCs display these opposite functions is still intriguing. Here, we review the role of DC subsets in the regulation of T-helper responses in vivo.
Collapse
Affiliation(s)
- Caroline Coquerelle
- Laboratoire de Physiologie Animale, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | | |
Collapse
|
102
|
Abstract
The intestine is subjected to a barrage of insults from food, bacterial flora, and pathogens. Despite this constant antigenic challenge, the mucosal tissues lining the intestinal tract remain largely under control. The mechanisms regulating the homeostatic balance in the gut have been investigated for many years by many groups, but the precise nature of the regulatory control remains elusive. In this review, we provide an overview of pathways proposed to be involved in dampening the inflammatory response and maintaining the homeostatic balance in the intestine, and how these pathways may be disrupted in ulcerative colitis and Crohn's disease.
Collapse
|
103
|
Dendritic cells in the gut: interaction with intestinal helminths. J Biomed Biotechnol 2010; 2010:250563. [PMID: 20224759 PMCID: PMC2836138 DOI: 10.1155/2010/250563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 11/30/2009] [Accepted: 12/18/2009] [Indexed: 11/29/2022] Open
Abstract
The mucosal environment in mammals is highly tolerogenic; however, after exposure to pathogens or danger signals, it is able to shift towards an inflammatory response. Dendritic cells (DCs) orchestrate immune responses and are highly responsible, through the secretion of cytokines and expression of surface markers, for the outcome of such immune response. In particular, the DC subsets found in the intestine have specialized functions and interact with different immune as well as nonimmune cells. Intestinal helminths primarily induce Th2 responses where DCs have an important yet not completely understood role. In addition, this cross-talk results in the induction of regulatory T cells (T regs) as a result of the homeostatic mucosal environment. This review highlights the importance of studying the particular relation “helminth-DC-milieu” in view of the significance that each of these factors plays. Elucidating the mechanisms that trigger Th2 responses may provide the understanding of how we might modulate inflammatory processes.
Collapse
|
104
|
|
105
|
Grainger J, Hall J, Bouladoux N, Oldenhove G, Belkaid Y. Microbe-dendritic cell dialog controls regulatory T-cell fate. Immunol Rev 2010; 234:305-16. [PMID: 20193027 PMCID: PMC3404740 DOI: 10.1111/j.0105-2896.2009.00880.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Each microenvironment is controlled by a specific set of regulatory elements that have to be finely and constantly tuned to maintain local homeostasis. These environments could be site specific, such as the gut environment, or induced by chronic exposure to microbes. Various populations of dendritic cells are central to the orchestration of this control. In this review, we discuss some new findings associating dendritic cells from defined compartments with the induction and control of regulatory T cells in the context of exposure to both commensal and pathogenic microbes.
Collapse
Affiliation(s)
- John Grainger
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jason Hall
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Nicolas Bouladoux
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Guillaume Oldenhove
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Yasmine Belkaid
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
106
|
Abstract
The primary function of the gastrointestinal tract is water, electrolyte, and nutrient transport. To perform this function, the epithelium lining the gastrointestinal tract is in close contact with the gastrointestinal lumen. Because the lumen is connected to the external environment and, depending on the site, has a high bacterial and antigen load, the epithelium must also prevent pathogenic agents within the gastrointestinal lumen from gaining access to internal tissues. This creates a unique challenge for the gastrointestinal tract to balance the requirements of forming a barrier to separate the intestinal lumen from underlying tissue while simultaneously setting up a system for moving water, electrolytes, and nutrients across the barrier. In the face of this, the epithelial cells of the gastrointestinal tract form a selectively permeable barrier that is tightly regulated. In addition, the intestinal mucosa actively participates in host defense by engaging the mucosal immune system. Complex tissue organization and diverse cellular composition are necessary to achieve such a broad range of functions. In this chapter, the structure and function of the gastrointestinal tract and their relevance to infectious diseases are discussed.
Collapse
|
107
|
Abstract
Mucosal epithelium functions not only as a physical barrier, but also as a regulator of innate and adaptive immune responses against foreign substances and microorganisms. In particular, epithelial cells have been directly implicated in Th2 responses, serving as a critical interface between innate immune responses and Th2 immunity. Emerging studies have revealed the cellular and molecular mechanisms by which the epithelium modulates Th2 responses through the production of a group of epithelial-derived Th2-driving cytokines, including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin. These epithelial-derived Th2-driving cytokines execute a regulatory function of the epithelium on mucosal immunity by promoting Th2 responses and maintaining the balance of host immune homeostasis and defense against various pathogens. Dysregulation of these Th2-driving cytokines can lead to detrimental Th2-dependent inflammatory responses, often manifested in various forms of allergic and inflammatory diseases.
Collapse
|
108
|
Strauch UG, Grunwald N, Obermeier F, Gürster S, Rath HC. Loss of CD103 + intestinal dendritic cells during colonic inflammation. World J Gastroenterol 2010; 16:21-9. [PMID: 20039445 PMCID: PMC2799913 DOI: 10.3748/wjg.v16.i1.21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate possible differences in dendritic cells (DC) within intestinal tissue of mice before and after induction of colitis.
METHODS: Mucosal DC derived from intestinal tissue, as well as from mesenteric lymph nodes and spleen, were analyzed by fluorescence activated cell sorting (FACS) analysis. Supernatants of these cells were analyzed for secretion of different pro- and anti-inflammatory cytokines. Immunohistochemistry and immunofluorescence were performed on cryosections of mucosal tissue derived from animals with colitis as well as from healthy mice.
RESULTS: It was shown that DC derived from healthy intestinal lamina propria (LP) represented an immature phenotype as characterized by low-level expression of costimulatory cytokines. In contrast to DC from spleen and mesenteric lymph nodes (MLN) that secreted proinflammatory cytokines, LP-DC produced high levels of the anti-inflammatory cytokine IL-10. After induction of murine colitis in a CD4+CD62L+ transfer model or in chronic dextran sulfate sodium-colitis, a marked increase of activated CD80+ DC could be observed within the inflamed colonic tissue. Interestingly, in contrast to splenic DC, a significant population of DC within MLN and colonic LP expressed the mucosal integrin CD103 which was lost during colitis.
CONCLUSION: The constitutive secretion of anti-inflammatory cytokines by immature DC within the intestinal LP might regulate the homeostatic balance between mucosal immunity and tolerance. CD103+ DC could mediate this important function.
Collapse
|
109
|
Dasgupta S, Kasper DL. Novel tools for modulating immune responses in the host-polysaccharides from the capsule of commensal bacteria. Adv Immunol 2010; 106:61-91. [PMID: 20728024 DOI: 10.1016/s0065-2776(10)06003-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intestinal microflora of mammals includes organisms with many unique molecules that enable them to modulate their immediate environment and thus to survive and reside successfully in the gut. Little is known about how individual molecules from these microbes affect the host's health and development, but the microbiome is considered a crucial factor in intestinal homeostasis. The literature highlights numerous ways in which the microflora stimulates the mammalian host's immune system, starting with its development and continuing to the initiation and resolution of inflammation. The influence of the microflora on the host's immune system is mediated principally by interactions with various antigen-presenting cells of the gut; these interactions result in substantial modulation of both the innate and the adaptive arms of the immune system. Certain polysaccharide antigens from the capsules of some commensal bacteria represent a functional class of molecules that exert profound immunomodulatory effects. Because of their unique structural features, including a zwitterionic charge motif, these polysaccharides can participate to a significant extent in the orchestration of host immune homeostasis. These molecules can be used to elucidate the basic biology of the mammalian intestine and have the potential for use in novel therapeutic regimens for various systemic or intestinal pathological conditions.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
110
|
Lelouard H, Henri S, De Bovis B, Mugnier B, Chollat-Namy A, Malissen B, Méresse S, Gorvel JP. Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer's patch dendritic cells that express lysozyme. Gastroenterology 2010; 138:173-84.e1-3. [PMID: 19800337 DOI: 10.1053/j.gastro.2009.09.051] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 09/07/2009] [Accepted: 09/22/2009] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Lysozyme has an important role in preventing bacterial infection. In the gastrointestinal tract, lysozyme is thought to be mainly expressed by Paneth cells of the crypt epithelium. We investigated its expression in the Peyer's patch, a major intestinal site of antigen sampling and pathogen entry. METHODS We performed immunostaining on normal and Salmonella Typhimurium-infected intestinal samples and analyzed them by confocal microscopy and flow cytometry. RESULTS In Peyer's patch of mouse, rat, and human, lysozyme was strongly expressed in the germinal center of follicles by tingible body macrophages and in the subepithelial dome by a subset of myeloid dendritic cells (DC). Among DC subsets from mouse Peyer's patches, these lysozyme-expressing DC displayed the highest surface expression of class II major histocompatibility complex and costimulatory molecules; they were the most efficient at capturing microspheres in vitro. Moreover, they were the main DC subset involved in bacterial pathogen uptake and in dead cell clearance, including M cells. CONCLUSIONS The subepithelial dome of Peyer's patches contains a unique population of intestinal DC that secretes high levels of lysozyme and internalizes bacteria and dead cells.
Collapse
Affiliation(s)
- Hugues Lelouard
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
111
|
|
112
|
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that orchestrate innate and adaptive immune responses. The intestinal mucosa contains numerous DCs that are highly specialized in function. Mucosal DCs display a unique response to toll-like receptor ligands, are capable of driving immunoglobulin isotype switching to IgA, can imprint gut-homing receptors on T and B cells, and drive either T regulatory or Th17 cells depending on the analyzed subtype. These functions are partly cell autonomous and partly conferred by the local microenvironment. In this review, we will summarize the different DC subtypes present in the intestine and in the gut-associated lymphoid tissue (GALT), the unique characteristics of these subtypes, and how the local microenvironment can shape DC function.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
113
|
Chennaoui M, Drogou C, Carpentier AF, Guezennec CY, Gomez-Merino D. Cytokine content in lymphoid and white adipose tissues after repeated CpG oligodeoxynucleotide administration in trained rats. Vaccine 2009; 28:1814-8. [PMID: 20018268 DOI: 10.1016/j.vaccine.2009.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/03/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
The increased threat of bioterrorism and the emergence of potentially fatal diseases underscores the need to improve treatments for protecting all segments of the human population including military personnel. New methods need to be developed. The ability of oligodeoxynucleotides containing the CpG motif (CpG ODNs) to promote the production of T(H)1-type pro-inflammatory cytokines suggest they might be useful as vaccine adjuvants, but their potential effects during exercise have not been widely studied. Repeated administration of CpG ODN in sedentary rats promoted the production of T(H)1-type pro-inflammatory cytokines in spleen, Peyer's patches and adipose tissues. However, such an increase was not observed in trained rats, suggesting that CpG would not be the best agent for vaccine adjuvants and immunomodulation in intensely trained rats.
Collapse
Affiliation(s)
- Mounir Chennaoui
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Antenne Brétigny s/Orge - IMASSA, Brétigny-sur-orge, France.
| | | | | | | | | |
Collapse
|
114
|
Abstract
This study used an in vivo mouse model to analyze the response of dendritic cells (DCs) in Peyer's patches (PPs) within the first 48 h of infection with the wild-type murine rotavirus EDIM (EDIM(wt)). After the infection, the absolute number of DCs was increased by 2-fold in the PPs without a modification of their relative percentage of the total cell number. Also, the DCs from PPs of infected mice showed a time-dependent migration to the subepithelial dome (SED) and an increase of the surface activation markers CD40, CD80, and CD86. This response was more evident at 48 h postinfection (p.i.) and depended on viral replication, since DCs from PPs of mice inoculated with UV-treated virus did not show this phenotype. As a result of the activation, the DCs showed an increase in the expression of mRNA for the proinflammatory cytokines interleukin-12/23p40 (IL-12/23p40), tumor necrosis factor alpha (TNF-alpha), and beta interferon (IFN-beta), as well as for the regulatory cytokine IL-10. These results suggest that, a short time after rotavirus infection, the DCs from PPs play a critical role in controlling the infection and, at the same time, avoiding an excessive inflammatory immune response.
Collapse
|
115
|
Gonzalez MJ, Plummer EM, Rae CS, Manchester M. Interaction of Cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. PLoS One 2009; 4:e7981. [PMID: 19956734 PMCID: PMC2776531 DOI: 10.1371/journal.pone.0007981] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022] Open
Abstract
Background Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized. Methodology The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer's patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured. Conclusions We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer's patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer's patch.
Collapse
Affiliation(s)
- Maria J. Gonzalez
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Emily M. Plummer
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chris S. Rae
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marianne Manchester
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
116
|
Heath WR, Carbone FR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 2009; 10:1237-44. [DOI: 10.1038/ni.1822] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
117
|
Influence of the tissue microenvironment on Toll-like receptor expression by CD11c+ antigen-presenting cells isolated from mucosal tissues. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1615-23. [PMID: 19776199 DOI: 10.1128/cvi.00216-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is recognized that functional activities of antigen-presenting cells (APCs) in mucosal tissue sites differ from those of systemic APCs; however, it is unknown whether there are further differences between APC populations residing in different mucosal sites. In this study, we directly compared murine CD11c+ APCs isolated from colon, lung, and spleen and found that APCs isolated from these tissues differ considerably in Toll-like receptor (TLR) expression and responses to in vitro TLR ligand stimulation. We also provide evidence that tissue microenvironments dictate distinct patterns of TLR expression by CD11c+ APCs in different mucosal tissues. Moreover, CD11c+ cells isolated from different tissues have varied capacities to induce the development of T helper 1 (Th1), Th2, or regulatory CD4+ T cells. Thus, unique tissue microenvironments have a significant influence on determining TLR expression by CD11c+ cells that migrate to and reside in each mucosal tissue and are likely to modulate their functional activities.
Collapse
|
118
|
Balic A, Smith KA, Harcus Y, Maizels RM. Dynamics of CD11c(+) dendritic cell subsets in lymph nodes draining the site of intestinal nematode infection. Immunol Lett 2009; 127:68-75. [PMID: 19766674 PMCID: PMC2789245 DOI: 10.1016/j.imlet.2009.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 08/21/2009] [Accepted: 09/08/2009] [Indexed: 11/13/2022]
Abstract
Helminth parasites drive dominant Th2 responses through an as yet unidentified pathway. We have previously shown that the rodent gastrointestinal nematode Nippostrongylus brasiliensis secretes products which selectively activate in vitro-derived dendritic cells to induce Th2 responses on in vivo transfer. We now show that, during active infection with this parasite, the draining mesenteric lymph node dendritic cell population is altered significantly. Although there is substantial expansion of DC numbers during infection, the CD86hi-CD8αint-CD11b− subset is markedly diminished, and expression levels of CD40, CD86 and CD103 are reduced. Notably, the reduced frequency of CD8αint DCs is evident only in those mesenteric lymph nodes draining the anterior site of infestation. In infections with the longer lived Heligmosomoides polygyrus, the proportion of CD8αint DCs in the MLNC falls to below 10% of total DC numbers by 35 days post-infection. Further, infection alters TLR responsiveness, as IL-12 production (as measured by ex vivo intracellular staining of CD11c+ DCs) in response to LPS stimulation is reduced, while IL-6, TNF-α and in particular, IL-10 all increase following infection with either nematode parasite. These changes suggest the possibility that helminth parasites modulate gastrointestinal immunity both by inhibiting migration of CD8αint DCs to the draining lymph nodes, and modifying DC responsiveness in a manner which favours a Th2 outcome.
Collapse
Affiliation(s)
- Adam Balic
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | |
Collapse
|
119
|
Rescigno M, Di Sabatino A. Dendritic cells in intestinal homeostasis and disease. J Clin Invest 2009; 119:2441-50. [PMID: 19729841 DOI: 10.1172/jci39134] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DCs are specialized APCs that orchestrate innate and adaptive immune responses. The intestinal mucosa contains numerous DCs, which induce either protective immunity to infectious agents or tolerance to innocuous antigens, including food and commensal bacteria. Several subsets of mucosal DCs have been described that display unique functions, dictated in part by the local microenvironment. In this review, we summarize the distinct subtypes of DCs and their distribution in the gut; examine how DC dysfunction contributes to intestinal disease development, including inflammatory bowel disease and celiac disease; and discuss manipulation of DCs for therapy.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
| | | |
Collapse
|
120
|
Type II collagen oral tolerance; mechanism and role in collagen-induced arthritis and rheumatoid arthritis. Mod Rheumatol 2009; 19:581-9. [PMID: 19697097 DOI: 10.1007/s10165-009-0210-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 07/08/2009] [Indexed: 12/24/2022]
Abstract
Oral tolerance means a diminished immune response to previously fed antigens. Repeated oral administrations of type II collagen (CII) induce oral tolerance and inhibit the development of collagen-induced arthritis (CIA). Dendritic cells (DCs) in the gut-associated lymphoid tissue (GALT) take up the CII and then present it to T cells to generate regulatory T cells (Tregs), which induce systemic immune tolerance to CII. Inhibitory cytokines, such as transforming growth factor (TGF)-beta and interleukin (IL)-10, and several immune regulatory molecules, including indoleamine 2,3-dioxygenase (IDO) and retinoic acid, play an important role in Treg generation. Each DC subset may play different roles, and CD11c+CD11b+DCs and IDO+DCs are important in the generation of antigen-inducible Tregs in CII oral tolerance. Upon stimulation with the antigen involved in its generation, Treg is activated and regulates the immune response through inhibitory cytokine production, cell-to-cell contact-dependent mechanisms, DC modification, and bystander suppression. The DCs and Tregs are deeply involved in oral tolerance through reciprocal interactions. Several clinical trials have been conducted in RA patients to examine the efficacy of CII oral tolerance. An understanding the mechanism of oral tolerance to CII would give clinicians new insights into the development of natural immune tolerance and new therapeutic approaches for the treatment of autoimmune diseases.
Collapse
|
121
|
Wang X, O'Gorman MRG, Bu HF, Koti V, Zuo XL, Tan XD. Probiotic preparation VSL#3 alters the distribution and phenotypes of dendritic cells within the intestinal mucosa in C57BL/10J mice. J Nutr 2009; 139:1595-602. [PMID: 19549755 PMCID: PMC2709306 DOI: 10.3945/jn.109.109934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Probiotic nutrients have shown promise in therapy for the treatment of gastrointestinal inflammation, infection, and atopic disease. Intestinal dendritic cells (DC) play a critical role in shaping the intestinal immune response. In this study, we tested the effect of a probiotic preparation (VSL#3) on DC distribution and phenotypes within the intestinal mucosa using a lineage depletion-based flow cytometric analysis. In naïve C57BL/10J mice, intestinal mucosal DC were composed of plasmacytoid DC (pDC) and myeloid DC (mDC). The pDC were the dominant form in lamina propria and Peyer's patches, whereas mDC were the prevailing type in the mesenteric lymph nodes. Additional characterization of pDC and mDC with flow cytometry revealed that they expressed heterogeneous phenotypes in the intestinal mucosa. In mice gavaged with the probiotic VSL#3 for 7 d, the proportion of pDC within the lamina propria was >60% lower, whereas the pDC subset in the mesenteric lymph nodes was more than 200% greater than in sham-treated controls (P < 0.01). Within pDC, the proportion of functionally unique CX3CR1(+) DC was greater than in controls in both the lamina propria and the Peyer's patches (P < 0.01). In contrast to pDC, the mDC number was greater than in controls in all intestinal lymphoid tissue compartments in VSL#3-treated mice (P < 0.01). In conclusion, this study suggests that phenotypically and functionally distinct DC subsets are localized to specific lymphoid tissues within the intestinal mucosa and that the VSL#3 probiotic nutritional supplement alters the distribution of the DC subsets within the intestinal mucosa. These changes may be important in the alteration of mucosal immunity following probiotic VSL#3 therapy.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Digestive Diseases and Immunobiology, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3394; Department of Pediatrics, and Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3363
| | - Maurice R. G. O'Gorman
- Center for Digestive Diseases and Immunobiology, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3394; Department of Pediatrics, and Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3363
| | - Heng-Fu Bu
- Center for Digestive Diseases and Immunobiology, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3394; Department of Pediatrics, and Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3363
| | - Viola Koti
- Center for Digestive Diseases and Immunobiology, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3394; Department of Pediatrics, and Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3363
| | - Xiu-Li Zuo
- Center for Digestive Diseases and Immunobiology, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3394; Department of Pediatrics, and Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3363
| | - Xiao-Di Tan
- Center for Digestive Diseases and Immunobiology, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3394; Department of Pediatrics, and Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614-3363
| |
Collapse
|
122
|
Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol 2009; 2:340-50. [PMID: 19387433 DOI: 10.1038/mi.2009.13] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intestinal dendritic cells (DCs) have been shown to display specialized functions, including the ability to promote gut tropism to lymphocytes, to polarize noninflammatory responses, and to drive the differentiation of adaptive Foxp3(+) regulatory T (T(reg)) cells. However, very little is known about what drives the mucosal phenotype of DCs. Here, we present evidence that the local microenvironment, and in particular intestinal epithelial cells (ECs), drive the differentiation of T(reg)-cell-promoting DCs, which counteracts Th1 and Th17 development. EC-derived transforming growth factor-beta (TGF-beta) and retinoic acid (RA), but not thymic stromal lymphopoietin (TSLP), were found to be required for DC conversion. After EC contact, DCs upregulated CD103 and acquired a tolerogenic phenotype. EC-conditioned DCs were capable of inducing de novo T(reg) cells with gut-homing properties that when adoptively transferred, protected mice from experimental colitis. Thus, we have uncovered an essential mechanism in which EC control of DC function is required for tolerance induction.
Collapse
|
123
|
Wong KL, Tang LFM, Lew FC, Wong HSK, Chua YL, MacAry PA, Kemeny DM. CD44high memory CD8 T cells synergize with CpG DNA to activate dendritic cell IL-12p70 production. THE JOURNAL OF IMMUNOLOGY 2009; 183:41-50. [PMID: 19535645 DOI: 10.4049/jimmunol.0803473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protective memory CD8 T cell responses are generally associated with the rapid and efficient acquisition of CTL function. However, the ability of memory CD8 T cells to modulate immune responses through interactions with dendritic cells (DCs) during the early states of secondary Ag exposure is poorly understood. In this study, we show that murine Ag-specific CD44(high) CD8 T cells, representing CD8 T cells of the memory phenotype, potently activate DCs to produce high levels of IL-12p70 in conjunction with stimulation of DCs with the TLR 9 ligand, unmethylated CpG DNA. IL-12p70 production was produced predominantly by CD8alpha(+) DCs and plasmacytoid DCs, and mediated by CD8 T cell-derived cytokines IFN-gamma, GM-CSF, TNF-alpha, and surface CD40L. We also find that CD44(high) memory phenotype CD8 T cells were better DC IL-12p70 stimulators than CD44(low) naive phenotype CD8 T cells, and this was attributed to higher levels of IFN-gamma and GM-CSF produced by CD44(high) memory phenotype CD8 T cells during their Ag specific interaction with DCs. Our study identifies CpG DNA as the most effective TLR ligand that cooperates with CD8 T cells for DC IL-12p70 production, and suggests that effectiveness of memory CD8 T cells could be attributed to their ability to rapidly and effectively induce protective Th1 immunity during early stages of pathogen reinfection.
Collapse
Affiliation(s)
- Kok Loon Wong
- Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
124
|
Finke D. Induction of intestinal lymphoid tissue formation by intrinsic and extrinsic signals. Semin Immunopathol 2009; 31:151-69. [PMID: 19506873 DOI: 10.1007/s00281-009-0163-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/20/2009] [Indexed: 12/20/2022]
Abstract
Since the discovery of inducer cells as a separate lineage for organogenesis of Peyer's patches in the small intestine of fetal mice, a lot of progress has been made in understanding the molecular pathways involved in the generation of lymphoid tissue and the maintenance of the lymphoid architecture. The findings that inducer cells also exist in adult mice and in humans, have a lineage relationship to natural killer cells, and can be stimulated during infections highlight their possible role in establishing innate and adaptive immune responses. Novel concepts in the development of intestinal lymphoid tissues have been made in the past few years suggesting that lymphoid organs are more plastic as previously thought and depend on antigenic stimulation. In addition, the generation of novel lymphoid organs in the gut under inflammatory conditions indicates a function in chronic diseases. The present review summarizes current knowledge on the basic framework of signals required for developing lymphoid tissue under normal and inflammatory conditions.
Collapse
Affiliation(s)
- Daniela Finke
- Department of Biomedicine, Developmental Immunology, University of Basel, Basel, Switzerland.
| |
Collapse
|
125
|
Kunisawa J, Nochi T, Kiyono H. Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol 2009; 29:505-13. [PMID: 18835748 DOI: 10.1016/j.it.2008.07.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/07/2008] [Accepted: 07/14/2008] [Indexed: 12/30/2022]
Abstract
Airway and digestive tissues are the frontlines of the body's defense, being continuously exposed to the outside environment and encountering large numbers of antigens and microorganisms. To achieve immunosurveillance and immunological homeostasis in the harsh environments of the mucosal surfaces, the mucosal immune system tightly regulates a state of opposing but harmonized immune activation and quiescence. Recently, accumulating evidence has revealed that although the respiratory and intestinal immune systems share common mucosa-associated immunological features that are different from those of the systemic immune system, they also show distinctive immunological phenotypes, functions, and developmental pathways. We describe here the common and distinct immunological features of respiratory and intestinal immune systems and its application to the development of mucosal vaccines.
Collapse
Affiliation(s)
- Jun Kunisawa
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
126
|
Leon F, Smythies LE, Smith PD, Kelsall BL. Involvement of dendritic cells in the pathogenesis of inflammatory bowel disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 579:117-32. [PMID: 16620015 DOI: 10.1007/0-387-33778-4_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In conclusion, during inflammation, DCs are likely activated by inflammatory signals and induced to migrate to T cell zones of organized lymphoid tissues where the cells induce T cell responses. In addition to their established role in T cell priming and the induction of tolerance, DCs may act to enhance (or possibly suppress) T cell responses at sites of mucosal inflammation. Determining the importance of DCs in this regard, as well as establishing a potential role for DCs in continuous activation of naive or central memory cells in lymph nodes draining inflammatory sites, will elucidate the role of DCs as a potential therapeutic target for chronic inflammatory diseases, like IBD. Resident intestinal macrophages are noninflammatory and do not efficiently present antigens to intestinal T cells, yet are avidly phagocytic and able to kill internalized organisms. During intestinal inflammation, monocytes are recruited from the blood, become inflammatory macrophages in the inflamed tissue, and are major contributors to tissue destruction and perpetuation of inflammation via their production of chemokines and pro-inflammatory cytokines. Macrophages may also contribute directly to DC activation and maturation, which would drive DCs to present antigens from the bacterial flora to T cells locally within tissue or to more efficiently traffic to T cell zones of lymphoid tissue. Thus, DCs and macrophages have evolved functional niches that promote cooperation in the prevention of untoward intestinal inflammation in the steady state and in the eradication of invasive microorganisms during infection. The balance between suppressing inflammation and promoting host defense is altered in humans with IBD allowing a persistent inflammatory response to commensal bacteria. Based on studies from animal models, the pathogenesis of IBD likely involves either the lack of appropriate regulation from T cells, or an over-production of effector T cells. The end result of these potential mechanisms is the abnormal induction and/or survival of effector T cells and the production of factors such as cytokines by inflammatory macrophages and neutrophils that result in tissue destruction. The destructive process likely involves normally tolerizing DCs, which in the microenvironment of the inflamed mucosa activate T cell responses to normal flora in both draining lymphoid tissues and at sites of inflammation, with macrophages and neutrophils contributing the bulk of inflammatory and destructive cytokines.
Collapse
Affiliation(s)
- Francisco Leon
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
127
|
Mason KL, Huffnagle GB, Noverr MC, Kao JY. Overview of Gut Immunology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 635:1-14. [DOI: 10.1007/978-0-387-09550-9_1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
128
|
Albright CA, Sartor RB, Tonkonogy SL. Endogenous antigen presenting cell-derived IL-10 inhibits T lymphocyte responses to commensal enteric bacteria. Immunol Lett 2009; 123:77-87. [PMID: 19428554 DOI: 10.1016/j.imlet.2009.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/17/2008] [Accepted: 02/16/2009] [Indexed: 01/25/2023]
Abstract
Interleukin-10 deficient (IL-10-/-) mice develop chronic T cell-mediated colitis when colonized with normal commensal bacteria, but germ-free (GF) IL-10-/- mice remain disease-free. Antigen presenting cells (APC) secrete regulatory cytokines that help determine T lymphocyte activation or tolerance. CD4(+) T cells from the mesenteric lymph nodes of inflamed IL-10-/- mice secrete more IFN-gamma and IL-17 when cultured with cecal bacterial lysate-pulsed splenic APC from IL-10-/- mice than when cultured with normal control APC. GF IL-10-/- APC induce similar IFN-gamma and IL-17 responses; therefore, the functional difference between normal and IL-10 deficient APC is inherent to the lack of IL-10 and not secondary to inflammation. Bacterial lysate-pulsed normal APC cultured with CD4(+) cells from colitic IL-10-/- mice or with exogenous IFN-gamma secrete higher amounts of IL-10 compared to the same APC cultured with naïve T cells. APC enriched for CD11c(+) cells are potent activators of IFN-gamma and IL-17 production by CD4(+) cells from IL-10-/- mice. These APC also produce IL-12/IL-23 p40 and IL-10. Recombinant IL-10 suppressed and anti-IL-10 receptor antibody increased IFN-gamma, IL-17 and IL-12/IL-23 p40 production in bacterial lysate-pulsed APC and plus CD4(+) T cell co-cultures. Taken together, our results show that endogenous IL-10 produced by APC inhibits responses to commensal bacteria and influences the ability of APC to stimulate IFN-gamma-producing effector lymphocytes, which reciprocally, induce IL-10 production by APC. Cytokines produced by APC are an important determinant of pathogenic versus protective mucosal immune responses to colonic bacterial stimulation.
Collapse
Affiliation(s)
- Carol A Albright
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, USA
| | | | | |
Collapse
|
129
|
Porporatto C, Canali MM, Bianco ID, Correa SG. The biocompatible polysaccharide chitosan enhances the oral tolerance to type II collagen. Clin Exp Immunol 2009; 155:79-87. [PMID: 19076832 DOI: 10.1111/j.1365-2249.2008.03777.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Chitosan is a mucoadhesive polysaccharide that promotes the transmucosal absorption of peptides and proteins. At mucosal sites chitosan exhibits immunomodulatory activities and stimulates the release of regulatory cytokines. Herein we evaluated the effect of the co-administration of chitosan in the tolerance to type II collagen (CII) using an experimental model of arthritis. Rats were fed diluent (acetic acid), 1 mg CII, 1 mg chitosan or 1 mg CII + 1 mg chitosan during 5 days before immunization with CII in Freund's complete adjuvant. Systemic effects were evaluated in draining lymph nodes after antigenic challenge or during the clinical evolution of arthritis. Specific antibodies, proliferation against CII and the production of interferon (IFN)-gamma and interleukin-10 were assessed. Clinical signs were observed 13-15 days after primary immunization. The CII : chitosan group presented the lowest incidence and developed moderate arthritis, with reduced levels of immunoglobulin (Ig)G2a anti-CII, a limited proliferation in draining lymph nodes and a lower release of IFN-gamma after restimulation with CII. Our results demonstrate that chitosan enhances the tolerance to an articular antigen with a decrease in the inflammatory responses and, as a consequence, an improvement in clinical signs.
Collapse
Affiliation(s)
- C Porporatto
- Inmunología, CIBICI (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | |
Collapse
|
130
|
Cerovic V, McDonald V, Nassar MA, Paulin SM, Macpherson GG, Milling SWF. New insights into the roles of dendritic cells in intestinal immunity and tolerance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 272:33-105. [PMID: 19121816 DOI: 10.1016/s1937-6448(08)01602-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play a critical key role in the initiation of immune responses to pathogens. Paradoxically, they also prevent potentially damaging immune responses being directed against the multitude of harmless antigens, to which the body is exposed daily. These roles are particularly important in the intestine, where only a single layer of epithelial cells provides a barrier against billions of commensal microorganisms, pathogens, and food antigens, over a huge surface area. In the intestine, therefore, DCs are required to perform their dual roles very efficiently to protect the body from the dual threats of invading pathogens and unwanted inflammatory reactions. In this review, we first describe the biology of DCs and their interactions with other cells types, paying particular attention to intestinal DCs. We, then, examine the ways in which this biology may become misdirected, resulting in inflammatory bowel disease. Finally, we discuss how DCs potentiate immune responses against viral, bacterial, parasitic infections, and their importance in the pathogenesis of prion diseases. We, therefore, provide an overview of the complex cellular interactions that affect intestinal DCs and control the balance between immunity and tolerance.
Collapse
Affiliation(s)
- Vuk Cerovic
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
131
|
Qualls JE, Tuna H, Kaplan AM, Cohen DA. Suppression of experimental colitis in mice by CD11c+ dendritic cells. Inflamm Bowel Dis 2009; 15:236-47. [PMID: 18839426 DOI: 10.1002/ibd.20733] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The innate immune system serves a critical role in homeostasis of the gastrointestinal (GI) tract. Both macrophages (MØs) and dendritic cells (DCs) have been shown to have pathogenic roles in animal models of inflammatory bowel disease. However, studies by several labs have established that resident MØs and DCs within the normal GI tract maintain an immunosuppressive phenotype compared to that seen in other peripheral sites. Recent studies by our lab demonstrated that the depletion of both MØs and DCs before the initiation of dextran sodium sulfate (DSS)-induced colitis resulted in exacerbation of disease, partly caused by increased neutrophil influx. METHODS/RESULTS In this current report, DSS-induced colitis was shown to be significantly more severe when DCs were selectively depleted in mice as indicated by changes in weight loss, stool consistency, rectal bleeding, and histopathology. In contrast to enhanced colitis in MØ/DC-depleted mice, which was associated with increased neutrophil influx, increased colitis in DC-depleted mice was not associated with an increase in neutrophils in the colon, as shown by CXCL1 chemokine levels and myeloperoxidase (MPO) activity. However, increased IL-6 gene and protein expression in colon tissues correlated positively with increased colitis severity in DC-depleted mice compared to colitis in DC-intact mice. CONCLUSIONS This study demonstrates that resident DCs can suppress the severity of acute DSS colitis and that regulation of IL-6 production may contribute to DC-mediated control of intestinal inflammation.
Collapse
Affiliation(s)
- Joseph E Qualls
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
132
|
Peña JA, Thompson-Snipes L, Calkins PR, Tatevian N, Puppi M, Finegold MJ. Alterations in myeloid dendritic cell innate immune responses in the Galphai2-deficient mouse model of colitis. Inflamm Bowel Dis 2009; 15:248-60. [PMID: 19037851 PMCID: PMC2627792 DOI: 10.1002/ibd.20744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The G protein alpha subunit type-2 (Galpha(i)2)-deficient mouse develops inflammatory bowel disease (IBD) with increased severity in mice on a 129SvEv (129) background compared to the C57BL/6 (B6) background. Since dendritic cells (DCs) are key cells of innate immunity, we determined whether Galpha(i)2(-/-) DCs have functional defects, influenced by strain background, that predispose to IBD. METHODS By breeding these strains to homozygosity for the first time, it became possible to study innate immunity in this animal model with more precision than ever before. Immature DCs were generated using bone marrow monoblasts cultured in the presence of GM-CSF (BMDCs), DC subsets sorted and responses to TLR9 activation were assayed. RESULTS In contrast to Galpha(i)2(-/-) B6, Galpha(i)2(-/-) 129 mice display accelerated onset and increased severity of colitis, abnormal mucosal DC distribution, accompanied by preponderance for Th1 and Th17-associated gut cytokine expression. TLR9 activation of BMDCs induces sustained p38 MAPK activation and greater Th1- and Th17-type cytokine secretion in both strains of Galpha(i)2-deficient compared to wildtype BMDCs. However, only B6 Galpha(i)2(-/-) BMDCs concomitantly produces IL-10 while Galpha(i)2(-/-) 129 BMDCs do not. CONCLUSIONS Loss of Galpha(i)2 promotes a Th1/Th17 phenotype and relative IL-10 insufficiency in Galpha(i)2(-/-) 129 BMDCs may account for the striking difference in disease.
Collapse
Affiliation(s)
- JA Peña
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030,Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | | | - PR Calkins
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030
| | - N Tatevian
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030,Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - M Puppi
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030,Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - MJ Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030,Department of Pathology, Texas Children's Hospital, Houston, TX 77030,To whom correspondence should be addressed: 6621 Fannin St. MC 1-2261, Houston, TX 77030. Phone: (832) 8241885. Fax: (832) 825 1032. e-mail:
| |
Collapse
|
133
|
Saba K, Denda-Nagai K, Irimura T. A C-type lectin MGL1/CD301a plays an anti-inflammatory role in murine experimental colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:144-52. [PMID: 19095961 DOI: 10.2353/ajpath.2009.080235] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease is caused by abnormal inflammatory and immune responses to harmless substances, such as commensal bacteria, in the large bowel. Such responses appear to be suppressed under healthy conditions, although the mechanism of such suppression is currently unclear. The present study aimed to reveal whether the recognition of bacterial surface carbohydrates by the macrophage galactose-type C-type lectin-1, MGL1/CD301a, induces both the production and secretion of interleukin (IL)-10. Dextran sulfate sodium salt (DSS) was orally administrated to mice that lacked MGL1/CD301a (Mgl1(-/-) mice) and their wild-type littermates. Mgl1(-/-) mice showed significantly more severe inflammation than wild-type mice after administration of DSS. MGL1-positive cells in the colonic lamina propria corresponded to macrophage-like cells with F4/80-high, CD11b-positive, and CD11c-intermediate expression. These cells in Mgl1(-/-) mice produced a lower level of IL-10 mRNA compared with wild-type mice after the administration of DSS for 2 days. Recombinant MGL1 was found to bind both Streptococcus sp. and Lactobacillus sp. among commensal bacteria isolated from mesenteric lymph nodes of DSS-treated mice. Heat-killed Streptococcus sp. induced an increase in IL-10 secretion by MGL1-positive colonic lamina propria macrophages, but not the macrophage population from Mgl1(-/-) mice. These results strongly suggest that MGL1/CD301a plays a protective role against colitis by effectively inducing IL-10 production by colonic lamina propria macrophages in response to invading commensal bacteria.
Collapse
Affiliation(s)
- Kengo Saba
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
134
|
Chang JH, Lee JM, Youn HJ, Lee KA, Chung Y, Lee AY, Kweon MN, Kim HY, Taniguchi M, Kang CY. Functional maturation of lamina propria dendritic cells by activation of NKT cells mediates the abrogation of oral tolerance. Eur J Immunol 2008; 38:2727-39. [PMID: 18825753 DOI: 10.1002/eji.200838159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously showed that although systemic administration of alpha-galactosylceramide (alphaGalCer) or agonistic anti-CD40 induced functional maturation of dendritic cells (DC) in mesenteric lymph nodes, only the former treatment succeeded in breaking the induction of oral tolerance. In this study, we looked for the essential factor responsible for the disruption of oral tolerance. We found that lamina propria (LP)-DC was responsible for the oral OVA presentation and that Peyer's patch was not essential for the induction of oral tolerance. Therefore, we investigated the role of LP-DC. Treatment with alphaGalCer but not with anti-CD40 induced the full maturation of LP-DC at an early time point. This functional activation of LP-DC was mediated by strong activation of NKT cells that reside abundantly in the small intestinal lamina propria (SI-LP) and interferon-gamma partially contributed to the LP-DC activation. LP-DC isolated from alphaGalCer-treated OVA-fed mice induced the differentiation of naïve CD4+ T cells into Th1 and Th2 and was associated with the reduced Foxp3+ population. In contrast, LP-DC isolated from anti-CD40-treated OVA-fed mice failed to generate Th cell differentiation but induced more Foxp3+ CD4+ T cells. Our results demonstrate that triggered by NKT cells in SI-LP, functional maturation of Ag-capturing DC from SI-LP is necessary for the abrogation of oral tolerance induction.
Collapse
Affiliation(s)
- Jae-Hoon Chang
- Laboratory of Immunology, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Miura S, Kubes P, Granger DN. Gastrointestinal and Liver Microcirculations: Roles in Inflammation and Immunity. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
136
|
Oral tolerance: intestinal homeostasis and antigen-specific regulatory T cells. Trends Immunol 2008; 29:532-40. [DOI: 10.1016/j.it.2008.09.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/26/2008] [Accepted: 09/01/2008] [Indexed: 01/27/2023]
|
137
|
Kelsall B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol 2008; 1:460-9. [PMID: 19079213 PMCID: PMC4780321 DOI: 10.1038/mi.2008.61] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mucosal immune responses must be tightly controlled, particularly in the intestine. As members of the mononuclear phagocyte family, dendritic cells (DCs) and macrophages are well represented in intestinal tissues and have developed unique functional niches. This review will focus on recent findings on antigen uptake and processing in the intestine and the role of DCs in the imprinting of homing receptors on T and B cells, the induction of immunoglobulin A B-cell responses, and the differentiation of regulatory T cells. It will also address the unique phenotype of intestinal macrophages and briefly what is known regarding the relationships between these cell types.
Collapse
Affiliation(s)
- Brian Kelsall
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, 10/11N111, 10 Center Drive, NIAID NIH, Bethesda, MD 20892,
| |
Collapse
|
138
|
Wohlfert E, Belkaid Y. Role of endogenous and induced regulatory T cells during infections. J Clin Immunol 2008; 28:707-15. [PMID: 18810611 PMCID: PMC3418658 DOI: 10.1007/s10875-008-9248-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Various populations of regulatory cells, including Foxp3+ T(Reg), have been shown to play a central role in the maintenance of peripheral homeostasis and establishment of controlled immune responses. OBJECTIVE In this review, we discuss current hypotheses and points of polemic associated with the origin, mode of action, and antigen specificity of both endogenous and induced regulatory T cells during infections.
Collapse
Affiliation(s)
- Elizabeth Wohlfert
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Room 4/126, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Room 4/126, Bethesda, MD 20892, USA
| |
Collapse
|
139
|
Belkaid Y, Oldenhove G. Tuning microenvironments: induction of regulatory T cells by dendritic cells. Immunity 2008; 29:362-71. [PMID: 18799144 DOI: 10.1016/j.immuni.2008.08.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The body requires the generation of regulatory T (Treg) cells to preserve its integrity. Each microenvironment is controlled by a specific set of regulatory elements that have to be finefrly and constantly tuned to maintain local homeostasis. These environments could be site specific, such as the gut environment, or induced by chronic exposure to microbes or tumors. Various populations of dendritic cells (DCs) are central to the orchestration of this control. In this review, we will discuss some new findings associating DCs from defined compartments with the induction of antigen-specific Treg cells.
Collapse
Affiliation(s)
- Yasmine Belkaid
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20894, USA
| | | |
Collapse
|
140
|
Mantis NJ, Wagner J. Analysis of Adhesion Molecules Involved in Leukocyte Homing into the Basolateral Pockets of Mouse Peyer's Patch M Cells. J Drug Target 2008; 12:79-87. [PMID: 15203901 DOI: 10.1080/10611860410001693724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The basolateral membranes of intestinal M cells are invaginated to form large intraepithelial "pockets" that are populated by specific sub-sets of mucosal leukocytes, including CD4+ T cells, memory and naïve B cells, and occasional dendritic cells. The adhesion molecules involved in leukocyte trafficking and/or retention within this unique immunological niche are unknown. In this study, we used immunofluorescence microscopy and a battery of monoclonal antibodies to identify the adhesion molecules expressed by leukocytes situated within the intracellular pockets of mouse Peyer's patch (PP) M cells. M cell associated leukocytes (MAL) consistently stained positive for integrin alpha4beta7, and integrin LFA-1 (CD11a/CD18), but were rarely positive for L-selectin (CD62L) or the mucosal integrin alphaEbeta7. However, neither the alpha4beta7 ligands MadCAM-1 or VCAM-1, nor the LFA-1 ligand ICAM-1, were detected on M cell basolateral membranes. To determine whether integrins alpha4beta7 or LFA-1 play a functional role leukocyte homing to M cell pockets, we examined M cells in mice deficient in integrin beta7 or CD11a/CD18. Although PP from CD18 or integrin beta7 mice were reduced in number and size as compared to age-matched controls, we identified M cells in both strains of mice. However, mice lacking CD18 (but not integrin beta7) had significantly fewer leukocytes within M cell pockets as compared to control animals, suggesting LFA-1 (but not alpha4beta7) may contribute, in part, to leukocyte trafficking into and/or retention within this unique immunological niche.
Collapse
Affiliation(s)
- Nicholas J Mantis
- GI Cell Biology Laboratory, Children's Hospital Boston, 300 Longwood Avenue, 02115 Boston, MA, USA.
| | | |
Collapse
|
141
|
Wong KL, Lew FC, MacAry PA, Kemeny DM. CD40L-expressing CD8 T cells prime CD8alpha(+) DC for IL-12p70 production. Eur J Immunol 2008; 38:2251-62. [PMID: 18600823 DOI: 10.1002/eji.200838199] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CD8alpha(+) DC are implicated as the principle DC subset for cross-presentation and cross-priming of cytotoxic CD8 T cell responses. In this study, we demonstrate another unique facet of the CD8alpha(+) DC and CD8 T cell relationship, by showing that CD8 T cells reciprocally activate CD8alpha(+) DC, but not CD8alpha(-) DC, for IL-12p70 production, the key Th1-promoting cytokine. This effect was observed during an antigen-specific interaction between DC and activated CD8 T cells, along with secondary TLR stimulation of DC by LPS. Activated CD8 T cells use a combination of IFN-gamma and CD40L, which is rapidly up-regulated post-stimulation, to prime DC for IL-12p70 production during an antigen-specific response. Our results suggest that the interaction between CD8alpha(+) DC and antigen-primed CD8 T cells may form an important component of Th1-mediated immunity through the induction of IL-12p70.
Collapse
Affiliation(s)
- Kok Loon Wong
- Immunology Program and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
142
|
Abstract
The gastrointestinal innate and adaptive immune system continuously faces the challenge of potent stimuli from the commensal microflora and food constituents. These local immune responses require a tight control, the outcome of which is in most cases the induction of tolerance. Local T cell immunity is an important compartment of the specific intestinal immune system. T cell reactivity is programmed during the initial stage of its activation by professional presenting cells. Mucosal dendritic cells (DCs) are assumed to play key roles in regulating immune responses in the antigen-rich gastrointestinal environment. Mucosal DCs are a heterogeneous population that can either initiate (innate and adaptive) immune responses, or control intestinal inflammation and maintain tolerance. Defects in this regulation are supposed to lead to the two major forms of inflammatory bowel disease (IBD), Crohn’s disease (CD) and ulcerative colitis (UC). This review will discuss the emerging role of mucosal DCs in regulating intestinal inflammation and immune responses.
Collapse
|
143
|
Manicassamy S, Pulendran B. Retinoic acid-dependent regulation of immune responses by dendritic cells and macrophages. Semin Immunol 2008; 21:22-7. [PMID: 18778953 DOI: 10.1016/j.smim.2008.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 01/21/2023]
Abstract
Dendritic cells (DCs) control the strength and quality of antigen-specific T and B cell responses. Recent advances point to a novel mechanism, in which metabolism of vitamin A into retinoic acid (RA) in DCs, regulate critical parameters of lymphocyte differentiation. First, RA enhances the induction of Foxp3(+) T regulatory cells by DCs. Thus, specific subsets of intestinal DCs and macrophages constitutively express RA synthesizing enzymes, and induce T regulatory cells. In addition, RA programs DCs to imprint mucosal homing properties on activated T and B cells, and enhanced induction of immunoglobulin-A (IgA) by B cells. Here, we review these recent advances, in the context of the pleiotropic effects of RA in regulating diverse biological processes.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Emory Vaccine Center & Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | |
Collapse
|
144
|
Imai Y, Hayashi N, Yasuda K, Tsutsui H, Mizutani H, Nakanishi K. Freshly isolated Langerhans cells negatively regulate naïve T cell activation in response to peptide antigen through cell-to-cell contact. J Dermatol Sci 2008; 51:19-29. [DOI: 10.1016/j.jdermsci.2008.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/10/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
145
|
T(H)2 adjuvants: implications for food allergy. J Allergy Clin Immunol 2008; 121:1311-20; quiz 1321-2. [PMID: 18539190 DOI: 10.1016/j.jaci.2008.04.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 11/20/2022]
Abstract
A persistent question for immunologists studying allergic disease has been to define the characteristics of a molecule that make it allergenic. There has been substantial progress elucidating mechanisms of innate priming of T(H)2 immunity in the past several years. These accumulating data demonstrate that T(H)2 immunity is actively induced by an array of molecules, many of which were first discovered in the context of antihelminthic immune responses. Similar intrinsic or associated activities are now known to account for the T(H)2 immunogenicity of some allergens, and may prove to play a role for many more. In this review, we discuss what has been discovered regarding molecules that induce innate immune activation and the pathways that promote T(H)2-polarized immune responses generally, and specifically what role these mechanisms may play in food allergy from models of food allergy and the study of T(H)2 gastrointestinal adjuvants.
Collapse
|
146
|
Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008; 8:411-20. [PMID: 18469830 DOI: 10.1038/nri2316] [Citation(s) in RCA: 761] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal surfaces such as the intestinal tract are continuously exposed to both potential pathogens and beneficial commensal microorganisms. This creates a requirement for a homeostatic balance between tolerance and immunity that represents a unique regulatory challenge to the mucosal immune system. Recent findings suggest that intestinal epithelial cells, although once considered a simple physical barrier, are a crucial cell lineage for maintaining intestinal immune homeostasis. This Review discusses recent findings that identify a cardinal role for epithelial cells in sampling the intestinal microenvironment, discriminating pathogenic and commensal microorganisms and influencing the function of antigen-presenting cells and lymphocytes.
Collapse
Affiliation(s)
- David Artis
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Philadelphia 19104-4539, USA.
| |
Collapse
|
147
|
Abstract
A breakdown in intestinal homeostasis can result in chronic inflammatory diseases of the gut including inflammatory bowel disease, coeliac disease and allergy. Dendritic cells, through their ability to orchestrate protective immunity and immune tolerance in the host, have a key role in shaping the intestinal immune response. The mechanisms through which dendritic cells can respond to environmental cues in the intestine and select appropriate immune responses have until recently been poorly understood. Here, we review recent work that is beginning to identify factors responsible for intestinal conditioning of dendritic-cell function and the subsequent decision between tolerance and immunity in the intestine.
Collapse
Affiliation(s)
- Janine L Coombes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
148
|
Monteleone I, Platt AM, Jaensson E, Agace WW, Mowat AM. IL-10-dependent partial refractoriness to Toll-like receptor stimulation modulates gut mucosal dendritic cell function. Eur J Immunol 2008; 38:1533-47. [PMID: 18461564 PMCID: PMC2988418 DOI: 10.1002/eji.200737909] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 02/26/2008] [Accepted: 04/08/2008] [Indexed: 01/22/2023]
Abstract
The default response of the intestinal immune system to most antigens is the induction of immunological tolerance, which is difficult to reconcile with the constant exposure to ligands for TLR and other pattern recognition receptors. We showed previously that dendritic cells (DC) from the lamina propria of normal mouse intestine may be inherently tolerogenic and here we have explored how this might relate to the expression and function of Toll-like receptors (TLR). Lamina propria (LP) DC showed higher levels of TLR 2, 3, 4 and 9 protein expression than spleen and MLN DC, with most TLR-expressing DC in the gut being CD11c(lo), class II MHC(lo), CD103(-), CD11b(-) and F4/80(-). TLR expression by lamina propria DC was low in the upper small intestine and higher in distal small intestine and colon. Freshly isolated lamina propria DC expressed some CD40, CD80, CD86 and functional CCR7. These were up-regulated on CD11c(lo), but not on CD11c(hi) LP DC by stimulation via TLR. However, there was little induction of IL-12 by either subset in response to TLR ligation. This was associated with constitutive IL-10 production and was reversed by blocking IL-10 function. Thus, IL-10 may maintain LP DC in a partially unresponsive state to TLR ligation, allowing them to have a critical role in immune homeostasis in the gut.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/pharmacology
- Antigens, Bacterial/pharmacology
- Antigens, CD/analysis
- Antigens, CD/metabolism
- CD11 Antigens/analysis
- Chemotaxis/drug effects
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Gene Expression
- Histocompatibility Antigens Class II/analysis
- Interleukin-10/metabolism
- Interleukin-12/metabolism
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestine, Large/cytology
- Intestine, Large/immunology
- Intestine, Large/metabolism
- Intestine, Small/cytology
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/metabolism
- Mice
- Mice, Inbred BALB C
- Oligodeoxyribonucleotides/pharmacology
- Poly I-C/pharmacology
- Receptors, CCR7/metabolism
- Receptors, Interleukin-10/immunology
- Spleen/cytology
- Spleen/metabolism
- Toll-Like Receptors/agonists
- Toll-Like Receptors/genetics
- Toll-Like Receptors/metabolism
Collapse
Affiliation(s)
- Ivan Monteleone
- Division of Immunology Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
149
|
Abstract
The immune system faces a considerable challenge in its efforts to maintain tissue homeostasis in the intestinal mucosa. It is constantly confronted with a large array of antigens, and has to prevent the dissemination and proliferation of potentially harmful agents while sparing the vital structures of the intestine from immune-mediated destruction. Complex interactions between the highly adapted effector cells and mechanisms of the innate and adaptive immune system generally prevent the luminal microflora from penetrating the intestinal mucosa and from spreading systemically. Non-haematopoietic cells critically contribute to the maintenance of local tissue homeostasis in an antigen-rich environment by producing protective factors (e.g. production of mucus by goblet cells, or secretion of microbicidal defensins by Paneth cells) and also through interactions with the adaptive and innate immune system (such as the production of chemotactic factors that lead to the selective recruitment of immune cell subsets). The complexity of the regulatory mechanisms that control the local immune response to luminal antigens is also reflected in the observation that mutations in immunologically relevant genes often lead to the development of uncontrolled inflammatory reactions in the microbially colonized intestine of experimental animals.
Collapse
Affiliation(s)
- Mirjam Schenk
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
150
|
Oral vaccination against bubonic plague using a live avirulent Yersinia pseudotuberculosis strain. Infect Immun 2008; 76:3808-16. [PMID: 18505804 DOI: 10.1128/iai.00034-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the possibility of using Yersinia pseudotuberculosis as a live vaccine against plague because it shares high genetic identity with Y. pestis while being much less virulent, genetically much more stable, and deliverable orally. A total of 41 Y. pseudotuberculosis strains were screened by PCR for the absence of the high pathogenicity island, the superantigens YPM, and the type IV pilus and the presence of the pYV virulence plasmid. One strain (IP32680) fulfilled these criteria. This strain was avirulent in mice upon intragastric or subcutaneous inoculation and persisted for 2 months in the mouse intestine without clinical signs of disease. IP32680 reached the mesenteric lymph nodes, spleen, and liver without causing major histological lesions and was cleared after 13 days. The antibodies produced in vaccinated animals recognized both Y. pseudotuberculosis and Y. pestis antigens efficiently. After a subcutaneous challenge with Y. pestis CO92, bacteria were found in low amounts in the organs and rarely in the blood of vaccinated animals. One oral IP32680 inoculation protected 75% of the mice, and two inoculations induced much higher antibody titers and protected 88% of the mice. Our results thus validate the concept that an attenuated Y. pseudotuberculosis strain can be an efficient, inexpensive, safe, and easy-to-produce live vaccine for oral immunization against bubonic plague.
Collapse
|